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Abstract an obvious example is the personal operating system. In a large en-

terprise, such reboots can have a large administrative[cdst [35]. De-
spite this, stop/restart upgrades are common—one study [22] found
that 75% of nearly 6000 outages of high-availability applications
were planned for hardware and software maintenance.

Software updates typically require stopping and restarting an ap-
plication, but many systems cannot afford to halt service, or would
prefer not toDynamic software updatind®SU) addresses this dif-

ficulty by permitting programs to be updated while they run. DSU ; o i
is appealing compared to other approaches for on-line upgrades be- In prior work, we and others have proposed variations of a fine-

cause it is quite general and requires no redundant hardware. Th@rﬁinﬁd' corﬂgiler-bgsedﬂapproacg to sug%ort:nghgn-line upgk:ades
challenge is in making DSpractical: it should be flexible, and yet ~ hich we calldynamic software updatin@SU). In this approach,
safe, efficient, and easy to use. a running program is patched with new code and data on-the-fly,

In this paper, we present Ginseng, a DSU implementation for while it runs. DSU is appealing because of its generality: in princi-

C that aims to meet this challenge. We compile programs specially P/ @ny program can be updated in a fine-grained way. There is no

so that they can be dynamically patched, and generate most of aneed for redundant hardware or special-purpose software architec-

dynamic patch automatically. Ginseng performs a series of anal- lUres and application state is naturally preserved between updated
yses that when combined with some simple runtime support en- Versions, so that current processing is not compromised or inter-

sure that an update will not violate type-safety while guaranteeing r'IuiE\tgeddgbigg?r?g 223 E‘)fiex-u:ri;j-cré)arllttliﬁilzlex ?o?tvvgegrggzgi)rgrige%rto-

that data is kept up-to-date. We have used Ginseng to construct ani‘ thel th has b little impl ati ;
dynamically apply patches to three substantial open-source server ' ONENEIESS, here nas been littie implementation experience re-
ported in the literature to suggest that DSU can work in practice for

programs—Yery Secure FTP daempB®penSSH sshd daemand . - X ! )

GNU Zebra In total, we dynamically patched each program with ?Xn'St.Op s?rv'cis er'(tten In ma}msstre?aqu(;grammmg languages.
) (A review of past work appears in Sec .

three years’ worth of releases. Though the programs changed sub This paper presents Ginseng, a new DSU implementation for C

stantially, the majority of updates were easy to generate. Perfor- . . o .
mance experiments show that all patches could be applied in lessPrograms that aims to satisfy three criteria we believe are necessary

than 5ms, and that the overhead on application throughput due to for practicality:

updating support ranged from O to at most 32%. DSU should not require extensive changes to application®SU
should permit writing applications in a natural style: while an
application writer should anticipate that software will be upgraded,
he should not have to know what form that update will take.

Categories and Subject Descriptorg-.3.2 [Semantics of Pro-
gramming Languagés Program analysis; D.3.4Pfocessork
Compilers; C.4Performance of SystemReliability, availability,
and serviceability DSU should restrict the form of dynamic updates as little as
possible. The power and appeal of DSU is to permit applications
to change on the fly at a fine granularity. Thus, programmers should

Keywords dynamic software updating, type wrapping, function be able to change data representations, change function prototypes,
indirection, loop extraction reorganize subroutines, etc. as they normally would.

General Terms Design, Languages, Performance

) Dynamic updates should be neither hard to write nor hard to
1. Introduction establish as correct. The harder it is to develop applications that

Many systems require continuous operation but nonetheless mustSe DSU, the more its benefit of finer granularity and control is
be updated to fix bugs and add new features. For ISPs, credit carddiminished.

providers, brok.erages,.anq on-lir)e stores, being availablfe 2417 iSTo evaluate Ginseng, we have used it to dynamically upgrade three
synonymous with staying in business: an hour of downtime can open-source serverssftpd (the Very Secure FTP daemon), the

cost hundreds of thousands, or even millions of dollars [26, 28]. sshd daemon from the OpenSSH suite, and#kera server from
Many more systems woulgrefer on-line upgrades in lieu of hav- the GNU Zebra routing software packa;;e.

ing to stop and restart the system every time it must be patched; " go<aq on our experience, we believe Ginseng squarely meets

the first two criteria for the class of single-threaded server appli-

cations we considered, and makes significant headway toward the

third. These programs are realistic, substantial, and in common use.
Permission to make digital or hard copies of all or part of this work for personal or  Though they were not designed with updating in mind, we had to
classroom use is granted without fee provided that copies are not made or distributedmake 0n|y a handful of changes to their source code to make them
for profit or commercial advantage and that copies bear this notice and the full citation fel d ble. Each d . d f d b d
on the first page. To copy otherwise, to republish, to post on servers or to redistribute safely updateable. Each dynamic up at_e W_e perrorme ' was base
to lists, requires prior specific permission and/or a fee. on an actual release, and for each application, we applied updates
PLDI'06 June 11-14, 2006, Ottawa, Ontario, Canada. corresponding to at least three years’ worth of releases, totaling
Copyright(© 2006 ACM 1-59593-320-4/06/0006. .. $5.00. as many as twelve different patches in one case. To achieve these
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Figure 1. Building and dynamically updating software with Ginseng.

results, we developed several new implementation techniques, in-new version ¢;.c), the developer provides the new and old code
cluding new ways to handle the transformation of data whose type to the patch generatotto generate a patch;.c representing the
changes, to allow dynamic updates to infinite loops, and to allow differences. This is passed to the compiler along with the current
updates to take effect in programs with function pointers. Though version information, and turned intodnamic patch vo — vi.
we have not optimized our implementation, overhead due to updat- The runtime systentinks the dynamic patch into the running pro-
ing is modest: between 0 and 32% on the programs we tested. gram, completing the on-line update. This process continues for
Despite the fact that changes were non-trivial, generating and each subsequent program version.
testing patches was relatively straightforward. We developed tools  The Ginseng compiler has two responsibilities. First, it com-
to generate most of a dynamic patch automatically by comparing piles programs to be dynamically updateable, so that existing code
two program versions, reducing programmer work. More impor- will be redirected to replacement functions present in a dynamic
tantly, Ginseng performs two safety analyses to determine times patch. In addition, when a type is updated, existing values of that
during the running program’s execution at which an update can be type must be transformed to have the new type’s representation,
performed safely. The theoretical development of our first analysis, to be compatible with the new code. Code is compiled to notice
called theupdateability analysisis presented in earlier work [33].  when a typed value is out of date, and if so, to apply the necessary
The contribution of this paper is the implementation of that analysis transformation function. We explain in Sectioh 3 how our imple-
for the full C programming language, along with some practical ex- mentation supports these features by transforming a program to use

tensions, and the development of a redvgtraction-violating alias
analysisfor handling some of the low-level features of C. These

function indirectionsandtype wrappers
Second, the Ginseng compiler uses a suite of analyses to ensure

safety analyses go a long way toward ensuring correctness, thoughthat updates are alwaygpe-safe even when changes are made

the programmer needs a clear “big picture” of the application e.g.,
interactions between components and global invariants.
In short, we make the following contributions in this paper:

. We present a practical framework to support dynamically up-
dating running C programs. Ours is the most flexible, and ar-
guably the most safe, implementation of a DSU system to date.

to function prototypes or type definitions. The basic idea is to
examine the program to discover assumptions made about the types
of updateable entities (i.e., functions or data) in the continuation of
each program point. These assumptions become constraints on the
timing of updates. For example, a call tat f(int) constrains

the program point just before the call to not allow an update to
that would change’s type. The formal details of our analysis are

. We present a substantial study of the application of our system presented elsewherie [33]; Sect[dn 4 discusses its application to C

to three sizeable C server programs. Our experience shows thaprograms, including several extensions.

DSU can be practical for updating realistic server applications
as they are written now, and as they evolve in practice. We
are optimistic that our approach can ultimately be practical for

The Ginseng patch generator (Secfign 5) has two responsibili-
ties. First, it identifies those definitions (be they global variables,
functions, or types) that have changed between versions. Second,

many non-stop applications, including game servers, operating for each type definition that has changed, it generatgpatrans-

systems and embedded systems software.

formerfunction used to convert values from a type’s old represen-

The next section presents an overview of our approach and outlinestation to the new one. The compiler inserts code so that the program

the rest of the paper.

2. Ginseng Overview

will make use of these functions following a dynamic patch. If the
new code assumes an invariant about global state, this invariant has
to hold after the update takes place. Users can write optiiate
transformerfunctions that are run at update time to convert global

Ginseng consists of a compiler, a patch generator and a runtimestate and run initialization code for this purpose. Users also may

system for building updateable softwﬁBasic usage is illustrated

in Figure[], with Ginseng components in white boxes. There are
two stages. First, for the initial version of a program,c, the
compilergenerates an updateable executablealong with some
prototype and analysis informatioligrsion Data do). The exe-

adjust the generated type transformers as necessary. We found that
writing state transformers or adjusting type transformers was rarely
needed.

The dynamic update itself is carried out by the Ginseng runtime
system (Sectiofi]5) linked into the updateable program. Once no-

cutable is deployed. Second, when the program has changed to dified, the runtime system will cause the patch to be dynamically

1The compiler and patch generator are written in Objective Caml using the
CIL framework [25].The runtime system is a library written in C.

loaded and linked at the next safpdate pointThis is essentially a
call into the runtime system inserted by the programmer. Our safety



analysis will annotate these points with constraints as to how defi-  Given this basic mechanism, we must address two questions.
nitions are allowed to change at each particular point. The runtime First, when are type transformers to be used? Second, how is
system will check that these constraints are satisfied by the currentupdateable data represented?
update, and if so, it “glues” the dynamic patch into the running pro- ) o
gram. In our experience, finding suitable update points in long-lived APplying Type Transformers To transform existing  values
server programs is quite straightforward, and the analysis providesthe runtime system must find them all and apply,_.,,,, to
useful feedback as to whether the chosen spots are free from re-ach. One approach would be to do this eagerly, at update-time;
strictions. this would require either implementing a garbage-collector-style
The next three sections describe these features of Ginseng in defracing algorithm [[14], or maintaining a registry of pointers to
tail, while SectionfJ6 ar[d 7 describe our experience using GinsengeVvery (live) value of typd, during execution [4]. More simply, we
and evaluate its performance. We finish with a discussion of related could restrict type transformation to only those data reachable from

work and conclude. global variables, and require the programmer to implement the
tracer manually [17]. Finally, we could do it lazily, as the program
3. Enabling On-line Updates executes following the update [12, 7].

Ginseng uses the lazy approach. The compiler renames version
To make programs dynamically updateable we address two mainy, of the user’s definition of to beT,,, where the definition of
problems. First, existing code must be able to call new versions of simply wraps that off,,, adding aversion field. Given a value
functions, whether via a direct call or via a function pointer. Sec- vy (of wrapped type), Ginseng inserts eoercionfunction called
ond, the state of the program must be transformed to be compatibleconT (for corcretization ofT) that returns the underlying repre-
with the new code. For a type whose definition has changed, exist-sentation. This coercion is inserted wherevgtis used concretely,
ing values of that type must be transformed to conform to the new j e , in a way that depends on its definition. For example, this would
definition. . happen when accessing a field inseruct. Wheneverconr is

Ginseng employs two mechanisms to address these two prob-called onur, the coercion function compareg’s versionn with
lems, respectivelyfunction indirectiorandtype-wrappingWe dis- the latest versiom: of T. If n < m, then the necessary type trans-
cuss them in tum below, and show how they can be combined to former functions are composed and apphed].fo changing it in-
update long-running loops. place, to yield the up-to-dater  (of typeT,,,).

The lazy approach has a number of benefits. First, it is not lim-
ited to processing only values that are reachable by global vari-
Function indirection is a standard technique that permits old code ables; stack-allocated values, or those reachable from stack allo-
to call new function versions by introducing a level of indirection  cated values are handled easily. Second, it amortizes transforma-
between a caller and the called function, so that its implementation tion costs, reducing the potential pause at update-time that would
can change. For each functisiin the program, Ginseng introduces  be required to transform all data in the program. The drawback
a global variablef _ptr that initially points to the first version of s that per-type access during normal program execution is more
£{|Ginseng encodes version information through name mangling, expensive (due to the calls tent), and the programmer has lit-

f initially being £_v0, thenf_v1 and so on. Each direct call to  tle control over when type transformers are invoked, since this is

£ within the program is replaced with a call througti_ptr. determined automatically. Therefore, transformers must be written

Ginseng also handles function pointers in an interesting way: if to be timing-independent. In our experience, type transformers are
the program passefsas data (i.e., as a function pointer), Ginseng used rarely, and so it may be sensible to use a combination of eager
generates a wrapper function that cails_ptr and passes this  and lazy application to reduce total overhead.

3.1 Function Indirection

wrapper instead. To dynamically updatéo versionl, the runtime Without care, it could be possible for a transformed value to
system dynamically loads the new versitivi and then stores the  end up being processed by old code, violating representation con-
address of _v1 in f_ptr. sistency. This could lead @nt coercion to discover that the ver-

. sionn on vy is actuallygreater than the versionn of the type
3.2 Type Wrapping T expected by the code. A similar situation arises when function
The Ginseng updating model enforces what we regdfesentation types change: old code might end up calling the new version of a
consistency33], in which all values of typ& in the program at a function assuming it has the old signature. We solve these problems
given time must logically be members D& most recent version.  with some novel safety analyses, described in Sef{ion 4.
The alternative would be to allow multiple versions of a type to ] ) o
coexist, where code and values of old and new type could inter- TYPe RepresentationsWhile lazy type updating is not new, there
act freely within the program. (jmtysson and Gray [18] refer to has been little or no exploration of its implementation, partlpularly
these approaches glbbal updateandpassive partitioningrespec-  for a low-level language such as C. Based on our experience, a
tively.) Representation consistency is a useful property because itgiven type is likely to grow in size over time, so the representation
more closely models the “forward march” of a program’s on-line 0f the wrapped typ& must allow this. One approach is to define
evolution, making it easier to reason about. the wrapper type to use a fixed space, larger than the sizg of

To enforce representation consistency, Ginseng must ensure thafPadding). This strategy allows future updateg tthat do not ex-
when a particular typ&’s definition is updated, values of that type ~ Pand beyond the preallocated padding. The main advantage of the
in the running program are updated as well. To do this, a dynamic Padding approach is that the allocation strategy for wrapped data is
patch defines type transformer functionsed to transform avalue ~ Simple: stack-allocated data in the source program is still stack al-
v from T's old definition to its new one. Just like functions, types located in the compiled program, and similarly fefl1oced data.
are associated with a version, and the type transfoemer. ., This is because type transformation happensglace the trans-
converts values of type, to be those of typ&,.,1. As we explain formed data overwrites the old data in the same storage. On_ the
later, much of a type transformer function can be generated auto-0ther hand, a data type cannot grow beyond the initial padding,
matically via a simple comparison of the old and new definitions. hampering on-line evolution. Padding also changes the cache lo-
cality of data; for example, if a two-word structure in the original
2Ginseng is more careful than we are in these examples about generatingdrogram is expanded to four words, then half as many elements can
non-clashing variable names. fit in a cache line. For simplicity, Ginseng employs this approach.




An alternative approach is to use indirection, and represent the needed by the loop; we can seefiso where this value is created.
wrapped type as a pointer to a value of the underlying type. This Within L1_loop, references to local variables)(or parametersg)
mechanism is used in the K42 operating system [20], which sup- have been changed to refer to them throug@hs) .
ports updating objects. The indirection approach solves the growth ~ Within the functionfoo, the loop function is called on each
problem by allowing the size of the wrapped type to grow arbi- loop iteration. Within the extracted loop function, expressions
trarily, but introduces an extra dereference per access. More impor-that would have exited the loop—notatdyeak, continue, and
tantly, the indirection approach makes memory management morereturn statements—are changed#eturn z, wherex is 0 for
challenging: how should storage for the transformed data be allo- break, 1 for continue and2 for return. In foo, this return code
cated, and what is to happen to the now-unneeded old data? Alsojs checked and the correct action is taken.
when data is copied, the indirected data must be copied as well, to  If in a subsequent program version the loopfiso were to
preserve the sharing semantics of the application. The simplest so-change, the extracted versions of the two loops would be different,
lution would be to have the compilenlloc new representations  with the new one updating the old one. The new version will be
andfree (or garbage collect) the old ones; this is less performance- invoked on the loop’s next iteration, and if the new loop requires
friendly than stack allocation. A better alternative would be to use additional state (e.g., new local variables or parameters were added
regions[34], which have lexically-scoped lifetimes (as with stack to foo), then this is handled by the type transformer function
frames), but support dynamic allocation. Of course, a hybrid ap- for struct L1_1s. This type transformer might perform side-
proach is also possible: data could start out with some padding, andeffecting initialization as well, for code that would have preceded

an indirection is only added if the padding is ever exceeded. the execution of the current loop. Note thab’s callers are neither
aware nor affected by the loop extraction inside the bod§oof
3.3 Example When extracting infinite loops, nothing else needs to be done.

Figure[2 presents a simple C program, and how we compile it However, if the loop might terminate, we must extract the code that

to be updateable. The original program is on the left, and the follows the loop as well, so that an updatgd loop does not execute

resulting updateable program in the middle and right columns. & Stale postamble when it completes. This can be done using loop

The comments can be ignored; these are the results of the safetgXtraction itself: to extract a statemefitthe programmer rewrites

analysis, explained in the next section. that statement to behile (1){ S; break;}, and then Ginseng
First, we can see that all function definitions have been renamed €xtracts the loop. This was critical for supporting two of our three

to include a version, and that Ginseng has introducegta vari- benchmark applications, as described in Se¢fjon 6.

able for each function, to keep a pointer to the most current ver- .

sion. Calls to functions are indirected through these pointers. Sec-4. Safety Analysis

for struct __TO, the original definition. The _con_T function has just entered thea11 function—is it safe to update the tyge

to __DSU_transform. The __con_T function is called twice in  thatt is a structure with fiel&, and a change to the representation
--call_vO0 to extract the underlying value af. Finally, we can  of ¢ could violate this assumption, leading to unexpected behavior.
see that Ginseng has generatedoo_wrap to wrap an indirected |, thjs section we look at how Ginseng helps the programmer avoid
call to foo; this is passed as a function pointeraigply. choosing bad update points like this one using static analysis.

3.4 Loops 4.1 Tracking Changes to Types

When a functiont is updated, in-flight calls are unaffected, but The example given above illustrates what could happen when old
all subsequent calls, including recursive ones, take the fhew code accesses new data, essentially violating representation consis-

general, this is a good thing, because it makes reasoning about th@ency. To prevent this situation from happening, Ginseng applies

timeline of an update simpler. On the other hand, this presents a constraint-based, flow-sensitiupdateability analysig33] that

a problem for functions that implement long-running or infinite annotates each update point with the set of types that may not be

loops: if an update occurs to such a function while the old version updated if representation consistency is to be preserved. This set

is active, then the new version may not take effect for some time, is called thecapability because it defines those types thah be

or may never take effect. used by old code that might be on the call stack during execution.
We solve this problem by a novel transformation we tadip Of course, the capability is a conservative approximation, as it ap-

extraction The idea is that the body of a loop can be extracted into proximates all possible “stack shapes.” It is computed by propagat-

a separate function that is called on each iteration of the loop. If the ing concrete uses of data backwards along the control flow of the

function containing the loop is later changed, then this extracted program to possible update points.

function will notice the changes to the loop on the next iteration. Statically-approximated capabilities are illustrated in Figgre 2,
As the code and state preceding the loop might have changed asvhere the sets labeled in the comments define the current capa-
well, the loop function must be parameterized by sdoup state bility; on functions,D defines the capability at the start of the func-

This state will be transformed using our standard type transformer tion andD’ defines it at the end. Whehappears inD, it means
mechanism on the next iteration of the loop. Extracting the loop that the program has tleapabilityto use data of typ® concretely.
body into a function parameterized by loop state is similar to An update must not revoke this capability when it is needed. For
closure conversion followed by lifting. example, the concrete use oht the end of theall function re-

For illustration, consider the code in the left column of Figgre 3. quiresT to be in D, which in turn forcesapply not to permit an
The programmer directs Ginseng that the loop labeteshould be update tcT.
extracted. The result is shown in the middle and right columns. In Programmers indicate where updates may occur in the pro-
the middle is the extracted loop functiarL,_loop, and on the right gram text by inserting a call to a special runtime system function
side is the rewritten original functiofioo. The functionL1_loop DSU_update. When our analysis sees this function, it “annotates”
takes two argumentsitruct L1_1s #*1s, and int *ret. The it with the current capability. At run-time this annotation is used
first argument is the loop state, which contains pointers to all of to prevent updates that would violate the static assumption of the
the local variables and parameters referencetbinthat might be analysis. Moreover, the runtime system ensures that if aisme-



Original program

Updateable program

struct T {
int x; int y;

};

void foo(int* x) {
*x = 1;
}
void apply(void (xfp) (int*),
int* x) {
fp(x);

void call() {
struct T t = {1,2};
apply(foo,&t.x);
t.y =1;

}

struct T {

unsigned int version;

union { struct __TO data;

char padding[X]; } udata;

};
struct __TO* __con_T(struct T* abs) {

__DSU_transform(abs);

return &abs->udata.data;

}

void * foo_ptr = &__foo_v0;
void * apply_ptr = &__apply_vO;
void * call_ptr = &__call_vO0;

void __foo_wrap(int* x) {
(*¥foo_ptr) (x);
}

struct __TO { int x; int y; };
/* D=D’={T}, L={T}, x:T */
void __foo_vO(int* x) { *x =1; }
/* D={foo,T}, D’={T}, L={}, x:T */
void __apply_vO(void (*fp) (int*),
int *x) {
fp(x);
}
/* D={T,apply}, D’={}, L={} =/
void __call_v0() {
struct T t = { 0, {.data={1,2}}};
(*apply_ptr) (__foo_wrap,
&(__con_T(&t))->x);
/* D={T} =/
&(__con_T(&t))->y = 1;
}

Original program

Figure 2. Compiling a program to be dynamically updateable.

Updateable program

int foo(float g) {
int x = 2;
int y = 3;
Li:while (1) {
X = x+1;
if (x == 8) break;
else continue;
if (x == 9) return 42;
}
return 1;

}

struct L1_1s {
float *g; int *x; int *y;

};

int L1_loop(int *ret,
struct L1_1s *1s) {
*(1s->x) = *(1s->x) + 1;
if (*(1s->x) == 8) {
return (0); // break
} else {
return (1); // continue

}
if (*(1s—>x) == 9) {

*xret = 42;
return (2); // return
}
return (1); // implicit continue

int foo(float g) {

int x 2;

int y = 3;

struct L1_1s 1s;

int retval;

int code;

1s.g = & g; // init loop state

1s.x & x;

1s.y =& y;

while (1) {
code = L1_loop(&retval, &ls);
if (code == 0) break;

else if (code == 1) continue;
else return (retval);

}

return (1);

Figure 3. Loop extraction.

dated, then any functions in the current program that use the typecall. In the former case, this is because the analysis determines
concretely are updated with it. This allows the static analysis to be thatfp could befoo at run-time, and thus the call fp placestoo

less conservative. In particular, although the constraints on the form (and other functions€p could be) into the current capability. For

of capabilities induced by concrete usage are propagated backwardshe latter case, the call tapply within call places it incall’s

in the control flow, propagation does not continue into the callers of initial capability. This means that if we were to attempt an update
a function. This propagation is not necessary because the updateat the start ofapply (respectivelycall), then the type offoo
time check ensures that all function calls are always compatible (respectivelyapply) must either remain unchanged or the new type
with any changed type representations. be a subtype of the old type [33].
We have formalized the updateability analysis and proved it The implementation also properly accounts for both signals and
correct in previous work [33]. One contribution of the present work non-local control transfers viget jmp/longjmp, albeit quite con-
is the implementation of this analysis for the full C language. Our servatively. Since signal handlers can fire at any point in the pro-
implementation extends the basic analysis to also track concretegram, we prevent updates from occurring inside a signal handler
uses of functions and global variables, which permits more flexible (or any function that handler might call), to avoid violating as-
updates to them. In the former case, by considering a call as asumptions of the analysis (we could allow updates to occur, but
concrete use of a function, and function names as types, we canprevent updates that would change type representations, function
safely support a change to the type of the function. Similarly, signatures, etc.) We modekt jmp/longjmp as non-localgoto;
in the latter case, by taking reads and writes of global variables that is, the updateability analysis assumes thatlamyg jmp in the
as concrete uses, and the name of a global variable as a typeprogram could go to anyet jmp. The server programs in Sectfoh 6
we can support representation changes to global variables. In ourdo not employset jmp/longjmp, but all of them use signals.
experience, the types of functions and global variables do change In future work, we plan to extend our approach to multithreaded
over time, so this extension has been critical to making DSU work programs. Because thread executions are interleaved, we will have
for real programs. to either extend our safety analysis to account for capabilities of
To illustrate the analysis, consider Fig{ife 2 again. We can seeother threads, and/or synchronize threads at safe update points
that function names appear in the initial capabilityapply and before allowing an update to take effect[[31].



4.2 Abstraction-Violating Aliases

C’s weak type system and low level of abstraction sometimes make
it difficult for us to maintain the illusion that a wrapped type is the

same as its underlying type. In particular, the use of unsafe casts

and the address-o&) operator can reveal a type’s representation
through an alias. An example of this can be seen in Figure 2 where
apply is called passing the address of fieddf structt. Within
foo, called byapply with this pointer, the statemenrt = 1 is
effectively a concrete use df, but this fact is not clear from’s
type, which is simplyint *. An update to the representation of
struct T while within foo could lead to a runtime error. We have
a similar situation when using a pointer togpedef as a pointer to
its concrete representation. We say that these aliasebstr@action
violating.

One extreme solution would be to magkructs whose fields
have their address taken as non-updateable. However, this solutio

can be relaxed by observing that only as long as an alias into a value

of typeT exists is it dangerous to updateThus if we know, at each

possible update point, those types whose values might have live

abstraction-violating aliase$AVAs), we can prevent those types
from being changed.

We discover this set of types using a noablstraction violat-
ing alias analysis The analysis follows the general approach of
effect reconstruction [23, 10] 1], and is described in more detail in
Stoyle’s thesis [[32]. Pointers are annotated with an “effect” which
lists the types whose values they may be pointing into. For exam-
ple, a pointer created byt .x would include the type of in its
effect. If such a pointer might be live at an update point, then no
types in its effect may be updated. To approximate the set of live
pointers at a given program point, we simply need to look to the lex-
ical environment of the program at that point, along with the lexical
environments of possible callers to the current function, ultimately
back tomain (). For each function, we define a dets those types

with abstraction violating pointers in at least one of the callers’ en-

vironments. We calculate this set through a simple constraint based

analysis that uses the control flow of the program. Finally, the ca-
pability of each possible update point is extended to include the
current function’sL, and the effects appearing in the free variables
of the current environment.

The comments in Figufg 2 illustrate the AVA analysis results for
the example, wheré&’s contents are shown for each function, and
the effect associated with variabtén functionsfoo andapply is
shown to be via the notatiorx : T. Looking at the example, we can
see thecall function violatesI's abstraction by taking the address
of t.x, and then passes this pointerapply. This pointer is not
used concretely inall, so does not effect subsequent computation
in this function:call’s environment has no abstraction violating
pointers. Ascall is the only caller ofapply, its associated.
is empty. However, the environment of the bodyapply does
contain an abstraction-violating pointer, namely the parameter
Thus whenapply calls foo via the pointerfp, T's abstraction
is violated and thel. annotation forfoo must containT. In the
example, we consider all statements as possible update points, an
so extendD according to the results of the AVA analysis. This
is why, for exampleT appears in the capability of bottvo and
apply. In both caseg is in L or in the effect of a free variable in
the environment (i.ex).

4.3 Unsafe Casts android *

n

q

struct S andstruct T might have distinct type transformers
and version numbers and treating one as the other may result in
incorrect transformation. As a result, when our analysis discovers
such a cast, it rules both types as non-updateable.

However, it would be too restrictive to handle all such casts
this way. For example, C programmers often us&d * to pro-
gram generic types. One might write a “generic” container library
in which a function to insert an element takesad * as its ar-
gument, while one that extracts an element returnsial *. The
programmer would cast the inserted elementéad * and the
returnedvoid * value back to its assumed type. This idiom cor-
responds t@arametric polymorphisnn languages like ML and
Haskell. Programmers also encaglgstential typesisingvoid *
to build constructs like callback functions, and use upcasts and
downcasts when creating and using callbacks, respectively.

If these idioms are used correctly, then they pose no problem to
Ginseng’s compilation approach since they do not reveal anything
about a type’s representation. However, we cannot treat casts to and
fromvoid * as legal in general, becauseid * could be used to
“launder” an unsafe cast. For example, we might easict S *

to void *, and then theroid * to struct T *. Each cast may
seem benign on its own, but becomes unsafe in combination. To
handle this situation, our analysis annotates eachd * type in

the program with the set of concrete types that might have been cast
toit, e.g., casting atruct T * to avoid * would addstruct

T to the set. When castingwid * to struct S *, the analy-

sis ensures the annotation on theid * contains a single ele-
ment, which matchestruct S. If it does not, then this is a po-
tentially unsafe cast and bo#truct T andstruct S are made
non-updateable. Since our analysis is not context-sensitive, some
legal downcasts will be forbidden, for example when a container
library is used twice in the program to hold different object types.
Fortunately, such context-sensitivity is rarely necessary in the pro-
grams we have considered. In the worst case, we inspect the pro-
gram manually to decide whether a cast is safe or not, and override
the analysis results in this case witlpeagna. We leave to future
work the task of more properly inferring polymorphic usage.

5. Dynamic Patches

Patch Generation For each new release we need to generate a
dynamic patch, which consists of new and updated functions and
global variables, type transformers and state transformers. The Gin-
seng patch generator generates most of a dynamic patch automati-
cally by comparing the old and new versions of a program to dis-
cover the new and modified definitions, and then adds these def-
initions to the patch file, where unchanged definitions are made
extern. It also generates type transformers for all changed types
by attempting to construct a conversion from the old type into the
new type [17]. For example, if atruct type had been extended

by an extra field, the generator would produce code to copy the
common fields and add a default initializer for the added one. This
implistic approach to patch generation is surprisingly effective, re-
uiring few manual adjustments. After the patch is generated and
the state and/or type transformers are written, we pass the resulting
C file to Ginseng, and the final result is compiled to a shared library
so that it can be linked into the running program.

Runtime System To perform an update, the user sends a signal
to the running program, which alerts the runtime system. Once

To ensure that the program operates correctly, many representationthe program reaches a safe update point, the runtime system loads

revealing casts are disallowed. For example, if we had a declara-

tion struct S { int x; int y; int z; }, a C programmer
might use this as a subtype ®fruct T from Figurg2, by casting
astruct S * to astruct T *. Given the way that we repre-

the dynamic patch usinglopen, checks the validity of the patch
and installs it. Ginseng compiles the patch just as it does the
initial version of a program, but also introduces initialization code
to be run at update-time. The initialization code will effectively

sent updateable types, permitting this cast would be unsafe, since‘glue” the dynamic patch into the running program by updating the



function indirection pointers for all the updated functions, installing | Application Source code (LOC)

the type transformers for the updated types, and running the user- Type/state xform| Gvar changeg Patch gen.
provided state transformer function, if any. Prior to this, it makes (manual) (manual*) auto
sure that the constraints imposed by the updating analysis on the vsftpd 162 930 83965
current program point are satisfied by the patch; if not then the [ sshd 125 659 248587
update is delayed until the next possible update point. zebra 49 244 43173

Our current runtime system has two main limitations. We do
not support patch unloading, so old code and data will persist fol-
lowing an update. Fortunately, this memory leak has been mini- Table 2. Patch source code breakdown.
mal in practice—between 21% and 40% after three years’ worth of
patches for our benchmark applications. Second, dynamic updates
are not transactional. If, during an update, an error is encountered,
we do not yet have a safe mechanism to abort the update and restore
the state to the pre-update one. We plan to address these problemg&ebra GNU Zebra is a TCP/IP routing software package for build-
in future work. ing dedicated routers that support the RIP, OSPF, and BGP pro-

tocols on top of IPv4 or IPv6. It consists of protocol daemons
. (RIPd, OSPFd, BGPd) and z=bra daemon which acts as a
6. Experience mediator between the protocol daemons and the kernel. The
We have used Ginseng to dynamically update three open-source zebra daemon stores acquired routes, transmits route changes

protocols. We upgradedshd 10 times, corresponding to 11
OpenSSH releases (version 3.5p1 to 4.2p1) over three years.

programs: the Very Secure FTP daemonf(tpdﬂ the OpenSSH to the kernel and redistributes route updates to protocol dae-
sshd daemorﬂ and thezebra routing daemon from the GNU mons. Storing routes inebra allows protocol daemons to be
Zebra routing packa@ We chose these programs because they stopped and restarted without discarding and re-learning routes
are long-running, maintain soft state that could be usefully pre-  (which can be a time consuming process). We upgradeda

served across updates, and are in wide use. For each program we 5 times, corresponding to 6 releases (version 0.92a to 0.95a)

downloaded releases spanning several years and then applied the over 4 years.

methodology shown in Figufg 1. In particular, we compiled the ear- ) . ) ) )

liest release to be updateable and started running it. Then we generEvolution History Table[] summarizes the release information

ated dynamic patches for subsequent releases and applied them orf'_lnd shows some of the ways th_e programs changed over time. The

the-fly in release order, while the program was actively performing first two grouped columns describe the first and last release we con-

work (serving files, establishing connections, etc.). sidered for each program. The last three grouped columns contain
With this process, we identified key application features that the cumulative number of changes that occurred to the software

make updating the applications easy or hard. We also identified OVer that span. ‘Types’ refers to structs, unions and typedefs to-

strong points of our approach (that enabled most of the updatesgether- Global variable changes consists (.)f.clhqnges to either global

to be generated automatically), along with issues that need to bevariable types or to global variable static initializers. As an exam-

addressed in order to make the updating process easier, more flexPle reading of the table, notice that fesftpd, 97 functions were

ible and applicable to a broad category of applications. In the rest @dded, 21 were deleted, 33 functions had their prototype changed,

of this section, we describe the applications and their evolution his- @nd 308 functions had the bodies changed. &id, 19 types

tory, and the manual effort required to dynamically update them; changed; fozebra, there were 52 global variable changes. _

identify application characteristics and Ginseng features that make 1 hese statistics make clear that a dynamic software updating

updating feasible; and conclude by reviewing factors that enabled System must support changes, additions, and deletions for func-

us to meet the challenges set forth in Sedfipn 2. tions, types and global variables if it is to handle realistic software
evolution. Ginseng supports all these changes, and we have been
6.1 Applications able to dynamically update the applications from the earliest to the

. N . _ . latest versions we considered.
Figurg4 shows the release timeline for each application, along with

the nature of individual releasBand the code size of each release. Source Code ChangesTo safely update these applications with
We briefly discuss each application first, then describe how the Ginseng required a few small changes to their source code, amount-
applications changed over a three year period, and finally discussing to around 50 lines of code fesftpd andsshd and 40 lines for
the manual effort required to dynamically update them. zebra. The changes consisted of introducing named types for some
global variables (to support changes in types and static initializers),
Vsftpd stands for “Very Secure FTP Daemon” and is nowdee  directives to the compiler (analysis and loop extraction) and in one
facto FTP server in major Unix distributions. Vsftpd was first  case ¢sftpd), instantiating an existential use e6id *. Another
released in 2002. It began to be widely used with version 1.1.0 one-line change tesftpd is discussed in the next subsection.
and is now at version 2.0.3, so for our study, we considered the  For each new release, we would use the Ginseng patch generator
13 versions from 1.1.0 through 2.0.3. As can be seen in Fig- to generate the initial patch, and then verify or complete the auto-
ure[4, in the time frame we considered there were 3 major fea- generated type transformers and write state transformers (where
ture enhancements, 3 major bugfixes, 2 minor feature enhance-needed, which was rare). This effort was typically minimal. Thble 2
ments and 1 minor bugfix. presents the breakdown of patches, across all releases, into manual
Sshdis the SSH daemon from the OpenSSH suite, which is the and auto-generated source code: the first column shows the number
standard open-source release of the widely-used secure shelPfsource code lines we had to write for type and state transformers,
the second column shows code lines we had to write to cope with
changes in global variables’ types or static initializers, and the
third column shows the amount of code coming out of the patch
generator. The code dealing with changes in static initializers for
®http://www.zebra.org global variables is frequently a mere copy-paste of the variable’s
6 As described dlittp: //freshmeat .net/ static initializer.

Shttp://vsftpd.beasts.org
4http://www.openssh.com
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Figure 4. Evolution history of test applications.
Prog. First release Last release Functions Types Global variables
Ver. Date LOC Ver. Date LOC Add | Del. Proto Body Add | Del. | Chg. Add | Del. | Chg.
changes| changes
vstfpd || 1.1.0 | 07/02 | 10141 || 2.0.3 | 03/05 | 17424 97 21 33 308 12 2 6 72 9 15
sshd 3.5p1 | 03/02 | 47424 || 4.2p1 | 09/05 | 58104 || 131 19 85 752 27 2 19 70 19 29
zebra || 0.92a | 08/01 | 41630 || 0.95a | 09/05 | 45586 || 134 44 13 321 24 6 4 56 11 52
Table 1. Application update information (all versions).
6.2 Dynamic Updating Catalysts update code omain’s stack (the continuation efccept_loop())
In the process of updating the three applications, we discovered""'tgOUt .rEplaC'tngn?thI.l 'tS‘T"t' dto. but not identical with & point with
four factors that make programs amenable to dynamic updating. quiescent pointis related (o, but notiaenticalwith a point wi

empty capability (Sectiof]4); its capability may not necessarily be
Quiescence. We define ajuiescent poinin the program as one at ~ €MPY, although it is usually small. On the other hand, an empty
which there are no partially-completed transactions, and all global capability does not imply quiescence, but rather indicates there are
state is consistent. Dynamic updates are best applied at such quies?© concrete uses of types beyond the current point.

cent points, and preferably those that are stable throughout & sySnctional State Transformation. Our mechanisms for trans-

tem’s lifetime. For.tunately, each application was structurgd around forming global state (state transformers) and local state (type trans-
an event processing loop, where the end of the loop defines a stagormers) assume that we can write a function that transforms old

ble quiescent point: there are no pending .functiorlw calls, little or program state into new program state. Unfortunately, sometimes
no data on the stack, and the global state is consistent. At update; is ot possible to impose the semantics of the new application

time, new versions of the functions are installed and global state is g, the existing state; we encountered two such cases in our test
transformed so at the next iteration of the loop will be effectively applications. In the upgrade frosshd 3.7.1p2 tosshd 3.8pl a

executing the new program. . _new security feature was introduced: the user’s Unix password is
For instanceysftpd is structured around two infinite 100ps:  checked during the authentication phase and if the password has

one for accepting new client connections, and one for handling gypired, port forwarding will be not be allowed on the SSH con-
commands in existing connections. Here is the simplified structure: naction. However. when upgrading a live connection from version

int mainQ) { int accept_loop() { 3.7.1p2 to 3..8p_1, the authentication p_ha}se has pas§ed already, so
init(); L2:while (1) { the new policy is not enforce_d for existing connections (though
conn = accept_loop(); £d = accept(); they_COL_lld be shut down forcibly). For new connections requests
L1:{init_conn(conn); if (1fork()) coming in afte_r thg update, the new check is, of course, performed.
handle_conn(conn) ;} return fd; } A similar situation arose in going fromsftpd 1.1.1 to 112
} } The new release introduced per-IP address connection limits by
mapping the ID of each connection process with a count related
void handle_conn(fd) { to remote IP address. Thes_,e counts are increased when a process
L3:while (1) { is forked and decremented in a signal handler when a process dies.
read(cmd, fd);} Unfortunately, following an upda_te, any current processes will not
} have been added to the newly introduced map, and so the signal

handler will not execute properly. In effect, the new state is not a
Each time a connection is accepted, the parent forks a new function of the old state. In this case, the easy remedy is to modify
process and returns from the accept loop within the child pro- the 1.1.2 signal handler to not decrement the count if the process
cess. Themain function then initializes the connection and calls D is not known.
handle_con to process user commands. To be able to update the  When transforming some value, a type transformer can only
long running loops, and to handle updates following the accept loop refer to the old version of the value and global variables, which
in main, we used loop extraction (SectipnB.4) at each of the three means that in principle some transformations may be difficult or
labeled locations so that they could be properly updated. Note thatimpossible to carry out. In practice we did not find this to be a
althoughL1 is not a loop, by using loop extraction we were able to problem: for all the 29 type transformers we had to write, the



programmer effort was limited to initializing newly addetiruct A combination of factors have helped us address these chal-
fields. lenges: (1) programs were amenable to dynamic updating (easily

) ) ) identifiable quiescence points the application, application changes
Type-safe Programs. As mentioned in Sectiof] 4, low-level pro- ¢ allowed updates to be written as functions from the old state
gramming idioms might resultin types being marked non-updateabl§y, the new state, robust application design and moderate use of
by the analys!s. Since having a non-gpdateablg type restricts thetype-unsafe, low-level code), and (2) Ginseng, especially analysis
range of possible updates, we would like to maximize the number refinements and support for automation, has made the task of con-

of updateable types, so the solution is to either have a more preciségyrcting and validating updates easy, even for applications in the
analysis, or inspect specific type uses by hand and override the ana"range 0of 50-60 KLOC.

ysis for that particular type. For the programs we have considered,
the techniques presented in Sectipn$ 4.2[and 4.3 have significantly. Performance
increased the precision of the analysis and greatly reduced the need *

to inspect the program manually. For instanceysftpd, strings In this section, we evaluate the impact of our approach on update-
are represented bystruct mystr that carries the proper string  able software. We analyzed the overhead introduced by DSU by
along with length and the allocated size. The address of the string subjecting the instrumented applications to a variety of 'real world’
field is passed to functions, hence reveakinguct mystr’s rep- tests. We considered the following aspects:

resentation, but our abstraction violation analysis was able to detect o

that the aliases were temporary and did not escape the scope of thel- Application performanceWe m_eas_ure‘d the overhead that up-
callee, hence the type was updateable at the conclusion of the call. fjateabllltyylmposes on an application’s performance by running
Polymorphism is employed in all three programs; usingwbed real world’ stress tests. We found that DSU overhead is modest
* analysis (Sectiof 4]3) we were able to detect type-safe uses of for I/0 bound applications.

void *, and reduce the number of casts that have to be manually 2. Memory footprint. Type wrapping, extra version checks and
inspected. Inline assembly can compromise type safety as well,and  dynamic patches result in an increased memory footprint for
our analysis does not detect type-unsafe uses that might be intro- DSU applications; we found the increase to be negligible for
duced by assembly code. We only had one such situatiestt, updateable and updated applications, but after stacking multiple
and a manual inspection confirmed the type was used safely. Inthe  patches, the memory footprint increase is detectable.

end, we manually overrode the analysis only for a handful of types:
0 for vsftpd, 1 forzebra, and 4 forsshd.

Our type wrapping scheme relies on the fact that programs
rarely rely on how types are physically laid out in memory; i.e. that
they are treated abstractly in this respect. Fortunately, this was a
good assumption for these programs. We could not type wrap some
“low level” types, e.g.yvsftpd's representation of an IP address,
since its layout is ultimately fixed by the OS syscall API. Onthe e also measured the running time of Ginseng to compile our
other hand, this and low-level structures like this one rarely change, benchmark programs, to measure the overhead of compilation and
since they are tied to external specifications. our analyses.

We conducted our experiments on dual Xe@@GHz servers
with 1GB of RAM, connected by a 100Mbps Fast Ethernet net-
work. The systems ran Fedora Core 3, kernel version 2.6.10. All C
code, generated by Ginseng or otherwise, was compiledguith

3. Service disruptionVe measure the cost of performing an actual
update while the application is in use. The update will cause a
delay in the application’s processing, while the patch is loaded
and applied, and will result in an amortized overhead as data
is transformed. In all the updates we performed, even for large
patches, we found the update time to be less than 5 ms.

Robust Design. We wanted our DSU approach to be general

enough to be applied to off-the-shelf software, written without dy-

namic updates in mind (as was the case with our test applications).

However, there are measures developers can take to make applicaz L .

tions more update-friendly. Apart from features mentioned aboveaﬁ]'i'%:g% %t'g?'ﬁt'rz?]éevemz' Unless otherwise noted, we report

(quiescent points, type safety, and abstract types), we have also )

;olu_ndddeftlans_ive pr%gralr_r:jmting ?'?d exée?sivi Itleﬁ\t cases to be help7 1 Application Performance

ul in developing and validating the updates. ree programs we

looked at wgregwritten defens?ively upsilagsert IiberaIIF;/, v%/]hich In order to as_sess_the imgact of upd,ateability on application perfor-

facilitated error detection, and helped us spot Ginseng bugs rela-m"’ml_ceft_We t”gd dlﬁeLent rclsfal \t/yorld stress teststgn thefupdateablef

el sy, B lokng o e asserons i e ot we were sl A L0 s Bemion

to detect the invariants the programs relied on, and preserve them': St o ] > -

across_updatgs.shd comes ¥vith a rigo&ous test suite that pdrovides ](TI%LérL?Sg;t;Sam:: gr?fri)gl;ﬁ?;lt(i)cr)]nci(s)Th%lzgg}%rzyﬂﬁu\yégvrﬁzﬁgg Lﬁ?ﬁﬂgg

extensive code coverage, faebra andvsftpd we created our - - toTl | VILT UP-

OWn suites to test a brogd range of features.p dating support. Theipdated onceonfiguration is the application
after performing one update, whereas thlated streakonfigu-

6.3 Summary ration is the application compiled from its oldest version and then

. ._dynamically updated multiple times to bring it to the most recent
We believe we have addressed all the DSU challenges set forth Inversion; this configuration is useful for considering any longer-term

Sectior{ 2. We did not have to change the_ applications extensivel_y effects on performance due to updating.
to render them updateable. Patch generation was mostly automatic,
and writing the manual parts was easy. Vstfpd. We testedvsftpd performance with two experiments:

We were able to support a large variety of changes to appli- connection time and transfer rate. For connection time, we mea-
cations; as can be seen in Taple 1 and Fifjire 4, the applicationssured the time it tookiget to request 500 files of size 0, and di-
have changed significantly during the last three years. Once we be-vided by 500. Sincerget opens a new connection for each file,
came familiar with the application structure (e.g., interaction be- and disk transfers are not involved, we get a picture of the overhead
tween components, global invariants), writing patches was easy, DSU imposes on FTP clients. As seen in T4fle 3, the updateable,
with all the infrastructure generated automatically; the only manual updated and streak-updated versions were 3%, 5% and 25% slower
task was to initialize newly added fields, write state transformers, than the stock server. With a difference of at most 1.7 ms, we do
or make some small code changes. not believe this to be a a problem for FTP users.
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Table 3. Server performance. 0

vsftpd sshd zebra

These measurements seem to suggest a progressive slowdown
due to updating. The primary reason for this appears to be poorer
spatial locality. UsingJProfileﬂ we measured the total cycles,
instructions retired, and cache and TLB misses during benchmark 5—

Figure 5. Memory footprints.

runs of the one-update and streak-updated versions. We found that g
the effective CPI of the streak-updated version was consistently <= 4 o o *
higher, and that this was attributable to cache and TLB misses. & 3 0e®® .
Such misses are understandable: code and data that were close i 5 N °
together in the original program are now spread across multiple % ° N °
shared libraries. 2 1 Safe,
We also measured the median transfer rate of a single 600 MB = 0l® » |

: ; ; ; . T T
filetoa smgle_ client. The_result_s are shoyvn in T@Ie 3 the transfer 0 100 200 300
rates of the different configurations are virtually identical.

o Binarv natch size (KB)
Sshd. Forsshd we measured the same indicators asviaftpd,
connection time and transfer rate. For the former, we blasted
the server with 1000 concurrent requests, and measured the total

elapsed time, divided by 1000. (Client-server authentication was

based on public key hence no manual intervention was needed.)arger memory footprints. Figufg 5 reports memory footprints for
Each client connection immediately exited after it was established the four scenarios, with quartiles as error bars. Measurements were
(by running thesxit command). The measured connection time iS  made usingmap at the conclusion of each throughput benchmark.
shown in Tabl¢. The updateable, updated and streak-updated verthe footprint increases for updateable and updated cases are over-
sions were 3%, 4% and 32% slower than the stock server. Again, shadowed by OS variability. However, for the streak updates, the
we do not think the 15ms difference is going to be noticed in prac- median footprint increase (relative to the stock version) is 21%,
tice. The CPU-intensive nature of authentication and session key 4004 and 27% forsftpd, sshd andzebra respectively. The larger
computation accounts for SSH connection time being almost 10 footprint increase for streak updates is expected, since dynamic
times larger than for FTP. To measure the sustained transfer ratepatches for three years worth of updates are added into the memory

over SSH we usedcp to copy & 600MB file. As shown in Ta-  gpace of the running program, and never unloaded (S¢dtion 5).
bIeE, the results are similar to tkeftpd benchmark—the DSU

overhead is undetectable. 7.3 Service Disruption

Figure 6. Patch application times.

Zebra. Sincezebra is primarily used for route proxying and re-  One of the goals of DSU is to avoid service interruption due to the
distribution, the focus ofebra experiments was different than for ~ need to apply software patches. By applying these patches on-line,
vsftpd andsshd. First, we measured the overhead DSU imposes we preserve useful application state, leave connections open, and
on route addition and deletion by starting each protocol daemon sustain service. However, the service will still be paused while new
alone withzebra, and have it add and delete 100,000 routes. When patch files are loaded, and service could be degraded somewhat due
passing routes through the updateable, updated and streak-updatei® the application of type transformers at patch time and thereafter.
versions of thezebra daemon, the DSU overhead was 4%, 6% and  Figure[§ illustrates the delay introduced by applying a patch; the
12%, compared to the stock case. Second, we measured route redelay includes loading the shared object, performing the dynamic
distribution performance. We started the RIP daemon, turned on re-linking and running the state transformer (type transformation time
distribution to OSPF and BGP daemons, made RIP add and deletewas hard to measure, and likely very small, and so is not included).
100,000 routes, and measured the time it took until the route up- The figure presents measurements for every patch to all of our
dates were reflected back into the OSPF and BGP routing tables.program versions, and graphs the elapsed time against the size
Similarly, we timed redistribution of OSPF routes to RIP and BGP of the patch object files. We can see that patch application time

daemons. BGP redistribution is not supporteczbyra. The DSU increases linearly with the size of the patch. In terms of service
overhead in the route redistribution case is the same as for the ‘nointerruption, DSU is minimally intrusive: in all cases, the time to
redistribution’ case above: 4%, 6% and 12% respectively. perform an update was under 5 milliseconds.

7.2  Memory Footprint 7.4 Compilation

Type wrapping, function indirection, version checking and loop ex- The time to compile various versions of our benchmarks is shown
traction all consume extra space, so updateable applications haven Figure[]. The times are divided according to the analysis time
_ (updateability analysis, AVA analysis and constraint solving using

"nttp://oprofile.sourceforge.net Bansheel[21]), parsing and compilation time, and remaining tasks.


http://oprofile.sourceforge.net
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s B had no support for updating long-running loops. We have found alll
90 [J misc S o of these features to be important in the server programs, and are part
804 [ geo/CIL c g of our current work. Second, while our prior work ensured that all
s g L ;
. 5 N updates were type-safe, it did not ensure they wepeesentation-
70+ W anaysis N consistenf33], as it permitted multiple versions of a type to co-

60 — exist in the running program. In particular, when a type definition

Total time (s)

50 o © - changed, it required makingapyof existing data having the old
o © © o~ type, opening the possibility that old code could operate on stale
40 1 — g o _g data. Finally, in our prior work we only experimented with a single
30 :8. = % -ﬁ program (a port of the Flash web server, about 8000 LOC), and all
20 4 1;5 14 updates to it were crafted by us.
10+ Updating Programs Safely A common theme of prior work is
0 T T to define “safe states” during a program’s execution in which an
0 10 20 30 40 50 60 update may take place. Intuitively, we are interested in the question
Prosram size (KLOC) of whether a change to a system'’s code, realized dynamically, will

properly transform the system to reflect the new code base.

Gupta et al. proved that finding such safe states is, in general,
undecidable [16], so any such safety analysis must be conservative.
Many of the systems reviewed make no safety guarantees, which
can lead to, among other things, run-time type errior§ [3[ 13, 18].

In general, the majority of the overhead is due to the safety anal- O Way to avoid run-time type errors s to sacrifice representation-
consistency, as we did in our prior work, mentioned above. Dug-

yses, which are whole program, constraint-based analyses. Given 121 al I ltiol . fat : ist but
that Ginseng is only needed in the final stages of development, i.e. gan [12] also allows multiple versions of a type to coexist, bu

when the application is about to be deployed or when a patch needlc,avoids the need to make copies of data by requiririgaekward

: : type transformerto convert data to an older version if it is used
to be generated and compiled, this seems reasonable. by old code; this prevents the problem of stale data. However, it
may not always be possible to write backward transformers, since
8. Related Work updated types often contain more information than their older ver-
Over the past thirty years, a variety of approaches have been pro-SIons. ) ) ) )
posed for dynamically updating running software. In this section ~ Our current work ensures representation consistency via static
we compare our approach with a few past systems, focusing on dif- analysis; an alternative is to do dynamically. Boyapati et al [7]
ferences in functionality, safety, and updating model. propose usingransactiondor this purpose. If code in an old object

) ] ) ] ) would see an updated object, the current transaction is restarted and
Updating Functionality A large number of compiler- or library-  o|d object is itself updated. This basic idea was considered earlier
based systems have been developed for C[13.116, 9, 2],[C++ [18,hy Bloom and Day([5/ 6] in the context of Argus, a system for
20], Javal[7. 2i7. 11, 24], and functional languages like ML [12, 14] writing distributed, fault-tolerant applications. We plan to explore
and Erlang[[8]. Many do not support all of the changes needed 1o the use of transactions in Ginseng in future work.
make dynamic updates in practice. For example, updates cannot To avoid the need for rollback, a number of systems aim to en-
change type definitions or function prototypes![27,[11,/18] 20, 2], sure safety by relying on a notion ofiiescencedetermined dy-
or else only permit such changes for abstract types or encapsulatethamically: only entities not in use by the program may be updated.
objects[20,_14]. In many cases, updates to active code (e.g., long-pynamic ML [14] supports updating modul@g definingabstract
running loops) are disallowef [14,]24.]13] 16} 20], and data stored typest. Since by definition clients of/ must use values of type
in local variables may not be transformed][17] [16,(13, 18]. Some abstractly,)/ can be updated to redefines long as the old ver-
approaches are intentionally less full-featured, targeting “fix and sjon is inactive and thus not using the old representation. The K42
continue” development [19. 15] or dynamic instrumentation [9]. object-oriented operating system [20, 4] permits updates to objects
On the other hand, Erlangl[3] and Boyapati et &l. [7] are both that are similarly quiescent. It actively achieves this condition by
quite flexible, and have been used to build and upgrade significanttemporarily preventing new threads from calling methods of a to-
applications. ) be-updated object; once existing threads have died, the object is

Many systems employ the notion of type or state transformer, as ypdated and the pending threads may continue. Our safety analy-
we do. Boyapati et all[7] improve on our interface by letting one sjs generalizes these ideas by defining dependency at a finer grain:
type transformer look at theld representation of an encapsulated e check individual uses of types or functions, rather than uses of

object, to allow both the parent and the child to be transformed at |arger linguistic constructs like objects or modules, which are not
once. In our setting, the child will always have to be transformed in- directly supported in C.

dependent of the parent, which can make writing transformers more
complicated or impossible (e.g., if a field was moved from a child Updating Models A typical approach to upgrading on-line sys-
object into the parent), though we have not run into this problem tems is to use a load-balancer. It redirects requests away from a
as yet. Duggan_[12] also proposes lazy dynamic updates to typesto-be-updated application until it is idle, at which point it can be
using type transformers, usifigid/unfold primitives similar to our halted and replaced with a new version. Such approaches typically
contlabsT. Ours is the first work to explore the implementation of employ redundant hardware, which is undesirable in some settings
such primitives. (e.g., upgrading a personal OS). Microvidorl[22] employs a virtual-
The most similar system is our own prior work on providing dy- machine monitor (VMM) to follow this basic methodology on a
namic updating in a type-safe C-like language called Popcoin [17]. single node. When an application or OS on a server node is to be
While that system was fairly flexible, we make three substantial upgraded, a second OS instance is started concurrently on the same
improvements. First, our prior work could not transform data in lo- node and upgraded. When the original instance becomes idle, ap-
cal variables, could not automatically update function pointers, and plications are restarted on the new instance and the machine is de-

Figure 7. DSU compilation time breakdown for updateable pro-
grams.



virtualized. While Microvisor avoids the need for extra hardware, it

shares the same drawbacks as the load-balancing approach: appli-

[12] D. Duggan. Type-based hot swapping of running module$CkP,
2001.

cations must be stateless (so they can be stopped and restarted) of13] 0. Frieder and M. E. Segal. On dynamically updating a computer

they must be able to save their state under the old version, and then

restore the state under the new version. While checkpointin@[[29, 8]

program: From concept to prototyp&he Journal of Systems and
Software 14(2):111-128, 1991.

or process migration [30] can be used to stop and restart the Samey14] s, Gilmore, D. Kirli, and C. Walton. Dynamic ML without dynamic

version of an application, it cannot support version changes. DSU

handles application state changes naturally. Since all state is visible

to an update, it can be changed as necessary to be compatible wit

with checkpointing to combine updating with process migration.

9. Conclusions

This paper has presented Ginseng, a system for updating C pro-

grams while they run, and shown that it can be used to easily
update realistic C programs over long stretches of their lifetimes,

with only a modest performance decrease. Our system is arguably

the most flexible of its kind, and our novel static analyses make
it one of the most safe. Our results suggest that dynamic soft-
ware updating can be practical for upgrading running systems.
We plan to extend our approach to operating systems and multi-
threaded applications. Ginseng is available for downloact&p :
//www.cs.umd.edu/projects/dsu/.
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