Lock Inference for Atomic Sections

Michael Hicks Jeffrey S. Foster Polyvios Pratikakis
University of Maryland, College Park University of Maryland, College Park University of Maryland, College Park
mwh@cs.umd.edu jfoster@cs.umd.edu polyvios@cs.umd.edu
Abstract be serializable, so that its execution appears to be afowitt

respect to all other transactions in the program. Assuming all
concurrently-shared data is accessed within atomic sections, the
compiler and runtime system guarantee freedom from data races
and deadlocks automatically. Thus, transactions are composable—
they can be reasoned about in isolation, without worry that an
ill-fated combination of atomic sections could deadlock. This char-
acteristic clearly makes transactions easier to use than having to
manipulate low-level mutexes directly in the program.

To prevent unwanted interactions in multithreaded programs, pro-
grammers have traditionally employed pessimistic, blocking con-
currency primitives. Using such primitives correctly and efficiently
is notoriously difficult. To simplify the problem, recent research
proposes that programmers specfpmic sectionsf code whose
executions should be atomic with respect to one another, without
dictating exactly how atomicity enforced. Much work has explored

using optimistic concurrency, @oftware transactionss a means X ; X . .
Recent research proposes implementing atomic sections using

to implement atomic sections. timisti techni 5 6 7 12 131. Roughl K
This paper proposes to implement atomic sections using a static2PUMISUC concurrency e(.:thn'q”?S 5, \ion are] 1 OllngAtytﬁpea X
whole-program analysis to insert necessary uses of pessimistic con!9: MEMOry accesses within a transaction are logged. e con-

currency primitives. Given a program that contains programmer- cltu?onfof the trant?]actlct)ﬁ, i t.r;e log is consﬁeg.t Vf‘”th ttht(?\ Clirrent
specified atomic sections and thread creations, routex infer- State of memory, then the writes are commitied; It not, the trans-

ence algorithmefficiently infers a set of locks for each atomic ~ action ishrolledhba]gk and drestarteq. The mair|1| d(aktlvxﬁgckshyvﬁh this
section that should be acquired (released) upon entering (exiting)‘fj‘pprcl’aC a[)et alf '(;S; 'th’es notdlnterafct well wit BW IC Caﬂ'
the atomic section. The key part of this algorithm is determining Nt always be rolled back; second, performance can be worse than

which memory locations in the program could be shared between traditional pessimistic techniques due to the costs of logging and

threads, and Using this information to generate the necessary locks©!Pack [9]. L o
In this paper, we explore the use of pessimistic synchronization

To determine sharing, our analysis uses the notioroatinuation techni o impl ¢ atomi " Wi that
effectsto track the locations accessed after each program point. As ‘€CNNIQUES 1o Implement atomic sections. We assume that a pro-
gram contains occurrencesfidrk e for creating multiple threads

continuation effects are flow sensitive, a memory location may be d tated atomi i e of tect
thread-local before a thread creation and thread-shared afterward 2" ;;]rogrgrgnger-gnno ar? atomic sec 'amjﬂlc.fh or prto ec icall
We prove that our algorithm is correct, and provides parallelism Ing shared data. For such a program, our aigorithm automatically

according to the precision of the points-to analysis. While our al- constructs a set of locks and inserts the necessary lock acquires and
gorithm also attempts to reduce the number locks while preserving releases before and after the body of each marked atomic section.

parallelism, we show that minimizing the number of locks is NP- Atrivial implemeptation wog[d be to begin ?‘“d enq all atomic sec-
hard. ' tions by, respectively, acquiring and releasing a single global lock.

However, an important goal of our algorithm is to maximize par-
allelism. We present an improved algorithm that uses much finer
locking but still enforces atomicity, without introducing deadlock.
1. Introduction We implement this algorithm in a tool calledlckpPIck, using the
Concurrent programs strive to balansafetyand liveness Pro- sharedness analysis performed by our race detection tool for C pro-
grammers typically ensure safety by, among other things, using 9@MS: LOCKSM!TH_[l_O].We_p_resent an overview of our algorithm
blocking synchronization primitives such as mutual exclusion locks N€Xt and describe itin detail in the rest of the paper.
to restrict concurrent accesses to data. Programmers ensure |iV€I’]ESf .
by reducing waiting and blocking as much as possible, for example -1 Overview
by using more mutual exclusion locks at a finer granularity. Thus The main idea of our approach is simple. We begin by performing a
these two properties are in tension: ensuring safety can result inpoints-to analysis on the program, which maps each pointer in the
reduced or no parallelism, compromising liveness, while ensuring program to an abstract name that represents the memory pointed
liveness could permit concurrent access to an object (a data race}o at run time. Then we can create one mutual exclusion lock
potentially compromising safety. Balancing this tension manually for each abstract name from the points-to analysis and use it to
can be quite difficult, particularly since traditional uses of block- guard accesses to the corresponding run-time memory locations.
ing synchronization are not modular, and thus the programmer mustAt the start of each atomic section, the compiler inserts code to
reason about the entire program’s behavior. acquire all locks that correspond to the abstract locations accessed
Software transactionspromise to improve this situation. A within the atomic section. The locks are released when the section
transaction is a programmer-designated section of code that shouldconcludes. To avoid deadlock, locks are always acquired according
to a statically-assigned total order. Since atomic sections might be
nested, locks must also be reentrant. Moreover, locations accessed

1 As of the time this paper is written, Google returns 13,000 pdf documents
containing the phrase “notoriously difficult”, the word “software”, and one 2For the remainder of the paper, we use the term “atomic” liberally, to mean
of the words “multithreaded” or “concurrent.” “appears to be atomic,” or “serializable.”

1 2006/5/16

continuing with normal evaluation in the parent thread. Our ap-
proach can easily be extended to support polymorphism and poly-
morphic recursion for labels in a standard way [11], asCk-
SMITH does [10], but we omit rules for polymorphism because they

expressions e = z|v|eies|refellefer=e: add complication but no important issues.
| if0eo thene; else e We use a type-based analysis to determine the set of abstract
| fork'e|atomic’e locationsp, created byref, that could be shared between threads
values v ou= nllze in some prograne. We compute this using a modifidabel flow
types T ou= int|ref? 7| (r,e) =X (7€) analysis[10, 11]. Our system uses three kinds of labésation
labels I == plelx labelsp, effectsy andcontinuation effects. Effects of both kinds
constraints C' == Q[{I<U}[CUC represent those locationsdereferenced or assigned to during a
. . computation. Typing a program general@sel flow constraint®f
Figure 1. Source Language, Types, and Constraints the formi < I’. Afterwards, these constraints are solved to learn the

desired information. The constraihk !’ is read “label flows to
") . . o . labell’” For example, ifx has typeaef # 7, and we have constraints
within an inner section are considered accessed in its surroundlngp/ < pandp’ < p, thenx may point to the locations’ or p”.
sections, to ensure that the global order is preserved. . Labels also flow to effectsg or , so for example i < x then an
T_hls app_roach ensures that no locations are accessed W'thoubxpression with effecy may access location
holding their associated lock. Moreover, locks are not released The typing judgment has the following form:
during execution of an atomic section, and hence all accesses to
locations within that section will be atomic with respect to other
atomic sections [4]. Our algorithm assumes that shared locations
are only accessed within atomic sections; this can be enforced with
a small modification of our algorithm, or by using a race detection
tool such as bcksMITH as a post-pass.)) i)
Our algorithm performs two optimizations over the basic ap- This means that in type environmehit expressiore has effect
proach. First, we reduce our consideration to only those abstracttype ™ given constraints’'. Effect typesT™ consist of a typer
locations that may be shared between threads, since thread-locannotated with the effegt of e. Within the type rules, the judgment
locations need not be protected by synchronization. Second, we ob-C' - ¢ < I" indicates that < I’ can be proven by the constraint
serve that some locks may be coalesced. In particular, if fdsk ~ SetC'. In an implementation, such judgments cause us to generate
always held with lock’, then lock¢’ can safely be discarded. constraint < " and add iC". Types include standard integer types;
We implement this approach in two main steps. First, we use updatable reference typesf # 7, each of which is decorated with a
a context-sensitive points-to and effect analysis to determine the location labelp; and function types of the forrfr, e) —* (r',¢'),
shared abstract locations as well as the locations accessed withiswherer andr’ are the domain and range types, anis$ the effect
an atomic section (Section 2.2). The points-to analysis is flow- of calling the function. We explair’ and e on function types
insensitive, but the effect analysis calculates per-program point momentarily.))
continuation effectshat track the effect of the continuation of an The judgmenC; ;' I- e : 7% ¢’ is standard for effect infer-
expression. Continuation effects let us model that only locations e€nce except for ande’, which expressontinuation effectsHere,
that are usedfter a call to fork are shared. The sharing anal- ¢ is theinput effect which denotes locations that may be accessed

!
Cie;TkFe:1m%¢

ysis presented here is essentially unchanged fr@aHsMmITH'S during or after evaluation ofe. The output effect’ contains loca-

sharing analysis (with only the exception of context sensitivity for tions that may be accessafler evaluation ofe (thus all locations

simplicity), which has not been presented formally before. ine” will be in). We use continuation effects in the rule farrk e
Second, given the set of shared locations, we perforrtex in- to determine sharing. In particular, we infer that a location is shared

ferenceto determine an appropriate set of locks to guard accessesif it is in the input effect of the child thread and the output effect
to the shared locations (Section 3). This phase includes a straight-Of the fork (and thus may be accessed subsequently in the parent
forward algorithm that performs mutex coalescence, to reduce thethread).))
number of locks while retaining the maximal amount of paral- In addition to continuation effects we also compute the effects
lelism. Our algorithm starts by assuming one lock per shared lo- x Of a lexical expression, stored as an annotation on the expres-
cation and iteratively coarsens this assignment, dropping unneededsion’s type. We use effectg to compute all dereferences and as-
locks. The algorithm runs in tim@(mn?), wheren is the number signments that occur W|_th|n t_he body of an atomic transaction. We
of shared locations in the program amdis the number of atomic ~ cannot simply use continuation effectssince those also include
sections. We show that the resulting locking discipline provides ex- all dereferences that happen in the continuation of the program after
actly the same amount of parallelism as the original, non-coalescedthe atomic section. Note that we cannot compute standard effects
locking discipline, while at the same time uses fewer locks. Our given continuation effects. The effect of an expressionis not
algorithm is not optimal, because it does not always reach the min- SImply its input continuation effect minus the output continuation
imum number of locks possible. Indeed, in section 3.2 we prove effect, since that could remove locations accessed both vt
that using the minimum number of locks is an NP-hard problem. ~ after it.

Returning to the explanation of function types, the effect label
h . f ¢’ denotes the set of locations accessed after the function returns,
2. Shared Location Inference while e denotes those locations accessed after the function is called,
Figure 1 shows the source language we use to illustrate our infer-including any locations is’.
ence system. Our language is a lambda calculus extended with in-
tegers, comparisons, updatable references, thread creatiehe,
and atomic sectionastomic’ e; in the latter two cases theis an
index used to refer to the analysis results. The expresgiok’ e
creates a new child thread that evaluatesd discards the result, Example Consider the following program:

2 2006/5/16

let x = ref 0 in
lety =ref 1l in

In this program two variables andy refer to memory locations:
is initialized and updated, but then is handed off to the child thread
and no longer used by the parent thread. Hencan be treated as
thread-local. On the other hanglis used both by the parent and
child thread, and hence must be modeled as shared.

Because we use continuation effects, we model this situation
precisely. In particular, the input effect of the child threadlisy}.
The output effect of the fork (i.e. starting at (1)) {3}. Since
{z,y} N{y} = {y}, we determine that only is shared. If instead

we had used regular effects, and we simply intersected the effect

of the parent thread with the child thread, we would think that

was shared even though it is handed off and never used again by

the parent thread.

Moreover, the system that we present in this paper does not

differentiate between read and write accesses, hence it will infer
that read-only variables are shared. In practice, we wish to allow
read-only values to be accessed freely by all threads. To do that, we
differentiate between read and write effects, and do not consider
values that only appear in the read effects of both threads to be
shared.

2.1 Type Rules

Figure 2 gives the type inference rules for sharing inference. We
discuss the rules briefly. [Id] and [Int] are straightforward. Notice

that since neither accesses any locations, the input and output

effects are the same, and their effgds unconstrained (and hence
will be empty during constraint resolution). In [Lam], the labels
€in and e,y that are bound in the type correspond to the input
and output effects of the function. Notice that the input and output
effects of \z.e are both just, since the definition itself does not
access any locations—the codeeitwill only be evaluated when
the function is applied. Finally, the effegtof the function is drawn
from the effect ofe.

In [App], the output effect; of evaluatingz; becomes the input
effect of evaluating:. This implies a left-to-right order of evalua-
tion: Any locations that may be accessed during or after evaluating
e2 also may be accessed after evaluatingr he function is invoked
afteres is evaluated, and heneeg’s output effect must be;,, from

the function signature. [Sub], described below, can always be used

to achieve this. Finally, notice that the effect of the application is
the effecty of evaluatinge, evaluatinge2, and calling the func-
tion. [Sub] can be used to make these effects the same.

[Cond] is similar to [App], where one of; or e; is evaluated

[id]

Ciglyx:thx:7%¢

[Int]

Ci;e;TEncintX;e
Fe: X4 out

(Touty 50ut); 3

Ciein; I,z 2 Tin,

L
[Lam] Cie;TF Ax.e: (Tin, €in) —X

Cie;T'Fey: T}‘un;el

Tfun = (Tin7 Ein) —X (Touhsout)

Aol Ciey;Thex: 185
Cie;T ket ea: TN 45 Eout
Cie;T'Feg: intX; e
Cieo;T ey i 7% €
[Cond] Cieo; ez : 7% €
I

C;e;T' - if0 eg then e; else e : 7X; €’

Cie;Tke:7%¢

[Ref] n
C;e;T Fref e: (ref?)% e

Ci;e;T ke (ref? r)X; ¢

Ckp<¢

Ckhp<x

Dere
[1 Cie;TFle: 1% ¢
Cie;TFeq: (ref? 7)%5eq
Cie;Theq: 75569
) Fp<es Crp<x
Assign] — —
[Assign] Cie;T'Fepi=e2: 75562
Cig;Te: %€
CH1< Ckx< Cre' <¢
[Sub} TST1 X S X1 . g ¢
Cig;Tke: e
CieliTke:r¥5el
Cre.<e Cre<e
[Fork] - —
C;e;T'F fork® e: intX ;&'
) C;S;F}—e:‘r"i;a'
[Atomic]

C;e;T F atomic’ e : TXi;EI
Figure 2. Type Inference Rules

[Sub] introduces sub-effecting to the system. In this rule, we
implicitly allow x; ande” to be fresh labels. In this way we can

after eg. We require both branches to have the same output effect always match the effects of subexpressions, e.ge; aindes in

¢’ and regular effect, and again we can use [Sub] to achieve this.

[Ref] creates and initializes a fresh location but does not have
any effect itself. This is safe because we know that locagion
cannot possibly be shared yet.

[Deref] accesses location after e is evaluated, and hence we
require that is in the continuation effect’ of e, expressed by the
judgmentC - p < £’. In addition, we require that the dereferenced
location is in the effectp < x. Note that [Sub] can be applied
before applying [Deref] so that this does not constrain the effect
of e. The rule for [Assign] is similar. Notice that the output effect
of ! e is the same the effeet of e. This is conservative becauge
must be included ie” but may not be accessed again following the
evaluation ofl e. However, in this case we can always apply [Sub]
to remove it.

[Assign], by creating a fresh variabbe and lettingy: < x and
x2 < x by [Sub], wherex; and x2 are effects ofe; andes.
Notice that subsumption on continuation effects is contravariant:
whatever output effect” we give toe, it must be included in its
original effects’. [Sub] also introduces subtyping via the judgment
C 7 < 7/, as shown in Figure 3. The subtyping rules are standard
except for the addition of effects in [Sub-Fun]. Continuation effects
are contravariant to the direction of flow of regular types, similarly
to the output effects in [Sub].

[Fork] models thread creation. The regular effgét of the
fork is unconstrained, since in the parent thread there is no effect.
The continuation effect; captures the effect of the child thread
evaluatinge, and the effect’ captures the effect of the rest of the
parent thread’s evaluation. To infer sharing (discussed in section

2006/5/16

continuation of the program after the expressiothe solution of

[Sub-in(CFint < int € moreover includes the effect ef
Once we have computefi(c) for all effect labelss, we visit
[Sub-Ref] Chkpi<ps CkFnm<n Ckn<n eachfork’ in the program. Then the set of shared locations for the
: Chrefft r <reff2 ry programsharedis given by
Ckmn<n CrHri<m shared= U(S(fl) N S(e"))
[Sub-Fur] Clhe<es COrFeh<el CrHxi1<xe i
T CF (m,e1) =X (1], 1) < (72,62) =X (15, €h) In other words, any locations accessed in the continuation of a
parent and its child threads afark are shared.
Figure 3. Subtyping Rules 3. Mutex Inference

Given the set of shared locations, the next step is to compute a
set of locks used to guard all of the shared locations. A simple
and correct solution is to associate a logk with each shared
locationp € shared Then at the beginning to a Se(;tiaﬂomici e,
we acquire all locks associated with locationsyih To prevent
deadlock, we also impose a total ordering on all the locks, acquiring
the locks in that order.

This approach is sound and in general allows more parallelism

2.2) we will computes’, N %; this is the set of locations that could
be accessed by both the parent and child thread after the fork.
Notice that the input effect’ of the child thread is included in
the input effect of the ork itself. This effectively causes a parent to
“inherit” its child’s effects, which is important for capturing sharing
between two child threads. Consider, for example, the following

program: than the néve approach of using a single lock for all atomic sec-

let x =ref 0 in tions® However, a program of size may haveO(n) locations,
fork' (1z); and acquiring that many locks would introduce unwanted overhead,
J* (1) x/ particularly on a multi-processor machine. Thus we would like to
fork® (z := 2) use fewer locks while maintaining the same level of parallelism.

Computing a minimum set of locks is NP-hard, as shown in sec-
Notice that whilex is created in the parent thread, it is only ac- tion 3.2. We propose an efficient but non-optimal algorithm based

cessed in the two child threads. Lebe the location of:. Thenp on the following observation: if two locations are always accessed
is included in the continuation effect at point (1), because the effect together, then they can be protected by the same mutex without any
of the child threadtork? = := 2is included in the effect of the call l0ss of parallelism.

at (1). Thus when we compute the intersection of the input effect
of fork! !z with the output effect of the parent (which starts at
(1)), the result will contaim, which we will hence determine to be
shared.

Finally, [Atomic] models atomic sections, which have no effect We write p > p’ for strict domination, i.e.p > p’ andp # p'.
on sharing. During mutex inference, we will use the solution to the Thus, whenevep > p’ we can usep’s mutex to protect bothp
effectx! of each atomic section to infer the needed locks. Notice andp’. Notice that the dominates relationship is not symmetric. For

DEefFINITION 1 (Dominates)We say that accesses to locatipn
dominateaccesses to locatiop’, written p > o', if every atomic
section containing an access tbalso contains an access to

that the effect ohtomic’ e is the same as the effect efthis will example, we might have a program containing two atomic sections,
ensure that atomic sections compose properly and not introduceatomic (! z;!y) andatomic !z. In this program, the location of
deadlock. x dominates the location @f but not vice-versa. Domination is

) transitive, however.

Soundness Standard label flow and effect inference has been computing the dominates relationship is straightforward. For
shown to be sound [8, 11], including polymorphic label flow in- each locationp, we initially assumep > p’ for all locations
ference. We believe it is straightforward to show that continuation p'. Then for eachatomic’ e in the program, ifp’ € S(x*) but
effects are a sound approximation of the locations accessed by thep ¢ S(x'), then we remove our assumptipn> p’. This takes
continuation of an expression. time O(m|shared) for eachp, wherem is the number of atomic

; ; ; ; 2
22 Computing Sharing ;g(r:]tsl?ns. Thus in total this takes timiEm|shared®) for all loca
Similarly to standard type-based label flow analysis, we apply the Given the dominates relationship, we then compute a set of
type inference rules in Figures 2 and 3, which produce a set of label locks to guard shared locations using the following algorithm:
flow constraint<”. One can think of these constraints as forming a
directed graph, where each label forms a node and every constrain
I < I’ is represented as a directed edge fioim!’. Then for each
labell, we compute the set(!) of location labelyp that “flow” to
by transitively closing the graph. The total time to transitively close 1. For eachp € shared, sel(p) = ¢,
the graph isO(n?), wheren is the number of nodes in the graph. 2. For eachp ¢ shared
(Given a polymorphic inference system, we could compute label

ALGORITHM 2 (Mutex Selection)Computes a mapping : p —
£ from locationsp to lock named. We call L a mutex selection
function

; /
flow using context-free language reachability in time cubic in the 3. [ithere eX'Stﬁf’ > p. then .
size of the type-annotated program). 4. For eachp” such thatL(p") = ¢,

Unlike standard type-based label flow analysis, our label flow 5 L(p") =L,

graph includes labels to encode continuation effects. Recall that
we define input and output continuation effeets:’ for every 31f we had a more discerning points-to analysis, or if we acquired the locks
expressiore in the program. In the solved points-to graph, the flow piecemeal within the atomic section, rather than all at the start [9], we would
solutions ofz, ¢’ include all location labels that are accessed by the do even better. We consider this issue at the end of the next section.

4 2006/5/16

In each step of the algorithm, we pick a locatieand replace all to sets of locations and return sets of mutexess;) = {L(p) |
occurrences of its lock by a lock of any of its dominators. Notice p € S;}.

that the order in which we visit the set of locks is unspecified,
as is the particular dominator to pick. We prove below that this
algorithm maintains maximum parallelism, no matter the ordering.
Mutex selection takes tim@(|shared?), since for each locatiop P(L) ={(i,7) | L(S:) N L(S;) = 0}
we must examind. for every other shared location.

The combination of computing the dominates relationship and
mutex selection yields mutex inference. We pick a total ordering on
all the locks inrange(L). Then we replace eacitomic’ e in the
program with code that first acquires all the locksZifS(x*)) in
order, performs the actions & and then releases all the locks. Put
together, computing the dominates relationship and mutex selection
takesO (m|shared”) time. LEMMA 1. If L(p) = £,/, thenp’ > p.

Examples To illustrate the algorithm, consider the set of accesses proor We prove this by induction on the number of iterations
of the atomic sections in the program. For clarity we simply list of step 2 of the algorithm. Clearly this holds for the initial mutex
the_accesses, USing Engllsh letters to Stapd for locations. For i”U.S-Se|ecti0n functionLg (P) — ém where we mark the functioi
tration purposes we also assume all locations are shared. For a firsthat the algorithm has computed so far, with a subscript denoting
example, suppose there are three atomic sections with the fO”OWingthe current iteration. Then suppose it holds fqr, the selection
pattern of accesses function afterk iterations of step 2. For an arbitrapy € shared

{a} {a,b} {a,b,c} there are two cases:

1. If Lp(pr) = €, thenLyi11(p1) = £,. By inductionp >

DEFINITION 4 (Parallelism ofL). The parallelismof a mutex se-
lection functionL : p — ¢, written P(L), is defined as

The parallelismP(L) is the set of all possible pairs of atomic sec-
tions that could execute in parallel because they have no common
associated locks. Ldt be the mutex selection function calculated
by our algorithm. The objective of mutex inference is to compute
a solutionL that allows the maximum parallelism possible without
breaking atomicity.

Then we haver > b, a > ¢, andb > c. Initially L(a) = {a, . i i y
L(b) = &, and L(c) = £.. Suppose in the first iteration of p1, and sincep” > p by assumption, we havg’ > p1 by
the algorithm locatiore is chosen, and we pick > c¢ as the transitivity.
dominates relationship to use. Then after one iteration, we will 2. Otherwise, there exists somgsuch thatl; (p1) = Li+1(p1) =
haveL(c) = ¢,. On a subsequent iteration, we will eventually pick £y,, and hence by inductiop; > p.
locationd with @ > b, and setL(b) = L(c) = L(a) = 4. Itis
easy to see that this same solution will be computed no matter the
choices made by the algorithm. And this solution is what we want: | mma 2 (Correctness)lf L is the mutex selection function com-
Sinceb andc are always accessed along withwe can eliminate puted by the above algorithm, thé(L) = P.
b’s lock andc’s lock.

As another example, suppose we have the following accessIn other words, the algorithm will not let more sections execute
pattern: in parallel than allowed, and it allows as much parallelism as the

{a} {a,b, ¢} (b} uncoalesced, one-lock-per-location approach.

Then we haver > ¢ andb > c. The only interesting step of the ~ PROOFR We prove this by induction on the number of iterations of
algorithm is when it visits node. In this case, the algorithm can ~ Stép2 of the algorithm. For the base case, the initial mutex selection
either setl.(¢) = £, or L(c) = £,. However/, and(, are stillkept ~ functionLo(p) = £, clearly satisfies this property, because there is
disjoint. Hence upon entering the left-most sectigris acquired, a one-to-one mapping between each location and each lock. For the
and upon entering the right-most sectibnis acquired. Thus the induction step, assunf@ = P(Ly) and for step 2 we havg > p.
left- and right-most sections can run concurrently with each other. L€t Lx+1 be the mutex selection function after this step. Pickany
Upon entering the middle section we must acquire gtind,— andj. Then there are two directions to show.
f(‘)'::?(hig(r:girrwloirtnviitltlelnr(:vt?jtj(:hmce the algorithm madé foj, the P(Li+1) C P Assume this is not the case. Then there exist
Tlgis seco?wd example shows why we do not usei roach i, such thalli, j) € P(Lw1) and(i,j) ¢ P. From the latter
- P v P . we getS; N'S; # (. Then clearly there exists @’ € S; N Sj,
zcuegtkiloarf L:Pmnc%(;hseolohcéseoaf.r?g IV?,ga\}&gﬂf dagﬁgézg‘; Wlth£rzlia)n atomiC 5nq sincel,4; is a total function, there must exist drsuch that
- - - L ")y = £. But then(i, j P(L since Ly41(S;) N
L(c). This answer would be safe but we could not concurrently szggg £ Thereforelﬁl(fg fé) c (Pk“) k1 (S0)
execute the left-most and right-most sections. A =
P(Lk+1) 2 P Assume this is not the case. Then there exist
3.1 Correctness i,7 such that(i, j) ¢ P(Lk+1) and(i,j) € P. From the lat-

First, we formalize the problem of mutex inference with respect to t€r We getS; N 5; = 0. Also, from the induction hypothesis
the points-to analysis, and prove that our mutex inference algorithm L& (S:) N Lx(S;) = 0, and we havelx1(S:) = Li(Si)[€, —
produces a correct solution. L&t = S(x'), wherey’ is the effect o], @nd similarly forLy..1(5;). Suppose that, ¢ Ly(S:) and
of atomic sectiortonic’ e. L, & Lk(Sj). Then cIearIyLkH(Sl-) N Lk+1(Sj) = (), which

contradicty7, j) ¢ P(Lk+1).

DEFINITION 3 (Parallelism).The parallelism of a program is a set Otherwise suppose without loss of generality that L (S;).
P=1{(i,5)] SinS; = 0} Then by assumptiofy, ¢ Lx(S;). So clearly the renaming, —
’ /] cannotadd, to L;+1(S;). Thusin order to shou ;41 (S;)N
In other words, the parallelism of a program is the set of all pairs of Lx+1(S;) = 0, we need to show, ¢ Lx(S;). Sincel, €
atomic sections that could safely execute in parallel, because theyLy (.S;), we know there exists g’ € S; such thatLi(p") = ¢,,

access no common locations. which by Lemma 1 impliep > p”’. But then fromp’ > p we have
We define the parallelism allowed by a given mutex selection p’ € S;. Also, sinceS; N.S; = 0, we havep’ ¢ S;. So suppose for
function L similarly, where we overload the meaningioto apply a contradiction thaf,, € L (S;). Then there must bed” € S;

5 2006/5/16

a b
c— d
(a) A simple graph.

atomic® {Zap := 1; Tac := 2}

atomic’ {Zap := 3; Tac:=4}
atomic® {Zqc := 6; Zpe :=T; Teq : =5}
atomic? {x.q := 8}

(b) The corresponding atomic transactions.

Figure 4. Reduction Example

such thatLy(p") = ¢,,. But then by Lemma 1, we hayé > p’".
Thenp' € S;, a contradiction. Hence we must halye ¢ L. (S;),
and therefore 11(S;) N Li+1(S;) = 0, which again contradicts
(i,7) ¢ P(Lk+1). ThereforeP(Li4+1) 2 P. O

3.2 NP-Hardness

Although our algorithm maintains the maximum amount of paral-
lelism, it may use more than the minimum number of locks. Ideally,
we would like to solve the following problem:

DEFINITION 5 (k-Mutex Inference)Given a parallel programe
and an integerk, is there a mutex selection functidnfor which
|range(L)| = kand P(L) = P?

From this, we can state the minimum mutex inference problem.

DEFINITION 6 (Minimum Mutex Inference)Given a parallel pro-
grame, find the minimum ig for which there a mutex selection
functionL having|range(L)| = k and P(L) = P.

However, it turns out that the above problem is NP-hard. We
prove this by reducingninimum edge clique covéo the mutex
inference problem.

DEFINITION 7 (Edge Clique Cover of sizk). Given agraphG =
(V, E), and a numbek, is there a set of cliqued’y, ..., W, CV
such that for every edg@v,v’) € E, there exists som#&/; that
contains bothy andv’?

DEFINITION 8 (Minimum Edge Clique Cover)Given a graph
G = (V, E), find the minimunk for which there is an edge clique
cover of size for G.

LEMMA 3. Minimum Mutex Inference is NP-hard.

PROOF The proof is by reduction from the Minimum Edge Clique
Cover problem. Specifically, given a gragh = (V, E), we can
construct in polynomial time a programsuch that there exists a
mutex selection functiord. for e for which |range(L)| = k and
P(L) = Pifand only if there exists an edge clique cover of size
for G.

The construction algorithm is:

e For every vertex; € V, create an atomic transactios.

e For every edgév;, v;) € E, create a fresh global locatign;,
and add a dereference pf; in the body of bothy; anda;.

edge between; andv,. Figure 4(b) shows the program created for
the graph in figure 4(a).

case= Suppose that there exists a selection funcfioand an
integerk, such thatrange(L)| = k. Then we can construct an edge
cligue coveVy, ..., Wy, for G, whereW,; C V for1 <i < k. We
construct these sets as follows. For every léck range(L), we
construct the sé#; C V by adding tolV; all verticesv; such that
L; € L(ay). Here byL(«;) we mean the set of locks computed by
applying L to everyp dereferenced i;. To proveWs, ..., Wy is

an edge clique cover, we must show that el¢hs a clique on,
and that all cliques covef.

The first claim is easily proved by contradiction: assui¥igis
not a cliqgue onG = (V, E); then there exists a pair of vertices
Um,vn € W; such that the edgév,,,v,) ¢ E. In that case,
there is no locatiorp,,,, created by the reduction algorithm that
is accessed in both,,, anda,. In that case, we have by definition
that(m,n) € P, i.e.,am anda, can be executed in parallel. But,
sincevn,, v, € Wi, we get by construction dfi’; that there must
exist a lock¢; such that; € L(a.,) andé; € L(ay). This would
mean thatm,n) ¢ P(L), because both,, anda,, acquiret;.
Hence, we geP (L) # P, a contradiction.

We also claim that the set of cliquég;, 1 < ¢ < k covers all
the edges irE. To prove this, assume that it does not: Then there
exists an edgév.,,v,) € E, but there is no cliquéV; covering
that edge: i.e., there is nid’; such thaw,, € W; andv, € W;,
for 1 < i < k. By construction we have that the locatipp,, is
accessed in both atomic transactioens anda,,. By the definition
of L, there must be a lock; such thatL(p...) = ¥¢;. Since both
am and o, accesmn, the locks; is held during both. In that
case, there exists a cliqi®; that contains both,,, andv,,. This
contradicts the assumption, therefore all edgek are covered by
the cliqueditr, ..., Wr.

To illustrate, suppose the lock selection functibror the pro-
gram of Figure 4(b) uses 3 locks to synchronize this program, as
follows:

L(pav) = 1, L(pve) = l1, L(pac) = Lo, L(pea) = £

Then the clique cover we construct for the graph for this mutex
selection will include 3 cliques, one per lock in the rangd.ofv;

will include all the atomic sections that must acquike which is

a,b andc; W5 will include a, b, andc andW5 will include ¢ andd.
TogetherW;, Ws, andW3 form an edge clique cover of side

case< Suppose there exists an edge clique céVer ..., W, for
the graphGG. Then we can construct a mutex selection function
for e such thatjrange(L)| = k and P(L) = P. We do this as
follows. For every cliquéV; we create a lock;. Then for every
Um, Un € W; We setL(pmn) = ;.

Clearly,range(L) = k. It remains to showP(L) = P. First,
we showP C P(L). Let (m,n) € P, meaning that two atomic
blocksa,, andas, in the constructed prograacan run in parallel,
or a.,, anda,, do not access any variable in common. Therefore,
by construction of the program graphG cannot include the edge
(vm, vn). This means that there is no cliq&; containing both
vm andw,,. Then, there is no lock; that is held during botfa,,,
anda,, which gives(m, n) € P(L). Now we showP(L) C P.
If (m,n) € P(L) then there is no lock; that is held for bothw,,,
anda,,. From the construction of we get that there is no clique
W; that contains both,,, andv,,, therefore there is no edge @#
between,, andv, . So, there is no common locatipp,,, accessed
by a.,, anda,, which meangm,n) € P.

For example, the graph of Figure 4(a), has a 2-clique cover

Note that the only location that can be accessed in both of two (which is also the minimum)iV, = {a,b,c} andW, = {c¢,d}.

atomic transactiong; anda; is p;;, since there can be only one

The corresponding mutex selection for the program in Figure 4(b)

2006/5/16

would use 2 mutexes] to protectzyy, zp. andzq., and /4, to described earlier to include label polymorphism, adding context
protectz.q. sensitivity. LOCKPICK uses a C type attribute to mark a function

. . . . as atomic. For example, in the following code:
Finally, the complexity of constructing a mutex inference prob-

lem e given a grapiG' = (V, E) is obviouslyO(|V| + |E|), and int foo(int arg) __attribute__((atomic)) {
the complexity of constructing an edge clique cover given a mutex // atomic code
selection functior one is obviouslyO(k - |V]). }

To sum up, we have shown that edge clique cover is polyno-
mially reducible to mutex inference. Since Minimum Edge Clique
Cover is NP-hard, we have proved that Minimum Mutex Inference
is also NP-hard.o

the functionfoo is assumed to contain an atomic section.

We expect lockprick will be a good fit for handling concur-

rency in Flux [1], a component language for building server ap-
plications. Flux defines concurrency at the granularity of individ-
)) ual components, which are essentially a kind of function. The pro-
4. Discussion grammer can then specify which components (or compositions of
components) must execute atomically, and our tool will do the rest.
Right now, programmers have to specify locking manually. We plan
to integrate lockpPick with Flux in the near future.

One restriction of our analysis is that it always produces a finite
set of locks, even though programs may use an unbounded amoun
of memory. Consider the case of a linked list in which atomic
sections only access the data in one node of the list at a time. In
this case, we could potentially add per-nod_e locks plus one lock 5. Conclusion

for the list backbone. In our current algorithm, however, since . . .
all the lock nodes are aliased, we would instead infer only the We have presented a system for inferring locks to support atomic

list backbone lock and use it to guard all accesses to the nodes.Sections in concurrent programs. Our approach uses points-to and
LOCKSMITH [10] provides special support for the per-node lock effects analysis to infer those locations that are shared between
case by using existential types, and we have found it improves threads. We then use mutex inference to determine an appropriate
precision in a number of cases. It would be useful to adapt our Set of locks for protecting accesses to shared data within an atomic
approach to infer these kinds of locks within data structures. One Section. We have proven that mutex inference provides the same
challenge in this case is maintaining lock ordering, since locks @mount of parallelism as if we had one lock per location.
would be dynamically generated. A simple solution would be to /N addition to the aforementioned ideas for making our approach
use the run-time address of the lock as part of the order. more efficient, it would be interesting to understand how optimistic

Our algorithm is correct only if all accesses to shared locations a@nd pessimistic concurrency controls could be combined. In partic-
occur within atomic sections [4]. Otherwise, some location could Ular, the former is much better and handling deadlock, while the lat-
be accessed simultaneously by concurrent threads, creating a dati€" S€ems to perform better in many cases [9]. Using our algorithm
race and violating atomicity. We could address this problem in two could help reduce the overhead and limitations (e.g., handling I/O)
ways. The simplest thing to do would be to ru@EKSMITH on of an optimistic scheme while retaining its liveness benefits.
the generated code to detect whether any races exist. Alternatively,
we could modify the sharing analysis to distinguish two kinds of References
effects: those within an atomic section, and those outside of one. If
some locatiorp is in the latter category, ang € shared then we
have a potential data race we can signal to the programmer.

Our work is closely related to McCloskey et al's Autolocker
[9], which also seeks to use locks to enforce atomic sections. There . o)

S . . 2] C.Flanagan and S. N. Freund. Automatic synchronization correction.
are two main differences between our work and theirs. First, Au- [P : : :
. . ’ In Synch t dC Object- Oriented L.

to.locker requires programmers to arjnotate potentially shared data (gcggl_)rcggézlggsén oncurrency in Lbject- Onented Languages
with the lock that guards that location. In our approach, such a

[1] B.Burns, K. Grimaldi, A. Kostadinov, E. D. Berger, and M. D. Corner.
Flux: A Language for Programming High-Performance Servers. In
In Proceedings of the Usenix Annual Technical Conferef086. To
appear.

[3] C. Flanagan, S. N. Freund, and M. Lifshin. Type Inference for

lock is inferred automatically. However, in Autolocker, program- Atomicity. In TLDI, 2005.

mers may specify per-nod(_e locks, as In t_he above I.'St example, [4] C. Flanagan and S. Qadeer. A Type and Effect System for Atomicity.
whereas in our case such fine granularity is not possible. Second, In PLDI. 2003.

Autolocker may not acquire all locks at the beginning of an atomic

. . . [5] T. Harris and K. Fraser. Language support for lightweight transac-
section, as we do, but rather delay until the protected data is actu- " tions. InOOPSLA ‘03 pages 388-402, Oct. 2003.

ally derefer_enced for the first time. This admits better parallelism, [6] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable
but makes it harder to ensure the lack of deadlock. Our approaches ™~ nemory transactions. IRPOPP ‘05 June 2005.

are complementary: our algorithm could generate the needed locks [7] M. Herlihy, V. Luchangco, M. Moir, and W. N. S. lll. Software

and annotations, and then use Autolocker fqr code ge'neratlon. transactior‘1al memory forydynamic-’sized data structure?ODC
Flanagan et al [3] have studied how to infer sections of Java ‘03, pages 92—101, July 2003.

programs that behave atomically, assuming that all synchroniza- (g) 5 M. Lucassen and D. K. Gifford. Polymorphic Effect Systems. In

tion has been inserted manually. Conversely, we assume the pro- POPL, 1988.

grammer designates the atomic section, and we infer the synchro- 9] g MmccCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker:

nization. Later quk by Flanaggin and F_re!.md [2] looks at adding synchronization inference for atomic sections. P@PL'06, pages

missing synchronization operations to eliminate data races or atom- 346-358. ACM Press, 2006.

icity violations. However, this approach only works when a small [10] p. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: Context-Sensitive

number of synchronization operations are missing. Correlation Analysis for Race Detection. Rtoceedings of the 2006
We are in the process of implementing our mutex inference PLDI, Ottawa, Canada, June 2006. To appear.

algorithm as part of a tool calleddckprick, which inserts locking [11] J. Rehof and M. Bhndrich. Type-Based Flow Analysis: From

operations in a given program with marked atomic transactions. Polymorphic Subtyping to CFL-Reachability. ROPL, 2001.

Lockpick uses the points-to and effect analysis @idksMITH [12] M. F. Ringenburg and D. Grossman. Atomcaml: First-class atomicity

to find all shared locations. The analysis extends the formal system via rollback. InICFP ‘05, pages 92-104, Sept. 2005.

7 2006/5/16

[13] A. Welc, S. Jagannathan, and A. L. Hosking. Transactional monitors
for concurrent objects. IECOOP ‘O4 Oslo, Norway, 2004.

8 2006/5/16

