
Lock Inference for Atomic Sections

Michael Hicks
University of Maryland, College Park

mwh@cs.umd.edu

Jeffrey S. Foster
University of Maryland, College Park

jfoster@cs.umd.edu

Polyvios Pratikakis
University of Maryland, College Park

polyvios@cs.umd.edu

Abstract
To prevent unwanted interactions in multithreaded programs, pro-
grammers have traditionally employed pessimistic, blocking con-
currency primitives. Using such primitives correctly and efficiently
is notoriously difficult. To simplify the problem, recent research
proposes that programmers specifyatomic sectionsof code whose
executions should be atomic with respect to one another, without
dictating exactly how atomicity enforced. Much work has explored
using optimistic concurrency, orsoftware transactions, as a means
to implement atomic sections.

This paper proposes to implement atomic sections using a static
whole-program analysis to insert necessary uses of pessimistic con-
currency primitives. Given a program that contains programmer-
specified atomic sections and thread creations, ourmutex infer-
ence algorithmefficiently infers a set of locks for each atomic
section that should be acquired (released) upon entering (exiting)
the atomic section. The key part of this algorithm is determining
which memory locations in the program could be shared between
threads, and using this information to generate the necessary locks.
To determine sharing, our analysis uses the notion ofcontinuation
effectsto track the locations accessed after each program point. As
continuation effects are flow sensitive, a memory location may be
thread-local before a thread creation and thread-shared afterward.
We prove that our algorithm is correct, and provides parallelism
according to the precision of the points-to analysis. While our al-
gorithm also attempts to reduce the number locks while preserving
parallelism, we show that minimizing the number of locks is NP-
hard.

1. Introduction
Concurrent programs strive to balancesafetyand liveness. Pro-
grammers typically ensure safety by, among other things, using
blocking synchronization primitives such as mutual exclusion locks
to restrict concurrent accesses to data. Programmers ensure liveness
by reducing waiting and blocking as much as possible, for example
by using more mutual exclusion locks at a finer granularity. Thus
these two properties are in tension: ensuring safety can result in
reduced or no parallelism, compromising liveness, while ensuring
liveness could permit concurrent access to an object (a data race)
potentially compromising safety. Balancing this tension manually
can be quite difficult1, particularly since traditional uses of block-
ing synchronization are not modular, and thus the programmer must
reason about the entire program’s behavior.

Software transactionspromise to improve this situation. A
transaction is a programmer-designated section of code that should

1 As of the time this paper is written, Google returns 13,000 pdf documents
containing the phrase “notoriously difficult”, the word “software”, and one
of the words “multithreaded” or “concurrent.”

be serializable, so that its execution appears to be atomic2 with
respect to all other transactions in the program. Assuming all
concurrently-shared data is accessed within atomic sections, the
compiler and runtime system guarantee freedom from data races
and deadlocks automatically. Thus, transactions are composable—
they can be reasoned about in isolation, without worry that an
ill-fated combination of atomic sections could deadlock. This char-
acteristic clearly makes transactions easier to use than having to
manipulate low-level mutexes directly in the program.

Recent research proposes implementing atomic sections using
optimistic concurrency techniques [5, 6, 7, 12, 13]. Roughly speak-
ing, memory accesses within a transaction are logged. At the con-
clusion of the transaction, if the log is consistent with the current
state of memory, then the writes are committed; if not, the trans-
action is rolled back and restarted. The main drawbacks with this
approach are that first, it does not interact well with I/O, which can-
not always be rolled back; second, performance can be worse than
traditional pessimistic techniques due to the costs of logging and
rollback [9].

In this paper, we explore the use of pessimistic synchronization
techniques to implement atomic sections. We assume that a pro-
gram contains occurrences offork e for creating multiple threads
and programmer-annotated atomic sectionsatomic e for protect-
ing shared data. For such a program, our algorithm automatically
constructs a set of locks and inserts the necessary lock acquires and
releases before and after the body of each marked atomic section.
A trivial implementation would be to begin and end all atomic sec-
tions by, respectively, acquiring and releasing a single global lock.
However, an important goal of our algorithm is to maximize par-
allelism. We present an improved algorithm that uses much finer
locking but still enforces atomicity, without introducing deadlock.
We implement this algorithm in a tool called LOCKPICK, using the
sharedness analysis performed by our race detection tool for C pro-
grams, LOCKSMITH [10]. We present an overview of our algorithm
next, and describe it in detail in the rest of the paper.

1.1 Overview

The main idea of our approach is simple. We begin by performing a
points-to analysis on the program, which maps each pointer in the
program to an abstract name that represents the memory pointed
to at run time. Then we can create one mutual exclusion lock
for each abstract name from the points-to analysis and use it to
guard accesses to the corresponding run-time memory locations.
At the start of each atomic section, the compiler inserts code to
acquire all locks that correspond to the abstract locations accessed
within the atomic section. The locks are released when the section
concludes. To avoid deadlock, locks are always acquired according
to a statically-assigned total order. Since atomic sections might be
nested, locks must also be reentrant. Moreover, locations accessed

2 For the remainder of the paper, we use the term “atomic” liberally, to mean
“appears to be atomic,” or “serializable.”

1 2006/5/16

expressions e ::= x | v | e1 e2 | ref e | ! e | e1 := e2

| if0 e0 then e1 else e2

| forki e | atomici e
values v ::= n | λx.e
types τ ::= int | ref ρ τ | (τ, ε) →χ (τ ′, ε′)
labels l ::= ρ | ε | χ
constraints C ::= ∅ | {l ≤ l′} | C ∪ C

Figure 1. Source Language, Types, and Constraints

within an inner section are considered accessed in its surrounding
sections, to ensure that the global order is preserved.

This approach ensures that no locations are accessed without
holding their associated lock. Moreover, locks are not released
during execution of an atomic section, and hence all accesses to
locations within that section will be atomic with respect to other
atomic sections [4]. Our algorithm assumes that shared locations
are only accessed within atomic sections; this can be enforced with
a small modification of our algorithm, or by using a race detection
tool such as LOCKSMITH as a post-pass.

Our algorithm performs two optimizations over the basic ap-
proach. First, we reduce our consideration to only those abstract
locations that may be shared between threads, since thread-local
locations need not be protected by synchronization. Second, we ob-
serve that some locks may be coalesced. In particular, if lock` is
always held with lock̀ ′, then lock`′ can safely be discarded.

We implement this approach in two main steps. First, we use
a context-sensitive points-to and effect analysis to determine the
shared abstract locations as well as the locations accessed within
an atomic section (Section 2.2). The points-to analysis is flow-
insensitive, but the effect analysis calculates per-program point
continuation effectsthat track the effect of the continuation of an
expression. Continuation effects let us model that only locations
that are usedafter a call to fork are shared. The sharing anal-
ysis presented here is essentially unchanged from LOCKSMITH’s
sharing analysis (with only the exception of context sensitivity for
simplicity), which has not been presented formally before.

Second, given the set of shared locations, we performmutex in-
ferenceto determine an appropriate set of locks to guard accesses
to the shared locations (Section 3). This phase includes a straight-
forward algorithm that performs mutex coalescence, to reduce the
number of locks while retaining the maximal amount of paral-
lelism. Our algorithm starts by assuming one lock per shared lo-
cation and iteratively coarsens this assignment, dropping unneeded
locks. The algorithm runs in timeO(mn2), wheren is the number
of shared locations in the program andm is the number of atomic
sections. We show that the resulting locking discipline provides ex-
actly the same amount of parallelism as the original, non-coalesced
locking discipline, while at the same time uses fewer locks. Our
algorithm is not optimal, because it does not always reach the min-
imum number of locks possible. Indeed, in section 3.2 we prove
that using the minimum number of locks is an NP-hard problem.

2. Shared Location Inference
Figure 1 shows the source language we use to illustrate our infer-
ence system. Our language is a lambda calculus extended with in-
tegers, comparisons, updatable references, thread creationforki e,
and atomic sectionsatomici e; in the latter two cases thei is an
index used to refer to the analysis results. The expressionforki e
creates a new child thread that evaluatese and discards the result,

continuing with normal evaluation in the parent thread. Our ap-
proach can easily be extended to support polymorphism and poly-
morphic recursion for labels in a standard way [11], as LOCK-
SMITH does [10], but we omit rules for polymorphism because they
add complication but no important issues.

We use a type-based analysis to determine the set of abstract
locationsρ, created byref, that could be shared between threads
in some programe. We compute this using a modifiedlabel flow
analysis[10, 11]. Our system uses three kinds of labels:location
labelsρ, effectsχ andcontinuation effectsε. Effects of both kinds
represent those locationsρ dereferenced or assigned to during a
computation. Typing a program generateslabel flow constraintsof
the forml ≤ l′. Afterwards, these constraints are solved to learn the
desired information. The constraintl ≤ l′ is read “labell flows to
labell′.” For example, ifx has typeref ρ τ , and we have constraints
ρ′ ≤ ρ andρ′′ ≤ ρ, thenx may point to the locationsρ′ or ρ′′.
Labels also flow to effectsχ or ε, so for example ifρ ≤ χ then an
expression with effectχ may access locationρ.

The typing judgment has the following form:

C; ε; Γ ` e : τχ; ε′

This means that in type environmentΓ, expressione has effect
typeτχ given constraintsC. Effect typesτχ consist of a typeτ
annotated with the effectχ of e. Within the type rules, the judgment
C ` l ≤ l′ indicates thatl ≤ l′ can be proven by the constraint
setC. In an implementation, such judgments cause us to generate
constraintl ≤ l′ and add itC. Types include standard integer types;
updatable reference typesref ρ τ , each of which is decorated with a
location labelρ; and function types of the form(τ, ε) →χ (τ ′, ε′),
whereτ andτ ′ are the domain and range types, andχ is the effect
of calling the function. We explainε′ and ε on function types
momentarily.

The judgmentC; ε; Γ ` e : τχ; ε′ is standard for effect infer-
ence except forε andε′, which expresscontinuation effects. Here,
ε is theinput effect, which denotes locations that may be accessed
during or after evaluation ofe. Theoutput effectε′ contains loca-
tions that may be accessedafter evaluation ofe (thus all locations
in ε′ will be in ε). We use continuation effects in the rule forfork e
to determine sharing. In particular, we infer that a location is shared
if it is in the input effect of the child thread and the output effect
of thefork (and thus may be accessed subsequently in the parent
thread).

In addition to continuation effectsε, we also compute the effects
χ of a lexical expression, stored as an annotation on the expres-
sion’s type. We use effectsχ to compute all dereferences and as-
signments that occur within the body of an atomic transaction. We
cannot simply use continuation effectsε, since those also include
all dereferences that happen in the continuation of the program after
the atomic section. Note that we cannot compute standard effects
given continuation effectsε. The effect of an expressione is not
simply its input continuation effect minus the output continuation
effect, since that could remove locations accessed both withine and
after it.

Returning to the explanation of function types, the effect label
ε′ denotes the set of locations accessed after the function returns,
while ε denotes those locations accessed after the function is called,
including any locations inε′.

Example Consider the following program:

2 2006/5/16

let x = ref 0 in
let y = ref 1 in

x := 4;
fork1 (! x; ! y);
/ ∗ (1) ∗ /
y := 5

In this program two variablesx andy refer to memory locations.x
is initialized and updated, but then is handed off to the child thread
and no longer used by the parent thread. Hencex can be treated as
thread-local. On the other hand,y is used both by the parent and
child thread, and hence must be modeled as shared.

Because we use continuation effects, we model this situation
precisely. In particular, the input effect of the child thread is{x, y}.
The output effect of the fork (i.e. starting at (1)) is{y}. Since
{x, y} ∩ {y} = {y}, we determine that onlyy is shared. If instead
we had used regular effects, and we simply intersected the effect
of the parent thread with the child thread, we would think thatx
was shared even though it is handed off and never used again by
the parent thread.

Moreover, the system that we present in this paper does not
differentiate between read and write accesses, hence it will infer
that read-only variables are shared. In practice, we wish to allow
read-only values to be accessed freely by all threads. To do that, we
differentiate between read and write effects, and do not consider
values that only appear in the read effects of both threads to be
shared.

2.1 Type Rules

Figure 2 gives the type inference rules for sharing inference. We
discuss the rules briefly. [Id] and [Int] are straightforward. Notice
that since neither accesses any locations, the input and output
effects are the same, and their effectχ is unconstrained (and hence
will be empty during constraint resolution). In [Lam], the labels
εin and εout that are bound in the type correspond to the input
and output effects of the function. Notice that the input and output
effects ofλx.e are both justε, since the definition itself does not
access any locations—the code ine will only be evaluated when
the function is applied. Finally, the effectχ of the function is drawn
from the effect ofe.

In [App], the output effectε1 of evaluatinge1 becomes the input
effect of evaluatinge2. This implies a left-to-right order of evalua-
tion: Any locations that may be accessed during or after evaluating
e2 also may be accessed after evaluatinge1. The function is invoked
aftere2 is evaluated, and hencee2’s output effect must beεin from
the function signature. [Sub], described below, can always be used
to achieve this. Finally, notice that the effect of the application is
the effectχ of evaluatinge1, evaluatinge2, and calling the func-
tion. [Sub] can be used to make these effects the same.

[Cond] is similar to [App], where one ofe1 or e2 is evaluated
after e0. We require both branches to have the same output effect
ε′ and regular effectχ, and again we can use [Sub] to achieve this.

[Ref] creates and initializes a fresh location but does not have
any effect itself. This is safe because we know that locationρ
cannot possibly be shared yet.

[Deref] accesses locationρ after e is evaluated, and hence we
require thatρ is in the continuation effectε′ of e, expressed by the
judgmentC ` ρ ≤ ε′. In addition, we require that the dereferenced
location is in the effectsρ ≤ χ. Note that [Sub] can be applied
before applying [Deref] so that this does not constrain the effect
of e. The rule for [Assign] is similar. Notice that the output effect
of ! e is the same the effectε′ of e. This is conservative becauseρ
must be included inε′ but may not be accessed again following the
evaluation of! e. However, in this case we can always apply [Sub]
to remove it.

[Id]
C; ε; Γ, x : τ ` x : τχ; ε

[Int]
C; ε; Γ ` n : intχ; ε

[Lam]
C; εin; Γ, x : τin ` e : τχ

out; εout

C; ε; Γ ` λx.e : (τin, εin) →χ (τout, εout); ε

[App]

C; ε; Γ ` e1 : τχ
fun; ε1

τfun = (τin, εin) →χ (τout, εout)
C; ε1; Γ ` e2 : τχ

in; εin

C; ε; Γ ` e1 e2 : τχ
out; εout

[Cond]

C; ε; Γ ` e0 : intχ; ε0

C; ε0; Γ ` e1 : τχ; ε′

C; ε0; Γ ` e2 : τχ; ε′

C; ε; Γ ` if0 e0 then e1 else e2 : τχ; ε′

[Ref]
C; ε; Γ ` e : τχ; ε′

C; ε; Γ ` ref e : (ref ρ τ)χ; ε′

[Deref]

C; ε; Γ ` e : (ref ρ τ)χ; ε′

C ` ρ ≤ ε′ C ` ρ ≤ χ

C; ε; Γ ` ! e : τχ; ε′

[Assign]

C; ε; Γ ` e1 : (ref ρ τ)χ; ε1

C; ε1; Γ ` e2 : τχ; ε2

C ` ρ ≤ ε2 C ` ρ ≤ χ

C; ε; Γ ` e1 := e2 : τχ; ε2

[Sub]

C; ε; Γ ` e : τχ; ε′

C ` τ ≤ τ1 C ` χ ≤ χ1 C ` ε′′ ≤ ε′

C; ε; Γ ` e : τχ1
1 ; ε′′

[Fork]

C; εi
e; Γ ` e : τχ; ε′

e

C ` εi
e ≤ ε C ` εi ≤ ε

C; ε; Γ ` forki e : intχ′
; εi

[Atomic]
C; ε; Γ ` e : τχi

; ε′

C; ε; Γ ` atomici e : τχi

; ε′

Figure 2. Type Inference Rules

[Sub] introduces sub-effecting to the system. In this rule, we
implicitly allow χ1 andε′′ to be fresh labels. In this way we can
always match the effects of subexpressions, e.g., ofe1 ande2 in
[Assign], by creating a fresh variableχ and lettingχ1 ≤ χ and
χ2 ≤ χ by [Sub], whereχ1 and χ2 are effects ofe1 and e2.
Notice that subsumption on continuation effects is contravariant:
whatever output effectε′′ we give toe, it must be included in its
original effectε′. [Sub] also introduces subtyping via the judgment
C ` τ ≤ τ ′, as shown in Figure 3. The subtyping rules are standard
except for the addition of effects in [Sub-Fun]. Continuation effects
are contravariant to the direction of flow of regular types, similarly
to the output effects in [Sub].

[Fork] models thread creation. The regular effectχ′ of the
fork is unconstrained, since in the parent thread there is no effect.
The continuation effectεi

e captures the effect of the child thread
evaluatinge, and the effectεi captures the effect of the rest of the
parent thread’s evaluation. To infer sharing (discussed in section

3 2006/5/16

[Sub-Int]
C ` int ≤ int

[Sub-Ref]
C ` ρ1 ≤ ρ2 C ` τ1 ≤ τ2 C ` τ2 ≤ τ1

C ` ref ρ1 τ1 ≤ ref ρ2 τ2

[Sub-Fun]

C ` τ2 ≤ τ1 C ` τ ′
1 ≤ τ ′

2

C ` ε1 ≤ ε2 C ` ε′
2 ≤ ε′

1 C ` χ1 ≤ χ2

C ` (τ1, ε1) →χ1 (τ ′
1, ε

′
1) ≤ (τ2, ε2) →χ2 (τ ′

2, ε
′
2)

Figure 3. Subtyping Rules

2.2) we will computeεi
e ∩ εi; this is the set of locations that could

be accessed by both the parent and child thread after the fork.
Notice that the input effectεi

e of the child thread is included in
the input effect of thefork itself. This effectively causes a parent to
“inherit” its child’s effects, which is important for capturing sharing
between two child threads. Consider, for example, the following
program:

let x = ref 0 in

fork1 (! x);
/ ∗ (1) ∗ /
fork2 (x := 2)

Notice that whilex is created in the parent thread, it is only ac-
cessed in the two child threads. Letρ be the location ofx. Thenρ
is included in the continuation effect at point (1), because the effect
of the child threadfork2 x := 2 is included in the effect of the call
at (1). Thus when we compute the intersection of the input effect
of fork1 ! x with the output effect of the parent (which starts at
(1)), the result will containρ, which we will hence determine to be
shared.

Finally, [Atomic] models atomic sections, which have no effect
on sharing. During mutex inference, we will use the solution to the
effectχi of each atomic section to infer the needed locks. Notice
that the effect ofatomici e is the same as the effect ofe; this will
ensure that atomic sections compose properly and not introduce
deadlock.

Soundness Standard label flow and effect inference has been
shown to be sound [8, 11], including polymorphic label flow in-
ference. We believe it is straightforward to show that continuation
effects are a sound approximation of the locations accessed by the
continuation of an expression.

2.2 Computing Sharing

Similarly to standard type-based label flow analysis, we apply the
type inference rules in Figures 2 and 3, which produce a set of label
flow constraintsC. One can think of these constraints as forming a
directed graph, where each label forms a node and every constraint
l ≤ l′ is represented as a directed edge froml to l′. Then for each
labell, we compute the setS(l) of location labelsρ that “flow” to l
by transitively closing the graph. The total time to transitively close
the graph isO(n2), wheren is the number of nodes in the graph.
(Given a polymorphic inference system, we could compute label
flow using context-free language reachability in time cubic in the
size of the type-annotated program).

Unlike standard type-based label flow analysis, our label flow
graph includes labelsε to encode continuation effects. Recall that
we define input and output continuation effectsε, ε′ for every
expressione in the program. In the solved points-to graph, the flow
solutions ofε, ε′ include all location labels that are accessed by the

continuation of the program after the expressione; the solution of
ε moreover includes the effect ofe.

Once we have computedS(ε) for all effect labelsε, we visit
eachforki in the program. Then the set of shared locations for the
programsharedis given by

shared=
[
i

(S(εi) ∩ S(εe
i))

In other words, any locations accessed in the continuation of a
parent and its child threads at afork are shared.

3. Mutex Inference
Given the set of shared locations, the next step is to compute a
set of locks used to guard all of the shared locations. A simple
and correct solution is to associate a lock`ρ with each shared
locationρ ∈ shared. Then at the beginning to a sectionatomici e,
we acquire all locks associated with locations inχi. To prevent
deadlock, we also impose a total ordering on all the locks, acquiring
the locks in that order.

This approach is sound and in general allows more parallelism
than the näıve approach of using a single lock for all atomic sec-
tions.3 However, a program of sizen may haveO(n) locations,
and acquiring that many locks would introduce unwanted overhead,
particularly on a multi-processor machine. Thus we would like to
use fewer locks while maintaining the same level of parallelism.
Computing a minimum set of locks is NP-hard, as shown in sec-
tion 3.2. We propose an efficient but non-optimal algorithm based
on the following observation: if two locations are always accessed
together, then they can be protected by the same mutex without any
loss of parallelism.

DEFINITION 1 (Dominates).We say that accesses to locationρ
dominateaccesses to locationρ′, written ρ ≥ ρ′, if every atomic
section containing an access toρ′ also contains an access toρ.

We write ρ > ρ′ for strict domination, i.e.,ρ ≥ ρ′ andρ 6= ρ′.
Thus, wheneverρ > ρ′ we can useρ’s mutex to protect bothρ
andρ′. Notice that the dominates relationship is not symmetric. For
example, we might have a program containing two atomic sections,
atomic (! x; ! y) andatomic ! x. In this program, the location of
x dominates the location ofy but not vice-versa. Domination is
transitive, however.

Computing the dominates relationship is straightforward. For
each locationρ, we initially assumeρ > ρ′ for all locations
ρ′. Then for eachatomici e in the program, ifρ′ ∈ S(χi) but
ρ 6∈ S(χi), then we remove our assumptionρ > ρ′. This takes
time O(m|shared|) for eachρ, wherem is the number of atomic
sections. Thus in total this takes timeO(m|shared|2) for all loca-
tions.

Given the dominates relationship, we then compute a set of
locks to guard shared locations using the following algorithm:

ALGORITHM 2 (Mutex Selection).Computes a mappingL : ρ →
` from locationsρ to lock names̀ . We callL a mutex selection
function.

1. For eachρ ∈ shared, setL(ρ) = `ρ

2. For eachρ ∈ shared
3. If there existsρ′ > ρ, then
4. For eachρ′′ such thatL(ρ′′) = `ρ

5. L(ρ′′) := `ρ′

3 If we had a more discerning points-to analysis, or if we acquired the locks
piecemeal within the atomic section, rather than all at the start [9], we would
do even better. We consider this issue at the end of the next section.

4 2006/5/16

In each step of the algorithm, we pick a locationρ and replace all
occurrences of its lock by a lock of any of its dominators. Notice
that the order in which we visit the set of locks is unspecified,
as is the particular dominator to pick. We prove below that this
algorithm maintains maximum parallelism, no matter the ordering.
Mutex selection takes timeO(|shared|2), since for each locationρ
we must examineL for every other shared location.

The combination of computing the dominates relationship and
mutex selection yields mutex inference. We pick a total ordering on
all the locks inrange(L). Then we replace eachatomici e in the
program with code that first acquires all the locks inL(S(χi)) in
order, performs the actions ine, and then releases all the locks. Put
together, computing the dominates relationship and mutex selection
takesO(m|shared|2) time.

Examples To illustrate the algorithm, consider the set of accesses
of the atomic sections in the program. For clarity we simply list
the accesses, using English letters to stand for locations. For illus-
tration purposes we also assume all locations are shared. For a first
example, suppose there are three atomic sections with the following
pattern of accesses

{a} {a, b} {a, b, c}

Then we havea > b, a > c, andb > c. Initially L(a) = `a,
L(b) = `b, and L(c) = `c. Suppose in the first iteration of
the algorithm locationc is chosen, and we pickb > c as the
dominates relationship to use. Then after one iteration, we will
haveL(c) = `b. On a subsequent iteration, we will eventually pick
locationb with a > b, and setL(b) = L(c) = L(a) = `a. It is
easy to see that this same solution will be computed no matter the
choices made by the algorithm. And this solution is what we want:
Sinceb andc are always accessed along witha, we can eliminate
b’s lock andc’s lock.

As another example, suppose we have the following access
pattern:

{a} {a, b, c} {b}
Then we havea > c andb > c. The only interesting step of the
algorithm is when it visits nodec. In this case, the algorithm can
either setL(c) = `a or L(c) = `b. However,̀ a and`b are still kept
disjoint. Hence upon entering the left-most section`a is acquired,
and upon entering the right-most section`b is acquired. Thus the
left- and right-most sections can run concurrently with each other.
Upon entering the middle section we must acquire both`a and`b—
and hence no matter what choice the algorithm made forL(c), the
lock guarding it will be held.

This second example shows why we do not use a naı̈ve approach
such as unifying the locks of all locations accessed within an atomic
section. If we did so here and we would chooseL(a) = L(b) =
L(c). This answer would be safe but we could not concurrently
execute the left-most and right-most sections.

3.1 Correctness

First, we formalize the problem of mutex inference with respect to
the points-to analysis, and prove that our mutex inference algorithm
produces a correct solution. LetSi = S(χi), whereχi is the effect
of atomic sectionatomici e.

DEFINITION 3 (Parallelism).The parallelism of a program is a set

P = {(i, j) | Si ∩ Sj = ∅}

In other words, the parallelism of a program is the set of all pairs of
atomic sections that could safely execute in parallel, because they
access no common locations.

We define the parallelism allowed by a given mutex selection
functionL similarly, where we overload the meaning ofL to apply

to sets of locations and return sets of mutexes:L(Si) = {L(ρ) |
ρ ∈ Si}.
DEFINITION 4 (Parallelism ofL). Theparallelismof a mutex se-
lection functionL : ρ → `, writtenP (L), is defined as

P (L) = {(i, j) | L(Si) ∩ L(Sj) = ∅}
The parallelismP (L) is the set of all possible pairs of atomic sec-
tions that could execute in parallel because they have no common
associated locks. LetL be the mutex selection function calculated
by our algorithm. The objective of mutex inference is to compute
a solutionL that allows the maximum parallelism possible without
breaking atomicity.

LEMMA 1. If L(ρ) = `ρ′ , thenρ′ ≥ ρ.

PROOF. We prove this by induction on the number of iterations
of step 2 of the algorithm. Clearly this holds for the initial mutex
selection functionL0(ρ) = `ρ, where we mark the functionL
that the algorithm has computed so far, with a subscript denoting
the current iteration. Then suppose it holds forLk, the selection
function afterk iterations of step 2. For an arbitraryρ1 ∈ shared,
there are two cases:

1. If Lk(ρ1) = `ρ then Lk+1(ρ1) = `ρ′ . By induction ρ ≥
ρ1, and sinceρ′ > ρ by assumption, we haveρ′ ≥ ρ1 by
transitivity.

2. Otherwise, there exists someρ2 such thatLk(ρ1) = Lk+1(ρ1) =
`ρ2 , and hence by inductionρ2 ≥ ρ1.

LEMMA 2 (Correctness).If L is the mutex selection function com-
puted by the above algorithm, thenP (L) = P.

In other words, the algorithm will not let more sections execute
in parallel than allowed, and it allows as much parallelism as the
uncoalesced, one-lock-per-location approach.

PROOF. We prove this by induction on the number of iterations of
step 2 of the algorithm. For the base case, the initial mutex selection
functionL0(ρ) = `ρ clearly satisfies this property, because there is
a one-to-one mapping between each location and each lock. For the
induction step, assumeP = P (Lk) and for step 2 we haveρ′ > ρ.
Let Lk+1 be the mutex selection function after this step. Pick anyi
andj. Then there are two directions to show.

P (Lk+1) ⊆ P Assume this is not the case. Then there exist
i, j such that(i, j) ∈ P (Lk+1) and (i, j) /∈ P. From the latter
we getSi ∩ Sj 6= ∅. Then clearly there exists aρ′′ ∈ Si ∩ Sj ,
and sinceLk+1 is a total function, there must exist an` such that
Lk+1(ρ

′′) = `. But then(i, j) /∈ P (Lk+1) sinceLk+1(Si) ∩
Lk+1(Sj) 6= ∅. ThereforeP (Lk+1) ⊆ P.

P (Lk+1) ⊇ P Assume this is not the case. Then there exist
i, j such that(i, j) /∈ P (Lk+1) and (i, j) ∈ P. From the lat-
ter we getSi ∩ Sj = ∅. Also, from the induction hypothesis
Lk(Si) ∩ Lk(Sj) = ∅, and we haveLk+1(Si) = Lk(Si)[`ρ 7→
`ρ′], and similarly forLk+1(Sj). Suppose that̀ρ 6∈ Lk(Si) and
`ρ 6∈ Lk(Sj). Then clearlyLk+1(Si) ∩ Lk+1(Sj) = ∅, which
contradicts(i, j) /∈ P (Lk+1).

Otherwise suppose without loss of generality that`ρ ∈ Lk(Si).
Then by assumptioǹρ 6∈ Lk(Sj). So clearly the renaming[`ρ 7→
`ρ′] cannot add̀ρ′ toLk+1(Sj). Thus in order to showLk+1(Si)∩
Lk+1(Sj) = ∅, we need to shoẁρ′ 6∈ Lk(Sj). Since`ρ ∈
Lk(Si), we know there exists aρ′′ ∈ Si such thatLk(ρ′′) = `ρ,
which by Lemma 1 impliesρ ≥ ρ′′. But then fromρ′ > ρ we have
ρ′ ∈ Si. Also, sinceSi ∩Sj = ∅, we haveρ′ 6∈ Sj . So suppose for
a contradiction that̀ρ′ ∈ Lk(Sj). Then there must be aρ′′′ ∈ Sj

5 2006/5/16

,
,

,
,

,

a b

c d

(a) A simple graph.

atomica {xab := 1; xac := 2}
atomicb {xab := 3; xac := 4}
atomicc {xac := 6; xbc := 7; xcd := 5}
atomicd {xcd := 8}

(b) The corresponding atomic transactions.

Figure 4. Reduction Example

such thatLk(ρ′′′) = `ρ′ . But then by Lemma 1, we haveρ′ ≥ ρ′′′.
Thenρ′ ∈ Sj , a contradiction. Hence we must have`ρ′ 6∈ Lk(Sj),
and thereforeLk+1(Si) ∩ Lk+1(Sj) = ∅, which again contradicts
(i, j) /∈ P (Lk+1). ThereforeP (Lk+1) ⊇ P.

3.2 NP-Hardness

Although our algorithm maintains the maximum amount of paral-
lelism, it may use more than the minimum number of locks. Ideally,
we would like to solve the following problem:

DEFINITION 5 (k-Mutex Inference).Given a parallel programe
and an integerk, is there a mutex selection functionL for which
|range(L)| = k andP (L) = P?

From this, we can state the minimum mutex inference problem.

DEFINITION 6 (Minimum Mutex Inference).Given a parallel pro-
gram e, find the minimum isk for which there a mutex selection
functionL having|range(L)| = k andP (L) = P.

However, it turns out that the above problem is NP-hard. We
prove this by reducingminimum edge clique coverto the mutex
inference problem.

DEFINITION 7 (Edge Clique Cover of sizek). Given a graphG =
(V, E), and a numberk, is there a set of cliquesW1, . . . , Wk ⊆ V
such that for every edge(v, v′) ∈ E, there exists someWi that
contains bothv andv′?

DEFINITION 8 (Minimum Edge Clique Cover).Given a graph
G = (V, E), find the minimumk for which there is an edge clique
cover of sizek for G.

LEMMA 3. Minimum Mutex Inference is NP-hard.

PROOF. The proof is by reduction from the Minimum Edge Clique
Cover problem. Specifically, given a graphG = (V, E), we can
construct in polynomial time a programe such that there exists a
mutex selection functionL for e for which |range(L)| = k and
P (L) = P if and only if there exists an edge clique cover of sizek
for G.

The construction algorithm is:

• For every vertexvi ∈ V , create an atomic transactionαi.
• For every edge(vi, vj) ∈ E, create a fresh global locationρij ,

and add a dereference ofρij in the body of bothαi andαj .

Note that the only location that can be accessed in both of two
atomic transactionsαi andαj is ρij , since there can be only one

edge betweenvi andvj . Figure 4(b) shows the program created for
the graph in figure 4(a).

case⇒ Suppose that there exists a selection functionL and an
integerk, such that|range(L)| = k. Then we can construct an edge
clique coverW1, ..., Wk for G, whereWi ⊆ V for 1 ≤ i ≤ k. We
construct these sets as follows. For every lock`i ∈ range(L), we
construct the setWi ⊆ V by adding toWi all verticesvj such that
`i ∈ L(αj). Here byL(αj) we mean the set of locks computed by
applyingL to everyρ dereferenced inαj . To proveW1, ..., Wk is
an edge clique cover, we must show that eachWi is a clique onG,
and that all cliques coverE.

The first claim is easily proved by contradiction: assumeWi is
not a clique onG = (V, E); then there exists a pair of vertices
vm, vn ∈ Wi such that the edge(vm, vn) /∈ E. In that case,
there is no locationρmn created by the reduction algorithm that
is accessed in bothαm andαn. In that case, we have by definition
that(m, n) ∈ P, i.e.,αm andαn can be executed in parallel. But,
sincevm, vn ∈ Wi, we get by construction ofWi that there must
exist a lock`i such that̀ i ∈ L(αm) and`i ∈ L(αn). This would
mean that(m, n) /∈ P (L), because bothαm andαn acquire`i.
Hence, we getP (L) 6= P, a contradiction.

We also claim that the set of cliquesWi, 1 ≤ i < k covers all
the edges inE. To prove this, assume that it does not: Then there
exists an edge(vm, vn) ∈ E, but there is no cliqueWi covering
that edge: i.e., there is noWi such thatvm ∈ Wi andvn ∈ Wi,
for 1 ≤ i < k. By construction we have that the locationρmn is
accessed in both atomic transactionsαm andαn. By the definition
of L, there must be a lock̀i such thatL(ρmn) = `i. Since both
αm andαn accessρmn, the lock`i is held during both. In that
case, there exists a cliqueWi that contains bothvm andvn. This
contradicts the assumption, therefore all edges inE are covered by
the cliquesW1, ..., Wk.

To illustrate, suppose the lock selection functionL for the pro-
gram of Figure 4(b) uses 3 locks to synchronize this program, as
follows:

L(ρab) = `1, L(ρbc) = `1, L(ρac) = `2, L(ρcd) = `3

Then the clique cover we construct for the graph for this mutex
selection will include 3 cliques, one per lock in the range ofL. W1

will include all the atomic sections that must acquire`1, which is
a,b andc; W2 will include a, b, andc andW3 will include c andd.
Together,W1, W2, andW3 form an edge clique cover of size3.

case⇐ Suppose there exists an edge clique coverW1, ..., Wk for
the graphG. Then we can construct a mutex selection functionL
for e such that|range(L)| = k andP (L) = P. We do this as
follows. For every cliqueWi we create a lock̀i. Then for every
vm, vn ∈ Wi we setL(ρmn) = `i.

Clearly,range(L) = k. It remains to showP (L) = P. First,
we showP ⊆ P (L). Let (m, n) ∈ P, meaning that two atomic
blocksαm andαn in the constructed programe can run in parallel,
or αm andαn do not access any variable in common. Therefore,
by construction of the programe, graphG cannot include the edge
(vm, vn). This means that there is no cliqueWi containing both
vm andvn. Then, there is no lock̀i that is held during bothαm

andαn, which gives(m, n) ∈ P (L). Now we showP (L) ⊆ P.
If (m, n) ∈ P (L) then there is no lock̀i that is held for bothαm

andαn. From the construction ofL we get that there is no clique
Wi that contains bothvm andvn, therefore there is no edge inG
betweenvm andvn. So, there is no common locationρmn accessed
by αm andαn, which means(m, n) ∈ P.

For example, the graph of Figure 4(a), has a 2-clique cover
(which is also the minimum):W1 = {a, b, c} andW2 = {c, d}.
The corresponding mutex selection for the program in Figure 4(b)

6 2006/5/16

would use 2 mutexes;̀′1 to protectxab, xbc and xac, and `′
2 to

protectxcd.

Finally, the complexity of constructing a mutex inference prob-
lem e given a graphG = (V, E) is obviouslyO(|V | + |E|), and
the complexity of constructing an edge clique cover given a mutex
selection functionL one is obviouslyO(k · |V |).

To sum up, we have shown that edge clique cover is polyno-
mially reducible to mutex inference. Since Minimum Edge Clique
Cover is NP-hard, we have proved that Minimum Mutex Inference
is also NP-hard.

4. Discussion
One restriction of our analysis is that it always produces a finite
set of locks, even though programs may use an unbounded amount
of memory. Consider the case of a linked list in which atomic
sections only access the data in one node of the list at a time. In
this case, we could potentially add per-node locks plus one lock
for the list backbone. In our current algorithm, however, since
all the lock nodes are aliased, we would instead infer only the
list backbone lock and use it to guard all accesses to the nodes.
LOCKSMITH [10] provides special support for the per-node lock
case by using existential types, and we have found it improves
precision in a number of cases. It would be useful to adapt our
approach to infer these kinds of locks within data structures. One
challenge in this case is maintaining lock ordering, since locks
would be dynamically generated. A simple solution would be to
use the run-time address of the lock as part of the order.

Our algorithm is correct only if all accesses to shared locations
occur within atomic sections [4]. Otherwise, some location could
be accessed simultaneously by concurrent threads, creating a data
race and violating atomicity. We could address this problem in two
ways. The simplest thing to do would be to run LOCKSMITH on
the generated code to detect whether any races exist. Alternatively,
we could modify the sharing analysis to distinguish two kinds of
effects: those within an atomic section, and those outside of one. If
some locationρ is in the latter category, andρ ∈ shared, then we
have a potential data race we can signal to the programmer.

Our work is closely related to McCloskey et al’s Autolocker
[9], which also seeks to use locks to enforce atomic sections. There
are two main differences between our work and theirs. First, Au-
tolocker requires programmers to annotate potentially shared data
with the lock that guards that location. In our approach, such a
lock is inferred automatically. However, in Autolocker, program-
mers may specify per-node locks, as in the above list example,
whereas in our case such fine granularity is not possible. Second,
Autolocker may not acquire all locks at the beginning of an atomic
section, as we do, but rather delay until the protected data is actu-
ally dereferenced for the first time. This admits better parallelism,
but makes it harder to ensure the lack of deadlock. Our approaches
are complementary: our algorithm could generate the needed locks
and annotations, and then use Autolocker for code generation.

Flanagan et al [3] have studied how to infer sections of Java
programs that behave atomically, assuming that all synchroniza-
tion has been inserted manually. Conversely, we assume the pro-
grammer designates the atomic section, and we infer the synchro-
nization. Later work by Flanagan and Freund [2] looks at adding
missing synchronization operations to eliminate data races or atom-
icity violations. However, this approach only works when a small
number of synchronization operations are missing.

We are in the process of implementing our mutex inference
algorithm as part of a tool called LOCKPICK, which inserts locking
operations in a given program with marked atomic transactions.
LOCKPICK uses the points-to and effect analysis of LOCKSMITH
to find all shared locations. The analysis extends the formal system

described earlier to include label polymorphism, adding context
sensitivity. LOCKPICK uses a C type attribute to mark a function
as atomic. For example, in the following code:

int foo(int arg) __attribute__((atomic)) {
// atomic code

}

the functionfoo is assumed to contain an atomic section.
We expect LOCKPICK will be a good fit for handling concur-

rency in Flux [1], a component language for building server ap-
plications. Flux defines concurrency at the granularity of individ-
ual components, which are essentially a kind of function. The pro-
grammer can then specify which components (or compositions of
components) must execute atomically, and our tool will do the rest.
Right now, programmers have to specify locking manually. We plan
to integrate LOCKPICK with Flux in the near future.

5. Conclusion
We have presented a system for inferring locks to support atomic
sections in concurrent programs. Our approach uses points-to and
effects analysis to infer those locations that are shared between
threads. We then use mutex inference to determine an appropriate
set of locks for protecting accesses to shared data within an atomic
section. We have proven that mutex inference provides the same
amount of parallelism as if we had one lock per location.

In addition to the aforementioned ideas for making our approach
more efficient, it would be interesting to understand how optimistic
and pessimistic concurrency controls could be combined. In partic-
ular, the former is much better and handling deadlock, while the lat-
ter seems to perform better in many cases [9]. Using our algorithm
could help reduce the overhead and limitations (e.g., handling I/O)
of an optimistic scheme while retaining its liveness benefits.

References
[1] B. Burns, K. Grimaldi, A. Kostadinov, E. D. Berger, and M. D. Corner.

Flux: A Language for Programming High-Performance Servers. In
In Proceedings of the Usenix Annual Technical Conference, 2006. To
appear.

[2] C. Flanagan and S. N. Freund. Automatic synchronization correction.
In Synchronization and Concurrency in Object- Oriented Languages
(SCOOL), Oct. 2005.

[3] C. Flanagan, S. N. Freund, and M. Lifshin. Type Inference for
Atomicity. In TLDI, 2005.

[4] C. Flanagan and S. Qadeer. A Type and Effect System for Atomicity.
In PLDI, 2003.

[5] T. Harris and K. Fraser. Language support for lightweight transac-
tions. InOOPSLA ‘O3, pages 388–402, Oct. 2003.

[6] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable
memory transactions. InPPoPP ‘05, June 2005.

[7] M. Herlihy, V. Luchangco, M. Moir, and W. N. S. III. Software
transactional memory for dynamic-sized data structures. InPODC
‘03, pages 92–101, July 2003.

[8] J. M. Lucassen and D. K. Gifford. Polymorphic Effect Systems. In
POPL, 1988.

[9] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker:
synchronization inference for atomic sections. InPOPL’06, pages
346–358. ACM Press, 2006.

[10] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: Context-Sensitive
Correlation Analysis for Race Detection. InProceedings of the 2006
PLDI, Ottawa, Canada, June 2006. To appear.

[11] J. Rehof and M. F̈ahndrich. Type-Based Flow Analysis: From
Polymorphic Subtyping to CFL-Reachability. InPOPL, 2001.

[12] M. F. Ringenburg and D. Grossman. Atomcaml: First-class atomicity
via rollback. InICFP ‘05, pages 92–104, Sept. 2005.

7 2006/5/16

[13] A. Welc, S. Jagannathan, and A. L. Hosking. Transactional monitors
for concurrent objects. InECOOP ‘O4, Oslo, Norway, 2004.

8 2006/5/16

