
1

Knowledge inference for optimizing and enforcing
secure computations

Piotr Mardziel†, Michael Hicks†, Jonathan Katz†, Matthew Hammer†, Aseem Rastogi†, and Mudhakar Srivatsa‡

University of Maryland, College Park† IBM T.J. Watson Research Center‡

Abstract—We present several techniques that aim to compute
the belief or knowledge a party might have about the values of
hidden variables involved in the computation. These techniques
can be used for enforcing knowledge-based security policies and
for optimizing secure multiparty computations.

I. INTRODUCTION

Suppose Bob has some secret data b, and would potentially
like to reveal to Alice y = Q1(b), for some function Q1,
without revealing “too much” about x. More generally, Alice
and Bob may each have secrets a and b and would like to
learn z = Q2(a, b), for some function Q2, without revealing
too much about their secrets to each other. There are many
useful applications of this basic problem setup, for example:
• Bob might control a sensor network whose features (lo-

cations, range, sensing capabilities) are private, but would
like to allow Alice to query the network for activity.

• Bob might have a database of sensitive information (e.g.,
some kind of terrorist watch list), and would like to allow
a limited form of query to this database.

• Alice and Bob are moving on a battlefield, and want to
determine whether they are within range of one another,
but not reveal their exact position.

Our research carried out as part of the ITA has aimed to
support scenarios such as these. In particular, we have broadly
considered two research questions:

1) How can we write a policy for Alice and Bob that defines
when, according to their preferences, executing Q will
reveal “too much” about its secret inputs?

2) How can we determine what, or how much, information
is revealed about the secret inputs by running of Q? We
can use this information to enforce the secrecy policy
(i.e., if Q reveals too much, don’t run it), and to optimize
the computation in the two (or more) party case.

This paper presents our research into these questions, sum-
marizing previously published work [16], [13], [15], [14].

II. BELIEF TRACKING FOR SECURITY ENFORCEMENT

Our goal is to devise a method whereby each principal can
determine whether the output of some function of its secret
would reveal too much information about that secret. Suppose
that we have two principals, P1 and P2, where P1 has a secret
value x1 and P2 wishes to compute some function Q of x1.
P1 will only proceed if P2 does not learn “too much” about
x1 upon learning the result. The question is: how does P1

reason what P2 might learn about x1 from Q(x1)? To answer

Variables x ∈ Var
Integers n, s, o ∈ Z
Rationals r ∈ Q
Arith.ops aop ::= + | × | −
Rel .ops relop ::= ≤ | < | = | 6= | · · ·
Arith.exps E ::= x | n | E1 aop E2

Bool .exps B ::= E1 relop E2 |
B1 ∧ B2 | B1 ∨ B2 | ¬B

Statements Q,S ::= skip | x := E |
if B then S1 else S2 |
pif r then S1 else S2 |
S1 ; S2 | while B do S

Fig. 1. Core language syntax

this question, we adopted the approach of Clarkson et al. [4].
In their approach, P2 has a belief about the possible values
of x1 and the belief is revised upon learning the output of a
function over that secret. In our approach, P1 estimates what
P2 might know about x1 (e.g., that it is uniformly distributed),
and then uses Clarkson et al.’s method to determine how much
information P2 might gain from the answer to Q. If this
information exceeds a threshold, the query is rejected.

This section reviews Clarkson et al’s technique and then
presents our application of it to knowledge-based security
enforcement, summarizing results presented in more detail
elsewhere [15], [14]. Section III generalizes this approach to
the case when multiple parties contribute secrets to a joint
computation, e.g., computed through a secure multiparty com-
putation (SMC) [18], [8], which is a protocol that simulates the
use of a trusted third party to compute the joint computation,
but can be carried out directly by the interested parties directly.
Section IV shows how inferred knowledge can be used to
optimize the underlying SMC.

A. Clarkson et al.’s knowledge estimation

The programming language we use for computations is
given in Figure 1. A computation is defined by a statement S
whose standard semantics can be viewed as a relation between
states: we write [[S]]σ = σ′ to mean that running statement S
with input state σ produces output state σ′, where states map
variables to integers:

σ, τ ∈ State def
= Var→ Z

Sometimes we consider states with domains restricted to a
subset of variables V , in which case we write σV ∈ StateV

def
=

2

[[skip]]δ = δ
[[x := E]]δ = δ [x→ E]

[[if B then S1 else S2]]δ = [[S1]](δ|B) + [[S2]](δ|¬B)
[[pif q then S1 else S2]]δ = [[S1]](q · δ) + [[S2]]((1− q) · δ)

[[S1 ; S2]]δ = [[S2]]([[S1]]δ)
[[while B do S]] = lfp [λf : Dist→ Dist. λδ.

f ([[S]](δ|B)) + (δ|¬B)]

where

δ [x→ E]
def
= λσ.

∑
τ | τ [x→[[E]]τ]=σ δ(τ)

δ1 + δ2
def
= λσ. δ1(σ) + δ2(σ)

δ|B def
= λσ. if [[B]]σ then δ(σ) else 0

p · δ def
= λσ. p · δ(σ)

‖δ‖ def
=

∑
σ δ(σ)

normal(δ) def
= 1
‖δ‖ · δ

δ‖B def
= normal(δ|B)

Fig. 2. Probabilistic semantics for the core language

V → Z. We will write {x1 = s1, ..., xn = sn} to represent
a state σ whose domain is {x1, ..., xn} such that σ(x1) =
s1, σ(x2) = s2, etc. We may also project states to a set of
variables V :

σ � V
def
= λx ∈ VarV . σ(x)

The language is essentially standard. The semantics of the
statement form pif r then S1 else S2 is non-deterministic: the
result is that of S1 with probability r, and S2 with probability
1− r.

In our setting, we limit our attention to queries in this
language. A query is a statement Q that can read, but not
write, free variables x1, ..., xn (i.e., these are set in the initial
state σ), and sets the output to the variable out.
Example 1. As an example, consider the following query:

Q0
def
= if x1 ≥ 7

then out := True
else out := False

Given an input state σ = {x1 = 3}, we have that [[Q0]]σ = σ′

where σ′ = {x1 = 3, out = False}.
A belief is represented as a probability distribution, which

is conceptually a map from states to positive real numbers
representing probabilities (in range [0, 1]).

δ ∈ Dist def
= State→ R+

In what follows, we often notate distributions using lambda
terms; e.g., we write λσ.if σ(x1) = 3 then 1 else 0 to
represent the point distribution assigning probability 1 to the
state σ in which x1 is 3, and probability 0 to all other states.

Given a principal’s initial belief, Clarkson et al. define a
mechanism for revising that belief according to the output of
a query. This works as follows. First, a principal evaluates the
query according to its belief using the probabilistic semantics
given in Figure 2. This semantics is standard (cf. Clarkson
et al. [4]) so, due to space constraints, we do not describe it
in detail here. It suffices to understand that [[S]]δ represents
probabilistic execution: we write [[S]]δ = δ′ to say that the

P1 P2

x1=s1

Q, σ = {x2=s2}

 σ' = σ + {x1=s1}
 if query safe:
 [Q]σ' = σ''
 where σ''(out) = o

out = o

δ2

δ2:=
δ2 ||
(out=o) reject otherwise

1
2

3

δ1
2

Fig. 3. Asymmetric belief tracking

distribution over program states after executing S with δ is
δ′. We may view δ′ as a prediction of the likelihood of the
possible final states given some initial distribution of states
δ. Upon seeing the actual output of the query, the principal
can revise this prediction; we write such revision as [[S]]δ ‖
(out = n), where out = n is a boolean expression B and n is
the actual observed output. The definition of revision δ‖B is
given at the bottom of Figure 2. The secret input part of the
revised belief can be used as the prior belief for a future query.
The revision operation itself is a conditioning, which usually
results in a distribution with a mass not equal to 1, followed
by a normalization, which produces a real distribution.

Returning to Example 1, suppose that x1 represents P1’s
secret value, and P2’s belief δ2 is as follows

δ2
def
= λσ. if σ(x1) < 0 or σ(x2) ≥ 10 then 0 else 1/10

Thus, δ2 is a function from states to real numbers implement-
ing a uniform distribution: if x1’s value in σ is between 0
and 9 then σ is given probability 1/10, otherwise it is given
probability 0. To revise δ2 according to the actual output
out = False, principal P2 first computes [[Q0]]δ2 = δ′2, which
when simplified can be written

δ′2
def
= λσ.if σ(x1) < 0 or σ(x2) ≥ 10 then 0

else if σ(out) = True and σ(x1) ≥ 7 then 1/10
else if σ(out) = False and σ(x1) < 7 then 1/10
else 0

Revising δ′2 under the assumption that out = False would
produce the following (simplified) distribution:

δ′2 ‖(out = False)
def
=

λσ. if σ(x1) < 0 or σ(x2) ≥ 7 then 0 else 1/7

Soundness.: Clarkson et al. show that the probabilistic
semantics and revision exactly model the changing belief of
an adversary as it learns outputs of the queries, assuming no
other channel of information flow exists, and the adversary is
rational and has unbounded computational power.

Theorem 2 (Theorem 1 of [4]). A rational, computationally
unbounded agent, having belief δ about x1, updates its belief
to δ′ after learning output n of a query Q, with no other
channels, where δ′ is [[Q]]δ‖(out = n).

B. Enforcing knowledge-based security policies

We use Clarkson et al’s technique as a key building block
for handling the scenario given in Figure 3. Here, in step 1

3

tcheck(q, δi, tj , xj)
def
=

1 δi := [[q]]δi
2 forall possible outputs o
3 δ̂i := (δi ‖(out = o)) � {xj}
4 if ∃n. δ̂i({xj = n}) > tj then

5 return reject
6 return accept

Fig. 4. Threshold policy decision, tcheck

P2 sends a query Q and a state σ to P1. In step 2, P1 decides
whether Q is safe to compute, and if so, executes [[Q]]σ′ = σ′′,
where σ′ is σ with the added mapping of x1 to P1’s secret s1.
In step 3, P1 sends back the result o = σ′′(out) if the query
was safe, and otherwise rejects the query. P2 revises its belief
δ2 based on the outcome.

The main question to answer is how P1 determines whether
Q is safe, i.e., whether it “reveals too much information.” We
propose that principal P1 assign to its secret a knowledge
threshold t1, where 0 < t1 ≤ 1, interpreted to mean that
P2 should never be certain of P1’s secret with probability
greater than t1. Returning to Example 1, suppose that P1’s
knowledge threshold t1 = 1/10 and x1 = 3. Running Q0

produces False, and P2’s revised belief δ′2 assigns to the state
{x1 = 3, out = False} the probability 1/7, which exceeds
the threshold. As such P1 ought to reject the query. On the
other hand, if the threshold was 1/2, then the query could be
accepted.

Keeping this intuition in mind, here is how the part notated
is the query safe in Figure 3 is implemented. First, P1

estimates P2’s belief δ2 about P1’s secret value. We write δ1
2

to indicate this estimate.1 Then P1 calls tcheck(Q, δ1
2 , t1, x1),

the pseudocode for which is given in Figure 4. Here, δi is
bound to P1’s estimate δ1

2 , while tj and xj are bound to ti
and xi (that is, the variable name xi, not the value it is bound
to), respectively.

On line 1, P1 probabilistically executes [[Q]]δi producing δi.
Then, for each possible output o (line 2), P1 can revise the
belief, δi ‖ (out = o), from which we can project states to
involve only secret x1, written δ̂i = (δi|(out = o)) � {x1}
(line 3). We explain shortly why every possible output must
be considered, rather than just the output for P1’s actual secret
value. On line 4, we check whether for o and corresponding
revised belief δ̂i there exists a possible value n such that
(δ̂i)({x1 = n}) > t1. If so, the query Q must be rejected,
to avoid leaking too much information (line 5). Otherwise,
the query is acceptable (line 6).

If tcheck(Q, δ1
2 , t1, x1) returns accept then P1 can execute

the query, send back the result, and update its estimate δ1
2 to

be δ1
2 ‖(out = o).
Avoiding leakage due to query rejection: Line 2 in

Figure 4 requires we consider all possible outputs o. At

1How P1 comes by this estimate is beyond the scope of this paper, but
we point out that for many kinds of data, good estimates are easy to come
by. For example, generic distributions over personal information like gender,
birthday, social security number, income, etc. can be gained from census data
or other public and private repositories (e.g., Facebook demographics).

first glance, doing so seems unnecessarily conservative. For
Example 1, suppose that t1 = 1/5 and δ2

1 = δ2; then executing
tcheck(Q0, δ

1
2 , t1, x1) would produce reject. But if the actual

secret is x1 = 3, then we have already established that
answering the query (with False) results in δ2 being revised
to assign {x = 3, out = False} probability 1/7 which is
below the threshold. On the other hand, suppose that x1 was
8 instead of 3, in which case answering the query with True
would cause P2’s revised belief to ascribe probability 1/3 to
{x1 = 8, out = True}, which exceeds the threshold t1 = 1/5.
But if P1 rejects the query, and P2 knows threshold t1 it will
be able to infer that the only reason for rejection would be that
the answer would have been True. Even if t1 is not known
directly, it can be inferred by enough queries to eventually
make this sort of determination. P1 avoids this situation by
rejecting any query for which there exists a secret that could
be compromised by the answer, even if that does not happen
to be its secret. This approach results in P1 deciding to allow a
query or not independetly of his true secret value. Such policy
decisions are simulatable [9] in that P2 could have determined
on their own whether P1 will reject the query, hence learning
of P1’s decision tells them nothing.

Implementation: We implement the probabilistic seman-
tics given in Figure 2 using abstract interpretation [6]. In
our technique, we represent a distribution of integers as a
probabilistic polyhedron, which is roughly a list of linear
constraints involving uncertain variables, along with proba-
bilities associated with regions defined by these constraints.
The more common implementation approach is to use some
form of sampling—basically, just run the program with values
sampled from the input distributions, and collect their outputs
to produce the output distribution. This approach is more
general, but is prohibitively slow. Space constraints preclude
a detailed presentation of our implementation, but complete
details, along with an extensive performance evaluation, can
be found in our prior publications [15].

III. ENFORCING KNOWLEDGE THRESHOLDS FOR SMC

In this section we show how to generalize knowledge-based
enforcement to the multi-secret setting. In this setting, there are
N principals, P1, ..., PN each with a secret x1 = s1, ..., xN =
sN . Each Pi maintains a belief δi about the possible values
of the other participating principals’ secrets. In addition, each
Pi has a knowledge threshold ti that bounds the certainty that
the other principals can have about its secret’s value. Our goal
will be to define how the principals should decide whether
to safely participate in the joint computation Q, executed as
an SMC. We discuss two possible methods for doing so: the
belief set method (Section III-B) and the SMC belief tracking
method (Section III-C).

A. Running example

Suppose we have three principals, P1, P2, and P3, each with
a net worth x1 = 20, x2 = 15, and x3 = 17, in millions of
dollars, respectively. Suppose they wish to compute Q1 which

4

determines whether P1 is the richest:

Q1
def
= if x1 ≥ x2 ∧ x1 ≥ x3

then out := True
else out := False

Using the idealized view, each of P1, P2, and P3 can be seen
as sending their secrets to PT , which initializes σ such that
σ(x1) = 20, σ(x2) = 15, and σ(x3) = 17. Running Q1 using
σ produces an output state σ′ such that σ′(out) = True.

Now suppose that P1 believes that both P2 and P3 have at
least $10 million, but less than $100 million, with each case
equally likely. Thus principal P1’s belief is defined as

δ1
def
= λσ.if σ(x2) < 10 or σ(x2) > 100 or

σ(x3) < 10 or σ(x3) > 100 or
σ(x1) 6= 20 then 0 else 1/8281

States which ascribe either x2 or x3 a net worth outside
the expected range, or ascribe x1 to the wrong value, are
considered impossible, and every one of the remaining 8281
(that is 91×91) states is given probability 1/8281. The beliefs
of P2 and P3 are defined similarly.

Belief revision proceeds as before: once PT performs the
computation and sends the result, each Pi revises its belief.
For our example query Q1, principal P1 would perform
[[Q1]]δ1 = δ′′1 and since the output of the query is True, then
revision produces δ′1 = [[Q1]]δ1| (out = True). This revised
belief additionally disregards states that ascribe x2 or x3 to
values greater than P1’s own wealth, which is $20M:

δ′1
def
= λσ.if σ(x2) < 10 or σ(x2) > 20 or

σ(x3) < 10 or σ(x3) > 20 or
σ(x1) 6= 20 then 0 else 1/121

The revised beliefs of P2 and P3 will be less specific, since
each will simply know that P1’s wealth is at least their own
and no less than the rest of the parties.

B. Knowledge-based security with belief sets

Now we wish to generalize threshold enforcement, as de-
scribed in Section II-B, to SMC. In the simpler setting P1

maintained an estimate δ1
2 of P2’s belief δ2. In the SMC setting

we might imagine that each Pj maintains a belief estimate δji
and then performs tcheck(q, δji , tj , xj) for all i 6= j. If each
of these checks succeeds, then Pj is willing to participate.

The snag is that Pj cannot accurately initialize δji for all
i 6= j because it cannot directly represent what Pi knows
about xi—that is, its exact value. So the question is: how can
Pj estimate the potential gain in Pi’s knowledge about xj after
running query without knowing xi?

One approach to solving this problem, which we call the
belief set method, is the following. Pj follows roughly the
same procedure as above, but instead of maintaining a single
distribution δji for each remote party Pi, it maintains a set
of distributions where each distribution in the set applies to
a particular valuation of xi. As a first cut, suppose that Pj
initializes this set to be as follows:

∆j
i

def
= {δji ‖(xi = v) : v = σ(xi), σ ∈ support(δj � {xi})}

 σ = {x1=s1}+{x2=s2}+{x3=s3}
 σ' = [Q]σ
 σ'(out) = o

P1

x1=s1 PTx1=s1 x2=s2

out=o out=o

do tcheck_all

δ1
Δ2, Δ3

P2

x2=s2

δ2
Δ1, Δ3

P3

x3=s3

δ3
Δ1,Δ2

Q

2

x3=s3

out=o

 Each Pj revises belief δj, Δi
based on out=o

3

1
5

do tcheck_all

do tcheck_all

3 3

3

4 4

4

2

2

Fig. 5. Threshold enforcement for SMC using belief sets

tcheck all(q, j) def
=

1 forall i ∈ 1..n with i 6= j

2 tcheck(q,∆i, tj , xj)

3 if all threshold checks succeed then

4 agree to participate
5 else

6 refuse to participate

Fig. 6. tcheck all check for belief set enforcement

Thus ∆j
i is a set of possible distributions, one per possible

valuation of xi that Pj thinks is possible according to its belief
δj .

However, this method for initializing the set is not quite
expressive enough, since it may fail to take into account
correlations among beliefs of multiple principals. For example,
if it were known (by all principals) that only one of the
principals in the running example can have secret value equal
to 15, then P2 would know initially, based on this own secret
x2 = 15, that P1’s value x1 cannot be 15. However, P1 cannot
arrive at this conclusion without knowing x2, which is, of
course, outside of its knowledge initially.

Therefore, we define the initial belief set using a distribution
δ over all principals’ secret data which sufficiently captures
any correlations in those secrets. Such a distribution can then
be used, given some valuations of secret variables, to derive
what a principal’s initial belief would be.

∆i
def
= {δ‖(xi = v) : v = σ(xi), σ ∈ support(δ � {xi})}

Since we are starting from a globally held belief δ, there is
no need to distinguish ∆j

i from ∆k
i —they are the same ∆i.

Now each Pj follows the procedure depicted in Figure 5
for the idealized view (with a trusted principal PT). First,

5

Semantics

[[S]]∆ = {[[S]]δ : δ ∈ ∆}

Operations

∆ � V
def
= {(δ � V) : δ ∈ ∆}

normal(∆)
def
= {normal(δ) : δ ∈ ∆ , ‖δ‖ > 0}

∆‖B def
= normal({(δ|B) : δ ∈ ∆})

∆(σ)
def
= maxδ∈∆ δ(σ)

Fig. 7. Probabilistic semantics using sets of distributions

the principals agree on the query Q. Second, each principal
Pj performs the threshold check tcheck all(Q, j), whose
code is given in Figure 6. Notice that calls to tcheck(...) on
line 2 are with the set ∆i, rather than a single distribution
δji . The definitions of the operations in the pseudocode in
Figure 4, when applied to sets ∆ rather single elements δ, are
defined in Figure 7. In all but the last case, these operations
are just straightforward liftings of the operations on single
distributions. For ∆(σ), we return the highest probability for
σ of those ascribed to it by distributions in ∆, to assure
that our decision to participate or not is safe. Also note
that we will always be dealing with non-empty ∆, hence
the maximum probability is sufficiently defined. On the other
hand, the normalization procedure for distributions δ is only
well defined whenever ‖δ‖ > 0. Because of this, we make
sure the normalization for distribution sets only normalizes the
normalizable distributions, and discards the rest. The way in
which some member distributions of ∆ could become non-
normalizable, that is, having mass of 0, is by way of the
conditioning operation, where the condition is inconsistent
with all possible states in the distribution.

In the third step, if the query is acceptable for all Pj , each
sends its secret xj = sj to PT , which executes Q using the
secret state σ constructed from each secret. Fourth, the result
o is sent back to each principal. Finally, as usual, P1 revises
each of its estimates ∆i and its own belief δj . Note that all
principals make the same update for ∆i, hence there really is
only one ∆i, known by all, estimating Pi’s knowledge.

While we have depicted this procedure in the idealized view
of SMC, it is easy to see that we can simply implement steps
3 and 4 as a normal SMC and the remainder of the procedure
is unchanged.

Soundness: The belief set procedure is sound, in that
for all Pi, participating or not participating in a query will
never increase another Pj’s certainty about Pi’s secret above
its threshold ti. The proof can be found elsewhere [13].

C. SMC belief tracking for knowledge-based security

Now we present an alternative to the belief set method, in
which the decision to participate or not, involving checking
thresholds after belief revision, takes place within the SMC
itself. As such, we call this method SMC belief tracking. Once
again we present the algorithm using the ideal world with a
trusted third party PT . The steps are shown in Figure 8. The
first step is that each Pi presents its secret xi = si to PT , along
with the collective belief δ. Principal PT then initializes the

P1

x1=s1 PT

t1=r1,
x1=s1

t2=r2,
x2=s2

out=o
or reject

out=o
or reject

δ1

P2

x2=s2

δ2

 execute threshold_SMC(Q)

P3

x3=s3

δ3

Q

3

t3=r3,
x3=s3

out=o or
reject

 Each Pi revises belief δi
based on out=o

11

1

4

44

2

5

 execute init_SMC(...)
1

δ

Fig. 8. SMC belief tracking scenario (ideal view)

init SMC(s1...sN , r1...rN , δ)
def
=

1 σs := {x1 = s1, ..., xN = sN}
2 δ1 := δ‖(x1 = s1); t1 := r1

...

n+1 δN := δ‖(xN = sN); tN := rN

threshold SMC(Q)
def
=

1 o := ([[Q]]σs)(out)

2 forall j ∈ 1..n

3 forall i ∈ 1..n with i 6= j

4 tcheck(Q, δj , ti, xi)

5 if all threshold checks succeed then

6 δj := [[Q]]δj ‖(out = o)

7 return o to Pj
8 else

9 return reject to Pj

Fig. 9. SMC belief tracking (ideal view)

computation state by calling init SMC(s1...sN , δ), given in
Figure 9. On line 1, this code initializes the secret state σs that
contains all of the secrets. On lines 2..(n+1), it initializes each
principal Pi’s belief as in the belief set case, by specializing
δ with the knowledge unique to Pi. It also initializes each
threshold ti to ri.

In step 2 (of the diagram), the query Q is made available
to PT , which then runs (in step 3) threshold SMC(Q), also
shown in Figure 9. On line 1 we compute the actual output
o for the query, based on the secret state. On line 2 we loop
over each principal Pj . The remainder of the code aims to
decide whether answering the query and sending the result to
Pj would reveal too much information; if not, we send Pj the
answer o (line 7) and otherwise we reject.

6

Returning to the body of the loop, the next step is to
make sure that for every Pi (line 3) its threshold check
(Figure 4) will not reject Pj . That is, given the query q and the
estimated knowledge of Pj , we make sure that the answer to
the query will not reveal too much about Pi’s secret xi (where
by “too much” we mean Pj’s certainty about Pi’s possible
secret exceeds threshold ti). Assuming all Pi threshold checks
succeed (line 5), we then revise the Pj’s belief according to
the output o (line 6), which we then send to Pj (step 4 in the
diagram). No revision is done on Pj’s belief if the query is
rejected for Pj . Finally, each principal revises its own belief
δj based on the output.

We can repeat steps 2–5 for each subsequent query Q′, and
PT will use any beliefs δj revised from the run of Q. By
performing threshold SMC as part of an SMC, no participant
Pi is ever shown the opposite’s secret, and yet an accurate
determination is made for each about whether to participate.

Importantly, the fact that Pj receives a proper answer or
reject is not (directly) observed by any other Pj ; such an
observation could reveal information to Pj about xi. For
example, suppose Q2

def
= x1 ≤ x2 and both secrets are

(believed to be) between 0 and 9. If x2 = 0 then [[Q2]]σs will
return True only when x1 is also 0. Supposing t1 = 3/5, then
P2 should receive reject since there exists a valuation of x1

(that is, 0) such that P2 could guess x1 with probability greater
than 3/5. Similar reasoning would argue for reject if x2 = 9,
but acceptance in all other cases. As such, if P1 observes that
P2 receives reject, it knows that x2 must be either 0 or 9,
independent of t2; as such, if t2 < 1/2 we have violated the
threshold by revealing the result of the query.

This asymmetry means that threshold SMC may return
a result for one participant but not the other, e.g., P1 might
receive reject because t2 is too low while P2 receives the actual
answer because t1 is sufficiently high. Nonetheless each Pi’s
threshold will be respected.

Lacking a trusted third party in the real world, the par-
ticipants can use secure multi-party computation and some
standard cryptographic techniques to implement PT ’s func-
tionality amongst themselves. The interesting part is that we
need a way for the participants to maintain PT ’s state amongst
themselves while preserving its secrecy. This can be done
using secret shares of ΣT distributed among the parties. The
query-evaluation procedure would receive these shares along
with the normal inputs, and then distribute the revised versions
along with the normal outputs.

Soundness: Once again we can prove a soundness prop-
erty of this approach, assuring that our approach approximates
learning by the participants as it would actually happen,
and that query rejection reveals nothing about other parties’
inputs [13].

D. Implementation notes

We have developed a proof-of-concept implementation of
both methods, and with a series of experiments we have found
that SMC belief tracking is strictly more precise (in that fewer
queries will be rejected) than belief sets. On the other hand,
SMC is known to be very slow, and so implementing KBSE as

1 ## assume a1 < a2, b1 < b2, distinct(a1, a2, b1, b2)

2 int median(int a1, int a2, int b1, int b2)

3 bool x1, x2; int a3, b3, m;

4

5 x1 = a1 ≤ b1;

6 if x1 then { a3 = a2; } else { a3 = a1; }

7 if x1 then { b3 = b1; } else { b3 = b2; }

8 x2 = a3 ≤ b3;

9 if x2 then { m = a3; } else { m = b3; }

10 return m;

Fig. 10. Joint median computation example [10]. a1 and a2 are Alice’s
inputs and b1 and b2 are Bob’s. Both Alice and Bob can infer x1 and x2
given the final output.

an SMC could be quite costly. Further details can be found in
our prior paper [13]. We leave exploration of implementation
strategies to future work.

IV. OPTIMIZING MULTI-PARTY COMPUTATIONS

So far we have analyzed the function Q with a security
mindset: there is a danger in running Q if an observing
party would infer that a particular input to Q is sufficiently
likely. Now we consider such inferences from the point of
view of optimizing performance in the setting of SMC. In
particular, we observe that when the SMC reveals the final
output, one or all parties may be able to infer the results
of intermediate computations, given knowledge of their own
inputs and the function being computed, no matter the inputs
of the additional participating parties. When such inference
is possible, the inferable intermediate results need not be
cryptographically concealed. As it turns out, turning a single
monolithic SMC into several smaller SMCs (by revealing
intermediate results early) can have a dramatic impact on per-
formance; Kerschbaum [10] has measured improvements of up
to 30× for the median example in Figure 10, discussed shortly.
Revealing inferable results does not change the knowledge
profile of the protocol: If the party will eventually know the
intermediate result when given the final output then revealing
it earlier does not change what is known to whom.

In this section, we present the main idea of a technique we
call knowledge inference that aims to find which intermediate
variables can be revealed early. We have also developed a
technique we call constructive knowledge inference that not
only identifies which intermediate variables can be inferred,
but also exactly the function of the inputs and outputs that
defines them. We refer the reader to our prior paper for details
of both techniques [16].

A. Knowledge inference

In our setting, party P knows the (deterministic) program
Q, his own input (set) s, and his output o.2 We say party P
can infer the value of local variable y in Q if there exists a
function F such that y = F (s, o) in all runs of Q. Another
way of putting it is that no matter the values of P ’s inputs or

2Some SMCs may have different outputs for different parties; in the median
example, there is a single output o = m known to both parties.

7

ϕ1
def
=a1 < b1 ∧ x1 = true ∧ a3 = a2 ∧ b3 = b1∧
a3 < b3 ∧ x2 = true ∧ m = a3 ∧ φpre

ϕ2
def
=a1 < b1 ∧ x1 = true ∧ a3 = a2 ∧ b3 = b1 ∧
a3 ≥ b3 ∧ x2 = false ∧ m = b3 ∧ φpre

ϕ3
def
=a1 ≥ b1 ∧ x1 = false ∧ a3 = a1 ∧ b3 = b2 ∧
a3 < b3 ∧ x2 = true ∧ m = a3 ∧ φpre

ϕ4
def
=a1 ≥ b1 ∧ x1 = false ∧ a3 = a1 ∧ b3 = b2 ∧
a3 ≥ b3 ∧ x2 = false ∧ m = b3 ∧ φpre

Fig. 11. Path conditions for secure median

those of other participants of the SMC, P can always compute
y given knowledge of only his inputs and the final result.
Our goal to find all those variables in Q that P can infer.
We can do this by either showing merely that the required
function F exists, without saying what it is, or we can produce
F directly, thus constituting a constructive proof. We have
developed approaches to both tasks, but here only describe
the first.

To show that an intermediate variable can be expressed as
a function of one party’s inputs and outputs, we can attempt
to prove that given any pair of runs of Q that agree on the
valuations of variables in s and o (but may not agree on the
input and output variables of other parties), the valuations of
y on those two runs must also agree. In other words, y can
be determined uniquely from s and o, and thus a function F
exists such that F (s, o) = y. We can construct such a proof
in two steps.

First we use a program analysis to produce a formula φpost
that soundly approximates the final state of the program Q
(that is, the final values of all program variables) for all
possible program runs. So that the meaning of a variable y
mentioned in φpost is unambiguous, we assume that a variable
is assigned at most once during a program run.

One program analysis we might use to produce φpost is
symbolic execution [11]. Each feasible program path is char-
acterized by a path condition ϕi, which is a set of predicates
relating the program variables. The path conditions can be
combined to provide a complete description of the program’s
behavior: φpost

def
=

∨
i

ϕi. For the median program of Figure 10,

there are four possible paths, having the path conditions given
in Figure 11.

Consider the first path condition ϕ1. Conceptually, it de-
scribes the program path in which then branch of both
conditionals (lines 6 and 9) is taken. The remaining three paths
constitute the other three possible branching combinations.
Note that each path also requires φpre. This formula defines
the publicly-known constraints on all inputs; in the case of the
median program we have φpre

def
= a1 < a2 ∧ b1 < b2 ∧ a1 6=

b1 ∧ a1 6= b2 ∧ a2 6= b1 ∧ a2 6= b2.
The next step is to prove that any two runs of the program

Q that agree on variables known to P will also agree on the
value of y. This statement is a 2-safety property [5], and we
can prove it using a technique called self-composition [3].

1 ## a1 < a2, b1 < b2, distinct(a1, a2, b1, b2)

2 int m = median(a1, a2, b1, b2);

3

4 ## a1’< a2’, b1’< b2’, distinct(a1’, a2’, b1’, b2’)

5 int m’ = median’(a1’, a2’, b1’, b2’);

Fig. 12. Median computation composed with itself.

The idea is to reduce this two-run condition on program Q
to a condition on a single run of a self-composed program
Qc, which is the sequential composition of Q with itself, with
the second copy of Q’s variables renamed, e.g., so that x is
renamed to x′. Given the formula φscpost for this self-composed
program, we can ask whether, under the assumption that the
normal and primed versions of P -visible variables are equal,
that the normal and primed version of y is also equal.

As an example, Figure 12 shows self composition of the me-
dian function of Figure 10. We write median′ for the function
median but with the local variables renamed to x1′, x2′,
The self-composed program effectively runs median twice, on
two separate spaces of variables. We can express the question
of knowledge inference as a question on the relationship
between the two copies of the variables. Namely, Alice can
infer x1 if and only if for every feasible final state of the
composed program, when the two copies of a1, a2, m agree
on their values then the copies of x1 agree on their value.
More formally we need to check the validity of the following
formula for any feasible final state.

φscpost ∧ (a1 = a1’ ∧ a2 = a2’ ∧ m = m’)⇒ (x1 = x1’)

Here, the formula φscpost will involve sixteen path conditions
(self-composition squares the number of paths). For example,
among them will be:

ϕsc1
def
=a1 < b1 ∧ x1 = true ∧ a3 = a2 ∧ b3 = b1 ∧
a3 < b3 ∧ x2 = true ∧ m = a3 ∧ φpre ∧
a1’ < b1’ ∧ x1’ = true ∧ a3’ = a2’ ∧ b3’ = b1’ ∧
a3’ < b3’ ∧ x2’ = true ∧ m’ = a3’ ∧ φ′pre

The formula ϕsc1 is actually the conjunction of ϕ1 with a
version of ϕ1 that has all its variables renamed to the primed
versions. We can think of the entire post condition φscpost =
ϕsc1 ∨...∨ϕsc16 as the disjunctive normal form of the conjunction
of the post condition φpost with its primed version

Being a quantifier-free formula in the theory of integer linear
arithmetic, the final formula poses no problem for an SMT
solver such as Z3 [2], which can indeed verify its validity.
Additionally, the same can be said for Alice’s knowledge of
x2 and a3, and Bob’s knowledge of x1, x2 and b3.

As it turns out, the knowledge inference question bears
a close resemblance to deciding the property of delimited
release [17].

B. Implementation and experiments

We have implemented the knowledge inference algorithm
using the polyhedra powerset domain as implemented in
Parma Polyhedra Library (PPL, v0.11.2) [1]. This approach

8

represents the program postcondition, φpost, as a set of convex
polyhedra (each of which is a conjunction of linear inequali-
ties), interpreted over real-valued variables. We use polyhedra
in the implementation to avoid reasoning about integers as
much as possible. To verify the validity of φ, we check if
the negation of φ has an integer solution. This corresponds to
checking, for every polyhedron/disjunct ϕ in φpost∧φ′post∧φk,
that the formulae ϕ ∧ (y > y′) and ϕ ∧ (y < y′) define
convex regions with no real points (quick check) and no integer
points (slower check). If so, φ is valid. This implementation
only handles programs that use linear arithmetic. We also
have an implementation based on bitvectors that can infer
whether particular bits of variables are known, rather than
entire variables.

We have used our implementation on the median example
given earlier and several other examples. We find that inference
times are on the order of seconds, or tens of seconds, for small
programs. More details can be found in our prior paper [16].

V. RELATED AND FUTURE WORK

a) Belief tracking (asymmetric): Others have considered
how an adversary’s knowledge of private data might be in-
formed by a programs output. Ours differs in having a stronger
security criterion considering the worst case outcome, rather
than an expectation. The idea of strengthening of an entropy
measure by eliminating the expectation has been briey consid-
ered by Köpf and Basin [12]. The other distinguishing feature
of our approach is that we keep an on-line model of adversary
knowledge according to prior, actual query results. The core of
our methodology relies on probabilistic computation. A variety
of tools exist for specifying random processes as computer
programs and performing inference on them. Our approach is
different than prior work in its emphasis on soundness: any
approximations made will only reject safe queries, and never
accept unsafe ones.

b) Belief tracking (for SMC): Almost all prior work on
SMC treats the function Q being computed by the parties as
given, and is unconcerned with the question of whether the
parties should agree to compute Q in the first place. Dwork et
al. [7] show that if f is a differentially private function, then
the process of running an SMC protocol that computes f is
also differentially private (at least in a computational sense).
The security goal we are aiming for is incomparable with that
of differential privacy.

c) Knowledge inference: Kerschbaum [10] solves the
knowledge inference problem using a custom program analysis
based on epistemic modal logic inference rules. He shows
that his approach works on the median example (Figure 10),
and a lot size computation (which we also experiment with).
Our work improves on his in several ways. First, we formally
define the notion of knowledge in SMC, and the problem of
knowledge inference. Second, we prove our algorithms are
sound and (relatively) complete. Moreover, our algorithms are
built on top of SMT solvers, thus leveraging recent advances
in SMT solving techniques.

d) Next steps: We are actively working to extend these
threads of work. For example, we are working to extend

belief tracking to support real-valued secrets and continuous
distributions, using Mathematica as a back end. In addition,
we are extending our theoretical development to account for
knowledge gained about secrets whose values might change
between queries, and inferences about future values based on
past changes. Finally, we are working on a compiler for SMCs
that incorporates knowledge inference.

Acknowledgments.: This research was sponsored by the U.S.
Army Research Laboratory and the U.K. Ministry of Defence and
was accomplished under Agreement Number W911NF-06-3-0001.
The views and conclusions contained in this document are those
of the author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. Ministry of
Defence or the U.K. Government. The U.S. and U.K. Governments
are authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

REFERENCES

[1] PPL: Parma polyhedral library. www.cs.unipr.it/ppl.
[2] Z3 theorem prover. research.microsoft.com/en-us/um/redmond/projects/

z3.
[3] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure informa-

tion flow by self-composition. In CSFW, 2004.
[4] Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Quan-

tifying information flow with beliefs. J. Comput. Secur., 17(5), 2009.
[5] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In CSF,

2008.
[6] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified

lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Proceedings of the ACM SIGPLAN Symposium
on the Principles of Programming Languages (POPL), 1977.

[7] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov,
and Moni Naor. Our data, ourselves: Privacy via distributed noise
generation. In Advances in Cryptology — Eurocrypt 2006, volume 4004
of LNCS, pages 486–503. Springer, 2006.

[8] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game, or a completeness theorem for protocols with honest majority. In
19th Annual ACM Symposium on Theory of Computing (STOC), pages
218–229. ACM Press, 1987.

[9] Krishnaram Kenthapadi, Nina Mishra, and Kobbi Nissim. Simulatable
auditing. In PODS, 2005.

[10] Florian Kerschbaum. Automatically optimizing secure computation. In
CCS, 2011.

[11] James C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, 1976.

[12] Boris Köpf and David Basin. An Information-Theoretic Model for
Adaptive Side-Channel Attacks. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2007.

[13] Piotr Mardziel, Michael Hicks, Jonathan Katz, and Mudhakar Srivatsa.
Knowledge-oriented secure multiparty computation. In Proceedings of
the ACM SIGPLAN Workshop on Programming Languages and Analysis
for Security (PLAS), June 2012.

[14] Piotr Mardziel, Stephen Magill, Michael Hicks, and Mudhakar Srivatsa.
Dynamic enforcement of knowledge-based security policies. In Pro-
ceedings of the Computer Security Foundations Symposium (CSF), pages
114–128, June 2011.

[15] Piotr Mardziel, Stephen Magill, Michael Hicks, and Mudhakar Srivatsa.
Dynamic enforcement of knowledge-based security policies using prob-
abilistic abstract interpretation. Journal of Computer Security, January
2013. To appear.

[16] Aseem Rastogi, Piotr Mardziel, Matthew Hammer, and Michael Hicks.
Knowledge inference for optimizing secure multi-party computation.
In Proceedings of the ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security (PLAS), June 2013.

[17] Andrei Sabelfeld and Andrew C. Myers. A model for delimited
information release. In International Symp. on Software Security, 2004.

[18] A. C.-C. Yao. How to generate and exchange secrets. In 27th Annual
Symposium on Foundations of Computer Science (FOCS), pages 162–
167. IEEE, 1986.

