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Abstract In this paper, we present a static analysis tool calledk-

¢ SMITH for automatically finding all data races in a C program. Our
gnalysis aims to be sound so that any potential races are reported,
modulo the unsafe features of C such as arbitrary pointer arithmetic
and type casting. We check for data races by enforcing one of the
most common techniques for race prevention: We ensure that for
every shared memory locatignthere is some locK that is held
whenevep is accessed. While this technique is not the only way to
prevent races, it is common in multi-threaded software.

Our goal is to produce a practical race-detection tool for C. A
number of type systems have been developed for preventing races
given specifications [5, 6, 13, 14, 22], but these can require con-
siderable programmer annotations, limiting their practical applica-
tion. Most completely-automatic static analyses have considered
Java [2, 43, 17, 34, 28], thus avoiding many of the problematic

locks in data structures: and heuristics for modeling unsafe fea- features of C, such as type casts, low-level pointer operations, and

tures of C such as type casts. When applied to several benchmarksoN-1exically scoped locks. Those that consider C are either un-
including multi-threaded servers and Linux device driversck- Sound, do not check certain idioms, or may have trouble scaling. A

smiTH found several races while producing a modest number of '€ngthy discussion of related work may be found in Section 5.
The core algorithm used bydCksMITH is an analysis that

One common technique for preventing data races in multi-threade
programs is to ensure that all accesses to shared locations are co
sistently protected by a lock. We present a tool callestkSMITH

for detecting data races in C programs by looking for violations of
this pattern. We call the relationship between locks and the loca-
tions they protectonsistent correlationand the core of our tech-
nique is a novel constraint-based analysis that infers consistent cor
relation context-sensitively, using the results to check that locations
are properly guarded by locks. We present the core of our algorithm
for a simple formal languag®. which we have proven sound, and
discuss how we scale it up to an algorithm that aims to be sound
for all of C. We develop several techniques to improve the preci-
sion and performance of the analysis, including a sharing analysis
for inferring thread locality; existential quantification for modeling

false alarms. can automatically infer the relationship between locks and the
Categories and Subject DescriptorsD.2.4 [Software Engineer- locations they protect. We call this relationsluiprrelation, and a
ing]: Software/Program Verification—Validation; F.3.2.dgics key contribution of our approach is a new technique for inferring
and Meanings of ProgranftsSemantics of Programming Languages—correlation context-sensitively. We present our correlation analysis
Program analysis algorithm for a formal languaga.. that abstracts away some of

the complications of operating directly on C code. Our analysis
o i . ) is constraint-based, using context-free language reachability [40,
Keywords context-sensitivity, correlation, race detection, type in- 41] and semi-unification [24] for context-sensitivity. Because each

General Terms Languages, Verification

ference, multi-threaded programming, locksmith location must be consistently correlated with at least one lock,
we use ideas from linear types to maintain a tight correspondence
1. Introduction between abstract locks used by the static analysis and locks created

. . at run time. We allow locks created in polymorphic functions to be
Data racesoccur in multi-threaded programs when one thread freated distinctly at different call sites, and we use a novel type and

accesses a memory location at the same time another thread write LS
to it. While some races are benign, those that are erroneous can%ﬁ?ﬁtszjsetﬂg ﬁg\?jl;rfr:};]attg"é I?/vzaiuié a number of additional
have disastrous consequences [31, 37]. Moreover, race-freedom I%echniques. One novel cobntribu{ion is that we suppoustential

an important program property in its own right, because race-free e . . .
programs are easier to understand, analyze, and transform [4, 42]_(:1uant|f|cat|0n which allows us to model correlations among fields

For example, race freedom is necessary for reasoning about codgor a data structure element, even after that element is merged
that uses locks to achieve atomicity [16, 20]. nto the “blob” typical of constraint-based alias analysis [9]. We

use flow-sensitive analysis to model lock acquires and releases,
which need not be lexically scoped. Our implementation includes
a sharing analysis to model thread-local data, and uses heuristics
to model type casts, including the special case of casts to and from
Permission to make digital or hard copies of all or part of this work for personal or void . Finally, we us-e a lazy technique to efficiently model the
classroom use is granted without fee provided that copies are not made or distributedIarges‘:ruCt types typical of C programs. . .

for profit or commercial advantage and that copies bear this notice and the full citation We ran LocksMITH on a set of benchmarks, including pro-

on the first page. To copy otherwise, to republish, to post on servers or to redistrioute grams that use POSIX threads and several Linux kernel device
to lists, requires prior specific permission and/or a fee. drivers. Our tool runs in seconds or minutes on our example pro-
PLDI'06 June 11-14, 2006, Ottawa, Ontario, Canada. grams, although for some other programs we have tried it does not
Copyright(© 2006 ACM 1-59593-320-4/06/0006... . $5.00. complete due to resource exhaustiomdxsmiTH found a num-



pthread_mutex_t L1
int x, y, Z;

void munge (pthread_mutex_t *1, int *p) {
pthread_mutex_lock(1l);
*p = 3;
pthread_mutex_unlock(l);

}

munge (&L1, &x);
munge (&L2, &y);
munge (&§L2, &z);

Figure 1. Locking Example in C

ber of data races, and overall produces few total warnings, making
it easy to inspect the output manually. We also measured the effec-
tiveness of the various analysis features mentioned above, and we

found that all are useful, reducing the number of warnings in total
by as much as a factor of three overall.
In summary, this paper makes the following contributions:

¢ We describe a context-sensitive correlation analysis for the lan-
guage)s . Given a source program ik, our analysis deter-
mines whether every memory location in the program is consis-
tently correlated with a lock. Our analysis models locks linearly

x| v|erez|if0 eo then er else ez
(e1,e2) | ej|let f=vines | fix fu | f°
newlock | ref e|!®2e; | e :=3 ey

n | Az.e | (vi,v2)

Figure 2. A\ Syntax

let L1 = newlock in

let L2 = newlock in

letx =ref 0 in

lety=ref 1in

let z=ref 2 in

i

let munge 1 p = 6 @

p =1 3in
munge1 L1 x;
munge2 L2 y;
rnu.nge3 L2z

X
\ /
(

=
-

Figure 3. Locking example in\, and its constraint graph

by at most one lock (rather than a set of locks), and in which the
lock correlated with a memory read or write is made explicit in the

and uses a novel effect system to treat locks created in differentprogram text. This allows us to defer the problem of determining

calls to a function distinctly. (Section 2)

¢ We scale up our analysis to the C programming language with
a series of additional techniques, including flow-sensitivity, ex-
istential quantification, and a sharing analysis to infer thread-
local data. (Section 3)

¢ We evaluate our implementation on a small set of benchmarks.
LocksmITH was able to find several races with few overall
warning messages. (Section 4)

Although we focus on locking in this paper, we believe that the

what locks are held at each dereference and focus on checking for
consistent correlation. In Section 3, we describe how to extend our
ideas to find data races in the full C programming language, includ-

ing how to infer held lock sets at each program point.

2.1 The Language\.

Figure 2 presents the syntax ®f , a polymorphic lambda calcu-

lus extended with integers, comparisons, pairs, a primitive for gen-
erating mutual exclusion locks, and updatable references. We an-
notate function occurrence® with an instantiation sitei, as in

concept of correlation may be of independent interest. For example, some other context-sensitive analyses [40]. Dereferelfiegsand

a program may _correlate a variable _containing an integer I_ength assignments; :=° e, take as an additional argument an expres-
with a array having that length [49]; it may correlate an environ- gjgn ¢ that evaluates to a lock, which is acquired for the duration
ment structure with the closure that takes it as an argument [32]; or ¢ the memory access and released afterward. To keep the presen-

it may correlate a memory location with thegionin which that
location is stored [23, 25].

2. Race Freedom as Consistent Correlation

Consider the C program in Figure 1. This program has two locks,
L1 andL2, and three integer variables,y, andz (we omit initial-
ization code for simplicity). The functiofunge takes a lock and a
pointer and writes through the pointer with the lock held. Suppose
that the program makes the three callsitiage as shown, and that
this sequence of calls is invoked by two separate threads.

tation simpler\. does not include other language features such
as recursive data structures, although those are handledby-L
SMITH. The left side of Figure 3 gives the program in Figure 1 mod-
eled in\. . The body ofmunge has been reduced to the expression
P =1 3, indicating thatL will be held during the assignment o

To check whether this program is consistently correlated, a
natural approach would be to perform a points-to analysis for all of
the pointers and locks in the program. At the assignrpeﬁtl 3
in the program, we could correlate all of the locatign® which
p may point with thesingletonlock ¢ to which 1 points. The

This program is race-free because for each location, there is alock 1 must point to a singlé or else some locatiop might be

lock that is always held when that location is accessed. In particular,
L1is held for all accesses t9 andL2 is held for all accesses to both
y andz. More formally, we say that a locatignis correlatedwith
a lock ¢ if at some point a thread accesgewhile holding¢. We
say that a locatiop and a lock? are consistently correlatedf ¢
is alwaysheld by the thread accessipgThus if all locations in a
program are consistently correlated, then that program is race free
Establishing consistent correlation is a two-step process. First,
we determine what lock&are held when the thread accesses some
location p. Having gathered this information, we can then ask
whetherp is consistently correlated with some lock.
To simplify our presentation, we present the core of our algo-
rithm for a small languaga.. in which locations can be guarded

accessed sometimes with one lock and sometimes with another.
Unfortunately, this condition is not satisfied in our example: the
points-to set ofl is {L1, L2}, since it will beL1 at the first call to
munge andL2 at the second call. Thus our hypothetical algorithm
would erroneously conclude that no single lock is held for all
accesses, leading to false reports of possible races.

The problem is that correlation betweenand p is not be-
ing treatedcontext-sensitivelyEven if we were to use a context-
sensitive alias analysis [9], the points-to sets mentioned above
would be the same, assuming that within the body of the function
we summarized all calls, which is a standard technique.

We address this problem in two steps. First, we introcioree-
lation constraintf the formp> ¢, which indicate that the location



2.2 Type System

types T = ant|Tx7|7T—>°7"|lock £|ref” T
labels I == L|p We use a type and effect system for generating constraints
effects e u= 0|{}|x|ewe |eue check for consistent correlation. Our type system proves judgments
polytypes o u= (V.1,]) ofthe formC; I' e : 7; €, which means that expressietas type
constr.sets C == (|{c}|CUC ~ and effect under type assumptiodsand constraint sef'.
constraints ¢ = <! (subtyping) Figure 4 gives the type language and constraints used by our

| ¢ iy (lock unification) analy3|s. Types include integers, pairs, function types annqtated

| p<g (location flow) with an effecte, lock types with a labet, and reference types with

| p >/ (correlation) a labelp. Effects are used to enforce linearity for locks (see below),

| e<y (effect flow) and consist of the empty effeta singleton effec{(}, effect vari-

| c E*X (effect filtering) ablesy whilc.h.are splved for during resolution, and both .d|310|nt

| eff_elc(r) =0 (effect emptiness) and non-disjoint unions of effectst ¢’ ande U ¢, respectively.

| r<is (type instantiation) A models context-sensitivity over labels using polytypedn-

e _zipf/ (lock instantiation) troduced bylet z_indfix. In our type Ianguage,_ polytyp@’.7,1)

| p i o (location inst.) represents a universally quantified type, wheris the base type

| e ;sz (effect inst.) and! is the set ohon-quantified labels [24, 40]. Finally; is a set

of atomic constraints. Within the type rules, the judgmett + ¢
indicates that can be proven by the constraint &tin our algo-
rithm, such judgments cause us to “generate” constraamd add
it C.

Figure 4. Types and Constraints

p is correlated with the locK. Here,p and/ are location and lock Effects Effectse form an important part of\s's type system
labels used to represent locations and locks that arise at run time. by enforcing linearity for lock labels. Roughly speaking, a lock
Our analysis generates correlation constraints based on occurrencegibel ¢ is linear if it never represents two different run-time locks

of I¢; ande; :=° ey in the program. Second, we formalize an  that could reside in the same storage or are simultaneously live.
analysis to propagate correlation cons_tralnts ina context-sensitive To understand why this is important, consider the following code,
way throughout the program, by creating a variety of other (flow) where hypothetical types and generated constraints are marked
constraints and solving them to determine whether correlations arein comments, eliding the constraints for the references to locks.

consistent. We define consistent correlation precisely as follows.

DEFINITION 1 (Correlation Set)Given a locationp and a set of
constraintsC', we define theorrelation sebf p in C' as

S(C,p)={t|CFpr 0t}

Here we writeC' I p > £ to say thaip > ¢ can be proven from the
constraints irC.

DEFINITION 2 (Consistent Correlation)A set of constraintg’ is
consistently correlatedl Vp. |S(C, p)| < 1.

Thus, a constraint sef' is consistently correlated if all abstract
locationsp are either correlated with one lock, or are never accessed
and so are correlated with no locks.

The right side of Figure 3 shows a graph of the constraints that

our analysis generates for this example code. Each label in the

program forms a node in the graph, and labeled, directed edge
indicate data flow. Location flow edges corresponding to a function
call are labeled with(s for the parameters at call site and any
return values (not shown) are labeled wjth Locks are modeled
with unification in our system, and we label such edges simply with
the call site, with the direction of the arrow into the type that was
instantiated. For example, both andx are passed in at call site

1, so they connect to the parameters using edges labeled with

Undirected edges represent correlation. In this case, the body of

munge requires that andp are correlated.

After generating constraints we perform constraint resolution
to propagate correlation constraints context-sensitively through the
call graph. In this example, we copyinge’s correlation constraint
out to each of the call sites, resulting in the three correlation con-
straints shown with dashed edges:

x> L1 y> L2 z> L2

We useey; e, as the standard abbreviation foXz.e2) e where

z & fu(ea).

let 1 = ref newlock in
let x =ref 0 in

// 1 :ref o (lock ¢)
/] x:ref? int

x:="11 /] p>¢
1 := newlock;
x:="12 /] p>¢
This code violates consistent correlation becaxiss correlated

with two different run-time locks due to the assignment. However,
to givel a consistent typd, is used to model both locks, violating
linearity. As a result, the constraints mistakenly suggest the pro-
gram is safe, becaugas only ever correlated with.

We now turn to the monomorphic type rules fag, shown in
Figure 5. The [Newlock] rule in this system requires that when we
create a lock labeledwe generate an effe§t’}. The other rules,

Slike [Pair], join the effects of their subexpressions with disjoint

union, thus requiring that chosen lock labels not conflict. For ex-
ample, with the given labeling, the above code has the efigct

{¢}. We implicitly require that disjoint unions are truly disjoint—
during constraint resolution, we will check that this holds—and
thus we would forbid.1 andL2 from being given the same label.
On the other hand, location labebs introduced in the rule [Ref]
for typing memory allocation, do not add to the effect as memory
locations need not be linear.

Some other type-based systems for race detection [13, 22] and
related systems for modeling dynamic memory allocation [46]
avoid the need for this kind of effect by forcing newly-allocated
locks (and/or locations) to be valid only within a lexical scope.
That is,newlock is replaced with a construaewlock z in e,
which at run time generates a new lock and substitutes it:for
within e. When typing this construct’s label/ is only valid in the
expressiore, ensuring the allocated lock cannot escape. Therefore

It is easy to see that these constraints are consistently correlatedsubsequent invocations of the samsrlock = in e (€.g., within

according to Definition 2.

a recursive function) cannot be confused. We can achieve the same
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[Ref]
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]

C;T'kep =% ex:7;e1 WegWes

Figure 5. \r. Monomorphic Rules

effect using the [Down] rule, described below, and our approach
matches the usage néwlock as it occurs in practice.

Typing Rules Turning to the remaining rules in Figure 5, [Id],
[Int], and [Proj] are standard. [Lam] types a function definition, and
the effect on the function arrow is the effect of the body. Notice that
we always place effect variablgson function arrows; this ensures
constraints involving effects always have a variable on their right-
hand side, simplifying constraint resolution. In [App] we apply a
function e; to argumentes, and the effect includes the effect of
evaluatinge;, the effect of evaluatingz, and the effect of the
function body.

The [Sub] rule and subtyping rules, shown in Figure 7(a), are
also standard. Note that in rule [Sub-Lock], we reqdiand?’ to

be equal. Thus we have no subtyping on lock labels, which makes

it easier to enforce linearity by forcing lock labels that “flow” to-

gether to be unified. The rules in Figure 7(a) can be seen as judg-
ments for reducing subtyping on types to constraints on labels,
and during constraint resolution we assume that all subtyping con-

straints have been reduced in this way and thus eliminated.
[Cond] is mostly standard, except we use a non-disjoint union

to join the effects of the two branches, since only one0br e

will be executed at run time. [Deref] accesses a locatipwhile

C;Thu ;0 1= ()
C;F,f:(V.Tl,f)Fez I T9;E

Let
[Led C;I'Flet f =wv; ineg : T2;¢€
Crr=ir CrHI=LT
[Inst] —t - - -
o, f: (V) frar0
C;T, f: (VrlyFov:7;0 T=f)
Cr1'<r CFTji_T”
, CHI=LT C F effectr) = 0
[Fix]
C;TFfixfo: 770
CiThre:rie I=AT)UA(T)
Chte<rx x fresh
=]
[Down] CiTke:m;x

Figure 6. \. Polymorphic Rules (plus [Down])

Polymorphism Figure 6 gives the rules for polymorphism. [Let]
introduces polytypes. As is standard we only generalize the types of
values. In [Let] the nam¢ is bound to a quantified type whelres

the set of free labels df, i.e., the labels that cannot be generalized.

In [Inst], we useinstantiation constraintéo model a type in-
stantiation. The constraint <’, 7' means that there exists some
substitutiong; such thatp;(7) = 7/, i.e., that at the use of la-
beled by index in the program; is instantiated tar’. We also
generate the constraift<’. [, which requires that all of the vari-
ables we could not quantify are renamed to themselves,; pie.,
they are not instantiated.

The subscript+’s and —’s in an instantiation constraint are
polarities, which represent the direction of subtyping through a
constraint, either covariantH) or contravariant-{). Instantiation
constraints correspond to the edges labeled with parentheses in
Figure 3. A constrainp =<’ p’ corresponds to an output (i.e.,

a return value), and in constraint graphs we draw it as a directed
edgep —'* p’. A constraintp <% p’ corresponds to an input
(i.e., a parameter), and we draw it with a directed edge-C p.

We draw a constrainf <* ¢ as an edge’ —' ¢, where there

is no direction of flow since lock labels are unified but the arrow
indicates the reverse direction of instantiation.

Instantiation constraints on types can be reduced to instantiation
constraints on labels, as shown in Figure 7(b). In these rules we use
p to stand for an arbitrary polarity, and in [Inst-Fun] we flip the
direction of polarity for the function domain with the notatipn
For example, to generate the graph in Figure 3, we generated three
instantiation constraints

(1 xp)— int
(1 xp)— int
(1 xp)— int

<L (L1 x x) — int
ji_ (L2 X y) — int
<% (L2 x z) — int

corresponding to the three instantiations and callawige. For
full details on polarities, see Rehof et al [40].

Hiding Effects [Fix] introduces polymorphic recursion, which

is decidable for label flow [33, 40]. However, in our system we
instantiate effects, which because they contain disjoint unions may
grow without bound if a recursive function allocates a lock. Thus

holding lockez, and generates a correlation constraint between the in [Fix], we require that recursive functions have an empty effect

lock and location label, as does [Assign].

on their top-most arrow with the constraiftec{r) = 0.



Sub-Inf]———————
[Sub-Int] CtFint < int

Ckmn <7y Ckmn<7

[Sub-Pair} ; S
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(a) Subtyping
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F‘rlj;’o”r{ CFTZj;Té
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F X1 2, 7] X T
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1
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Fle%Tz CFT{j;Té Chep =gy
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Ckr —°t 7] =} T2 =52 75

(b) Instantiation

Figure 7. Subtyping and Instantiation Constraints

This is a strong restriction, and we would like to be able infer
correlations for recursive functions that allocate locks. For exam-

ple, consider the following two code snippets:

fix f.ax. let y =ref Oin
let 1 = newlock in fix f)x.
let y =ref Oin let 1 = newlock in
y =1 42; y =1 42;

Heref is arecursive function that creates a lacknd accesses a

cult=¢y = Clt— 2
CU{po <p1}U{p1 <p2} U= {po < p2} v
Cuf{lo 2" Litu{lo X" L2} = Clla—b1]U{ly X 41}
CU{p1 2L potU{p1 <p2}U{p2 =4 p3} U= {po < p3}

(a) Flow of lock and location labels

CUlp<pIUlp B U= {p>0)
CU{p=ip}Ulpb U= ¢} U= o >0}

(b) Correlation propagation

Cu{b<x
Cu{eue <x
Cuf{e<xtu{x<x
Cufe<x}u{x<px
CU{e<xpu{x=*x

} = C

} o= Cu{esxiul{d<x}
Pou= {e<x'}

}ou= {e <X}

Pou= {e=xx'}

cu{p=<ix} = «C
Cu{{f} = x} Cufe=iryu{{ey<x}
¢ fresh
CuU{ewe = xo} = CU{e =i xIu{e < x'}
U{xwx < xo}
X, x’ fresh

¥

Cufeue X'y} = CU{ex'xPU{ 2Ty}
Culx=*xtu{x=2*x"} = CK —=x"Tu{x=z*x"}
cu{o S[’X} = C
Cuf{t <pxr = cu{{<xp
if C' - escape¢, 1)
Cu{ewe <pxob = CU{e<pxdU{e <px'}

U{x¥x’ < xo}
Cu{eue <pxd = Cu{e <pxpuie <pxd

(c) Effect propagation

Figure 8. Constraint Resolution

In other words/ escapes througﬁif itis in I or if it appears in a
constraint inC' with an!’ that escapes ih For example, ifp > ¢
andp escapes, thehescapes. This preventsfrom being hidden

in our second example above, while in the first example we can
apply [Down] to hide the allocation effect successfully. Although
[Down] is not a syntax-directed rule, it is only useful to apply it to
terms whose effect may be duplicated in the type system. Hence
we can make the system syntax-directed by assuming that [Down]
is always applied once te in rule [Lam], so that the effect on
the function arrow has as much hidden as possible. Also note that
we can easily encode the lexically-scoped lock allocation primitive
newlock z in e as(Az.e) newlock and applying [Down] to the

locationy. In both cases the lock does not escape the function, and application.

therefore the linear labels corresponding to the locks in different

Uses of [Down] are rare in C programs in our experience, which

iterations of the function cannot interfere. However, in the second tend to use global locks. Some C programs also store locks in data

case the location is allocated outside the function, meaning that
with each iteration it will be accessed with a different lock held,
violating consistent correlation. We want to allow the first case

while rejecting the second.

Thus we add a final rule [Down] to our type system to hide
effects on lock labels that are purely local to a block of code [21].
In [Down], we generate a “filtering” constrairt <; x, which

means thaty should contain labels im that escapethroughﬁ

structures, and in this case [Down] allows us to hide locks that are
created and then packed inside of an existential type (Section 3.3)
that contains the only reference to them.

2.3 Constraint Resolution

After we have applied the rules in Figures 5, 6, and 7 ta.a
program, we are left with a set of constraiidis To check that a
program is consistently correlated, we first reduce the constraints

but not necessarily any other label. We determine escaping duringC' into asolved formfrom which we can easily extract correlations

-

constraint resolution. Formallyg, - escaped, ), wherel is either

apor,if

lel v 3l (Cr—c ALUEcA CFescape&i’,f))

between locks and locations.

Figure 8 gives a series of left-to-right rewrite rules that we
apply exhaustively to the constraints to compute their solution.
Figure 8(a) gives rules to compute the “flow” of locations and



locks; part (b) gives the rules for propagating correlations; and part ¢ occurs disjointly ire:
(c) propagates effects so that we can check that disjoint unions are

truly disjoint. The rules in part (a) are mostly standard, while parts occurs{f, 0) f 0 ’
(b) and (c) are new. Her€; U = C’ meansC = C' U C". ococcucrlsj(réq {’Z]fg = rlnaXESX occurg?, €)
The fi le of I li i lock ’ -
e first rule of part (a) resolves equality constraints on loc occurgl, (1) = 0 (4l

labels and the second transitively closes subtyping constraints on
location labels. The next rule is the standard semi-unification rule
[24]: If a lock label ¢y is instantiated at sité to two different

lock labels¢; and /s, then/; and ¢, must be equal (because the
substitution at sité has to substitute fofy consistently). The final

rule is for “matched flow.” Recall the [Inst] rule from Figure 6: if

f has polytype(V.ref /1 7, —" ref?2 7 (), then instantiating
this polytype at site to the typeref 70 —_>@ ref 73 1, requires Finally, we ensure that locations are consistently correlated with
that C' contain instantiation constraintg <~ po andpz <% ps locks. We computes(C, p) for all locationsp and check that it
(according to [Inst-Fun] and [Inst-Ref]). The negative constraint has size< 1. This computation is easy with the constraints in
corresponds to context-sensitive flow from the caller’s argument to solved form; we simply walk through all the correlation constraints
the function’s parameter while the positive constraint corresponds generated in Figure 8(b) to count how many different lock labels

occurg?, ) + occurgl, &)
max(occurg’, €), occurg?, &)

occurl,eWe') =
occurgf, e Ue')

We require for every effeet created during type inference (includ-
ing constraint resolution), and for &) thatoccurg?,¢) < 1. We
enforce the constraimffec{) = () by extracting the effect from
the function typer and ensuring thaiccurg?, ) = 0 for all £.

to the returned value. Say thgtis the identity function; ther”
would contain the constraint; < p», indicating the function’s

appear correlated with each locatipn
We now analyze the running time of our algorithm for each part

parameter flows to its returned value. Thus the argument at site of constraint resolution. Let be the number of constraints gen-

¢ should flow to the value returned at siteand so the matched
flow rule permits the addition of a flow edge < ps. For a full
discussion of this rule, see Rehof et al [40].

erated by walking over the source code of the program. Then the
rules in Figure 8(a) take tim@(n>) [40], as do the rules in Fig-
ure 8(b), since givem constraints there can be ony(n?) cor-

In the correlation propagation rules in part (b), the first rule says relations among locations and locks mentioned in the constraints.

that if locationp flows to a locationy’ that is correlated witt,
thenp is correlated witlY also. Notice that there is no similar rule
for flow on the right-hand side of a correlation, because we unify

Constraint resolution rules like those given in parts (a) and (b) have
been shown to be efficient in practice [9].
There exist constraint ses for which the rules in Figure 8(c)

lock labels. The next rule propagates correlations at instantiation will not terminate. This is because a cycle in the instantiation con-

sites. Similarly to location propagation, if we have a correlation
constraintp & ¢ on the labels in a polymorphic function, and we
instantiate/ to ¢ andp to p’ at some site, then we propagate the
correlation to?’ andp’. For example, Figure 3 depicts the following
three constraints, among others (recall an étlge‘ [ in the figure
corresponds to a constraink® 1'):

1<t

L1 P <! x p>1

Using our resolution rule yields the constraint L1, shown in Fig-

ure 3 with a dashed line. Note that the polarity of the instantiation
constraint orp is irrelevant for this propagation step, because locks

can correlate with both inputs (parameters) and output (returns).

straints might result in a single effect being repeatedly copied and
renamed. We believe that this cannot occur in our type system, how-
ever, because we forbid recursive functions from having effects.
Even so, effect propagation can still 2™ ), because a single ef-
fect might be copied through a chain of instantiations that double
the effect each time.

Soundness We have proven that a version of our type systefh
based on polymorphically constrained types [33] is sound, and that
the system presented here reduces to that system. We define a call-
by-value operational semantics as a series of rewriting rules, using
evaluation contextE to define evaluation order, as is standard. The
evaluation rule fohewlock generates a fresh lock constdntand

constraints. The first block of rules discards useless effect subtyp-

includeL andR and define typing rules for them. We also introduce

ing, replaces standard unions by two separate constraints, and comallocation constraints., <' ¢ to indicate that lock variablé has

putes transitivity of subtyping on effects. The next block of rules
handles instantiation constraints. The constraint’ x can be dis-
carded, because it places no constraintofit is not even the case

that y must be empty, because it may have subtyping constraints

on it from other effects.) In the next rule we model instantiation
of a function with a single effecf¢}. In our system, each time we
call a function that invokesewlock we wish to treat the locks
from different calls differently. Thus we create a fresh lock latel
that flows toy and require thaf is instantiated td’. The remain-

been allocated as constait We then refineS(C, p) to Sy (C, p),
which only refers to concrete lock labels:

S,(Cop)={L|CFp>tACFHL<" 1}

ThusS,(C, p) is the set of concrete locks correlated witin C.
Next we define valid evaluation steps, which are those such that
if a location R is accessed with lock, thenL € S,(C, R).

DEFINITION 3 (Valid Evaluation).We writeC - ¢ — ¢ iff

ing rules copy disjoint unions across an instantiation site, expand ¢ = E[!' v or e = E[v'* :=[" v] impliesL € S,(C, R).

non-disjoint unions, and require that effect variables are instanti-

ated consistently.

The last block of rules propagates effects across filtering con-
straints. The only interesting rule is the second one, which prop-

agates an effec{/} to x only if ¢ escapes in the sét this cor-
responds to “hiding” effecty that are only used within a lexical
scope.

After applying the rewrite rules, there are three conditions we

Notice that this still allows a location to be correlated with more
than one lock. We define an auxiliary judgment-,, C, which
holds if in C all locations are consistently correlated and no lock
labels ine have been allocated.

We write ., for the type judgment il\. We then show
preservation, which implies soundness.

LEMMA 1 (Preservation)lf C;T' b, e : 7;¢ wheree -, C and

need to check. First, we need to ensure that all disjoint unions e — €', then there exists sont¥, ¢, such thaie’ —e) N fi(C) =
formed during type inference and constraint resolution are truly @; and ¢’ + C;and C’' + e — ¢€’; and e’ +, C'; and

disjoint. We defineoccurg/, ) to be the number of times label

/. A
C'iThepe i€



(The proof is by induction orC;T" ., e : 7;¢.) This lemma
shows that if we begin with a consistently correlated constraint
system and take a step for an expressiamose effect ig, then the
evaluation is valid. Moreover, there is some consistently correlated
C’ that entailsC, whereC’ may contain additional constraints if
the evaluation step allocated any locks or locations. Notice that
sinceC’ entailsC, any correlations that hold id’ also hold in

C'’. Since at each evaluation step we preserve existing correlations

and maintain consistent correlation, a well-typed program is always
consistently correlated during evaluation.

Finally, we can prove that we can reduce judgment&into
AZ¥. This reduction-based proof technique follow&hRdrich et al
[12].

LEMMA 2 (Reduction).Given a derivation ofC;T" + e :
thenC*; T bcp e : ;™.

whereC” is the set of constraints closed according to the rules in
Figure 8(a) and (b)s™ is the set of locks ire according to the
rules in Figure 8(c), and™ is a translation from\, to A" type
assumptions.

Full proofs can be found in a forthcoming technical report.

=

3. LocksMITH : Race Detection for C

LocksMITH applies the ideas of Section 2 to the full C program-

ming language. We implementedcksmITH using CIL [35] as

a C front-end and using BANSHEE [30] to encode portions of the

constraint graph and to apply the resolution rules in Figure 8(a). We

use our own constraint solver for the rest of the analysis.
LocksMITH s structured as a set of modules implementing dif-

of writes to locationp. An example of control-flow constraints is
shown below in Section 3.3.

Computing Held Locks Given a control-flow constraint graph,
LocksMITH computes the locks held at each program point rep-
resented by a stat¢. Assume for the moment that all locks are
linear. Then at a nod¢ such thatC' + v : Acquire(¢), the lock

£ is clearly held. We iteratively propagate this fact forward through
constraints) < v’ (and likewise for instantiation constraints) stop-
ping propagation at any nodg for which C' 1) : Release(¥).

At joins we intersect the sets of acquired locks. This continues until
we reach a fixed point.

In essence this analysis computes the set of locksniuastbe
acquired at each program point. Notice that because the analysis
is necessarily conservative, we may decide at a program point that
lock 2 is not held even if it is at run time. This is safe because if our
analysis inaccurately determines that a lock is released, at worst it
will report a data race where no race is possible.

At function calls, denoted by another kind ¢f variable, we
“split” the set of locks. At a split, we propagate the staté td the
function’s input state only if that function actually changes the state
of (acquires or releaseg) since otherwise the function must be
polymorphic in¢’s state. (Which locks are (transitively) mentioned
by a function is determined by a standard, context-sensitive effect
analysis.) The state of other locks is added to the output state of the
function upon return. This is similar tdergenodes in CQual [21].
Crucially, this optimization ensures we do not conflate lock states
at calls to library functions such gsintf. At instantiation sites
¥ =<}, ¢, we use the renaming defined by, to copy the states of
any locks in the domain of the substitution correspondingftom

ferent phases of the analysis. The first phase traverses source code t0 ', and vice-versa for’ constraints.

and generates constraints akinXo constraints. However, while
As programs specify a correlation between a lock and a location
explicitly, in C such correlations must be inferred. Using some ad-
ditional constraint forms, bcksmiTH infers which locks are held

at each program point, and generates correlations accordingly to

detect potential races. As an optimizatiomdksMITH includes a
middle phase to compute which locations are always thread-local
and therefore can be ignored for purposes of checking correlation.
LocksMITH also includes two additional features to improve pre-
cision for C. We support existential types, to model locks stored in
data structures, and we try to model pointersdad precisely and
structures efficiently.

3.1 Flow-Sensitive Race Detection

LocKsMITH extends\ type judgments to includgtate variables
1 [21] to model the flow-sensitive events needed to infer correla-
tions. Judgments include both an input and an output state variable

Inferring Correlations and Finding Races Now, for each state
variablesy of kind Deref(p), we generate a correlation constraint

p > {l1,...,4,}, where thel; are the set of locks held at. (We

have extended correlation constraints to include a set of locks rather
than a single lock.)

Given the correlation constraints, we could apply the rules in
Figure 8(b) to infer all correlations. However, because we “split”
lock states at function calls, this would result in many false alarms,
since a correlation constraipt> {¢1,...,¢,} generated inside
a function really means that locks are heldin additionto any
locks held at the function’s callers. Thus iroEksSMITH, rather
than inserting each correlation constraint into a global(setve
define a family of constraint setSy, one pery, and propagate
them backwards along the control-flow constraint graph. When we
reach a split node in the constraint graph, we add to each correlation
constraint any held locks that were split off previously.

When we are done propagating, we check for consistent corre-

representing the point just before and just after, respectively, execu-jation among the correlation constraixit&** which correspond to
tion of the expression. Function types also have an input and outputihe injtial statey) of main(). As correlation constraints now refer

1, to represent the initial and final states of the function. Control
flow from statew to stated)’ is indicated by acontrol flow con-
straint+ < ', and we also include instantiation on states, written
¥ =<}, . Each state is assignedkimd that describes how that state
differs from preceding states.

As an example, the typing rule for acquiring a lock is

P;C;T e :lock £;4'; e ' fresh
Cry' <" CHE":Acquire(l)

¥; C;T F acquire e : int;9";e
This rule says that to infer a type fatquire e beginning in state
1, we infer a labeled lock type far, whose evaluation produces
the stater)’. We create a new state” that immediately follows
v’ and in which? is acquired. A similar rule forrelease e
annotates states with kiltlease(¢), and a rule for dereferences
and assignments annotates states with Kiadef(p) for reads

[Acquire]

to lock sets, we define
S(Cyp)={{l1,.... b} |CFp>{l,....0.}}
A location labeled is consistently correlated if

IS(C,p)| =1

i.e., if there is at least one lock held every times accessed.

In the discussion thus far we have assumed that all locks are
linear, but as per discussion in Section 2 this could be unsound.
Rather than forbid non-linear locks, imlcksmITH we treat them
as always released. Therefore non-linear locks are never included
in correlation constraints, and so they do not prevent races from
being reported. Our implementation currently allows most linearity
checking to be optionally disabled, as we have found it is not very
helpful in practice and can have a steep performance penalty. Our



int x; y
( 2

void *£(...) { let m = newlock’! in
int *p = (int *) malloc(...); 1et ©=ref’ 1in ’ Pack | Pack
*p = X; etp= b —
} P if0 b then X
ack® (m, x) b 5 | .
P ) 2 2 Acquire
int main(void) { else
x = 42; pack? (newlock®?, ref?? 2) py
i T Deref
pthread_create(..., £, ...); in ) o
pthread_create(..., £, ...); unpack (I,r) =pin 0 7
} acquire [; ( Release
r:=3;
Figure 9. Example of Sharing Analysis release [
(a) Source code (b) Constraint graph
implementation also omits the right disjunct of thecape§, [) Figure 10. Existential Quantification

check used for [Down] because it is not supported by BANSHEE.
While possible, itis highly improbable that this omission will result
in missed races.
and hence does not require consistent correlation. Also notice that
3.2 Shared Locations both copies off allocate a location at the same syntactic position

As an optimization, DCKSMITH generates correlation constraints  in the program. Thus our analysis assigns both allocations the
at statePeref (p) only whenp may be thread-shared. Thus thread- Same locatiom. A naive analysis would determine thais shared
local data need not be consistently correlated, which in practice because it is accessed by both child threads. Using Down-Fork,
substantially improves the precision and efficiency ofdkSMITH. however, we observe thatdoes not escape the bodyfoénd hence

We use several techniques to infer sharing. Our core techniqueiS thread-local.

is based omontinuation effectdn the standard approach, the effect We':p'g‘;"flg'n?‘g\'/rgr‘;'%r;‘;gt?;'t?ggggégﬁlrﬁifﬁﬂggg;ﬁgg?ﬁ’ :;Sénal-
of an expressior denotes those Igcatlons read.and written by ysis to determine when local variables definitely point to thread-
e. In our approach, each expression has_both input and outputjgeg memory. For example, consider the following code:
effects,e; ande,, wheree, denotes the locations read and written

in the program executed after(including forked threads), while int* x = (int *) malloc(sizeof(int));
€; containse, and those locations read and writteneiitself. We *x = 25
compute continuation effects context-sensitively using BANSHEE. ~ lock(1);

When a new thread is created, we determine the locations it shared = x; /* becomes shared */
might share with its parent (or other threads the parent forks) as
follows. Lete, be the input effect of the child thread, and tet
be theinput closureof a continuation effect, defined as all those
locationsy’ that could flow to locationg € e. ThenS = ¢} Ne is
the possibly-shared locations due to the fork, whegrie the output
effect of the parent. We prung further to only mentiorp if it is
written in eithere; or €}, (so that read-only access is not a race). For
eachDeref(p) state, we generate a correlation constrainfdr

prnlJS#0
all S 3.3 Existential Quantification for Data Structures

We make two improvements to this basic technique. First, rather In applying our system to C programs, we found several examples
than intersecp™ with all S, we consider only thosg due to the where locks are stored in heap data structures along with the data
forking of the current thread, its ancestors, or any child threads they protect. Standard context-sensitive analyses typically merge
created by the current thread prior to the dereference; dll all elements of the same data structure into an indistinguishable
dereferences imain prior to forking the first thread are considered  “blob,” which would cause us to lose track of the identities of
unshared. This allows data to be accessed thread locally withoutlocations and the linearities of locks in data structures. In this
protection, and only once it becomes shared must it be consistentlysubsection we briefly sketch an approach to solving this problem
correlated. Second, we appl{pawn-Forkrule to further filter from that has proven effective for one of our benchmarks.
S locations that do not escape a forked thread, and thus cannot be As an example, consider the program in Figure 10(a). This
shared with its parent. In particular, suppose we spawn a thiread program first bindsn to a new lock labeled,, and then binds to
that may access locatign Then we observe thatif Nf(I")* = 0, anew reference labelgd (here for convenience we mark labels in
wherefi(T") is the set of free labels in the types of variables visible the source code directly). The program then gdtsbe one of two
at the point of the fork, thep is not visible outside the child thread  pairs. Thepackoperation alerts our analysis that the pairs should

Here x points to newly-allocated memory that is subsequently
initialized. Thenx is assigned teshared—a variable visible to
another thread—after acquiring lotk The assignment causes

to be an alias okhared; if this code occurs in a routine run by
multiple threads, our earlier sharing analysis will think tkaits
always thread-shared. But our local uniqueness analysis observes
that at the write te:x, the variablex has not yet escaped, and hence
the write is ignored for purposes of correlation.

and thus cannot be shared. be treated abstractly so that we can conflate them without losing
To see the benefit of these techniques, consider the code incorrelations. Next the progranmpacksp and acquires the pair’s

Figure 9. This program initializes a global variakland then forks lock before dereferencing its pointer.

two threads (usingthread_create) that invoke the functiort, Notice that although: may be eithep; or p, at runtime, and

which readsx and writes it to freshly-allocated storage. Sharing [ may be either/; or /2, in either case the correct lock will be
analysis determines thatis never written after it becomes shared, acquired. Because we us@ack before the data structure was



conflated, our analysis givesthe type
3¢, plp > {£}]. lock £ x ref? int

meaning thap contains some lock and some locatiop where?
andp are correlated.

One key novelty of locksMITH is that, given a program with
pack andunpack annotations, we perforrimferenceon existen-
tial types using constraint resolution rules similar to those in Fig-
ure 8. Figure 10(b) shows the constraint graph for our example.
Rather than give resolution rules explicitly, we discuss the algo-

Benchmark Size Time | Warn. | Unguarded| Races
(KLOC)

aget 1.6 0.8s 15 15 15
ctrace 1.8 | 0.9s 8 8 2
pfscan 1.7 | 0.7s 5 0 0
engine 15 1.2s 7 0 0
smtprc 6.1 | 6.0s 46 1 1
knot 1.7 | 15s 12 8 8

Table 1. Summary of Experimental Results: POSIX Apps

rithm informally on this example. Existential inference using this e only model those fields that are actually used. This optimization

basic technique is sound for the related problem of label flow [38].
In this figure, we represent data flow from labéjsand p; to
the packed labelé and p with directed edges annotated with the
pack site. It is no coincidence that this is the same notation use
for universal quantification in Figure 3—it is the duality of univer-
sal and existential quantification that lets us use similar techniques
for both. The remaining edges show the states at the various pro-

gram points. Initially we are in some state Then we pack one of
the two pairs, represented by a split labeled Witfor pack sitei.
Within the unpack (shown in the box), we acquire Idcklerefer-
encer, and then releask At the dereference site, lodkis held,

and so we generate a constraint {/} (not shown in the graph).
We propagate this correlation constraint using matched flow as in
Figure 8(b) and generate two constraiptsi> {¢1} andp2 > {¢2}.

d

does not affect precision, but can provide a significant speedup.

4. Experiments

We evaluated bcksMITH on a modest set of benchmarks, in-

cluding several small applications and medium-sized Linux kernel
drivers. We conducted our experiments on a dual Xe28GHz
PC with 3.5GB of RAM, running RedHat Enterprise Linux, kernel

version 2.4.21. bcksmITH was compiled using OCaml 3.08.1,
with all C code (BANSHEE and the OCaml runtime system) com-

piled withgcc 3.2.3-53 at optimization level02. Reported elapsed

times are the median of 7 runs.

4.1 POSIX Threads Applications

Had we not used existential quantification here, we would not have \ve selected several multi-threaded programs largely gathered

been able to track correlation precisely, becafisand ¢ would

from sourceforge.net. Agetis an FTP client in which multiple

have been non-linear, and there would have been no way to tell threads download chunks of a filtraceis a library for tracing the

which goes withp; and which goes withp..
L OCKSMITH supports existential types fetructs. To use ex-

istentials, the programmer annotates aggregates that can be packeg

to indicate which fields should have bound types after packing.
We extend C with a speciglack(x) statement that makess

type existentially quantified. For unpacking, the programmer in-
sertsstart_unpack(x) and end unpack(x) statements, which
begin and end the scope of the unpack, possibly non-lexically. In
Section 4, we show that existential quantification is useful for one
of our benchmarks. We needed to add a total of 29 pack, unpack,
and field annotations to the program that could benefit, and 3 of the
12 start_unpack operations are not lexically scoped.

3.4 Analysis ofvoid* and Aggregates

We aim to be sound, and so we use a number of techniques to
conservatively model the unsafe aspects of C without losing too
much precision. At type casts of dissimilar types we conflate loca-
tions in the actual and cast-to type. However, foei.d* pointers,
we instead maintain a set of newid* types that are cast to or
from them [29]. Any type cast to or from thabid* at the same
type is unified with the matching type stored in theidx. This
technique enables us to model the common case wheax is
used for polymorphism, which is important because the POSIX
pthread create routine takes aroid* argument that is passed
into the function called when the new thread starts. However, us-
ing this model ofvoid* is unsound, because it does not handle
up- or downcasts oftruct types and assumes programmers use
void* safely. Nevertheless, we have found it effective in practice,
and it makes the output ofdcKkSMITH much easier to interpret by
reducing conflation.

Somestruct types in C programs may have many fields (we

execution of multi-threaded programs; we analyzed a sample ap-
plication that came with its distributiof®fscanis a multithreaded

e scanner that combines the functionality fafnd, xargs, and
fgrep. Engineissues requests to several search engines in parallel
and collates the responseamtprcis an open mail relay scanner
that looks for potential configuration problems. Finakpotis a
multi-threaded webserver distributed with the Capriccio user-level
threads package [48].

In our experiments we measured the number of warnings re-
ported by locksmITH and how many of those warnings corre-
spond to races. Here is a somewhat simplified warning taken from
aget:

Possible data race on
&bwritten(aget_comb.c:943)
References:
dereference at aget_comb.c:1079
locks acquired at dereference:
&bwritten_mutex(aget_comb.c:996)
in: FORK at aget_comb.c:468 ->
http_get aget_comb.c:468

dereference at aget_comb.c:984

locks acquired at dereference:
(none)

in: FORK at aget_comb.c:193 ->
signal_waiter(aget_comb.c:193) ->
sigalrm_handler(aget_comb.c:957)

The first part indicates where the data that might be accessed in
race is allocated, in this case the global variabieitten defined

at line 943. The second part lists where that location may be deref-
erenced, along with the locks held at that point and the context-
sensitive control-flow path that led to the dereference. Above we

have seen cases of 100 or more), many of which themselves haveshow two (out of many) accesses. The first is in a thread running

struct types containing many fields. For precision, we wish to as-
sign fresh labels to fields of different instances of the sapract
type. However, if we model these types naively by representing all

the functionhttp_get with the mutex&bwritten mutex held.
The second access is in another thread runeiigghal waiter,
which has called the functiosiigalrm_handler; this takes place

fields of all instances of aggregates, then the analysis becomes verywith no lock held, violating consistent correlation. In practice this

inefficient. Instead, we represent structure fields lazily [29], so that

situation could arise when the user terminates aget abruptly with a



Benchmark Size Time | Warn. | Unguarded| Races
(KLOC)
plip 19.1 | 249s 11 2 1
eq| 16.5 3.2s 3 0 0
3c501 17.4 | 240.1s 24 2 2
sundance 19.9 | 98.2s 3 1 0
sis900 20.4 | 61.08 8 2 1
slip 22.7 | 16.5¢ 19 1 0
hp100 20.3 | 31.8¢ 23 2 0

Table 2. Summary of Experimental Results: Linux Drivers

signal, which causes it to save its current state to disk. The race on
bwritten could cause it to be confused when the program restarts.
Table 1 shows the experimental results for these application pro-
grams. We merge multi-file programs into a single C file using the
CIL merger, which eliminates duplicate and unused declarations.
The table lists the size of the merged program in lines of prepro-

as we can tell, character driver operations are always called with the
BKL held, removing the need for multi-processor synchronization.

Therefore, we chose to applyolcksMITH to network device
drivers, which must use internal locking and are relatively well-
documented. We focused on seven drivers from the 2.6.12 ker-
nel: plip (parallel-line 1P), slip (serial line IP), eql (network traffic
equalizer), and sis900, 3¢501, hp100 and sundance (ethernet card
drivers). We constructed stub files with a spegiain routine that
simulates the kernel's concurrent interaction with the driver via
interrupts, timeouts, and user process-induced cattscKHSMITH
models kernel spin locks in the same way it models POSIX mu-
texes. We ran bcksmITH with some linearity checking disabled,
because currently our semi-unification algorithm does not termi-
nate for some drivers. We believe this can be fixed by implementing
an extended occurs check [24].

Table 2 lists our results. We found a total of 4 races. The races
in plip and sis900 are both benign races on counters. One race in
3c501 is a presumably benign race on a debugging flag. The other

cessed code. Since the application programs use the standard @ace in 3c501 occurs on a flag that tracks whether the driver is

library, we constructed a stub file containing function definitions
that model the data flow and effects of libc routines used in our
benchmarks, totaling roughly 400 LOC (not counted in the table).
The third column shows the total number of warnings of poten-
tial races issued by &cksmITH. The “Unguarded” column lists
the number of warnings that constitute true violations of consistent

transmitting. We believe a race on this flag could cause errors if it
occurs in the middle of a send operation. The guarded-by violations
that were not races were due to the usatoimic operationsvhich
are always thread safe. These are implemented with inline assembly
code that IDCKSMITH processes conservatively.

The main source of false alarms in drivers is due to conflation

correlation. Some of these may not be races because a shared locaand other conservatism due to type casts. This causex&MITH

tion is protected using other techniques. The last column lists the

number of true races, in which data could be accessed simultane-

ously by two threads and one of the accesses is a write.
For aget, most of the races are similar to the example above. For

mistakenly to think locations could be shared when they are not.
Several of the false alarms could be addressed using existentials, in
principle, to model a lock stored in a data structure, but we currently
cannot check the initialization pattern. Finally, in many cases syn-

knot, all the races seem to be benign; most are due to unprotectecchronization is context dependent, employing state variables and
accesses to global variables used to gather statistics. Ctrace usesther non-lock-based forms. It was difficult to tell in these cases
semaphores to communicate among threads, so while 6 guarded-byhether a race existed or not, since we are not kernel experts, so

violations reported are legitimate, the data is not subject to races.
The two real races are on global variables; one is benign, but the

we considered them to be non-races in the table.

other is used to communicate information between threads, and a4.3 Per-feature Effectiveness

race could cause messages to be lost. Finally,

set and read by the main thread, which could cause unpredictabl
behavior.

LocksMITH also reported a number of false alarms, mostly
arising from two coding idioms that @CKSMITH does not han-
dle. One is when a parent thread accesses previously shared dat
after its child threads have died (3 for engine, 1 for pfscan), as de-
termined bypthread mutex_join or other signaling mechanisms.
Another is when a global data structure points to thread-local data,
indexed by thread identifier (4 in engine, 44 in smtprc). The re-
maining false alarms could be handled with some improvements to
the local sharing analysis (3 for knot), and to allowable idioms of
existential initialization (3 for pfscan).

We also tried to run bcksMITH on several larger programs,
but were ultimately unsuccessful due to resource exhaustion. We do
not believe these problems are fundamental, and plan to continue
to investigate how bcksMITH can be applied to larger programs.

4.2 Device Drivers

In addition to application code, we appliedtksSMITH to a set of
Linux device drivers. We found that determining synchronization
assumptions for device drivers is challenging because the internal
Linux API is complex and sparsely documented. Complicating
matters, earlier versions of the kernel used a single spin lock (“the
big kernel lock” or BKL) to prevent parallel access within the

kernel, and remnants of this discipline remain. For example, as far p

1Did not perform linearity checking

smtprc has one rac . . . . . .
that occurs when a reaper thread sets a global counter that is alsoeve examined the various features described in Section 3 for im-

P

roving the precision of the analysis. Table 3 shows the number
of warnings issued by the tool depending on which techniques are
enabled, along with the corresponding running time. In particular,
we measured the cumulative effectiveness of four techniques: (1)
qur technique for modeling@aid* cast to/from a single type pre-
cisely (Void), as compared to conflating all locations at all levels
of a type cast tavoid*; (2) the use of Down-Fork to reduce false
sharing (DownF); (3) flow-sensitive uniqueness analysis of local
variables (Uniq); and (4) using existential quantification to model
locks local to data structures (Exist), which only affects the knot
benchmark. All but the last feature are fully automatic, while exis-
tentials require manual insertion of packs and unpacks; we used 29
annotations for knot.

For a more visual comparison, we show the normalized effect
of each technique on precision in Figure 5. The non-black portion
of each bar is the scaled improvement due to the addition of that
particular feature. For example, we can see that for aget, 60%
(26 of 43) warnings were eliminated due to precise handling of
void* while an additional 4.5% (2 of 43) were removed due to
Down-Fork. Void and DownF are clearly the most useful overall.
In contrast to Void and DownF, Exists and Uniqg are useful only in
a few cases, and may increase running time.

5. Related Work

number of systems have been developed for detecting data races
and other concurrency errors in multi-threaded programs, including
dynamic analysis, static analysis, and hybrid systems.



[ Benchmark][ Alloff [ +Void | +DownF [ +Uniq | +Exist | 100
aget 43 17 15 15 15 0 1
1.5s 0.9s 0.8s 0.8s 0.8s g) 80 —
ctrace 9 8 8 8 8 = .
11s| 0.9s 09s| 09s| 009s = 60 o Void
pfscan 6 6 5 5 5 = 7 @ +Dowr
0.7s 0.7s 0.7s 0.7s 0.7s o 1 @ +Uniq
engine 11 11 7 7 7 5 40— B +Exist
1.0s 1.0s 1.0s 1.2s 1.2s b i m All on
smtprc 73 73 46 46 46 o
565 | 5.8s 50s| 60s| 6.0s e 20
knot 30 29 20 14 12 1
1.2s 1.1s 1.0s 0.9s 1.5s 0 -
plip 25 11 11 11 11 , y
275s| 238s| 240s| 249s| 24.9s ®&%£’&§9§5§o%%%§®%o%z%
el 22 3 3 3 3 SAARE AN
2.9s 3.1s 3.1s 3.2s 3.2s
3c501 24 24 24 24 24
233.4s | 238.3s 238.7s | 240.1s| 240.1s
sundance 52 3 3 3 3 erations, and unsafe type casts. They also omit linearity checking,
53.4s| 98.5s 99.6s| 98.2s| 98.2s which we include in\. but occasionally disable inbCKSMITH.
sis900 57 8 8 8 8 Several completely automatic static analyses have been devel-
_ 40.5s | 59.6s 605s| 610s| 61.0s oped for finding races in C code. Polyspace [27] is a proprietary
slip 25 19 19 19 19 tool that uses abstract interpretation to find data races (and other
FE100 7‘2783 16'2245 16'24; 16535 16'25; problems). The Blast model checker has been used to find data
1825 | 311s 316s| 318s| 318s races in programs written in NesC, a variant of C [26]. Race check-
: : : - : ing is not limited to checking for consistent correlation and can be
Table 3. Summary of per-feature effects state dependent, but is limited to checking global variables and can

be quite expensive. Seidl et al [45] propose a framework for an-
) ) alyzing multi-threaded programs that interact through global vari-
Dynamic systems such as Eraser [44] instrument a program aples. Using their framework they develop a race detection system
to find data races at run time and require no annotations. The for C and apply it to a small set of benchmarks, finding a number
efficiency and precision of dynamic systems can be improved with of data races. It is unclear whether their analysis supports context
static analysis [7, 36, 1]. Dynamic systems are fast and easy to usegensitivity and how it models data structures. RacerX [10] does not
but cannot prove the absence of races, and require comprehensivgoundly model some features of C for better scalability and to re-
test suites. . _ duce false alarms, but may miss races as a result. KISS [39] builds
Researchers have developed type checking systems againsgn model checking techniques, and has been shown to find many
races [13] for several languages, including Java [14], Java variantsraces, but ignores possible thread interleavings, possibly missing
[6], and Cyclone [22]. In general, systems based on type checking the most subtle bugs.
perform very well, but require a significant number of programmer  Work that detects violations atomicity either dynamically [16]
annotations, which can be time consuming when checking large or statically [20, 18] typically requires a program to be free of races.
code bases [10, 15]. Static race detection in ESC/Java [19],which  Qur analysis is based on ideas initially explored by Reps et
employs a theorem prover, similarly requires many annotations. 3| [41] and Rehof and #hndrich [40], who showed how to encode
Some researchers have developed tools to automatically infer context-sensitive analysis as a context-free language reachability
the annotations needed by the Java-based type checking systemgroblem. Our support for existential types is relatedéatrict
just mentioned. Most target Java 1.4, which simplifies the problem or focus for alias analysis [3, 11]. Our flow-sensitive analysis
by permitting only lexically-acquired locks viaynchronized is a significant extension of our previous work on flow-sensitive
statements, whereas C (and Java 1.5) programs may acquire angype qualifiers [21], which used a similar flow-sensitive constraint
release locks at any program point. Houdini [15] can infer types graph. Both systems can be seen as inference for a variant of the
for the original race-free Java system [14], but lacks context- calculus of capabilities [8].
sensitivity. More recently Agarwal and Stoller [2] and Rose et Correlation between locks and locations is similar to correlation
al [43] have developed algorithms that infer types based on dy- hetween regions and pointers, and several researchers have looked
namic traces, but these require sizeable test suites to avoid excesat the problem of region inference, including the Tofte and Birkedal
sive false alarms. Flanagan and Freund [17] have proposed a systengystem for the ML Kit [47]. Henglein et al [25] use a control-flow-
for inference which is formulated to support parameterized classessensitive and context-sensitive type system to check that regions
and dependent types. Though the problem is NP-complete, theirwith non-lexical allocation and deallocation are used correctly. Our
SAT-based approach can analyze 30K lines of Java code in 46 min-treatment of lock allocation is similar to Henglein et al's treatment
utes. Von Praun and Gross’s dataflow-based system also requiresf region allocation, but our formal system supports higher-order

n(; annotatioc?s and performs well, checking 2000-line programs in functions, and we present a constraint-based inference algorithm.
a few seconds.

Naik, Aiken, and Whaley present a race detection system for .
Java [34]. Their system scales well to large Java programs and hasG' Conclusion
found a number of races. They use a cloning-based alias analysisWe have developed a tooldcksMmITH, that aims to prove the ab-
and hence their approach does not suffer the summarization prob-sence of data races in a C program. The core componerdOkL
lem mentioned in Section 2.1 for other context-sensitive analyses. SMITH is a context-sensitiveorrelation analysighat determines
Analyzing Java 1.4 avoids some problems we encountered analyz-whether there exists a lock that is held consistently each time a
ing C code, such as flow sensitive locking, low-level pointer op- memory location is accessed. This paper formalizes correlation



analysis as a constraint-based type and effect system for a simple[20] C. Flanagan and S. Qadeer. A Type and Effect System for Atomicity.

language\» which we have proven sound. A novel feature of our
formalism is its use of effects to ensure that dynamically-allocated

locks can be accurately tracked, with a means to safely hide effects

to better support recursive functionsotksmITH uses a series of
technigues to scale correlation analysis to the full C language, in-
cluding flow-sensitive state tracking, existential types, sharing anal-
ysis, and heuristics to model type casts to and fraid*. When
applied to a set of benchmarkspEksmITH discovered a number

of real data races with a modest rate of false alarms. We are contin-

uing to explore how to scaledcksMmiITH to large code bases.
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