
L OCKSMITH : Context-Sensitive Correlation
Analysis for Race Detection

Polyvios Pratikakis
University of Maryland, College Park

polyvios@cs.umd.edu

Jeffrey S. Foster
University of Maryland, College Park

jfoster@cs.umd.edu

Michael Hicks
University of Maryland, College Park

mwh@cs.umd.edu

Abstract
One common technique for preventing data races in multi-threaded
programs is to ensure that all accesses to shared locations are con-
sistently protected by a lock. We present a tool called LOCKSMITH
for detecting data races in C programs by looking for violations of
this pattern. We call the relationship between locks and the loca-
tions they protectconsistent correlation, and the core of our tech-
nique is a novel constraint-based analysis that infers consistent cor-
relation context-sensitively, using the results to check that locations
are properly guarded by locks. We present the core of our algorithm
for a simple formal languageλB which we have proven sound, and
discuss how we scale it up to an algorithm that aims to be sound
for all of C. We develop several techniques to improve the preci-
sion and performance of the analysis, including a sharing analysis
for inferring thread locality; existential quantification for modeling
locks in data structures; and heuristics for modeling unsafe fea-
tures of C such as type casts. When applied to several benchmarks,
including multi-threaded servers and Linux device drivers, LOCK-
SMITH found several races while producing a modest number of
false alarms.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification—Validation; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages—
Program analysis

General Terms Languages, Verification

Keywords context-sensitivity, correlation, race detection, type in-
ference, multi-threaded programming, locksmith

1. Introduction
Data racesoccur in multi-threaded programs when one thread
accesses a memory location at the same time another thread writes
to it. While some races are benign, those that are erroneous can
have disastrous consequences [31, 37]. Moreover, race-freedom is
an important program property in its own right, because race-free
programs are easier to understand, analyze, and transform [4, 42].
For example, race freedom is necessary for reasoning about code
that uses locks to achieve atomicity [16, 20].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’06 June 11–14, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-320-4/06/0006. . . $5.00.

In this paper, we present a static analysis tool called LOCK-
SMITH for automatically finding all data races in a C program. Our
analysis aims to be sound so that any potential races are reported,
modulo the unsafe features of C such as arbitrary pointer arithmetic
and type casting. We check for data races by enforcing one of the
most common techniques for race prevention: We ensure that for
every shared memory locationρ there is some lock̀ that is held
wheneverρ is accessed. While this technique is not the only way to
prevent races, it is common in multi-threaded software.

Our goal is to produce a practical race-detection tool for C. A
number of type systems have been developed for preventing races
given specifications [5, 6, 13, 14, 22], but these can require con-
siderable programmer annotations, limiting their practical applica-
tion. Most completely-automatic static analyses have considered
Java [2, 43, 17, 34, 28], thus avoiding many of the problematic
features of C, such as type casts, low-level pointer operations, and
non-lexically scoped locks. Those that consider C are either un-
sound, do not check certain idioms, or may have trouble scaling. A
lengthy discussion of related work may be found in Section 5.

The core algorithm used by LOCKSMITH is an analysis that
can automatically infer the relationship between locks and the
locations they protect. We call this relationshipcorrelation, and a
key contribution of our approach is a new technique for inferring
correlation context-sensitively. We present our correlation analysis
algorithm for a formal languageλB that abstracts away some of
the complications of operating directly on C code. Our analysis
is constraint-based, using context-free language reachability [40,
41] and semi-unification [24] for context-sensitivity. Because each
location must be consistently correlated with at least one lock,
we use ideas from linear types to maintain a tight correspondence
between abstract locks used by the static analysis and locks created
at run time. We allow locks created in polymorphic functions to be
treated distinctly at different call sites, and we use a novel type and
effect system to ensure that this is safe.

In order to move fromλB to C, we use a number of additional
techniques. One novel contribution is that we supportexistential
quantification, which allows us to model correlations among fields
of a data structure element, even after that element is merged
into the “blob” typical of constraint-based alias analysis [9]. We
use flow-sensitive analysis to model lock acquires and releases,
which need not be lexically scoped. Our implementation includes
a sharing analysis to model thread-local data, and uses heuristics
to model type casts, including the special case of casts to and from
void *. Finally, we use a lazy technique to efficiently model the
largestruct types typical of C programs.

We ran LOCKSMITH on a set of benchmarks, including pro-
grams that use POSIX threads and several Linux kernel device
drivers. Our tool runs in seconds or minutes on our example pro-
grams, although for some other programs we have tried it does not
complete due to resource exhaustion. LOCKSMITH found a num-

pthread_mutex_t L1 = ..., L2 = ...;
int x, y, z;

void munge(pthread_mutex_t *l, int *p) {
pthread_mutex_lock(l);
*p = 3;
pthread_mutex_unlock(l);

}
...
munge(&L1, &x);
munge(&L2, &y);
munge(&L2, &z);

Figure 1. Locking Example in C

ber of data races, and overall produces few total warnings, making
it easy to inspect the output manually. We also measured the effec-
tiveness of the various analysis features mentioned above, and we
found that all are useful, reducing the number of warnings in total
by as much as a factor of three overall.

In summary, this paper makes the following contributions:

• We describe a context-sensitive correlation analysis for the lan-
guageλB. Given a source program inλB, our analysis deter-
mines whether every memory location in the program is consis-
tently correlated with a lock. Our analysis models locks linearly
and uses a novel effect system to treat locks created in different
calls to a function distinctly. (Section 2)

• We scale up our analysis to the C programming language with
a series of additional techniques, including flow-sensitivity, ex-
istential quantification, and a sharing analysis to infer thread-
local data. (Section 3)

• We evaluate our implementation on a small set of benchmarks.
LOCKSMITH was able to find several races with few overall
warning messages. (Section 4)

Although we focus on locking in this paper, we believe that the
concept of correlation may be of independent interest. For example,
a program may correlate a variable containing an integer length
with a array having that length [49]; it may correlate an environ-
ment structure with the closure that takes it as an argument [32]; or
it may correlate a memory location with theregion in which that
location is stored [23, 25].

2. Race Freedom as Consistent Correlation
Consider the C program in Figure 1. This program has two locks,
L1 andL2, and three integer variables,x, y, andz (we omit initial-
ization code for simplicity). The functionmunge takes a lock and a
pointer and writes through the pointer with the lock held. Suppose
that the program makes the three calls tomunge as shown, and that
this sequence of calls is invoked by two separate threads.

This program is race-free because for each location, there is a
lock that is always held when that location is accessed. In particular,
L1 is held for all accesses tox, andL2 is held for all accesses to both
y andz. More formally, we say that a locationρ is correlatedwith
a lock ` if at some point a thread accessesρ while holding`. We
say that a locationρ and a lock` areconsistently correlatedif `
is alwaysheld by the thread accessingρ. Thus if all locations in a
program are consistently correlated, then that program is race free.

Establishing consistent correlation is a two-step process. First,
we determine what locks̀are held when the thread accesses some
location ρ. Having gathered this information, we can then ask
whetherρ is consistently correlated with some lock.

To simplify our presentation, we present the core of our algo-
rithm for a small languageλB in which locations can be guarded

e ::= x | v | e1 e2 | if0 e0 then e1 else e2
| (e1, e2) | e.j | let f = v in e2 | fix f.v | f i
| newlock | ref e | !e2 e1 | e1 :=e3 e2

v ::= n | λx.e | (v1, v2)

Figure 2.λB Syntax

let L1 = newlock in
let L2 = newlock in
let x = ref 0 in
let y = ref 1 in
let z = ref 2 in

let munge l p =

p :=l 3 in

munge1 L1 x;
munge2 L2 y;
munge3 L2 z munge

lp

xyz L2L1

(1(2 31 2(3

Figure 3. Locking example inλB and its constraint graph

by at most one lock (rather than a set of locks), and in which the
lock correlated with a memory read or write is made explicit in the
program text. This allows us to defer the problem of determining
what locks are held at each dereference and focus on checking for
consistent correlation. In Section 3, we describe how to extend our
ideas to find data races in the full C programming language, includ-
ing how to infer held lock sets at each program point.

2.1 The LanguageλB

Figure 2 presents the syntax ofλB, a polymorphic lambda calcu-
lus extended with integers, comparisons, pairs, a primitive for gen-
erating mutual exclusion locks, and updatable references. We an-
notate function occurrencesf i with an instantiation sitei, as in
some other context-sensitive analyses [40]. Dereferences!e e1 and
assignmentse1 :=e e2 take as an additional argument an expres-
sion e that evaluates to a lock, which is acquired for the duration
of the memory access and released afterward. To keep the presen-
tation simplerλB does not include other language features such
as recursive data structures, although those are handled by LOCK-
SMITH. The left side of Figure 3 gives the program in Figure 1 mod-
eled inλB. The body ofmunge has been reduced to the expression
p :=l 3, indicating thatl will be held during the assignment top.

To check whether this program is consistently correlated, a
natural approach would be to perform a points-to analysis for all of
the pointers and locks in the program. At the assignmentp :=l 3
in the program, we could correlate all of the locationsρ to which
p may point with thesingleton lock ` to which l points. The
lock l must point to a singlè or else some locationρ might be
accessed sometimes with one lock and sometimes with another.
Unfortunately, this condition is not satisfied in our example: the
points-to set ofl is {L1, L2}, since it will beL1 at the first call to
munge andL2 at the second call. Thus our hypothetical algorithm
would erroneously conclude that no single lock is held for all
accesses, leading to false reports of possible races.

The problem is that correlation betweenl and p is not be-
ing treatedcontext-sensitively. Even if we were to use a context-
sensitive alias analysis [9], the points-to sets mentioned above
would be the same, assuming that within the body of the function
we summarized all calls, which is a standard technique.

We address this problem in two steps. First, we introducecorre-
lation constraintsof the formρB`, which indicate that the location

types τ ::= int | τ × τ | τ →ε τ ′ | lock ` | ref ρ τ
labels l ::= ` | ρ
effects ε ::= ∅ | {`} | χ | ε] ε′ | ε ∪ ε′

polytypes σ ::= (∀.τ,~l)
constr. sets C ::= ∅ | {c} | C ∪ C
constraints c ::= τ ≤ τ ′ (subtyping)

| ` = `′ (lock unification)
| ρ ≤ ρ′ (location flow)
| ρB ` (correlation)
| ε ≤ χ (effect flow)
| ε ≤~l χ (effect filtering)
| effect(τ) = ∅ (effect emptiness)
| τ �ip τ ′ (type instantiation)
| ` �i `′ (lock instantiation)
| ρ �ip ρ′ (location inst.)
| ε �i χ (effect inst.)

Figure 4. Types and Constraints

ρ is correlated with the lock̀. Here,ρ and` are location and lock
labels, used to represent locations and locks that arise at run time.
Our analysis generates correlation constraints based on occurrences
of !e e1 ande1 :=e e2 in the program. Second, we formalize an
analysis to propagate correlation constraints in a context-sensitive
way throughout the program, by creating a variety of other (flow)
constraints and solving them to determine whether correlations are
consistent. We define consistent correlation precisely as follows.

DEFINITION 1 (Correlation Set).Given a locationρ and a set of
constraintsC, we define thecorrelation setof ρ in C as

S(C, ρ) = {` | C ` ρB `}

Here we writeC ` ρB ` to say thatρB ` can be proven from the
constraints inC.

DEFINITION 2 (Consistent Correlation).A set of constraintsC is
consistently correlatedif ∀ρ. |S(C, ρ)| ≤ 1.

Thus, a constraint setC is consistently correlated if all abstract
locationsρ are either correlated with one lock, or are never accessed
and so are correlated with no locks.

The right side of Figure 3 shows a graph of the constraints that
our analysis generates for this example code. Each label in the
program forms a node in the graph, and labeled, directed edges
indicate data flow. Location flow edges corresponding to a function
call are labeled with(i for the parameters at call sitei, and any
return values (not shown) are labeled with)i. Locks are modeled
with unification in our system, and we label such edges simply with
the call site, with the direction of the arrow into the type that was
instantiated. For example, bothL1 andx are passed in at call site
1, so they connect to the parameters using edges labeled with(1.
Undirected edges represent correlation. In this case, the body of
munge requires thatl andp are correlated.

After generating constraints we perform constraint resolution
to propagate correlation constraints context-sensitively through the
call graph. In this example, we copymunge’s correlation constraint
out to each of the call sites, resulting in the three correlation con-
straints shown with dashed edges:

xB L1 y B L2 z B L2

It is easy to see that these constraints are consistently correlated
according to Definition 2.

2.2 Type System

We use a type and effect system for generating constraintsC to
check for consistent correlation. Our type system proves judgments
of the formC; Γ ` e : τ ; ε, which means that expressione has type
τ and effectε under type assumptionsΓ and constraint setC.

Figure 4 gives the type language and constraints used by our
analysis. Types include integers, pairs, function types annotated
with an effectε, lock types with a label̀, and reference types with
a labelρ. Effects are used to enforce linearity for locks (see below),
and consist of the empty effect∅, a singleton effect{`}, effect vari-
ablesχ which are solved for during resolution, and both disjoint
and non-disjoint unions of effectsε] ε′ andε ∪ ε′, respectively.
λB models context-sensitivity over labels using polytypesσ, in-
troduced bylet andfix. In our type language, polytype(∀.τ,~l)
represents a universally quantified type, whereτ is the base type
and~l is the set ofnon-quantified labels [24, 40]. Finally,C is a set
of atomic constraintsc. Within the type rules, the judgmentC ` c
indicates thatc can be proven by the constraint setC; in our algo-
rithm, such judgments cause us to “generate” constraintc and add
it C.

Effects Effects ε form an important part ofλB’s type system
by enforcing linearity for lock labels. Roughly speaking, a lock
label ` is linear if it never represents two different run-time locks
that could reside in the same storage or are simultaneously live.
To understand why this is important, consider the following code,
where hypothetical types and generated constraints are marked
in comments, eliding the constraints for the references to locks.
We usee1; e2 as the standard abbreviation for(λx.e2) e1 where
x 6∈ fv(e2).

let l = ref newlock in // l : ref ρ
′
(lock `)

let x = ref 0 in // x : ref ρ int

x :=! l 1; // ρB `
l := newlock ;

x :=! l 2 // ρB `

This code violates consistent correlation becausex is correlated
with two different run-time locks due to the assignment. However,
to givel a consistent type,̀ is used to model both locks, violating
linearity. As a result, the constraints mistakenly suggest the pro-
gram is safe, becauseρ is only ever correlated with̀.

We now turn to the monomorphic type rules forλB, shown in
Figure 5. The [Newlock] rule in this system requires that when we
create a lock labeled̀we generate an effect{`}. The other rules,
like [Pair], join the effects of their subexpressions with disjoint
union], thus requiring that chosen lock labels not conflict. For ex-
ample, with the given labeling, the above code has the effect{`}]
{`}. We implicitly require that disjoint unions are truly disjoint—
during constraint resolution, we will check that this holds—and
thus we would forbidL1 andL2 from being given the same label.
On the other hand, location labelsρ, introduced in the rule [Ref]
for typing memory allocation, do not add to the effect as memory
locations need not be linear.

Some other type-based systems for race detection [13, 22] and
related systems for modeling dynamic memory allocation [46]
avoid the need for this kind of effect by forcing newly-allocated
locks (and/or locations) to be valid only within a lexical scope.
That is,newlock is replaced with a constructnewlock x in e,
which at run time generates a new lock and substitutes it forx
within e. When typing this construct,x’s label` is only valid in the
expressione, ensuring the allocated lock cannot escape. Therefore
subsequent invocations of the samenewlock x in e (e.g., within
a recursive function) cannot be confused. We can achieve the same

[Id]
C; Γ, x : τ ` x : τ ; ∅

[Int]
C; Γ ` n : int ; ∅

[Lam]
C; Γ, x : τ ` e : τ ′; ε C ` ε ≤ χ χ fresh

C; Γ ` λx.e : τ →χ τ ′; ∅

[App]

C; Γ ` e1 : τ →ε τ ′; ε1
C; Γ ` e2 : τ ; ε2

C; Γ ` e1 e2 : τ ′; ε1] ε2] ε

[Pair]
C; Γ ` e1 : τ1; ε1 C; Γ ` e2 : τ2; ε2

C; Γ ` (e1, e2) : τ1 × τ2; ε1] ε2

[Proj]
C; Γ ` e : τ1 × τ2; ε j = 1, 2

C; Γ ` e.j : τj ; ε

[Sub]
C; Γ ` e : τ1; ε C ` τ1 ≤ τ2

C; Γ ` e : τ2; ε

[Cond]

C; Γ ` e0 : int ; ε0
C; Γ ` e1 : τ ; ε1 C; Γ ` e2 : τ ; ε2

C; Γ ` if0 e0 then e1 else e2 : τ ; ε0] (ε1 ∪ ε2)

[Newlock] ` fresh
C; Γ ` newlock : lock `; {`}

[Ref]
C; Γ ` e : τ ; ε ρ fresh
C; Γ ` ref e : ref ρ τ ; ε

[Deref]

C; Γ ` e1 : ref ρ τ ; ε1 C; Γ ` e2 : lock `; ε2
C ` ρB `

C; Γ ` !e2 e1 : τ ; ε1] ε2

[Assign]

C; Γ ` e1 : ref ρ τ ; ε1 C; Γ ` e2 : τ ; ε2
C; Γ ` e3 : lock `; ε3 C ` ρB `

C; Γ ` e1 :=e3 e2 : τ ; ε1] ε2] ε3

Figure 5.λB Monomorphic Rules

effect using the [Down] rule, described below, and our approach
matches the usage ofnewlock as it occurs in practice.

Typing Rules Turning to the remaining rules in Figure 5, [Id],
[Int], and [Proj] are standard. [Lam] types a function definition, and
the effect on the function arrow is the effect of the body. Notice that
we always place effect variablesχ on function arrows; this ensures
constraints involving effects always have a variable on their right-
hand side, simplifying constraint resolution. In [App] we apply a
function e1 to argumente2, and the effect includes the effect of
evaluatinge1, the effect of evaluatinge2, and the effect of the
function body.

The [Sub] rule and subtyping rules, shown in Figure 7(a), are
also standard. Note that in rule [Sub-Lock], we require` and`′ to
be equal. Thus we have no subtyping on lock labels, which makes
it easier to enforce linearity by forcing lock labels that “flow” to-
gether to be unified. The rules in Figure 7(a) can be seen as judg-
ments for reducing subtyping on types to constraints on labels,
and during constraint resolution we assume that all subtyping con-
straints have been reduced in this way and thus eliminated.

[Cond] is mostly standard, except we use a non-disjoint union
to join the effects of the two branches, since only one ofe1 or e2
will be executed at run time. [Deref] accesses a locatione1 while
holding locke2, and generates a correlation constraint between the
lock and location label, as does [Assign].

[Let]

C; Γ ` v1 : τ1; ∅ ~l = fl(Γ)

C; Γ, f : (∀.τ1,~l) ` e2 : τ2; ε

C; Γ ` let f = v1 in e2 : τ2; ε

[Inst]
C ` τ �i+ τ ′ C ` ~l �i± ~l

C; Γ, f : (∀.τ,~l) ` f i : τ ′; ∅

[Fix]

C; Γ, f : (∀.τ,~l) ` v : τ ′; ∅ ~l = fl(Γ)
C ` τ ′ ≤ τ C ` τ �i+ τ ′′

C ` ~l �i± ~l C ` effect(τ) = ∅
C; Γ ` fix f.v : τ ′′; ∅

[Down]

C; Γ ` e : τ ; ε ~l = fl(Γ) ∪ fl(τ)
C ` ε ≤~l χ χ fresh

C; Γ ` e : τ ;χ

Figure 6.λB Polymorphic Rules (plus [Down])

Polymorphism Figure 6 gives the rules for polymorphism. [Let]
introduces polytypes. As is standard we only generalize the types of
values. In [Let] the namef is bound to a quantified type where~l is
the set of free labels ofΓ, i.e., the labels that cannot be generalized.

In [Inst], we useinstantiation constraintsto model a type in-
stantiation. The constraintτ �i+ τ ′ means that there exists some
substitutionφi such thatφi(τ) = τ ′, i.e., that at the use off la-
beled by indexi in the program,τ is instantiated toτ ′. We also
generate the constraint~l �i± ~l, which requires that all of the vari-
ables we could not quantify are renamed to themselves byφi, i.e.,
they are not instantiated.

The subscript+’s and−’s in an instantiation constraint are
polarities, which represent the direction of subtyping through a
constraint, either covariant (+) or contravariant (−). Instantiation
constraints correspond to the edges labeled with parentheses in
Figure 3. A constraintρ �i+ ρ′ corresponds to an output (i.e.,
a return value), and in constraint graphs we draw it as a directed
edgeρ →)i ρ′. A constraintρ �i− ρ′ corresponds to an input
(i.e., a parameter), and we draw it with a directed edgeρ′ →(i ρ.
We draw a constraint̀ �i `′ as an edgè′ →i `, where there
is no direction of flow since lock labels are unified but the arrow
indicates the reverse direction of instantiation.

Instantiation constraints on types can be reduced to instantiation
constraints on labels, as shown in Figure 7(b). In these rules we use
p to stand for an arbitrary polarity, and in [Inst-Fun] we flip the
direction of polarity for the function domain with the notation̄p.
For example, to generate the graph in Figure 3, we generated three
instantiation constraints

(l× p) → int �1
+ (L1× x) → int

(l× p) → int �2
+ (L2× y) → int

(l× p) → int �3
+ (L2× z) → int

corresponding to the three instantiations and calls ofmunge. For
full details on polarities, see Rehof et al [40].

Hiding Effects [Fix] introduces polymorphic recursion, which
is decidable for label flow [33, 40]. However, in our system we
instantiate effects, which because they contain disjoint unions may
grow without bound if a recursive function allocates a lock. Thus
in [Fix], we require that recursive functions have an empty effect
on their top-most arrow with the constrainteffect(τ) = ∅.

[Sub-Int]
C ` int ≤ int

[Sub-Pair]
C ` τ1 ≤ τ ′1 C ` τ2 ≤ τ ′2
C ` τ1 × τ2 ≤ τ ′1 × τ ′2

[Sub-Lock] C ` ` = `′

C ` lock ` ≤ lock `′

[Sub-Ref]
C ` ρ ≤ ρ′ C ` τ ≤ τ ′ C ` τ ′ ≤ τ

C ` ref ρ τ ≤ ref ρ
′
τ ′

[Sub-Fun]
C ` τ2 ≤ τ1 C ` τ ′1 ≤ τ ′2 C ` ε1 ≤ ε2

C ` τ1 →ε1 τ ′1 ≤ τ2 →ε2 τ ′2

(a) Subtyping

[Inst-Int]
C ` int �i int

[Inst-Pair]
C ` τ1 �ip τ ′1 C ` τ2 �ip τ ′2

C ` τ1 × τ2 �ip τ ′1 × τ ′2

[Inst-Lock]
C ` ` �i `′

C ` lock ` �ip lock `′

[Inst-Ref]
C ` ρ �ip ρ′ C ` τ �i± τ ′

C ` ref ρ τ �ip ref ρ
′
τ ′

[Inst-Fun]
C ` τ1 �ip̄ τ2 C ` τ ′1 �ip τ ′2 C ` ε1 �i ε2

C ` τ1 →ε1 τ ′1 �ip τ2 →ε2 τ ′2

(b) Instantiation

Figure 7. Subtyping and Instantiation Constraints

This is a strong restriction, and we would like to be able infer
correlations for recursive functions that allocate locks. For exam-
ple, consider the following two code snippets:

fix f.λx.
let l = newlock in
let y = ref 0 in

y :=l 42;
. . . f 0 . . .

let y = ref 0 in
fix f.λx.
let l = newlock in

y :=l 42;
. . . f 0 . . .

Heref is a recursive function that creates a lockl and accesses a
locationy. In both cases the lock does not escape the function, and
therefore the linear labels corresponding to the locks in different
iterations of the function cannot interfere. However, in the second
case the locationy is allocated outside the function, meaning that
with each iteration it will be accessed with a different lock held,
violating consistent correlation. We want to allow the first case
while rejecting the second.

Thus we add a final rule [Down] to our type system to hide
effects on lock labels that are purely local to a block of code [21].
In [Down], we generate a “filtering” constraintε ≤~l χ, which
means thatχ should contain labels inε that escapethrough~l,
but not necessarily any other label. We determine escaping during
constraint resolution. Formally,C ` escapes(l,~l), wherel is either
aρ or `, if

l ∈ ~l ∨ ∃c, l′.
“
C ` c ∧ l, l′ ∈ c ∧ C ` escapes(l′,~l)

”

C ∪ {` = `′} ⇒ C[` 7→ `′]
C ∪ {ρ0 ≤ ρ1} ∪ {ρ1 ≤ ρ2} ∪ ⇒ {ρ0 ≤ ρ2}
C ∪ {`0 �i `1} ∪ {`0 �i `2} ⇒ C[`2 7→ `1] ∪ {`0 �i `1}
C ∪ {ρ1 �i− ρ0} ∪ {ρ1 ≤ ρ2} ∪ {ρ2 �i+ ρ3} ∪ ⇒ {ρ0 ≤ ρ3}

(a) Flow of lock and location labels

C ∪ {ρ ≤ ρ′} ∪ {ρ′ B `} ∪ ⇒ {ρB `}
C ∪ {ρ �ip ρ′} ∪ {ρB `} ∪ {` �i `′} ∪ ⇒ {ρ′ B `′}

(b) Correlation propagation

C ∪ {∅ ≤ χ} ⇒ C
C ∪ {ε ∪ ε′ ≤ χ} ⇒ C ∪ {ε ≤ χ} ∪ {ε′ ≤ χ}

C ∪ {ε ≤ χ} ∪ {χ ≤ χ′} ∪ ⇒ {ε ≤ χ′}
C ∪ {ε ≤ χ} ∪ {χ ≤~l χ

′} ∪ ⇒ {ε ≤~l χ
′}

C ∪ {ε ≤ χ} ∪ {χ �i χ′} ∪ ⇒ {ε �i χ′}
—————

C ∪ {∅ �i χ} ⇒ C
C ∪ {{`} �i χ} ⇒ C ∪ {` �i `′} ∪ {{`′} ≤ χ}

`′ fresh
C ∪ {ε] ε′ �i χ0} ⇒ C ∪ {ε �i χ} ∪ {ε′ �i χ′}

∪ {χ] χ′ ≤ χ0}
χ, χ′ fresh

C ∪ {ε ∪ ε′ �i χ} ⇒ C ∪ {ε �i χ} ∪ {ε′ �i χ}
C ∪ {χ �i χ′} ∪ {χ �i χ′′} ⇒ C[χ′ 7→ χ′′] ∪ {χ �i χ′′}

—————
C ∪ {∅ ≤~l χ} ⇒ C

C ∪ {{`} ≤~l χ} ⇒ C ∪ {{`} ≤ χ}
if C ` escapes(`,~l)

C ∪ {ε] ε′ ≤~l χ0} ⇒ C ∪ {ε ≤~l χ} ∪ {ε
′ ≤~l χ

′}
∪ {χ] χ′ ≤ χ0}

C ∪ {ε ∪ ε′ ≤~l χ} ⇒ C ∪ {ε ≤~l χ} ∪ {ε
′ ≤~l χ}

(c) Effect propagation

Figure 8. Constraint Resolution

In other words,l escapes through~l if it is in ~l or if it appears in a
constraint inC with an l′ that escapes in~l. For example, ifρ B `
andρ escapes, theǹescapes. This preventsl from being hidden
in our second example above, while in the first example we can
apply [Down] to hide the allocation effect successfully. Although
[Down] is not a syntax-directed rule, it is only useful to apply it to
terms whose effect may be duplicated in the type system. Hence
we can make the system syntax-directed by assuming that [Down]
is always applied once toe in rule [Lam], so that the effect on
the function arrow has as much hidden as possible. Also note that
we can easily encode the lexically-scoped lock allocation primitive
newlock x in e as(λx.e) newlock and applying [Down] to the
application.

Uses of [Down] are rare in C programs in our experience, which
tend to use global locks. Some C programs also store locks in data
structures, and in this case [Down] allows us to hide locks that are
created and then packed inside of an existential type (Section 3.3)
that contains the only reference to them.

2.3 Constraint Resolution

After we have applied the rules in Figures 5, 6, and 7 to aλB

program, we are left with a set of constraintsC. To check that a
program is consistently correlated, we first reduce the constraints
C into asolved form, from which we can easily extract correlations
between locks and locations.

Figure 8 gives a series of left-to-right rewrite rules that we
apply exhaustively to the constraints to compute their solution.
Figure 8(a) gives rules to compute the “flow” of locations and

locks; part (b) gives the rules for propagating correlations; and part
(c) propagates effects so that we can check that disjoint unions are
truly disjoint. The rules in part (a) are mostly standard, while parts
(b) and (c) are new. Here,C ∪ ⇒ C′ meansC ⇒ C ∪ C′.

The first rule of part (a) resolves equality constraints on lock
labels and the second transitively closes subtyping constraints on
location labels. The next rule is the standard semi-unification rule
[24]: If a lock label `0 is instantiated at sitei to two different
lock labels`1 and`2, then`1 and`2 must be equal (because the
substitution at sitei has to substitute for̀0 consistently). The final
rule is for “matched flow.” Recall the [Inst] rule from Figure 6: if
f has polytype(∀. ref ρ1 τ1 →∅ ref ρ2 τ1, ∅), then instantiating
this polytype at sitei to the typeref ρ0 τ1 →∅ ref ρ3 τ1 requires
thatC contain instantiation constraintsρ1 �i− ρ0 andρ2 �i+ ρ3

(according to [Inst-Fun] and [Inst-Ref]). The negative constraint
corresponds to context-sensitive flow from the caller’s argument to
the function’s parameter while the positive constraint corresponds
to the returned value. Say thatf is the identity function; thenC
would contain the constraintρ1 ≤ ρ2, indicating the function’s
parameter flows to its returned value. Thus the argument at site
i should flow to the value returned at sitei, and so the matched
flow rule permits the addition of a flow edgeρ0 ≤ ρ3. For a full
discussion of this rule, see Rehof et al [40].

In the correlation propagation rules in part (b), the first rule says
that if locationρ flows to a locationρ′ that is correlated with̀ ,
thenρ is correlated with̀ also. Notice that there is no similar rule
for flow on the right-hand side of a correlation, because we unify
lock labels. The next rule propagates correlations at instantiation
sites. Similarly to location propagation, if we have a correlation
constraintρ B ` on the labels in a polymorphic function, and we
instantiatè to `′ andρ to ρ′ at some sitei, then we propagate the
correlation tò ′ andρ′. For example, Figure 3 depicts the following
three constraints, among others (recall an edgel′ →(i l in the figure
corresponds to a constraintl �i− l′):

l �1
− L1 p �1

− x p B l

Using our resolution rule yields the constraintxBL1, shown in Fig-
ure 3 with a dashed line. Note that the polarity of the instantiation
constraint onρ is irrelevant for this propagation step, because locks
can correlate with both inputs (parameters) and output (returns).

Part (c), presented as three blocks of rules, propagates effect
constraints. The first block of rules discards useless effect subtyp-
ing, replaces standard unions by two separate constraints, and com-
putes transitivity of subtyping on effects. The next block of rules
handles instantiation constraints. The constraint∅ �i χ can be dis-
carded, because it places no constraint onχ. (It is not even the case
thatχ must be empty, because it may have subtyping constraints
on it from other effects.) In the next rule we model instantiation
of a function with a single effect{`}. In our system, each time we
call a function that invokesnewlock we wish to treat the locks
from different calls differently. Thus we create a fresh lock label`′

that flows toχ and require that̀ is instantiated tò ′. The remain-
ing rules copy disjoint unions across an instantiation site, expand
non-disjoint unions, and require that effect variables are instanti-
ated consistently.

The last block of rules propagates effects across filtering con-
straints. The only interesting rule is the second one, which prop-
agates an effect{`} to χ only if ` escapes in the set~l; this cor-
responds to “hiding” effectsχ that are only used within a lexical
scope.

After applying the rewrite rules, there are three conditions we
need to check. First, we need to ensure that all disjoint unions
formed during type inference and constraint resolution are truly
disjoint. We defineoccurs(`, ε) to be the number of times label

` occurs disjointly inε:

occurs(`, ∅) = 0
occurs(`, χ) = maxε≤χ occurs(`, ε)

occurs(`, {`}) = 1
occurs(`, {`′}) = 0 ` 6= `′

occurs(`, ε] ε′) = occurs(`, ε) + occurs(`, ε′)
occurs(`, ε ∪ ε′) = max(occurs(`, ε), occurs(`, ε′))

We require for every effectε created during type inference (includ-
ing constraint resolution), and for all`, thatoccurs(`, ε) ≤ 1. We
enforce the constrainteffect(τ) = ∅ by extracting the effectε from
the function typeτ and ensuring thatoccurs(`, ε) = 0 for all `.

Finally, we ensure that locations are consistently correlated with
locks. We computeS(C, ρ) for all locationsρ and check that it
has size≤ 1. This computation is easy with the constraints in
solved form; we simply walk through all the correlation constraints
generated in Figure 8(b) to count how many different lock labels
appear correlated with each locationρ.

We now analyze the running time of our algorithm for each part
of constraint resolution. Letn be the number of constraints gen-
erated by walking over the source code of the program. Then the
rules in Figure 8(a) take timeO(n3) [40], as do the rules in Fig-
ure 8(b), since givenn constraints there can be onlyO(n2) cor-
relations among locations and locks mentioned in the constraints.
Constraint resolution rules like those given in parts (a) and (b) have
been shown to be efficient in practice [9].

There exist constraint setsC for which the rules in Figure 8(c)
will not terminate. This is because a cycle in the instantiation con-
straints might result in a single effect being repeatedly copied and
renamed. We believe that this cannot occur in our type system, how-
ever, because we forbid recursive functions from having effects.
Even so, effect propagation can still beO(2n), because a single ef-
fect might be copied through a chain of instantiations that double
the effect each time.

Soundness We have proven that a version of our type systemλcp
B

based on polymorphically constrained types [33] is sound, and that
the system presented here reduces to that system. We define a call-
by-value operational semantics as a series of rewriting rules, using
evaluation contextsE to define evaluation order, as is standard. The
evaluation rule fornewlock generates a fresh lock constantL, and
ref v generates a fresh location constantR. We extend labelsl to
includeL andR and define typing rules for them. We also introduce
allocation constraintsL ≤1 ` to indicate that lock variablè has
been allocated as constantL. We then refineS(C, ρ) to Sg(C, ρ),
which only refers to concrete lock labels:

Sg(C, ρ) = {L | C ` ρB ` ∧ C ` L ≤1 `}

ThusSg(C, ρ) is the set of concrete locks correlated withρ in C.
Next we define valid evaluation steps, which are those such that

if a locationR is accessed with lockL, thenL ∈ Sg(C,R).

DEFINITION 3 (Valid Evaluation).We writeC ` e −→ e′ iff
e ≡ E[![L] vR] or e ≡ E[v′R :=[L] v] impliesL ∈ Sg(C,R).

Notice that this still allows a location to be correlated with more
than one lock. We define an auxiliary judgmentε `ok C, which
holds if inC all locations are consistently correlated and no lock
labels inε have been allocated.

We write `cp for the type judgment inλcp
B . We then show

preservation, which implies soundness.

LEMMA 1 (Preservation).If C; Γ `cp e : τ ; ε whereε `ok C and
e −→ e′, then there exists someC′, ε′, such that(ε′−ε)∩fl(C) =
∅; and C′ ` C; and C′ ` e −→ e′; and ε′ `ok C′; and
C′; Γ `cp e′ : τ ; ε′.

(The proof is by induction onC; Γ `cp e : τ ; ε.) This lemma
shows that if we begin with a consistently correlated constraint
system and take a step for an expressionewhose effect isε, then the
evaluation is valid. Moreover, there is some consistently correlated
C′ that entailsC, whereC′ may contain additional constraints if
the evaluation step allocated any locks or locations. Notice that
sinceC′ entailsC, any correlations that hold inC also hold in
C′. Since at each evaluation step we preserve existing correlations
and maintain consistent correlation, a well-typed program is always
consistently correlated during evaluation.

Finally, we can prove that we can reduce judgments inλB to
λcp

B . This reduction-based proof technique follows Fähndrich et al
[12].

LEMMA 2 (Reduction).Given a derivation ofC; Γ ` e : τ ; ε,
thenC∗; Γ∗ `cp e : τ ; ε∗.

whereC∗ is the set of constraints closed according to the rules in
Figure 8(a) and (b),ε∗ is the set of locks inε according to the
rules in Figure 8(c), andΓ∗ is a translation fromλB to λcp

B type
assumptions.

Full proofs can be found in a forthcoming technical report.

3. LOCKSMITH : Race Detection for C
LOCKSMITH applies the ideas of Section 2 to the full C program-
ming language. We implemented LOCKSMITH using CIL [35] as
a C front-end and using BANSHEE [30] to encode portions of the
constraint graph and to apply the resolution rules in Figure 8(a). We
use our own constraint solver for the rest of the analysis.

LOCKSMITH is structured as a set of modules implementing dif-
ferent phases of the analysis. The first phase traverses source code
and generates constraints akin toλB constraints. However, while
λB programs specify a correlation between a lock and a location
explicitly, in C such correlations must be inferred. Using some ad-
ditional constraint forms, LOCKSMITH infers which locks are held
at each program point, and generates correlations accordingly to
detect potential races. As an optimization, LOCKSMITH includes a
middle phase to compute which locations are always thread-local
and therefore can be ignored for purposes of checking correlation.
LOCKSMITH also includes two additional features to improve pre-
cision for C. We support existential types, to model locks stored in
data structures, and we try to model pointers tovoid precisely and
structures efficiently.

3.1 Flow-Sensitive Race Detection

LOCKSMITH extendsλB type judgments to includestate variables
ψ [21] to model the flow-sensitive events needed to infer correla-
tions. Judgments include both an input and an output state variable,
representing the point just before and just after, respectively, execu-
tion of the expression. Function types also have an input and output
ψ, to represent the initial and final states of the function. Control
flow from stateψ to stateψ′ is indicated by acontrol flow con-
straintψ ≤ ψ′, and we also include instantiation on states, written
ψ �ip ψ′. Each state is assigned akind that describes how that state
differs from preceding states.

As an example, the typing rule for acquiring a lock is

[Acquire]

ψ;C; Γ ` e : lock `;ψ′; ε ψ′′ fresh
C ` ψ′ ≤ ψ′′ C ` ψ′′ : Acquire(`)

ψ;C; Γ ` acquire e : int ;ψ′′; ε

This rule says that to infer a type foracquire e beginning in state
ψ, we infer a labeled lock type fore, whose evaluation produces
the stateψ′. We create a new stateψ′′ that immediately follows
ψ′ and in which` is acquired. A similar rule forrelease e
annotates states with kindRelease(`), and a rule for dereferences
and assignments annotates states with kindDeref(ρ) for reads

of writes to locationρ. An example of control-flow constraints is
shown below in Section 3.3.

Computing Held Locks Given a control-flow constraint graph,
LOCKSMITH computes the locks held at each program point rep-
resented by a stateψ. Assume for the moment that all locks are
linear. Then at a nodeψ such thatC ` ψ : Acquire(`), the lock
` is clearly held. We iteratively propagate this fact forward through
constraintsψ ≤ ψ′ (and likewise for instantiation constraints) stop-
ping propagation at any nodeψ for whichC ` ψ : Release(`).
At joins we intersect the sets of acquired locks. This continues until
we reach a fixed point.

In essence this analysis computes the set of locks thatmustbe
acquired at each program point. Notice that because the analysis
is necessarily conservative, we may decide at a program point that
lock ` is not held even if it is at run time. This is safe because if our
analysis inaccurately determines that a lock is released, at worst it
will report a data race where no race is possible.

At function calls, denoted by another kind ofψ variable, we
“split” the set of locks. At a split, we propagate the state of` to the
function’s input state only if that function actually changes the state
of (acquires or releases)`, since otherwise the function must be
polymorphic in`’s state. (Which locks are (transitively) mentioned
by a function is determined by a standard, context-sensitive effect
analysis.) The state of other locks is added to the output state of the
function upon return. This is similar toMergenodes in CQual [21].
Crucially, this optimization ensures we do not conflate lock states
at calls to library functions such asprintf. At instantiation sites
ψ �ip ψ′, we use the renaming defined by�i+ to copy the states of
any locks in the domain of the substitution corresponding toi from
ψ toψ′, and vice-versa for�i− constraints.

Inferring Correlations and Finding Races Now, for each state
variableψ of kind Deref(ρ), we generate a correlation constraint
ρ B {`1, . . . , `n}, where thè i are the set of locks held atψ. (We
have extended correlation constraints to include a set of locks rather
than a single lock.)

Given the correlation constraints, we could apply the rules in
Figure 8(b) to infer all correlations. However, because we “split”
lock states at function calls, this would result in many false alarms,
since a correlation constraintρ B {`1, . . . , `n} generated inside
a function really means that locks̀i are heldin addition to any
locks held at the function’s callers. Thus in LOCKSMITH, rather
than inserting each correlation constraint into a global setC, we
define a family of constraint setsCψ, one perψ, and propagate
them backwards along the control-flow constraint graph. When we
reach a split node in the constraint graph, we add to each correlation
constraint any held locks that were split off previously.

When we are done propagating, we check for consistent corre-
lation among the correlation constraintsCmain

ψ which correspond to
the initial stateψ of main(). As correlation constraints now refer
to lock sets, we define

S(C, ρ) = {{`1, . . . , `n} | C ` ρB {`1, . . . , `n}}
A location labeledρ is consistently correlated if

|
\
S(C, ρ)| ≥ 1

i.e., if there is at least one lock held every timeρ is accessed.
In the discussion thus far we have assumed that all locks are

linear, but as per discussion in Section 2 this could be unsound.
Rather than forbid non-linear locks, in LOCKSMITH we treat them
as always released. Therefore non-linear locks are never included
in correlation constraints, and so they do not prevent races from
being reported. Our implementation currently allows most linearity
checking to be optionally disabled, as we have found it is not very
helpful in practice and can have a steep performance penalty. Our

int x;

void *f(...) {
int *p = (int *) malloc(...);
*p = x;

}

int main(void) {
x = 42;
pthread_create(..., f, ...);
pthread_create(..., f, ...);

}

Figure 9. Example of Sharing Analysis

implementation also omits the right disjunct of theescapes(`,~l)
check used for [Down] because it is not supported by BANSHEE.
While possible, it is highly improbable that this omission will result
in missed races.

3.2 Shared Locations

As an optimization, LOCKSMITH generates correlation constraints
at statesDeref(ρ) only whenρmay be thread-shared. Thus thread-
local data need not be consistently correlated, which in practice
substantially improves the precision and efficiency of LOCKSMITH.

We use several techniques to infer sharing. Our core technique
is based oncontinuation effects. In the standard approach, the effect
of an expressione denotes those locations read and written by
e. In our approach, each expression has both input and output
effects,εi andεo, whereεo denotes the locations read and written
in the program executed aftere (including forked threads), while
εi containsεo and those locations read and written ine itself. We
compute continuation effects context-sensitively using BANSHEE.

When a new thread is created, we determine the locations it
might share with its parent (or other threads the parent forks) as
follows. Let εt be the input effect of the child thread, and letε∗
be theinput closureof a continuation effectε, defined as all those
locationsρ′ that could flow to locationsρ ∈ ε. ThenS = ε∗t ∩ ε∗o is
the possibly-shared locations due to the fork, whereεo is the output
effect of the parent. We pruneS further to only mentionρ if it is
written in eitherε∗t or ε∗o (so that read-only access is not a race). For
eachDeref(ρ) state, we generate a correlation constraint forρ if

ρ∗ ∩
[
all S

S 6= ∅

We make two improvements to this basic technique. First, rather
than intersectρ∗ with all S, we consider only thoseS due to the
forking of the current thread, its ancestors, or any child threads
created by the current thread prior to the dereference ofρ; all
dereferences inmain prior to forking the first thread are considered
unshared. This allows data to be accessed thread locally without
protection, and only once it becomes shared must it be consistently
correlated. Second, we apply aDown-Forkrule to further filter from
S locations that do not escape a forked thread, and thus cannot be
shared with its parent. In particular, suppose we spawn a threadt
that may access locationρ. Then we observe that ifρ∗∩fl(Γ)∗ = ∅,
wherefl(Γ) is the set of free labels in the types of variables visible
at the point of the fork, thenρ is not visible outside the child thread
and thus cannot be shared.

To see the benefit of these techniques, consider the code in
Figure 9. This program initializes a global variablex and then forks
two threads (usingpthread create) that invoke the functionf,
which readsx and writes it to freshly-allocated storage. Sharing
analysis determines thatx is never written after it becomes shared,

let m = newlock`1 in
let x = refρ1 1 in
let p =
if0 b then
pack1 (m, x)

else

pack2 (newlock`2 , refρ2 2)
in
unpack (l, r) = p in
acquire l;
r := 3;
release l

Acquire

Release

ℓ1

ℓ2
ℓ

1

2

Deref
ρ1

ρ2

ρ

(1

(2

Ψ

Pack Pack

(1 (2

(a) Source code (b) Constraint graph

Figure 10.Existential Quantification

and hence does not require consistent correlation. Also notice that
both copies off allocate a location at the same syntactic position
in the program. Thus our analysis assigns both allocations the
same locationρ. A naive analysis would determine thatρ is shared
because it is accessed by both child threads. Using Down-Fork,
however, we observe thatρ does not escape the body off and hence
is thread-local.

Finally, our implementation also includes auniquenessanalysis.
We perform a very basic, intraprocedural, flow-sensitive alias anal-
ysis to determine when local variables definitely point to thread-
local memory. For example, consider the following code:

int* x = (int *) malloc(sizeof(int));
*x = 2;
lock(l);
shared = x; /* becomes shared */

Here x points to newly-allocated memory that is subsequently
initialized. Thenx is assigned toshared—a variable visible to
another thread—after acquiring lockl. The assignment causes*x
to be an alias ofshared; if this code occurs in a routine run by
multiple threads, our earlier sharing analysis will think thatx is
always thread-shared. But our local uniqueness analysis observes
that at the write to*x, the variablex has not yet escaped, and hence
the write is ignored for purposes of correlation.

3.3 Existential Quantification for Data Structures

In applying our system to C programs, we found several examples
where locks are stored in heap data structures along with the data
they protect. Standard context-sensitive analyses typically merge
all elements of the same data structure into an indistinguishable
“blob,” which would cause us to lose track of the identities of
locations and the linearities of locks in data structures. In this
subsection we briefly sketch an approach to solving this problem
that has proven effective for one of our benchmarks.

As an example, consider the program in Figure 10(a). This
program first bindsm to a new lock labeled̀1, and then bindsx to
a new reference labeledρ1 (here for convenience we mark labels in
the source code directly). The program then setsp to be one of two
pairs. Thepackoperation alerts our analysis that the pairs should
be treated abstractly so that we can conflate them without losing
correlations. Next the programunpacksp and acquires the pair’s
lock before dereferencing its pointer.

Notice that althoughr may be eitherρ1 or ρ2 at runtime, and
l may be either̀ 1 or `2, in either case the correct lock will be
acquired. Because we usedpack before the data structure was

conflated, our analysis givesp the type

∃`, ρ[ρB {`}]. lock `× ref ρ int

meaning thatp contains some lock̀ and some locationρ where`
andρ are correlated.

One key novelty of LOCKSMITH is that, given a program with
pack andunpack annotations, we performinferenceon existen-
tial types using constraint resolution rules similar to those in Fig-
ure 8. Figure 10(b) shows the constraint graph for our example.
Rather than give resolution rules explicitly, we discuss the algo-
rithm informally on this example. Existential inference using this
basic technique is sound for the related problem of label flow [38].

In this figure, we represent data flow from labels`i andρi to
the packed labels̀ andρ with directed edges annotated with the
pack site. It is no coincidence that this is the same notation used
for universal quantification in Figure 3—it is the duality of univer-
sal and existential quantification that lets us use similar techniques
for both. The remaining edges show the states at the various pro-
gram points. Initially we are in some stateψ. Then we pack one of
the two pairs, represented by a split labeled with(i for pack sitei.
Within the unpack (shown in the box), we acquire lockl, derefer-
encer, and then releasel. At the dereference site, lockl is held,
and so we generate a constraintr B {l} (not shown in the graph).
We propagate this correlation constraint using matched flow as in
Figure 8(b) and generate two constraints,ρ1 B{`1} andρ2 B{`2}.
Had we not used existential quantification here, we would not have
been able to track correlation precisely, because`1 and`2 would
have been non-linear, and there would have been no way to tell
which goes withρ1 and which goes withρ2.

LOCKSMITH supports existential types forstructs. To use ex-
istentials, the programmer annotates aggregates that can be packed
to indicate which fields should have bound types after packing.
We extend C with a specialpack(x) statement that makesx’s
type existentially quantified. For unpacking, the programmer in-
sertsstart unpack(x) and end unpack(x) statements, which
begin and end the scope of the unpack, possibly non-lexically. In
Section 4, we show that existential quantification is useful for one
of our benchmarks. We needed to add a total of 29 pack, unpack,
and field annotations to the program that could benefit, and 3 of the
12start unpack operations are not lexically scoped.

3.4 Analysis ofvoid* and Aggregates

We aim to be sound, and so we use a number of techniques to
conservatively model the unsafe aspects of C without losing too
much precision. At type casts of dissimilar types we conflate loca-
tions in the actual and cast-to type. However, forvoid* pointers,
we instead maintain a set of non-void* types that are cast to or
from them [29]. Any type cast to or from thatvoid* at the same
type is unified with the matching type stored in thevoid*. This
technique enables us to model the common case whenvoid* is
used for polymorphism, which is important because the POSIX
pthread create routine takes avoid* argument that is passed
into the function called when the new thread starts. However, us-
ing this model ofvoid* is unsound, because it does not handle
up- or downcasts ofstruct types and assumes programmers use
void* safely. Nevertheless, we have found it effective in practice,
and it makes the output of LOCKSMITH much easier to interpret by
reducing conflation.

Somestruct types in C programs may have many fields (we
have seen cases of 100 or more), many of which themselves have
struct types containing many fields. For precision, we wish to as-
sign fresh labels to fields of different instances of the samestruct
type. However, if we model these types naively by representing all
fields of all instances of aggregates, then the analysis becomes very
inefficient. Instead, we represent structure fields lazily [29], so that

Benchmark Size Time Warn. Unguarded Races
(KLOC)

aget 1.6 0.8s 15 15 15
ctrace 1.8 0.9s 8 8 2
pfscan 1.7 0.7s 5 0 0
engine 1.5 1.2s 7 0 0
smtprc 6.1 6.0s 46 1 1

knot 1.7 1.5s 12 8 8

Table 1.Summary of Experimental Results: POSIX Apps

we only model those fields that are actually used. This optimization
does not affect precision, but can provide a significant speedup.

4. Experiments
We evaluated LOCKSMITH on a modest set of benchmarks, in-
cluding several small applications and medium-sized Linux kernel
drivers. We conducted our experiments on a dual Xeon@2.8GHz
PC with 3.5GB of RAM, running RedHat Enterprise Linux, kernel
version 2.4.21. LOCKSMITH was compiled using OCaml 3.08.1,
with all C code (BANSHEE and the OCaml runtime system) com-
piled withgcc 3.2.3-53 at optimization level-O2. Reported elapsed
times are the median of 7 runs.

4.1 POSIX Threads Applications

We selected several multi-threaded programs largely gathered
from sourceforge.net. Aget is an FTP client in which multiple
threads download chunks of a file.Ctraceis a library for tracing the
execution of multi-threaded programs; we analyzed a sample ap-
plication that came with its distribution.Pfscanis a multithreaded
file scanner that combines the functionality offind, xargs, and
fgrep. Engineissues requests to several search engines in parallel
and collates the responses.Smtprcis an open mail relay scanner
that looks for potential configuration problems. Finally,knot is a
multi-threaded webserver distributed with the Capriccio user-level
threads package [48].

In our experiments we measured the number of warnings re-
ported by LOCKSMITH and how many of those warnings corre-
spond to races. Here is a somewhat simplified warning taken from
aget:

Possible data race on
&bwritten(aget_comb.c:943)

References:
dereference at aget_comb.c:1079
locks acquired at dereference:

&bwritten_mutex(aget_comb.c:996)
in: FORK at aget_comb.c:468 ->

http_get aget_comb.c:468

dereference at aget_comb.c:984
locks acquired at dereference:

(none)
in: FORK at aget_comb.c:193 ->

signal_waiter(aget_comb.c:193) ->
sigalrm_handler(aget_comb.c:957)

The first part indicates where the data that might be accessed in
race is allocated, in this case the global variablebwritten defined
at line 943. The second part lists where that location may be deref-
erenced, along with the locks held at that point and the context-
sensitive control-flow path that led to the dereference. Above we
show two (out of many) accesses. The first is in a thread running
the functionhttp get with the mutex&bwritten mutex held.
The second access is in another thread runningsignal waiter,
which has called the functionsigalrm handler; this takes place
with no lock held, violating consistent correlation. In practice this
situation could arise when the user terminates aget abruptly with a

Benchmark Size Time Warn. Unguarded Races
(KLOC)

plip 19.1 24.9s 11 2 1
eql 16.5 3.2s 3 0 0

3c501 17.4 240.1s 24 2 2
sundance 19.9 98.2s 3 1 0

sis900 20.4 61.0s1 8 2 1
slip 22.7 16.5s1 19 1 0

hp100 20.3 31.8s1 23 2 0

Table 2.Summary of Experimental Results: Linux Drivers

signal, which causes it to save its current state to disk. The race on
bwritten could cause it to be confused when the program restarts.

Table 1 shows the experimental results for these application pro-
grams. We merge multi-file programs into a single C file using the
CIL merger, which eliminates duplicate and unused declarations.
The table lists the size of the merged program in lines of prepro-
cessed code. Since the application programs use the standard C
library, we constructed a stub file containing function definitions
that model the data flow and effects of libc routines used in our
benchmarks, totaling roughly 400 LOC (not counted in the table).

The third column shows the total number of warnings of poten-
tial races issued by LOCKSMITH. The “Unguarded” column lists
the number of warnings that constitute true violations of consistent
correlation. Some of these may not be races because a shared loca-
tion is protected using other techniques. The last column lists the
number of true races, in which data could be accessed simultane-
ously by two threads and one of the accesses is a write.

For aget, most of the races are similar to the example above. For
knot, all the races seem to be benign; most are due to unprotected
accesses to global variables used to gather statistics. Ctrace uses
semaphores to communicate among threads, so while 6 guarded-by
violations reported are legitimate, the data is not subject to races.
The two real races are on global variables; one is benign, but the
other is used to communicate information between threads, and a
race could cause messages to be lost. Finally, smtprc has one race
that occurs when a reaper thread sets a global counter that is also
set and read by the main thread, which could cause unpredictable
behavior.

LOCKSMITH also reported a number of false alarms, mostly
arising from two coding idioms that LOCKSMITH does not han-
dle. One is when a parent thread accesses previously shared data
after its child threads have died (3 for engine, 1 for pfscan), as de-
termined bypthread mutex join or other signaling mechanisms.
Another is when a global data structure points to thread-local data,
indexed by thread identifier (4 in engine, 44 in smtprc). The re-
maining false alarms could be handled with some improvements to
the local sharing analysis (3 for knot), and to allowable idioms of
existential initialization (3 for pfscan).

We also tried to run LOCKSMITH on several larger programs,
but were ultimately unsuccessful due to resource exhaustion. We do
not believe these problems are fundamental, and plan to continue
to investigate how LOCKSMITH can be applied to larger programs.

4.2 Device Drivers

In addition to application code, we applied LOCKSMITH to a set of
Linux device drivers. We found that determining synchronization
assumptions for device drivers is challenging because the internal
Linux API is complex and sparsely documented. Complicating
matters, earlier versions of the kernel used a single spin lock (“the
big kernel lock” or BKL) to prevent parallel access within the
kernel, and remnants of this discipline remain. For example, as far

1 Did not perform linearity checking

as we can tell, character driver operations are always called with the
BKL held, removing the need for multi-processor synchronization.

Therefore, we chose to apply LOCKSMITH to network device
drivers, which must use internal locking and are relatively well-
documented. We focused on seven drivers from the 2.6.12 ker-
nel: plip (parallel-line IP), slip (serial line IP), eql (network traffic
equalizer), and sis900, 3c501, hp100 and sundance (ethernet card
drivers). We constructed stub files with a specialmain routine that
simulates the kernel’s concurrent interaction with the driver via
interrupts, timeouts, and user process-induced calls. LOCKSMITH
models kernel spin locks in the same way it models POSIX mu-
texes. We ran LOCKSMITH with some linearity checking disabled,
because currently our semi-unification algorithm does not termi-
nate for some drivers. We believe this can be fixed by implementing
an extended occurs check [24].

Table 2 lists our results. We found a total of 4 races. The races
in plip and sis900 are both benign races on counters. One race in
3c501 is a presumably benign race on a debugging flag. The other
race in 3c501 occurs on a flag that tracks whether the driver is
transmitting. We believe a race on this flag could cause errors if it
occurs in the middle of a send operation. The guarded-by violations
that were not races were due to the use ofatomic operationswhich
are always thread safe. These are implemented with inline assembly
code that LOCKSMITH processes conservatively.

The main source of false alarms in drivers is due to conflation
and other conservatism due to type casts. This causes LOCKSMITH
mistakenly to think locations could be shared when they are not.
Several of the false alarms could be addressed using existentials, in
principle, to model a lock stored in a data structure, but we currently
cannot check the initialization pattern. Finally, in many cases syn-
chronization is context dependent, employing state variables and
other non-lock-based forms. It was difficult to tell in these cases
whether a race existed or not, since we are not kernel experts, so
we considered them to be non-races in the table.

4.3 Per-feature Effectiveness

We examined the various features described in Section 3 for im-
proving the precision of the analysis. Table 3 shows the number
of warnings issued by the tool depending on which techniques are
enabled, along with the corresponding running time. In particular,
we measured the cumulative effectiveness of four techniques: (1)
our technique for modeling avoid* cast to/from a single type pre-
cisely (Void), as compared to conflating all locations at all levels
of a type cast tovoid*; (2) the use of Down-Fork to reduce false
sharing (DownF); (3) flow-sensitive uniqueness analysis of local
variables (Uniq); and (4) using existential quantification to model
locks local to data structures (Exist), which only affects the knot
benchmark. All but the last feature are fully automatic, while exis-
tentials require manual insertion of packs and unpacks; we used 29
annotations for knot.

For a more visual comparison, we show the normalized effect
of each technique on precision in Figure 5. The non-black portion
of each bar is the scaled improvement due to the addition of that
particular feature. For example, we can see that for aget, 60%
(26 of 43) warnings were eliminated due to precise handling of
void* while an additional 4.5% (2 of 43) were removed due to
Down-Fork. Void and DownF are clearly the most useful overall.
In contrast to Void and DownF, Exists and Uniq are useful only in
a few cases, and may increase running time.

5. Related Work
A number of systems have been developed for detecting data races
and other concurrency errors in multi-threaded programs, including
dynamic analysis, static analysis, and hybrid systems.

Benchmark All off +Void +DownF +Uniq +Exist

aget 43 17 15 15 15
1.5s 0.9s 0.8s 0.8s 0.8s

ctrace 9 8 8 8 8
1.1s 0.9s 0.9s 0.9s 0.9s

pfscan 6 6 5 5 5
0.7s 0.7s 0.7s 0.7s 0.7s

engine 11 11 7 7 7
1.0s 1.0s 1.0s 1.2s 1.2s

smtprc 73 73 46 46 46
5.6s 5.8s 5.0s 6.0s 6.0s

knot 30 29 20 14 12
1.2s 1.1s 1.0s 0.9s 1.5s

plip 25 11 11 11 11
27.5s 23.8s 24.0s 24.9s 24.9s

eql 22 3 3 3 3
2.9s 3.1s 3.1s 3.2s 3.2s

3c501 24 24 24 24 24
233.4s 238.3s 238.7s 240.1s 240.1s

sundance 52 3 3 3 3
53.4s 98.5s 99.6s 98.2s 98.2s

sis900 57 8 8 8 8
40.5s 59.6s 60.5s 61.0s 61.0s

slip 25 19 19 19 19
7.7s 16.2s 16.4s 16.5s 16.5s

hp100 28 24 23 23 23
18.2s 31.1s 31.6s 31.8s 31.8s

Table 3.Summary of per-feature effects

Dynamic systems such as Eraser [44] instrument a program
to find data races at run time and require no annotations. The
efficiency and precision of dynamic systems can be improved with
static analysis [7, 36, 1]. Dynamic systems are fast and easy to use,
but cannot prove the absence of races, and require comprehensive
test suites.

Researchers have developed type checking systems against
races [13] for several languages, including Java [14], Java variants
[6], and Cyclone [22]. In general, systems based on type checking
perform very well, but require a significant number of programmer
annotations, which can be time consuming when checking large
code bases [10, 15]. Static race detection in ESC/Java [19],which
employs a theorem prover, similarly requires many annotations.

Some researchers have developed tools to automatically infer
the annotations needed by the Java-based type checking systems
just mentioned. Most target Java 1.4, which simplifies the problem
by permitting only lexically-acquired locks viasynchronized
statements, whereas C (and Java 1.5) programs may acquire and
release locks at any program point. Houdini [15] can infer types
for the original race-free Java system [14], but lacks context-
sensitivity. More recently Agarwal and Stoller [2] and Rose et
al [43] have developed algorithms that infer types based on dy-
namic traces, but these require sizeable test suites to avoid exces-
sive false alarms. Flanagan and Freund [17] have proposed a system
for inference which is formulated to support parameterized classes
and dependent types. Though the problem is NP-complete, their
SAT-based approach can analyze 30K lines of Java code in 46 min-
utes. Von Praun and Gross’s dataflow-based system also requires
no annotations and performs well, checking 2000-line programs in
a few seconds.

Naik, Aiken, and Whaley present a race detection system for
Java [34]. Their system scales well to large Java programs and has
found a number of races. They use a cloning-based alias analysis,
and hence their approach does not suffer the summarization prob-
lem mentioned in Section 2.1 for other context-sensitive analyses.
Analyzing Java 1.4 avoids some problems we encountered analyz-
ing C code, such as flow sensitive locking, low-level pointer op-

aget
ctrace

pfscan

engine

smtprc

knot
plip

eql
3c501

sundance

sis900

slip
hp100

0

20

40

60

80

100

%
 o

f
to

ta
l w

ar
ni

ng
s

Void
+DownF
+Uniq
+Exist
All on

erations, and unsafe type casts. They also omit linearity checking,
which we include inλB but occasionally disable in LOCKSMITH.

Several completely automatic static analyses have been devel-
oped for finding races in C code. Polyspace [27] is a proprietary
tool that uses abstract interpretation to find data races (and other
problems). The Blast model checker has been used to find data
races in programs written in NesC, a variant of C [26]. Race check-
ing is not limited to checking for consistent correlation and can be
state dependent, but is limited to checking global variables and can
be quite expensive. Seidl et al [45] propose a framework for an-
alyzing multi-threaded programs that interact through global vari-
ables. Using their framework they develop a race detection system
for C and apply it to a small set of benchmarks, finding a number
of data races. It is unclear whether their analysis supports context
sensitivity and how it models data structures. RacerX [10] does not
soundly model some features of C for better scalability and to re-
duce false alarms, but may miss races as a result. KISS [39] builds
on model checking techniques, and has been shown to find many
races, but ignores possible thread interleavings, possibly missing
the most subtle bugs.

Work that detects violations ofatomicity, either dynamically [16]
or statically [20, 18] typically requires a program to be free of races.

Our analysis is based on ideas initially explored by Reps et
al [41] and Rehof and F̈ahndrich [40], who showed how to encode
context-sensitive analysis as a context-free language reachability
problem. Our support for existential types is related torestrict
or focus for alias analysis [3, 11]. Our flow-sensitive analysis
is a significant extension of our previous work on flow-sensitive
type qualifiers [21], which used a similar flow-sensitive constraint
graph. Both systems can be seen as inference for a variant of the
calculus of capabilities [8].

Correlation between locks and locations is similar to correlation
between regions and pointers, and several researchers have looked
at the problem of region inference, including the Tofte and Birkedal
system for the ML Kit [47]. Henglein et al [25] use a control-flow-
sensitive and context-sensitive type system to check that regions
with non-lexical allocation and deallocation are used correctly. Our
treatment of lock allocation is similar to Henglein et al’s treatment
of region allocation, but our formal system supports higher-order
functions, and we present a constraint-based inference algorithm.

6. Conclusion
We have developed a tool, LOCKSMITH, that aims to prove the ab-
sence of data races in a C program. The core component of LOCK-
SMITH is a context-sensitivecorrelation analysisthat determines
whether there exists a lock that is held consistently each time a
memory location is accessed. This paper formalizes correlation

analysis as a constraint-based type and effect system for a simple
languageλB which we have proven sound. A novel feature of our
formalism is its use of effects to ensure that dynamically-allocated
locks can be accurately tracked, with a means to safely hide effects
to better support recursive functions. LOCKSMITH uses a series of
techniques to scale correlation analysis to the full C language, in-
cluding flow-sensitive state tracking, existential types, sharing anal-
ysis, and heuristics to model type casts to and fromvoid*. When
applied to a set of benchmarks, LOCKSMITH discovered a number
of real data races with a modest rate of false alarms. We are contin-
uing to explore how to scale LOCKSMITH to large code bases.

Acknowledgments
This research was supposed in part by NSF CCF-0346989, CCF-
0430118, and CCF-0524036. We thank Dan Grossman, Greg Mor-
risett, Boniface Hicks, Nik Swamy, and the anonymous review-
ers for their helpful comments. We also thank Will Dogan, Iulian
Neamtiu, and Pavlos Papageorgiou for help with the Linux drivers.

References
[1] R. Agarwal, A. Sasturkar, L. Wang, and S. D. Stoller. Optimized run-

time race detection and atomicity checking using partial discovered
types. InASE, 2005.

[2] R. Agarwal and S. D. Stoller. Type Inference for Parameterized
Race-Free Java. InVMCAI, 2004.

[3] A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi. Checking and
Inferring Local Non-Aliasing. InPLDI, 2003.

[4] A. Alexandrescu, H. Boehm, K. Henney, B. Hutchings, D. Lea,
and B. Pugh. Memory model for multithreaded C++: Issues, 2005.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2005/n1777.pdf.

[5] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe
Programming: Preventing Data Races and Deadlocks. InOOPSLA,
2002.

[6] C. Boyapati and M. Rinard. A Parameterized Type System for Race-
Free Java Programs. InOOPSLA, 2001.

[7] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and Precise Datarace Detection for Mul-
tithreaded Object-Oriented Programs. InPLDI, 2002.

[8] K. Crary, D. Walker, and G. Morrisett. Typed Memory Management
in a Calculus of Capabilities. InPOPL, 1999.

[9] M. Das, B. Liblit, M. Fähndrich, and J. Rehof. Estimating the Impact
of Scalable Pointer Analysis on Optimization. InSAS, 2001.

[10] D. Engler and K. Ashcraft. RacerX: effective, static detection of race
conditions and deadlocks. InSOSP, 2003.

[11] M. Fähndrich and R. DeLine. Adoption and Focus: Practical Linear
Types for Imperative Programming. InPLDI, 2002.

[12] M. Fähndrich, J. Rehof, and M. Das. From Polymorphic Subtyping
to CFL Reachability: Context-Sensitive Flow Analysis Using Instan-
tiation Constraints. Technical Report MSR-TR-99-84, Microsoft
Research, 1999.

[13] C. Flanagan and M. Abadi. Types for Safe Locking. InESOP, 1999.
[14] C. Flanagan and S. N. Freund. Type-Based Race Detection for Java.

In PLDI, 2000.
[15] C. Flanagan and S. N. Freund. Detecting race conditions in large

programs. InPASTE, 2001.
[16] C. Flanagan and S. N. Freund. Atomizer: A Dynamic Atomicity

Checker for Multithreaded Programs. InPOPL, 2004.
[17] C. Flanagan and S. N. Freund. Type Inference Against Races. InSAS,

2004.
[18] C. Flanagan, S. N. Freund, and M. Lifshin. Type Inference for

Atomicity. In TLDI, 2005.
[19] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,

and R. Stata. Extended Static Checking for Java. InPLDI, 2002.

[20] C. Flanagan and S. Qadeer. A Type and Effect System for Atomicity.
In PLDI, 2003.

[21] J. S. Foster, T. Terauchi, and A. Aiken. Flow-Sensitive Type
Qualifiers. InPLDI, 2002.

[22] D. Grossman. Type-Safe Multithreading in Cyclone. InTLDI, 2003.
[23] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.

Region-based memory management in Cyclone. InPLDI, 2002.
[24] F. Henglein. Type Inference with Polymorphic Recursion.TOPLAS,

15(2), 1993.
[25] F. Henglein, H. Makholm, and H. Niss. A Direct Approach to

Control-Flow Sensitive Region-Based Memory Management. In
PPDP, 2001.

[26] T. A. Henzinger, R. Jhala, and R. Majumdar. Race checking by
context inference. InPLDI, 2004.

[27] C. Hote. Run-Time Error Detection Through Semantic Anal-
ysis, 2004. http://www.polyspace.com/pdf/Semantics_
Analysis.pdf.

[28] D. Hovemeyer and W. Pugh. Finding bugs is easy. InOOPSLA
Companion, 2004.

[29] R. Johnson and D. Wagner. Finding User/Kernel Bugs With Type
Inference. InUSENIX Security, 2004.

[30] J. Kodumal and A. Aiken. Banshee: A scalable constraint-based
analysis toolkit. InSAS. London, United Kingdom, 2005.

[31] N. Leveson and C. S. Turner. An investigation of the therac-25
accidents, July 1993.

[32] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion.
In POPL, 1996.

[33] C. Mossin. Flow Analysis of Typed Higher-Order Programs. PhD
thesis, DIKU, Department of Computer Science, University of
Copenhagen, 1996.

[34] M. Naik, A. Aiken, and J. Whaley. Effective Static Race Detection
for Java. InPLDI, 2006. To appear.

[35] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate Language and Tools for Analysis and Transformation of
C Programs. InICCC, 2002.

[36] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection.
In PPoPP, 2003.

[37] K. Poulsen. Tracking the blackout bug.http://www.securityfocus.
com/news/8412, 2004.

[38] P. Pratikakis, M. Hicks, and J. S. Foster. Existential Label Flow
Inference via CFL Reachability. Technical Report CS-TR-4700,
Department of Computer Science, UMD, 2005. Forthcoming.

[39] S. Qadeer and D. Wu. KISS: keep it simple and sequential. InPLDI,
2004.

[40] J. Rehof and M. F̈ahndrich. Type-Based Flow Analysis: From
Polymorphic Subtyping to CFL-Reachability. InPOPL, 2001.

[41] T. Reps, S. Horwitz, and M. Sagiv. Precise Interprocedural Dataflow
Analysis via Graph Reachability. InPOPL, 1995.

[42] J. C. Reynolds. Towards a Grainless Semantics for Shared Variable
Concurrency. InPOPL, 2004.

[43] J. Rose, N. Swamy, and M. Hicks. Dynamic inference of polymorphic
lock types.Science of Computer Programming, 2005.

[44] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A Dynamic Data Race Detector for Multi-Threaded Programs.
In SOSP, 1997.

[45] H. Seidl, V. Vene, and M. M̈uller-Olm. Global Invariants for
Analyzing Multi-threaded Applications. InProc. of Estonian
Academy of Sciences: Phys., Math., volume 52, pages 413–436,
2003.

[46] F. Smith, D. Walker, and G. Morrisett. Alias Types. InESOP, 2000.
[47] M. Tofte and L. Birkedal. A Region Inference Algorithm.TOPLAS,

20(4), 1998.
[48] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer.

Capriccio: Scalable threads for internet services. InSOSP, 2003.
[49] H. Xi and F. Pfenning. Dependent Types in Practical Programming.

In POPL, 1999.

