
ABSTRACT

Title of Dissertation: THE MEASUREMENT MANAGER:
MODULAR AND EFFICIENT
END-TO-END MEASUREMENT SERVICES

Pavlos Papageorgiou, Doctor of Philosophy, 2008

Directed by: Associate Professor Michael Hicks
Department of Computer Science
Department of Electrical and Computer Engineering

End-to-end network measurement is used to improve the precision, efficiency, and

fairness for a variety of Internet protocols and applications. Whether streaming media

files, constructing an overlay or picking a candidate server to download from, applications

need to provide a good user experience. What constitutes a good user experience differs

for each application but what is common is the need to discover and adapt to the current

conditions of the network path. This is especially important since, due to the design of

the Internet, network routers do not provide any feedback about these network properties.

Measurement is typically performed in one of three ways: (1)actively, by inject-

ing specially crafted probe packets into the network, (2)passively, by observing existing

data traffic, and (3)customized, where applications use use their own traffic to perform

customized measurements. All current approaches suffer from drawbacks. Passive tech-

niques are efficient but are constrained by the shape of the existing traffic, limiting the

speed and accuracy of their measurements. Active techniques are faster, more accurate

and more flexible but impose a significantly higher overhead by competing with applica-

tions for bandwidth. And finally, custom techniques combine flexibility with efficiency,

but are so tightly coupled with each application that they are not reusable.

To address these shortcomings, we present theMeasurement Manager, a practical,

modular, and efficient service for performing end-to-end network measurements between

hosts. Our architecture introduces a newhybridapproach to network measurement, where

applications can pool together their data packets to be reused as padding inside network

probes in a transparent and systematic way. We achieve this through theMeasurement

Manager Protocol(MGRP), a new transport protocol for sending probes that combines

data packets and probes on the fly. In MGRP, active measurement algorithms specify the

probes they wish to send using aProbe APIand applications allow MGRP to use data

from their own packets to fill the otherwise wasted probe padding. The ability of MGRP

to piggyback any data packetonany probeis pivotal in making our measurement system

unique in the sense that any measurement algorithm can now be writtenas if active, but

implementedas if passive.

We have implemented theMeasurement Managerinside the Linux kernel and have

adapted existing applications and active measurement tools to use our system. Through

experimentation we provide detailed empirical evidence that piggybacking data packets

on measurement probes is not only feasible but improves source and cross traffic as well

as the performance of measurement algorithms while not affecting their accuracy. We

show that the Measurement Manager is an architecture with broad applications that can

be used to build a genericmeasurement overlay networkas well as expanding the solution

space for estimation algorithms, since every application packet can now act as a potential

probe.

THE MEASUREMENT MANGER:
MODULAR AND EFFICIENT END-TO-END MEASUREMENT

SERVICES

by

Pavlos Papageorgiou

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:
Professor Michael Hicks, Chair/Advisor
Professor Mark A. Shayman
Professor Richard J. La
Dr. Mehdi Kalantari Khandani
Professor Rance Cleaveland

c© Copyright by
Pavlos Papageorgiou

2008

Table of Contents

List of Tables v

List of Figures vi

List of Abbreviations viii

1 Introduction 1
1.1 Motivating Scenario: Dynamic Adaption of Media Streams. 2
1.2 Problem Description. 5
1.3 The Measurement Manager. 6
1.4 Contributions . 9

2 Active Network Measurement Techniques 12
2.1 Theprobe groupprimitive . 13
2.2 Examples of Active Measurement Tools. 14

2.2.1 Pathload (available bandwidth). 14
2.2.2 Yaz (available bandwidth). 17
2.2.3 Pathchirp (available bandwidth). 18
2.2.4 Pathrate (capacity). 20
2.2.5 Badabing (loss). 21

3 The Measurement Manager 24
3.1 Probe API. .26

3.1.1 Probe Transactions. 26
3.1.2 Receivers. 30

3.2 MGRP Piggybacking. 31
3.2.1 Piggybacking by Example. 31
3.2.2 Piggybacking Effects on Application Data. 34
3.2.3 Piggybacking Effects on Measurement Tools. 36

3.2.3.1 Pathload. 37
3.3 Piggybacking Policy Variations. 39

3.3.1 Standalone Packets. 40
3.3.2 Duplicate Piggybacked Packets. 40
3.3.3 Partial Piggybacking. 41

4 The MGRP Implementation 42
4.1 The MGRP Linux Kernel Module. 42
4.2 MGRP Header . 43
4.3 Probe Generation. 45
4.4 The Payload Buffer. 47
4.5 Piggybacking. 49

4.5.1 TCP with MGRP Piggybacking. 51
4.5.2 MGRP Piggybacking Statistics. 52

ii

4.6 Fragmentation and Reassembly. 53
4.6.1 The Reassembly Bucket. 55

4.7 MGRP Parameters. 59
4.7.1 For tools that send probes. 59
4.7.2 For applications that contribute payload. 60
4.7.3 For global MGRP behavior. 61

5 Experimental Evaluation 62
5.1 Experimental Setup. 62

5.1.1 Source traffic. 63
5.1.2 Cross traffic. 64
5.1.3 Probe Transactions. 65

5.1.3.1 Packet Trains. 66
5.2 Results. .67

5.2.1 STEP Experiment . 69
5.2.2 FIXED-5 Experiment. 75
5.2.3 WEB Experiment. 79

5.3 Discussion. .83

6 Case Study: MediaNet Overlay 86
6.1 MediaNet .87

6.1.1 Active Measurement with MGRP. 91
6.2 Estimation Overlay. 92
6.3 MediaNet Experiments. 93

6.3.1 Experimental Setup. 93
6.3.2 Original MediaNet. 95

6.3.2.1 How Medianet Adaptation Works. 98
6.3.3 MediaNet with Active Measurement. 99

6.3.3.1 Summary of Results.100
6.3.3.2 Using Original Pathload (pSLOW). 104
6.3.3.3 Using Original Pathload (pSLOW) with MGRP. . . . 107
6.3.3.4 Using Aggressive Pathload (pFAST). 109

6.4 MediaNet lessons for the Estimation Overlay.112

7 Related Work 114
7.1 Network measurement tools. .115
7.2 End-to-end Measurement Services. .116
7.3 Piggybacking measurements. .119
7.4 Measurement in TCP. .123
7.5 Passive Measurement. .124

8 Future Work 125
8.1 An Estimation Service. .125
8.2 Applications of the Measurement Manager.128

8.2.1 Optimizing File Downloads.128

iii

8.2.1.1 BitTorrent .128
8.2.1.2 Download Managers.130

8.2.2 Optimizing TCP .131
8.2.2.1 Adaptive TCP. .132

8.3 New Probing Paradigms. .133

9 Conclusions 136

Bibliography 139

iv

List of Tables

3.1 Details that MGRP returns about each probe transaction it sends.. 37

4.1 Error in generating gaps between probes in MGRP. 47
4.2 A view of MGRP’s reassembly hash table in operation. 58

5.1 Parameters for packet train experiments. 67

6.1 MPEG frame distribution. 95
6.2 Increase of decoded MPEG frames/second with MGRP. 101
6.3 Increase of MPEG streaming rate with MGRP.102
6.4 Occurence of decoding failures in MediaNet with MGRP. 103

v

List of Figures

1.1 The Measurement Manager. 7

2.1 An Example of Pathload Operation. 15
2.2 Burst Profile of one Pathload Run. 16
2.3 Burst Profile of a Yaz session. 18
2.4 Burst Profile of Pathchirp. 19
2.5 Burst Profile of a Pathrate session. 21
2.6 Burst Profile of a Badabing session. 22

3.1 Position of MGRP in the Network Stack. 25
3.2 The life of a probe transaction in MGRP. 27
3.3 Pseudo code of a probe transaction in MGRP. 28
3.4 Key differences between MGRP and UDP socket APIs. 29
3.5 Pseudo code for receiving probes in MGRP. 31
3.6 A step-by-step example of MGRP operation. 32
3.7 Examples of adjusting pathload estimates for piggybacking. 39

4.1 The position of MGRP in the Linux network stack. 43
4.2 The MGRP Header. 44
4.3 How MGRP extracts Transport Units. 45
4.4 Examples of Piggybacked Packets. 49
4.5 Examples of Fragmented Packets. 50
4.6 TCP socket option for applications to opt-in to MGRP. 52
4.7 The MGRP Fragmentation Header. 54
4.8 The Reassembly Process. 57

5.1 Experiment Topology. 63
5.2 The three different types of cross traffic. 64
5.3 STEP: Timeseries plot, with pk2 probes. 69
5.4 STEP: Timeseries plot, with pFAST probes. 70
5.5 STEP: Average per-second throughputs. 70
5.6 STEP: Source throughputs while running packet train probes pk1, pk2, pk3. . . 71
5.7 STEP: Source throughputs while running Pathload measurements. 71
5.8 STEP: Completion times for pathload measurements.. 72
5.9 Pathload accuracy plots for STEP experiment. 73
5.10 FIXED-5: Timeseries plot: pk2 probes. 75
5.11 FIXED-5: Average per-second throughputs.. 75
5.12 FIXED-5: Combined source throughputs for pk1, pk2, pk3. 76
5.13 FIXED-5: Source throughputs while running packet train probes pk1, pk2, pk3. 76
5.14 FIXED-5: Source throughputs while running Pathload measurements. 76
5.15 FIXED-5: Completion times for pathload measurements.. 77
5.16 Pathload accuracy plots for FIXED experiment. 78
5.17 WEB Average per-second throughputs. 79

vi

5.18 WEB: Source throughputs while running packet train probes pk1, pk2, pk3. . . 80
5.19 WEB: Source throughputs while running Pathload measurements. 80
5.20 WEB: Completion times for pathload measurements.. 81
5.21 Pathload accuracy plots for WEB experiment. 82
5.22 Effect of the piggybacking ratio on losses of the source traffic. 84

6.1 The basic operation of MediaNet. 89
6.2 MediaNet experiment. 94
6.3 Cross traffic for the MediaNet experiment. 95
6.4 Original MediaNet Operation Experiment. 96
6.5 Medianet using Active Measurement but no MGRP (pathload SLOW). . 105
6.6 MediaNet experiment with three MPEG streams using mgrp10/pSLOW. 108
6.7 MediaNet experiment with three MPEG streams using mgrpOFF/pFAST110
6.8 MediaNet experiment with three MPEG streams using mgrp10/pFAST. 111

8.1 Adding an Estimator Service to the Measurement Manager. 126

vii

List of Abbreviations

CBR Constant Bit Rate
CPU Central Processing Unite
GS (MediaNet) Global Scheduler
IP Internet Protocol
LAN Local Area Network
LKM Linux Kernel Module
LS (MediaNet) Local Scheduler
Mbps Megabits Per Second
MGRP Measurement Manager Protocol
MTU Maximum Transmission Unit
OWD One Way Delay
RTO Retransmission Timeout
RTT Round Trip Time
TCP Transmission Control Protocol
TTL Time To Live
TUN (MGRP) Transport Unit
UDP User Datagram Protocl

viii

Chapter 1

Introduction

End-to-end measurement is an integral part of Internet applications and transport

protocols. Whether streaming media files, constructing an overlay or picking a candidate

server to download from, applications need to provide a good user experience. What

constitutes a good user experience differs for each application but what is common is the

need to discover and adapt to the current conditions of the network path.

The network properties of interest range from simple estimates of round trip time

(RTT), latency, jitter (i.e., the uniformity of times between deliveries) and loss rate, to

more involved estimates of available bandwidth, path capacity, and the detection of con-

gestion and bottleneck links. Given network characteristics such as these, a video stream-

ing application may prefer paths with low jitter and low loss rate so that its streams can

be played with little buffering. For real-time video and audio-conferencing, end-to-end

latency may also be important. On the other hand, a file sharing service like BitTorrent [1]

may prefer paths that maximize the bandwidth available between a client and file-serving

nodes to those that minimize latency and jitter.

Due to the design of the Internet, network routers do not provide any feedback

about these network properties. Applications and transport protocols need to discover cur-

rent network conditions on their own through end-to-end network measurement. Broadly

speaking, existing techniques eitherpassivelyobserve existing traffic, oractively inject

1

probe packets to see how the network responds [2].

Transport protocols use passive techniques extensively. For example, TCP [3], the

Transmission Control Protocol, estimates the Round-Trip Time (RTT) of a network path

using its own packets. It then uses the RTT estimate to to perform Additive Increase

Multiplicative Decrease (AIMD) probing to set its congestion window accordingly [4].

As another example, RTP/RTCP [5] monitors the delay characteristics of the packets of

time-sensitive applications.

Active techniques are typically used by standalone tools or application-level ser-

vices. For example,pathload[6] andpathrate[7] estimate available bandwidth and bot-

tleneck capacity, respectively, by sending carefully-constructed bursts of packets into the

network and observing the spacing and loss rates of those packets at the receiver end.

As another example, the Resilient Overlay Network (RON), regularly sendsping pack-

ets between its nodes for establishing latency and connectivity characteristics between its

nodes [8].

While both active and passive measurement techniques have their place, we find

that neither class of techniques on its own is wholly satisfactory. To motivate why, we

consider an example scenario: Internet media streaming.

1.1 Motivating Scenario: Dynamic Adaption of Media Streams

Consider applications that transfer voice and video over the Internet. According to

the New York Times, 31% of AT&T’s network is used by media streaming applications

and that video traffic has now surpassed peer-to-peer traffic and is only second to web

2

traffic [9]. The popularity of video streaming sites, live streaming of concerts, sporting

events, and presidential debates, and real-time person-to-person voice and video traffic

have demonstrated the need for maintaining reasonable quality of service despite chang-

ing network conditions.

Maintaining a specific level of service for video streaming can become critical in

health-related applications, as in the case of Telemedicine. Using the Internet to build

Telemedicine applications can be practical [10], but has many challenges and require-

ments that differ from normal video streaming. For example, an empirical evaluation

of using Internet-based Telemedicine in opthalmology revealed that it is more important

for the medical provider to have fine-grained control over the video streaming quality of

critical frames than maintaining a good average quality [11]. In short, on-demand, cus-

tomizable quality of service can lead to better diagnoses. It is clear that the requirements

of medical professionals making a diagnosis are different than the requirements of home

users streaming their favorite movie.

Modern video and VoIP systems include some form of automatic rate determination

at the beginning of sessions, but to adapt to variations in network conditions during a ses-

sion requires some form of network measurement. There are three possible approaches:

(1) active techniques that inject single or groups of special packets (probes) into the net-

work; (2) passive techniques that observe existing traffic; (3) custom techniques that shape

or alter the application’s own traffic to probe the network. However, no current technique

is completely satisfactory.

Using passive measurement, an application that uses playback buffers (as most

video streaming applications do), may observe the rate at which its buffers fill or empty

3

[12] and keep track of packet and frame loss of its own traffic [13, 14]. Passive obser-

vations are particularly useful for signaling that a stream’s rate should be reduced, but

do little to suggest when its rate can be increased [13, 14], essentially because fixed-rate

streams sent at rates below the available bandwidth say little about how much traffic the

network can actually support.

Using active measurement, the application could try to infer available bandwidth

by actively probing the network. This way, a stream could be upgraded when sufficient

bandwidth becomes available. To do this, the application could use an active measurement

tool, such as pathload [6] or pathchirp [15] to probe the available bandwidth, and only

move to the higher rate if sufficient bandwidth is available. The drawback here is that the

tool’s probes compete with the application for bandwidth, which could again hurt quality.

To avoid the negative effects of active measurement probes, the application could

implement acustom measurementalgorithm in which it alters its own traffic to learn about

existing conditions. In the simplest case, the application may attempt to periodically

send higher-bandwidth, higher-quality data. If additional traffic can be supported, the

application immediately takes advantage of this data at no overhead. But if insufficient

bandwidth is available, session quality suffers every time the application blindly increases

its rate. A more sophisticated approach would be for the application to infer available

bandwidth by shaping its own traffic as a measurement tool would. The benefit is that

measurement traffic and application traffic do not compete, because they are one and

the same, but with the similar accuracy to the active approach. For example, VDN [16]

periodically shapes its traffic into trains like those of pathload to infer rough bandwidth

characteristics. Skype [17] also shapes its own packets to measure available bandwidth

4

and loss rate together [13]. The main drawback of these schemes is that they are not

modular; measurement algorithms are tightly coupled with the applications that use them.

1.2 Problem Description

In summary, neither passive, active, nor custom measurement techniques are wholly

satisfactory, for the following reasons:

1. Passive measurement is not flexible and not adequate Passive measurement

techniques use existing traffic to infer properties about a network path. These tech-

niques are efficient because they introduce no new traffic, but lack control over the

probe sequence. This lack of control limits the network properties that we can es-

timate, slows down the estimation process and produces estimates that may be less

accurate than in the active case. In our example, passive techniques are not able to

detect when bandwidth becomes available after network conditions improve.

2. Active measurement is not efficient and is disruptive Because active measure-

ment techniques have full control over the probe sequence, they are usually fast to

produce an accurate estimate. Moreover, active techniques are modular: if a bet-

ter tool or algorithm for, say, available bandwidth emerges, applications can easily

switch to using the new tool instead of an existing one. However, active tools tend

to be more intrusive and less efficient than passive techniques because active probe

packets interfere with the traffic we are trying to measure, and themselves contain

no useful payload. Thus, while active measurement can detect current network

conditions, the cost of doing so may outweigh the benefits.

5

3. Custom measurement is not modular Custom measurement techniques use the

application’s own traffic to measure the network. This approach is attractive be-

cause it combines the best features of active and passive techniques: a customized

algorithm isefficientwhen it can reuse application traffic, but potentially moreac-

curate because it can schedule that traffic to its advantage. The main drawback

of custom algorithms is that they arenot modular. Custom techniques are often

tailored to and tightly coupled with the applications using them: the same appli-

cation cannot easily be adapted to use another algorithm, and conversely a single

measurement tool cannot reuse packets from separate applications.

In effect, current measurement techniques are either fast and accurate but not effi-

cient, or efficient but slower, less accurate and ad hoc. The goal of our research is to create

a system for network measurement that, like the best custom approaches, combines the

low-overhead of passive probing with the flexibility and accuracy of active probing, but

does so in a way that is modular.

1.3 The Measurement Manager

In this dissertation we present theMeasurement Manager, a kernel-level service

for performing network measurements between hosts. Our architecture aims to address

the shortcomings of current approaches to network measurement by using ahybrid ap-

proach that combines the best features of passive, active and custom approaches. The

main premise of our approach is to leverage application traffic, like the custom and pas-

sive approaches, with the speed, accuracy and modularity of the active approach. The

6

MGRPTCP, UDP

MGRP Payload API
Transport Protocols
contribute packets

Transport Layer

Application Layer

Network Layer IP

probespayload

MGRP Probe API
Tools

send probes

apps probers

riders
transport
packets

vessels
probes

Figure 1.1: Measurement tools specify the characteristics of probe trains to be sent, including whether
some portion of a probe packet contains empty padding. This portion may be filled by useful payload,
drawn from existing TCP or UDP streams having the same destination as the probes, to lower the probing
overhead.

Measurement Manager grew out of our work on merging network measurement with

transport protocols [18] and we have presented parts of our system in work that is un-

der submission [19]. The original idea was inspired by the Congestion Manager [20], an

end-to-end system that coordinates congestion information between Internet hosts.

Figure 1.1 shows the overview of the Measurement Manager architecture. The

main novelty of the Measurement Manager is that it enables network probes to reuse

application traffic transparently and in a systematic way. We achieve this through the

Measurement Manager Protocol(MGRP), an in-kernel service that combines probes and

data packets. In MGRP, active measurement algorithms specify the probes they wish to

send using theProbe API. With this API they specify the per-probe header, the payload

size, and the time to wait between probe transmissions. The kernel then sends the probes

according to the specification. However, rather than filling probe payloads with empty

padding, as is normally done with active tools, the kernel attempts to fill these payloads

with data from application packets having the same destination as the probes. The ability

of MGRP topiggyback any data packeton any probeturns out to be pivotal in making

7

our measurement system unique in the sense that any measurement algorithm can now be

writtenas if active, but implementedas if passive.

The thesis of this dissertation is that the Measurement Manager provides four

characteristics that make it superior to existing measurement services and

techniques:flexibility, efficiency, andmodularity.

To elaborate:

• Flexibility The Measurement Manager enables specifying network measurements

using a Probe API that is sufficient to implement a range of active measurement

algorithms accurately. Moreover, the API provides tools with flexibility to control

how these probes are scheduled. For example, if no payload is found to fill the

empty padding, probes go out empty. Entities that generate probes can determine

whether, or for how long, their probes wait for piggybacking.

• Efficiency MGRP allows active measurements to be more efficient by piggyback-

ing contributed application packets on empty probes. This reduction in probing

overhead has three benefits. First, it helps thesource trafficby reducing contention

between probes and application packets, which makes more path bandwidth avail-

able for useful data. Second, it helps anycross trafficby again reducing interfer-

ence and link contention from active measurements. Finally, the bandwidth savings

enables measurement algorithms to be more aggressive in their approach, making

measurements quicker to complete, and potentially more accurate.

• Modularity The Measurement Manager permits a clear separation of the imple-

8

mentation of measurement tools and services from applications that use them. It is

not tied to any specific transport protocol, application, or estimation technique. Any

tool that is built to use the Measurement Manager can take advantage of available

packets from any number of applications, and any application can take advantage

of active measurements collected using probes that had application traffic piggy-

backed.

We view the work in this dissertation as laying a foundation for a proper integra-

tion of network measurement with network services for a broad range of applications.

In particular, the Measurement Manager makes it easier for applications to use network

measurement, either by using existing techniques or by creating new schemes when they

need highly customized measurements. When a new estimation algorithm is needed, the

Measurement Manager makes it easier to develop and evaluate the new algorithm by pro-

viding a two-step development process. First, the algorithm is designed in a standalone

active-likefashion without worrying about overhead. Then, once a proper algorithm has

been found, we can enable probe reuse and minimize the overhead that it incurs. More-

over, the Measurement Manager opens the possibility of building a network measurement

service to which applications transparently contribute their own traffic, while collectively

taking advantage of the measurements performed. As more paths are covered by the

service, more applications can benefit.

1.4 Contributions

In summary, this dissertation makes the following contributions:

9

• We perform an analysis of existing active measurement tools and provide a detailed

profile of the types of probing currently used. Based on our analysis we derive a

generic, suitably-expressive Probe API that the Measurement Manager implements.

(Chapter2).

• Our main contribution is to design and build a practical, modular and efficient ar-

chitecture that provides a systematic way for applications to pool together their data

packets and use them as network probes (Chapter3).

• We design a new transport protocol, the Measurement Manager Protocol (MGRP),

that transparently combines measurement probes and application data and imple-

ment it inside the Linux kernel (Chapter3 and Chapter4).

• Through micro-benchmarks we provide detailed, experimental evidence that pig-

gybacking data packets on measurement probes is not only feasible but improves

source and cross traffic as well as the performance of measurement algorithms while

not affecting their accuracy (Chapter5).

• We show that the Measurement Manager can be used to build ameasurement over-

lay networkthat runs alongside existing applications. Applications let the mea-

surement overlay use their traffic as piggybacking inside probes and in turn the

overlay provides the applications with measurement estimates. We show how Me-

diaNet [21], an overlay network for distributing streaming media at various quality-

of-service levels, can take advantage of measurements, provided by the measure-

ment overlay, to maximize the streaming rate of its media streams (Chapter6).

10

• We show that the Measurement Manager is an architecture with many applications.

We show how the measurement overlay we built for Chapter6 can be extended to

become an integral part of the Measurement Manager, providing a broad range of

estimation services. We also explore how the Measurement Manager expands the

solution space for estimation algorithms, since every application packet can now

act as potential probe (Chapter8).

In the process of doing this work, we also developed a series of tools for testing and

analyzing network measurement tools, we built infrastructure for conducting distributed

experiments and we automated the data collection process so that we could visualize

network conditions in real time.

11

Chapter 2

Active Network Measurement Techniques

Active measurement techniques can be quite accurate and provide timely estimates,

but are not efficient because they generate empty probes that consume network bandwidth.

In spite of the higher overhead, applications benefit from active measurement because

they can be proactive and gracefully adapt to changing network conditions.

For example, a video streaming application can seamlessly switch to a lower rate

without any interruption when conditions deteriorate, or increase the quality of the video

stream when bandwidth becomes available again. If the same application used only pas-

sive measurement to infer properties of its own traffic, it could react, possibly abruptly, to

deteriorating conditions such as loss or lower bandwidth but it could not take advantage

of improving network conditions. So applications are better off using active measurement

even if that means that they are injecting additional traffic in the network. We demonstrate

this in our case study of the MediaNet Streaming Overlay in Chapter6.

In this chapter we describe examples of existing active measurement tools to moti-

vate the design of MGRP. The objective of this dissertation is not to build a better tool or

a better estimation algorithm. Our objective is to build a common probing infrastructure

that active measurement tools can use so that they incur passive-like overhead. To that

purpose, we demonstrate that since most tools use a common probing primitive, and our

system implements this primitive very efficiently, then most existing tools can be built on

12

top of MGRP and incur much less overhead with minimal changes.

2.1 Theprobe groupprimitive

Crovella and Krishnamurthy [2] (section 5.3) provide an extensive classification of

active measurement tools based on the techniques used to estimate network properties.

But our insight is that aside from the inference algorithms, tools use a common basic

primitive when sending probes. This primitive is to inject probes into the network in

groups with the following characteristics: (a) probe groups are generated independently,

(b) the number of probes in each group can range from 1 or 2 to tens or hundreds of

probes, (c) each probe has a specific packet size (not necessarily the same), (d) probes

are spaced apart with precise timing, (e) probes can be normal UDP packets or special

packets (such as ICMP or TTL-limited packets) that incite responses from intermediate

routers. In Chapter3 we present our Probe API which presents an implementation of this

probe groupprimitive.

The probe group primitive can model tools that send packet pairs (pathchar [22]),

fixed-gap packet trains (pathload [6], yaz [23]), variable-gap packet trains (pathchirp [15]),

back-to-back packet trains (pathrate [7], badabing [24]), and recursive packet trains with

TTL-limited probes (pathneck [25]). Additionally, this primitive can model the APIs used

by a number of measurement services to send probes, such as MAD [26], Periscope [27],

Scriptroute [28], precision probing [29] and pktd [30]. We briefly describe these mea-

surement services when we discuss related work in Chapter7.

13

2.2 Examples of Active Measurement Tools

This section presents a sampling of active measurement tools (pathload, pathchirp,

yaz, pathrate, and badabing) along with their network usage characteristics. We chose

these tools in an attempt to cover a large number of the network properties that are usually

measured (available bandwidth, capacity, and loss rate), along with the probe techniques

that are typically used (fixed-gap packet trains, variable-gap packet trains, and back-to-

back packet trains). Most of the tools that we present in this section are tools that require

the cooperation of both sides of the end-to-end path. They typically comprise of asender

and areceiverthat send probes between them, usually using UDP, with a possible TCP

control channel for exchanging commands and results.

2.2.1 Pathload (available bandwidth)

Pathload [6] is an active measurement tool that estimates the available bandwidth

of an end-to-end path. Pathload uses self-induced congestion in the form ofSelf-Loading

Periodic Streams (SLoPS)[31] that temporarily build up the queue at the link with the

least amount of available bandwidth. Pathload aims at finding the minimum probe rate

that causes congestion. It reaches this minimum rate by changing the probe rate in a

binary search fashion.

Figure2.1 shows the operation of pathload in the presence of cross traffic. In this

example pathload is running continuously and keeps generating estimates. We see that

pathload generates an estimate every 20-30 seconds. Our setup is simple. The only cross

traffic present is UDP step traffic, which we show in the top figure. In the bottom figure

14

Figure 2.1: An Example of Pathload Operation. Pathload keeps running and generating estimates (the
green points). In this case we see that pathload is pretty accurate in estimating the available bandwidth.

we see one green point for every pathload estimate and with the red line we show the

actual available bandwidth derived from the Ethernet counters.

Pathload operates in rounds. In each round, it generates trains of probes, called

streams, that it sends from source to destination. Each stream consists ofK probes (de-

fault 100) that are equally sized (L bytes) and equally spaced (T sec between successive

probes). Pathload sends one fleet ofN streams (default 12) in each round. The values

of K, L andT remain fixed during a round and correspond to a certain instantaneous

probing rateR = L/T . Figure2.2shows the burst profile of an actual Pathload run. We

derived these plots from the packet trace of the example we showed in Figure2.1. The

plots show (a) the number of probes per burst, (b) the average probe packet size and (c)

the gap between probes. We can also see how these variables affect the instantaneous

15

Figure 2.2: Burst Profile of one Pathload Run. These plots have one point for every burst that pathload
sends. We see that pathload (a) uses 100 packets in every burst except for the first one, (b) the packet size
is fixed around 200 bytes, (c) the gap between probes is fixed for the every burst but varies across bursts,
(d) the probe packet size and the probe gap control the instantaneous probe rate, (e) the number of bursts
per second varies between 2 and 6, and (f) the number of bursts per second along with the probe size and
number of probes per burst control the average bandwidth consumed.

probe rate (d) and the average consumed bandwidth (f).

After it receives every stream, pathload uses the relative difference in the arrival

times of probe packets (i.e.,the one way delays or OWDs) to determine whether the in-

stantaneous probing rate of the last stream induced queuing delays. Pathload tries to

detect an increasing trend in the one way delays which it interprets as an indication of

congestion.

Pathload analyzes each stream by collecting theK one way delays and by partition-

ing them intoG =
√

K groups (G = 10 in the default case). It then factors out outliers

by taking the median OWD of each group, and plugs the values into two tests, that de-

16

termine (a) whether the stream experienced aconsistentincreasing OWD trend for the

whole stream, and, (b) whether the stream experienced anet increasing OWD, by using

only the values from the first and last OWD group. Pathload repeats these calculations

for every stream in the fleet and then deems that a fleet has an overall increasing OWD

trend if both (a) and (b) are above certain thresholds for the majority of the streams. If the

OWD trend for a fleet is inconclusive, pathload keeps sending fleets until it can converge.

Jain and Dovrolis describe in detail the complete pathload algorithm [6, 31] and Som-

mers discusses calibration issues along with the metrics used by pathload [32] (Section

2.2.1.3).

2.2.2 Yaz (available bandwidth)

Yaz [23] is an active measurement tool that estimates the available bandwidth of an

end-to-end path. It is based on pathload and can be thought of as acalibratedversion of

that tool, in that it uses empirical measurements to determine the least number of probes

needed in a probe stream so that the measurement error remains below a pre-configured

threshold. Figure2.3 shows the burst profile of a sample yaz session over a 10 mbps

bottleneck link with 1 mbps CBR UDP cross traffic.

Yaz operates in a similar fashion to pathload. It iteratively sends streams of probes

of equal size, with equal spacings between probes. Like pathload, the probe size and

the interval between probes determines the probing rate. Unlike pathload, yaz determines

during run time what is the best size for the probe stream by alternating calibration periods

(the spikes in Figure2.3) with measurement periods. In the example session shown, the

17

Figure 2.3: Burst Profile of Yaz session.

desired probe stream size is 50 probes. Yaz produces an estimate at the end of every

measurement period, which results in more frequent measurements than pathload.

Yaz also differs from pathload in the estimation algorithm. While pathload only

takes into account how the intervals between probes expand, yaz also considers how the

intervals contract, and treats both events as indications of congestion. In addition yaz

does not use the one way delays directly as pathload does, but uses averages to filter out

error in individual measurements.

2.2.3 Pathchirp (available bandwidth)

Pathchirp [15] is an active measurement tool that measures end-to-end available

bandwidth. Pathchirp, like pathload, relies on the principle of self-induced congestion to

18

Figure 2.4: Burst Profile of Pathchirp. These plots have one point for every burst that pathchirp sends.
Pathchirp produces estimates continuously. The plots show the first 20 seconds of a pathchirp sessions
on a 10mbps bottleneck link with UDP cross traffic of 1Mbps We see that pathchirp (a) uses between
20-30 packets in every burst, (b) the packet size is fixed around 1000 bytes, (c) the gap between probes
varies significantly within every burst; a few probes spaced up to 6 millisec but the average is around 200
microsec, (d) the instantaneous probe rate is of little importance here since every portion of each burst has
different instantaneous rates due to the variable gaps, (e) the number of bursts per second is around 2, and
(f) the number average bandwidth consumed is less than pathload (between 300kbps - 400kbps).

find the available bandwidth. Unlike pathload, pathchirp runs continuously and produces

an estimate every second. Figure2.4shows the first 20 seconds of an example pathchirp

session over a 10 mbps bottleneck link with 1 mbps CBR UDP cross traffic.

Pathchirp sends trains of probes from source to destination but, unlike pathload,

pathchirp does not use the same spacing between probes of a particular stream. Instead

it uses exponentially-decreasing spacing between probes of the same train. This has the

advantage of embedding multiple probe rates within one probe stream. Pathchirp aims at

being unobtrusive and more efficient than pathload since pathchirp does not have to send

19

a full packet train for every probing rate that it wishes to measure.

2.2.4 Pathrate (capacity)

Pathrate [7] is an end-to-end active measurement tool that estimates the path capac-

ity, which is the minimum transmission rate along all links of the path. Pathrate uses the

dispersion of long packet trains and packet pairs to arrive to its estimate after a variable

amount of time.

An example pathrate session is shown in Figure2.5where the session takes a little

less than 50 seconds to produce an estimate on a 10 mbps bottleneck link. Pathrate uses

back-to-back probes with the maximum transmission unit (MTU) size. We can verify this

in Figure2.5where plot (b) shows that the probe packet size is always around 1500 bytes

and from plot (c) that shows that the gap between packets is a little over 100 microsec,

which is approximately the transmission time of a 1500-byte packet on a 100 mbps link1

(the bottleneck link is 10 mbps but the source node is on a LAN with a 100 mbps link).

Pathrate works as follows2. In the bootstrapping phase it sends multiple packet

trains of back-to-back probes with increasing train length. The objective is to determine

the maximum number of back-to-back probes that it can send per packet train without

overloading the network buffers and causing loss. This step is clear in Figure2.5(a)

between 0 and 10 seconds where pathrate attempts to send trains with lengths up to 50

1 The minimum transmission time for a packet is given bygap ∗ 10−6 = 8 ∗ bytes/(linkrate ∗ 106),

where gap is in microsec and linkrate is in mbps.
2 The documentation that comes with the pathrate code version 2.4.1 has an excellent description of

how the tool works.

20

Figure 2.5: Burst Profile of Pathrate session.

probes.

Pathrate then enters a preliminary measurement phase that detects if the network

path is shaped in any way. In this phase pathrate sends packet trains with lengths that

increase slowly, which we can see in Figure2.5(a) between time 10 sec and 48 sec. If the

path is lightly loaded then pathrate is able to reach an estimate immediately and does not

need to proceed to the main measurement phase. This is the case in our example where we

use 1 mbps CBR UDP cross traffic on a 10 mbps bottleneck. If pathrate has not reached

an estimate by this point, it enters a lengthy measurement phase where it first sends 1000

packet pairs of variable sizes, and then generates 500 packet trains.

21

Figure 2.6: Burst Profile of Badabing session.

2.2.5 Badabing (loss)

Badabing [24] measures the loss rate of an end-to-end path. It sends a large number

of short packet trains. The objective of the badabing packet trains is to capture loss due to

congestion episodes. Badabing attempts to detect loss rates indirectly without incurring

loss. For every packet train it receives, it checks the dispersion between probes and de-

cides if the path is experiencing congestion while the train was en route. Then badabing

uses this information (by analyzing consecutive intervals that experience congestion) to

infer loss rate. Of course if a probe is lost, then badabing uses that information directly in

its estimate.

The rationale behind using packet trains that contain a handful of probes each is

that (a) single packet probes tend to miss congestion episodes, and (b) longer packet

22

trains distort the loss measurements because they tend to induce congestion themselves.

Each packet train in badabing consists of three probes, each 600 bytes long. Badabing

divides time in discrete intervals and in every interval it sends two packet trains back-to-

back with probability 0.3. Figure2.6shows the first 10 seconds of a badabing operation.

We verify that each packet train contains 3 packets (plot (a)), all the probes have the same

size of 600 bytes (plot (b)). Plot (f) shows that badabing has probe overhead of 1 Mbps.

23

Chapter 3

The Measurement Manager

The Measurement Manager is an in-kernel service for sending measurement probes

precisely with the least amount of overhead. The Measurement Manager Protocol (MGRP)

schedules probes according to timing requirements provided by measurement tools while

piggybacking application data inside the empty probe padding. MGRP can be viewed as

a network protocol that fuses transport payload and probes at the sender and reconstitutes

them at the receiver with the objective to minimize the bandwidth wasted on empty probe

padding. We have implemented MGRP as a Layer 4 transport protocol in the Linux ker-

nel and modified TCP in Linux to contribute packets to MGRP. This chapter presents the

design and specification of MGRP, the core element of the Measurement Manager, while

Chapter4 presents the implementation details of MGRP.

In the Measurement Manager architecture, we have positioned MGRP in the net-

work stack just before the IP layer and at the same layer as the transport protocols that

contribute packets for piggybacking (Figure3.1). MGRP works as follows. Rather than

send probe packets directly (e.g., via UDP), an active measurement tool instead sends its

probes through MGRP’s Probe API by specifying an entiretrain of probes, which MGRP

is responsible for scheduling. Most active measurement tools transmit packets with sig-

nificant amounts of empty padding. MGRP treats such probes asvesselsthat potentially

can contain useful payload. MGRP extracts this payload from data packets sharing the

24

MGRPTCP, UDP

MGRP Payload API
Transport Protocols
contribute packets

Transport Layer

Application Layer

Network Layer IP

probespayload

MGRP Probe API
Tools

send probes

apps probers

riders
transport
packets

vessels
probes

Figure 3.1: Position of MGRP in the Network Stack: MGRP is a transport protocol that is at Layer 4 of the
network stack. It sits just above IP and is at the peer level of TCP and UDP. It exports, through the socket
layer, aProbe APIso that probers from userspace can schedule probes. MGRP also defines an in-kernel
Payload API, so that transport protocols, like TCP, can contribute payload to be used for piggybacking.

same destination as the probes, which MGRP treats asriders. The piggybacked pay-

load is extracted from the padding and reconstituted at the destination. Most of MGRP’s

complexity lies into matching riders with vessels.

To summarize, MGRP serves two roles: (a) MGRP sends probes on behalf of active

measurement tools in the form ofprobe transactionsthrough the Probe API, and (b)

MGRP attempts to piggyback payload from transport packets on these probes by filling

their empty padding.

This chapter begins by discussing the Probe API used by senders to specify probe

transactions, which differs from the traditional approach of manually constructing and

sending individual UDP packets. We next show the Probe API for probes at the re-

ceiver. We continue by showing how MGRP schedules probe transactions so that ap-

plication data, when available, gets piggybacked on probes. We examine the effects of

piggybacking on application and probe traffic, and discuss how information about MGRP

piggybacking can help tools adjust their algorithms. We conclude by considering some

variations to piggybacking policies that we have explored but did not use.

25

3.1 Probe API

MGRP sends probes on behalf of tools that wish to inject probes into the network.

We saw examples of such applications in Chapter2 where we surveyed a number of

active measurement tools, which are applications that exclusively probe the network. But

a client of MGRP (which we call aprober) can be any application that sends probes that

contain empty padding.

In current practice, probers manually construct and schedule their probe packets,

and send them via UDP. In contrast, an MGRP-enabled prober will specify packets to

send using the MGRP Probe API, which provides means to defineprobe transactions.

The kernel, upon receiving a transaction specification, will construct the completed probe

packets and schedule their transmission over MGRP. Fortunately, it turns out that to con-

vert a tool from using MGRP to using UDP is not very difficult, as we will soon show.

3.1.1 Probe Transactions

Unlike UDP, MGRP does not treat each probe independently. Instead, each probe

is considered to be part of aprobe transaction. This approach fits naturally with the way

that probers send out probes (i.e.,in groups) as we demonstrated in Chapter2. Each probe

transaction contains the probe buffers to send, information about the empty padding in

each probe and the transmission intervals between probes. Probe transactions are atomic

and serialized in respect to each other; probes from different probe transactions never

overlap. However packets other than probes can be interspersed between probes of a

single probe transaction.

26

prober
(application,
user space)

5 4 3 2 1

prober uses one sendmsg
call for each probe

MGRP
(kernel)

first sendmsg
activates probe

barrier

last sendmsg
deactivates barrier

1

3

2

MGRP expands
probes to their
desired size
with padding

4

MGRP schedules probes
to be sent out with
the proper timing
between probes

5

MGRP attempts to fill
empty padding with
transport payload

6

Figure 3.2: The life of a probe transaction in MGRP. In this example a prober is sending 5 probes that
contain mostly padding and that are spaced equally apart. In the first stage (steps 1,2,3) the prober sends
the probe transaction specification to MGRP with repeatedsendmsg calls. In the second stage (steps 4,5)
MGRP creates the desired probe sequence, and in the last stage (step 6) MGRP attempts to piggyback any
transport payload and sends out the probes.

MGRP looks to probers like a transport protocol such as UDP. In fact the MGRP

socket API is backwards compatible with UDP1 and can be used as a drop-in replace-

ment of UDP (i.e., the prober can substitute an MGRP socket for a UDP socket without

changing any of the other socket calls). However, in UDP-compatibility mode the prober

cannot use any of the advanced features of MGRP. To access these features a prober needs

to always usesendmsg to send each probe (instead ofsendto or send) since it needs to

specify a probe transaction by passing MGRP-specific “ancillary data.”

A probe transaction is constructed at the sender by callingsendmsg for each probe

in the transaction. An example of a probe transaction is shown in Figure3.2and the corre-

sponding pseudo code in Figure3.3. The firstsendmsg call schedules the first probe and

1 Stevens provides a complete reference to the Unix Socket API in Volume 1 of Unix Network Pro-

gramming [33]. Of particular relevance to our discussion is section 13.5 aboutrecvmsg andsendmsg

functions.

27

/* 5 packets of size 1000bytes each with 1ms gap */
char buf[1000];
int probe_size = 1000;
int probe_data = 20; /* probe header */
int probe_gap_usec = 1000
int probe_pad = probe_size - probe_data;

/* pass information using ancillary data */
struct msghdr msg = {...};
struct mgrp_probe *probe = (pointer to msg_control buffer);

int sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_MGRP);

/* pass first probe to MGRP: activate barrier */
probe->barrier = 1;
probe->pad = probe_pad;
probe->gap = 0;
sendmsg(sock, &msg, 0);

probe->gap = probe_gap_usec;

/* pass probes 2..4 to MGRP */
for (i = 2; i <= 4) {
 sendmsg(sock, &msg, 0)
 /* no delay between calls */
}

/* pass last probe to MGRP: deactivate the barrier */
probe->barrier = 0;
sendmsg(sock, &msg, 0);
/* MGRP sends the packet train before it returns */

Figure 3.3: Pseudo code of a probe transaction in MGRP.

activates avirtual barrier inside MGRP that delimits the beginning of a probe transaction.

As long as the virtual barrier is active, MGRP buffers all subsequent calls tosendmsg for

that specific socket. The last call deactivates the virtual barrier and instructs MGRP to

send all the probes. Before returning from the lastsendmsg call, MGRP pads each probe

to the desired length and sends all the probes in the transaction with the desired timing. In

section3.2we will discuss how MGRP may use transport data in place of empty padding.

MGRP learns about the details of each probe transaction through ancillary data.

Each call tosendmsg(fd, msg) corresponds to one probe packet and the function argu-

28

char buf[1000];

/* probe 1: activate barrier */
probe->barrier = 1;
probe->gap = 0
sendmsg(sock, &msg, 0);

probe->gap = gap_usec;

/* probes 2..4 */
for (i = 2; i <= 4) {
 sendmsg(sock, &msg, 0)
 /* no delay between calls */
}

/* probe 5: deactivate barrier */
probe->barrier = 0;
sendmsg(sock, &msg, 0);
/* MGRP sends all probes
 before last sendmsg returns */

char buf[1000];

/* first probe */
send(sock, buf, 1000, 0);

/* probes 2..5 */
for (i = 2; i <= 5) {
 nanosleep(1000 * gap_usec);
 send(sock, buf, 1000, 0);
 /* UDP sends one probe
 after each send */
}

MGRP UDP

Figure 3.4: Key differences between MGRP and UDP socket APIs. In MGRP we need to send a spec-
ification of a probe transaction before the probes are sent out. All the probes are sent out during the last
sendmsg call.

mentmsg2 contains a byte buffer and MGRP-specific ancillary data to indicate: (a) how

much padding to include in the packet (in addition to the byte buffer), (b) the desired in-

terval between the transmission of the previous probe, and the current probe, (c) whether

the padding can be used for piggybacking data packets, and (d) whether the virtual barrier

is active.

There are key differences between the MGRP and UDP socket APIs. as shown in

Figure3.4. When a prober sends UDP probes usingsendmsg the probes are sent im-

mediately after each call. So if a prober wishes to generate gaps between packets it just

introduces delay between thesendmsg calls. Instead, in the MGRP case, a prober uses the

sendmsg call toschedulea probe as part of a probe transaction The probes are buffered in-

side MGRP and are sent out only after thesendmsg call for the last probe. It is MGRP and

2 Themsg argument insendmsg(fd, msg) is astruct msghdr from the Unix Socket API [33].

29

not the prober that generates the spacing between packets based on the MGRP-specific

ancillary data. If the prober introduces a delay between MGRPsendmsg calls, it only

delays the transmission of the first probe and does not affect the delays between probes.

Another difference from the UDP case is that the probers pass tosendmsg only the byte

portion of the probe that is not padding. MGRP pads the probe to the desired size using

information in the ancillary data. This is key to the ability of MGRP to piggyback data

on probes as we discuss in section3.2

3.1.2 Receivers

At the destination, the tool’s receiving component opens an MGRP socket and calls

recvmsg() to retrieve each of the received probes. Each received probe consists of the

header as provided at the sender, along with any extra padding that was specified. MGRP

uses ancillary data to return the sender and receiver timestamps of the probe, which are

indispensable to most active measurement tools.

The first timestamp is the system timestamp taken at the receiver, which is the same

timestamp that can be retrieved using theioctl optionSO_TIMESTAMP in normal UDP

sockets. This timestamp is typically taken by the kernel in the device driver code, just

after the packet has been pulled from the device (the second layer from the bottom in

Figure4.1). The second timestamp is taken at the MGRP sender just before it sends the

packet to the IP layer. The timestamp is stored in the MGRP header and extracted at the

receiver (Section4.2). Figure3.5shows pseudo code for receiving probes in MGRP and

shows how the MGRP timestamps can be extracted from therecvmsg call.

30

struct mgrp_timestamps {
 struct timespec snd;
 struct timespec rcv;
};

struct probe_info {
 int size;
 char buffer[2000];
 struct mgrp_timestamps timestamps;
};

struct probe_info probe[5];

/* receive probes 1..5 from MGRP */
for (i = 0; i < 5) {
 msg.msg_iov.iov_base = probe[i].buffer;
 msg.msg_iov.iov_len = 2000;
 msg.control = &probe[i].timestamps;
 probe[i].size = recvmsg(sock, &msg, 0)
}

Figure 3.5: Pseudo code for receiving probes in MGRP

3.2 MGRP Piggybacking

After having discussed the first role of MGRP in sending probes through probe

transactions (section3.1), we discuss in this section its second role, where MGRP at-

tempts to reuse the wasted padding inside the probes to piggyback transport payload. The

Probe API that we outlined in section3.1 provides MGRP with information about the

padding inside every probe. This information gives the opportunity to MGRP to fill the

padding with something more useful than placeholder bytes. We now present MGRP’s

basic piggybacking approach using an example.

3.2.1 Piggybacking by Example

Figure3.6illustrates how MGRP implements a probe transaction using piggyback-

ing. At step (1), a measurement tool submits a probe transaction to specify a mea-

31

MGRP

IP

MGRP

IP

TCP

2

Contribute
TCP

packets
Fragment

and piggyback
TCP payload on probes

3

(i)
Packet train with

2 empty probes and
one partially reused

6

Demultiplex
payload from probes

7

Reassemble
packets

and pass to TCP

4Send
MGRP packets

5 Receive
MGRP packets

TCP

apps probers appsprobers

1
Send probes

using the
Probe API

8
Reconstitute
probes and

deliver to prober

SENDER RECEIVER
Network

(ii)
Packet train that is
fully piggybacked

MGRP
IP

Probe
FRAG

MGRP
IP

Probe
FRAG
TCP

(iii)
The final fragment of
the last piggybacked

TCP packet

2a2b

MGRP
IP

Probe
MGRP

IP

Probe
MGRP

IP

Probe

4b
TCP

MGRP
IP

MGRP
IP

Probe
FRAG
TCP
3a 1

FRAG

3b

Figure 3.6: A step-by-step example to demonstrate MGRP operation. Measurement tools generate probes,
which MGRP combines with TCP (or UDP) packets sent by applications. Depending on the timing, MGRP
packets can contain (i) probes that are partially reused by full payload packets, (ii) probes that are fully
reused by payload fragments, (iii) final payload fragments when MGRP has no more probes to piggyback
on. The combined packets are reconstituted at the receiver.

surement. At the same time, applications may send data to the same destination as the

probes (2). For example, in our video streaming scenario from the Introduction, an ap-

plication may be streaming media data to some destinationD when it invokes an active

measurement tool (such as our MGRP-adapted pathload) that submits a transaction to

probe the available bandwidth on the path toD.

Given a probe transaction, MGRP attempts to fill any empty padding in each probe

with riders—the application packets bound for the same destination (3). Eventually it

sends along the probes (4). In our implementation, we modified the TCP stack to pass its

outbound traffic to MGRP for potential piggybacking; modifying UDP should be straight-

forward but is not yet implemented. MGRP will briefly buffer application frames (some-

thing that applications should presume TCP or UDP might do in any case) to increase

the chances for successful piggybacking. If no riders are available, the probe is simply

sent with empty padding (as in the first two probes of (i)). Conversely, if a potential rider

32

has been in the payload buffer long enough without being piggybacked, MGRP sends it

normally.

Given a probe packet and a rider to piggyback, MGRP tries to fit the rider inside

the probe’s padding as follows. If the rider is smaller than the padding, piggybacking is

straightforward (probe labeled 1. in (i)). More interestingly, if the rider is larger than

the padding, MGRP fragments the rider into two chunks, piggybacking a padding-sized

chunk in the probe and re-queuing the remainder for further piggybacking. We use a

simple, custom fragmentation/reassembly protocol to manage fragmented chunks (sec-

tion 4.6). In the figure we can see that probe packets in (ii) carry a single, fragmented

TCP packet, whose chunks are labeled 2a and 2b. If MGRP cannot piggyback an en-

tire rider before the queuing timeout, MGRP simply sends the chunk in its own MGRP

packet, as shown in (iii) in the figure. Given enough space, a probe’s padding could be

filled with chunks from multiple riders, but for simplicity MGRP limits itself to a single

rider.

Once a probe is ready, MGRP stores the current time in the MGRP packet header

and hands it to the lower layer for transmission. MGRP then waits the specified gap time

before constructing and sending the next probe (note that other application frames may

be sent during these gaps).

When probe packets are received at the destination (5), MGRP extracts any piggy-

backed riders (6), reads the system packet timestamp, and queues the probe packet for de-

livery (8). When the receiver retrieves the probe packet, it may also retrieve the sender’s

and receiver’s timestamps as ancillary data. If any rider piggybacked in the probe is a

complete TCP or UDP frame, MGRP simply delivers it to the appropriate receive buffer.

33

If the rider is a chunk (fragment), MGRP stores it in a reassembly queue until all chunks

are received, at which point the original data packet is reconstituted and delivered the

appropriate receive buffer (7).

Piggybacking buffered transport packets on top of probe packets changes the way

these packets interact with the network. We now consider the effects of piggybacking,

good and bad, on application data and measurement tools, and discusses in particular

how tool algorithms may need to be adjusted to account for piggybacking.

3.2.2 Piggybacking Effects on Application Data

Piggybacking data packets within probes can reduce the number of packets and

bytes sent across the network, compared to sending probes and application data sepa-

rately. In the best case, this savings is enough to eliminate induced congestion along the

path, thus avoiding disruptive packet drops of source traffic, cross traffic, and measure-

ment probes. Our experimental results presented in Chapter5 show that this reduction

in loss rates often leads to better application throughput, is more fair to cross traffic, and

reduces the time required to complete measurements.

However, while piggybacking can reduce the total number of lost packets, it can

increase the chances that a lost packet contains application data, and it can increase the

negative consequences of such as loss.

To see why, observe that piggybacked application data is sent at the rate of the

probes on which it piggybacks. Since measurement tools often send bursts of high

instantaneous-bandwidth probes, these bursts are likely to induce loss. If the probe burst

34

rate is higher than the normal application data rate, then any lost packet is more likely

to contain application data. For example, suppose a probe transaction sends 10 probes

over 1 ms, while the application sends at roughly 2 padding-sized packets per ms. With a

5-ms buffering timeout, we will buffer 10 application packets and can completely fill the

probes’ payloads. If we did not use MGRP at all, we would send 12 total packets—two

application packets, and ten probes. While the chances ofsomelost packet may be greater

in the second case, the chances of a lostapplicationpacket may actually be greater in the

first case. If the greater piggybacking is not sufficient to prevent loss events altogether, a

loss is thus more likely to harm the application.

When a data packet loss occurs, MGRP can magnify the negative consequences.

In particular, buffering increases application packets’ round trip time (RTT). While this

additional latency is not necessarily a problem in and of itself, an increased RTT delays

TCP’s (or applications’) response to packet losses, making it slower to increase the con-

gestion window. So while longer buffering timeouts can increase piggybacking and thus

reduce the total number of packet drops, if an application’s TCP packetis dropped then

the increased RTT will slow the return to an application’s preferred bandwidth.

We address both problems by choosing a relatively small buffering delay, to balance

the positive effects of more piggybacking with the negative effects of increased applica-

tion packet loss. We have found that 5 or 10 ms is sufficient to buffer substantial amounts

of data without harming TCP’s responsiveness when dealing with typical wide-area RTTs

of 40 ms or more [34].

In addition, we have found that carefully choosingwhichprobes on which to pig-

gyback can positively impact performance. For example, pathload begins a measurement

35

round by sending a burst of 100 packets back-to-back. If there is any congestion, the

packets toward the end of this burst (and any packets that might follow it) are likely to be

dropped. If we selectively piggyback on only the firstn packets of the burst, then if later

probes in the burst are dropped, no data packets will be dropped with them. We could

use external information to determine a suitablen automatically; e.g., if the TCP con-

gestion window for a piggybacked data stream is small, that suggests the path is highly

contended, and the likelihood of loss events is higher (we have not implemented this).

3.2.3 Piggybacking Effects on Measurement Tools

As mentioned above, by reducing the contention for a shared path, MGRP piggy-

backing may allow a measurement tool to converge more quickly. On the other hand, to

provide accurate results, tools may need to account for locally-originating traffic that has

been piggybacked.

Without MGRP, local traffic can affect a measurement tool’s results by being inter-

spersed with the tool’s probes, thereby affecting probe latency, queuing behavior (whether

it is dropped or not), etc. To probe tools that include a gap between packets, interspersed

local traffic is equivalent to cross traffic. With MGRP, data traffic between the same hosts

has much less influence: MGRP may piggyback data packets on the probes themselves,

and also may delay local packets until after a probe transaction has completed, due to

buffering.

While in a sense this gives the tool a clearer picture of the traffic that is compet-

ing with the local application, MGRP changes what a probe train measures. Instead of

36

Probe Statistic Description

barrier_engaged_usec How long the barrier was engaged. This represents
the time it took for the application to send the probe
transaction to MGRP

mgrp_transmission_usec How long it took MGRP to send the whole probe
transaction with the proper gaps.

pbk_pkts The number of probes that were piggybacked.

pbk_bytes The total number of bytes that were piggybacked.

pbk_compete_pkts Of the probes that were piggybacked, the number of
probes that carry payload that would have competed
with the probes in the absence of piggybacking.

pbk_compete_bytes The total number of bytes forpbk_compete_pkts.

Table 3.1: Details that MGRP returns about each probe transaction it sends.

measuring both local and cross traffic, with MGRP the spacings of a probe train take a

snapshot of the networkas if the application were sending less traffic(reduced by the

traffic that was piggybacked). Since probe trains have relatively short durations and do

not run continuously, without correction they may produce inaccurate estimates.

For that reason MGRP can provide details about what was piggybacked when a tool

sends a probe train. In particular, a probe sender can query MGRP from userspace using

the MGRP_IOC_PROBE_RESULTS ioctl to acquire the information shown in Table3.1,

which among other things indicates how much piggybacking took place.

3.2.3.1 Pathload

This section describes how we modified pathload to adjust its estimates to account

for piggybacking when running on top of MGRP.

In pathload the estimation algorithm runs on the receiver. Since the piggybacking

37

information is available only at the sender, the process of adjusting the pathload estimates

entails 3 steps: (1) the pathload sender retrieves from MGRP the piggybacking details

after each stream is sent, (2) the pathload sender sends this information to the pathload

receiver, and (3) the pathload receiver uses the piggybacking information to adjust its

estimate.

The modifications to the original pathload are minimal. Retrieving the piggyback-

ing information is accomplished at the sender through a simpleioctl after each stream

of 100 probes is sent. Pathload needs two pieces of information from MGRP: (1) the

number of piggybacked bytes that would have competed with the probes, and (2) the time

window during which the competing traffic would have been sent (pbk_compete_bytes

andmgrp_transmission_usec from Table3.1). With these two numbers we can com-

pute the rate of the piggybacked transport payload that would have otherwise competed

(and been taken into account) by the probe stream.

This information is retrieved at the sender but is needed by the receiver. Since there

exists already a control channel between sender and receiver, and the sender sends an

acknowledgment after each stream, it is straightforward to simply send the piggybacking

information to the receiver. Once pathload has sent enough streams, based on its algo-

rithm, it computes an estimate based on the rate of the last stream. We modified pathload

to subtract from the original estimate the rate of the competing traffic that was piggy-

backed, where this rate is calculated in one of two ways: (1) from the most recent stream

only, or (2) from the average of all streams of the current estimate’s fleet. We believe

the former makes the most sense, since pathload’s estimate is due only to the last stream.

Examples of 3 pathload sessions and the way that the original estimates have been ad-

38

Figure 3.7: Examples of adjusting pathload estimates for piggybacking

justed according to these two methods appear in Figure3.7. We present more detailed

measurements of pathload accuracy in Chapter5.

3.3 Piggybacking Policy Variations

The piggybacking approach described in Section3.2makes a couple of key design

decisions. First, it is rider-agnostic; while we currently only piggyback TCP packets,

MGRP in no way takes advantage of this fact when, e.g., fragmenting and reassembling

large packets. Second, the design aims to reduce overall bandwidth consumed by piggy-

backing as much as it can. As alternatives to these two design points, we consider some

other possible policies here, and discuss our experience with them.

39

3.3.1 Standalone Packets

Rather than fragmenting packets with a rider-agnostic protocol, we could instead

take advantage of TCP’s stream semantics to chop up a TCP packet directly into smaller

chunks, each with a new TCP header. This makes each chunk a valid standalone “mini-

packet,” which can be included in the MGRP header with its protocol number. At the

receiver, the mini-packet is extracted from the MGRP packet and delivered directly to the

transport stack since it has a valid header.

Compared to the generic fragmentation approach, the mini-packet design has the

benefit of being much simpler, and more backward-compatible with existing tools like

tcpdump andtcptrace, which analyze packets. We implemented this approach in an

earlier prototype of MGRP and found that it has two serious drawbacks. First, it multiplies

the total number of acks fairly drastically for small probe packets but large TCP segments,

which increases overhead on both the end hosts and the network. Second, it results in

duplicate acks when a mini-packet that was toward the middle or end of a larger segment

is lost. These duplicate acks may cause TCP to reduce its congestion window, penalizing

the source traffic’s throughput.

3.3.2 Duplicate Piggybacked Packets

As an alternative to piggybacking application packets, we might consider piggy-

backing themandsending the application packets as usual. Doing this has the downside

that it will not save any bandwidth. On the up-side, it can alleviate the “shared fate”

problem discussed above, giving each data packet two opportunities to reach the destina-

40

tion. We could go one step further and imagine duplicating chunks within a probe stream,

similar to Skype’s behavior [35], since any unused padding is wasted network bandwidth;

after a certain threshold we could simply repeat the chunks within the probe stream and

de-duplicate them at the MGRP receiver.

We have implemented this idea in MGRP but unfortunately have found in our ex-

periments that the disadvantage of not reducing overall bandwidth is not ameliorated by

the benefit of duplicating source packets. It is possible that further efforts and experimen-

tation could yield a fruitful policy.

3.3.3 Partial Piggybacking

As discussed in Section3.2.2, another way to address the “shared fate” problem

is to piggyback selectively. We have implemented two policies for doing this: allowing

measurement tools to selectively turn off piggybacking, and allowing them to specify a

piggybacking ratio. We discuss these in greater detail in Section4.7.

41

Chapter 4

The MGRP Implementation

In this chapter we describe the implementation of the MGRP protocol in Linux.

We will describe in detail all the mechanisms that MGRP uses to piggybacking transport

payload on probes.

4.1 The MGRP Linux Kernel Module

We have implemented MGRP as a loadable kernel module in the Linux 2.6.25 ker-

nel building on kernel mechanisms introduced by DCCP [36] for registering protocols

with IP and exporting a socket interface [37, 38]. Once the kernel module is loaded, the

behavior of the Linux kernel changes in the following ways:

1. MGRP registers itself as a new Layer 4 protocol such that all incoming IP packets

with the MGRP protocol field are passed to the module for processing. For experi-

mental purposes [39, 40] we picked 254 as the MGRP protocol number. Figure4.1

shows the position of MGRP in the Linux network stack.

2. Transport protocols can use MGRP hooks to contribute their outgoing packets to

MGRP before they go over IP.

3. Applications can open an MGRP socket, a new type of datagram socket, that they

can use to send probes over MGRP. The Probe API is implemented through this

42

Normal
(non-MGRP)
TCP packets

Sockets
TCP

MGRP

IP
Device Drivers

Network Device

Applications Probers

MGRP
Piggybacked

Probes

MGRP
Probes

(not piggybacked)

Hardware

Kernel

Kernel

Userspace

Figure 4.1: MGRP is positioned at the Layer 4 of the Linux network stack. Probers can access it through
the socket layer to send probes, and TCP use MGRP hooks inside the kernel to contribute packets for
piggybacking. MGRP uses its own IP protocol field, so that all incoming MGRP packets can be handed
directly to MGRP from the IP layer.

socket interface.

4.2 MGRP Header

MGRP is a transport protocol that carries probes. These probes have padding that

may be filled with payload from other transport protocols. So the MGRP header must

contain enough information so that MGRP receiver can: (a) reconstruct the probe, restore

its padding and acquire the sender’s timestamp, and (b) extract the transport payload

from the probe padding and reconstitute the original transport packet. The MGRP header

fulfills both of those purposes with a fixed 16-byte header that is shown in Figure4.2. The

header contains:

1. One 32-bit sequence number.This is a number that, combined with the time

stamp, uniquely identifies an MGRP packet. It is used to reassemble the fragments

of transport payload embedded inside the probe padding into the original packets

43

sequence number
timestamp

timestamp
TUN 0 TUN 1

bits 0 -15

flags unused

16 - 23 24 - 31

Figure 4.2: The MGRP Header contains a 32-bit sequence number, a 48-bit timestamp and two Transport
Unit (TUN) sub-headers that are used to extract the different parts of the MGRP packet (probe and transport
payload).

(details in section4.6).

2. One 48-bit time stamp. This is the send timestamp of the MGRP packet. It has

nanosecond resolution and rolls over about every 78 hours. With this time stamp

probers can calculate one-way delays, which as we saw in Chapter2 play an im-

portant role in the estimation process of active measurement tools. This timestamp

is taken at the sender using the high resolution clock of the Linux kernel just before

the MGRP packet is pushed into the IP layer (Figure4.1).

3. One 8-bit field for flags. The first two bits are used to store the number of Transport

Units (TUNs) or Transport Chunks that the MGRP packet is carrying. A TUN can

represent a probe header or piggybacked transport payload. Each MGRP packet can

carry at most two TUNs: one probe and one transport payload. We provide details

about about how TUNs are decoded in the next header item (TUN sub-header).

The third bit is theHAS_UNUSED_PADDING flag. This flag indicates that the MGRP

packet contains at least one pad byte and is used to reconstruct the probe.

4. Two 16-bit TUN sub-headersEach TUN sub-header describes a portion or a

Transport Unit (TUN)inside the MGRP packet. As we see from Figure4.3, the

44

sequence number
timestamp

timestamp
TUN 0 TUN 1

bits 0 -15

flags unused

16 - 23 24 - 31

TUN length

2 3 40 1 5 - 15

2-bit TUN
protocol

Needs
Padding?

11-bit TUN
length in

MGRP packet

TUN used?

sequence number
timestamp

timestamp
TUN 0 TUN 1

bits 0 -15

flags unused

16 - 23 24 - 31

Payload of TUN 0
(PROBE | TCP | FRAG)

Payload of TUN 1
(optional, TCP | FRAG)

Figure 4.3: How MGRP extracts Transport Units

TUN sub-header has a 2-bit TUN protocol field, some flags and a length field. The

protocol field tells MGRP where to deliver the TUN once it extracts it from the

MGRP packet. Supported protocols are (a) TCP, (b) PROBE and (c) FRAG. The

last protocol is a pseudo protocol that we use during fragmentation (section4.6).

The TUN sub-header does not contain any offsets to the data inside the packet be-

cause to derive them is straightforward. The first TUN (TUN-0) starts after the

MGRP header, and the second TUN (TUN-1), if it exists, starts after TUN-0. Fig-

ure4.3shows how MGRP extracts Transport Units from MGRP packets using the

TUN sub-header.

4.3 Probe Generation

The process of generating the probes of a probe transaction is straightforward. As

we described in section3.1 it is critical for the probes in a probe transaction to be trans-

mitted at precise intervals. MGRP generates the gaps between probes at sub-microsecond

45

precision by using a a combination of high resolution timers (hrtimers) and busy waiting

1. Using hrtimers is desirable, because they are not CPU-load intensive, but by them-

selves they are not sufficient for our precision requirements, because they can overshoot

their expiration time. So we use a combination of methods: hrtimers for the initial portion

of the gap up until a threshold, and after that we do busy waiting.

We have instrumented MGRP with the ability to monitor the accuracy of probe

generation2. In Table4.1 we show an example of our gap generation accuracy. The

table shows how accurate MGRP is in generating 100 microsec intervals between the

probes of a 20-probe transaction. Each table entry represents one interval between probes.

Column 1 show the probe number, column 2 shows the number of nanoseconds that we

went over the desired gap, column 3 shows the number of nanoseconds we went under the

desired gap and column 4 shows the actual gap that we generated in nanoseconds. This

example demonstrates that for even such small probe gaps the overrun for each probe is

in the order of 200-300 nanosec for a gap of 100 microsec. That is an 0.3% error.

Our hybrid scheme for generating gaps needs two variables to be calibrated that we

calibrate during MGRP initialization: (a)The busy wait threshold.This is the final portion

of the gap that has to be generated using busy waiting. (b)The busy wait adjustment ratio.

After we return from the hrtimer, we need to busy wait for the remaining part of the gap.

This variable reduces the actual number of remaining nanoseconds (a value of 75 reduces

it by 1/4). This is needed because of the overhead associated with retrieving wall clock

time and executing ndelay().

1 For busy waiting we use ndelay().
2 To turn on gap monitoring in MGRP:echo 1 > /sys/module/mgrp/parameters/probe_show.

46

Probe Num Overrun (ns) Underrun (ns) Actual Gap (ns)

0 0 0 0
1 311 0 100311
2 148 0 100148
3 218 0 100218
4 225 0 100225
5 251 0 100251
6 253 0 100253
7 273 0 100273
8 297 0 100297
9 241 0 100241

10 240 0 100240
11 228 0 100228
12 246 0 100246
13 273 0 100273
14 246 0 100246
15 250 0 100250
16 261 0 100261
17 225 0 100225
18 344 0 100344
19 283 0 100283

Table 4.1: Error in generating gaps between probes in MGRP for 20 probes with a desired gap of 100
microsec. MGRP goes over the desired gap (second column) for about 200-300 nanosec, which represents
an error of 0.3%.

4.4 The Payload Buffer

Whenever MGRP receives packets from TCP, it buffers them in in its payload buffer

so that it can perform piggybacking. Buffering is necessary because tools typically send

probes in short intense bursts while applications, through their transport protocols, space

out their packets to avoid congestion and loss. Without a payload buffer it would be

practically impossible to match probes with payload. The payload buffer is only needed

on the sender side.

TCP packets are buffered in the payload buffer so that they can piggyback on

probes. But if no probes are available these packets need to be transmitted in a timely

47

manner.

MGRP guarantees that every payload packet it receives from TCP will be either

piggybacked or transmittedTms after it was received, whereT is the payload buffer

delay. To do this, MGRP stores each TCP packet in a packet queue and starts a virtual

timer with an expiration timeTms in the future. If the timer expires and the packet has

not been piggybacked, then MGRP sends it out immediately. For efficiency reasons, the

MGRP implementation does not start one timer per packet. Since all timers expire in

the same order that they are started, it is sufficient to keep a queue oftransmission time

requestsand always have one timer active for the request at the head of the request queue.

This works very well due to the high resolution timers (hrtimers) [41] that were

recently introduced in the Linux kernel (starting with version 2.6.16). Empirically, the

resolution of the Linux hrtimers is on the order of100ns which is at least an order of

magnitude smaller than the typical intervals between consecutive packets sent out by TCP.

That means that the MGRP payload buffer preserves the intervals between transmitted

TCP packets and only adds a constant time offset.

We initially used low-resolution timers to implement the MGRP payload buffer.

This resulted in poor performance for small MGRP delays because the resolution of the

timers (10-20 ms) was too close to the desired delay. What we observed was that the fine-

grained intervals between TCP packets were lost and TCP packets were clustered together

more than the TCP congestion algorithm permitted, which led to increased losses.

48

sequence number
timestamp

timestamp
TUN 0 TUN 1

bits 0 -15

flags unused

16 - 23 24 - 31

Probe Header

TCP Payload
(whole)

TCP Header

Probe Header

(b) MGRP probe
fully piggybacked

sequence number
timestamp

timestamp
TUN 0 TUN 1

bits 0 -15

flags unused

16 - 23 24 - 31

Probe Header

Padding

sequence number
timestamp

timestamp
TUN 0 TUN 1

bits 0 -15

flags unused

16 - 23 24 - 31

Probe Header

TCP Payload
(whole)

TCP Header

Probe Header

(c) MGRP probe
partially piggybacked

Padding

(a) MGRP probe with
no piggybacking

Figure 4.4: Examples of Piggybacked Packets

4.5 Piggybacking

Piggybacking in MGRP happens on a probe by probe basis. Whenever MGRP

is ready to send a probe, it first looks into the head of itspayload buffer(described in

Section4.4) for a candidate packet for piggybacking and then it expands the probe to

the desired packet size using padding. The whole point of MGRP is to avoid the need

for empty padding and instead extend the probe by using application payload. There are

many cases depending on the state of the payload buffer:

1. The buffer is empty: MGRP adds the desired padding to the probe and sends out

the packet with one MGRP chunk with proto=PROBE. (Figure4.4(a)).

2. The head packet of the buffer is a TCP packet that does not fit fully inside the

padding: MGRP fragments the TCP packet (details in section4.6) and adds the

TCP fragment as a second MGRP chunk with proto=FRAG. The probe is now fully

49

sequence number
timestamp

timestamp
TUN 0 TUN 1

bits 0 -15

flags unused

16 - 23 24 - 31

TCP Payload
(first fragment)

TCP Header

Fragmentation Header

Probe Header

(a) MGRP packet carrying
the first fragment of a TCP packet

sequence number
timestamp

timestamp
TUN 0 TUN 1

bits 0 -15

flags unused

16 - 23 24 - 31

TCP Payload
(fragmented)

Fragmentation Header

Probe Header

(b) MGRP packet carrying a
subsequent fragment of a TCP packet

sequence number
timestamp

timestamp
TUN 0 TUN 1

bits 0 -15

flags unused

16 - 23 24 - 31

TCP Payload
(last fragment)

Fragmentation Header

(c) MGRP packet carrying the
last fragment of a TCP packet

(no piggybacking)

Figure 4.5: Examples of Fragmented Packets

expanded and requires no padding. Piggybacking for this probe is 100%. MGRP

puts the remaining TCP fragment back to the payload buffer for the next probe

We discuss fragmentation in section4.6 and an example of this case is shown in

Figure4.5(a).

3. The head packet of the buffer is a TCP packet that has already been fragmented

from prior piggybacking: MGRP repeats step2 for every subsequent probe until it

reaches the last fragment that fits fully inside the padding We discuss fragmentation

in section4.6and an example of this case is shown in Figure4.5(b).

4. The head packet of the buffer is an intact TCP packet (not already fragmented) and

it fits fully inside the padding: MGRP adds a second MGRP chunk with protocol

TCP and expands the packet, but with less padding than before (Figures4.4(b)

and4.4(c)).

50

There are cases when TCP fragments need to go out by themselves inside MGRP

packets and not piggybacked on probes. This may happen when there is a TCP fragment

at the head of the payload buffer (as a result of case2) and one of these two events occur:

(a) MGRP finishes sending all the probes of a probe transaction, or (b) the virtual timer

of the TCP packet where the fragment belongs expires. In either of these cases MGRP

needs to send out the remaining TCP fragment immediately because of the MGRP timing

guarantees. The generated MGRP packet contains one MGRP chunk that holds the TCP

fragment with proto=FRAG. We discuss fragmentation in section4.6and an example of

this case is shown in Figure4.5(c).

4.5.1 TCP with MGRP Piggybacking

We have modified the Linux TCP implementation slightly to allow its packets to be

piggybacked. The changes to the TCP code are so that TCP can pass its outbound traffic

to MGRP, which will then pass it to the IP layer (whether or not it is piggybacked).

After the application writes its data on the TCP socket, TCP constructs packets

and runs its algorithm as usual, and when it is ready to transmit a packet, TCP calls the

MGRP transmit callback instead of the IP callback. Since the callback is stored in a

function pointer, the changes to the TCP kernel code do not exceed 50 lines, with most of

the lines devoted to servicing the new socket option that we need to introduce.

Applications opt-in to MGRP by using a new TCP socket option (Figure4.6). Once

turned on, all the application packets sent on that socket pass first from TCP and then they

are passed to MGRP, where they may get piggybacked on probes or sent out standalone.

51

/* Turn on TCP over MGRP */

sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)

on = 1
setsockopt(sock, IPPROTO_TCP, TCP_MGRP, &on, sizeof(on))

Figure 4.6: Code sample for turning on the TCP socket option that applications use to opt-in to MGRP.
Applications can use the same code prevent their packets to go through MGRP.

We chose the opt-in, rather than opt-out, approach because piggybacking on MGRP alters

a packet’s delivery characteristics. Thus, for now we imagine that applications must be

aware that their traffic is being piggybacked. However, we can imagine that under some

configurations (e.g., for short buffering timeouts), piggybacking by default is a reasonable

option.

The changes to TCP are only needed on the sender side. On the receiver side, the

MGRP packets are received from the network subsystem directly by the MGRP module.

After MGRP extracts the piggybacked payload, it uses the TCP receive callback, exactly

like IP does in the non-MGRP case (so no changes required to TCP).

4.5.2 MGRP Piggybacking Statistics

When MGRP sends a probe transaction it keeps track of statistics that a prober can

query from userspace using anioctl. We described in Section3.1 and Table3.1 the

information that MGRP tracks. For every probe train MGRP records (i) the amount of

total piggybacking in the train, and, most importantly (ii) the amount of piggybacking

that is due to TCP packets that would have been interspersed with the probes if there

was no piggybacking. The latter amount can allow probing tools to adjust their estimates

to account for source traffic they would otherwise have competed with. Consider for

52

example the following MGRP output:

<pkts> <bytes>

total 30 12000

pbk 26 7696

pbk_compete 16 4752

duration actual 8729708 nsec

duration precomputed 8700000 nsec

In this example an application sent a probe train with 30 400-byte probes (30x400=12000

bytes) of which 26 probes were piggybacked. Out of the 26 piggybacked probes, 16

probes are piggybacked from TCP packets that would have been competed with the probe

train (if there was no piggybacking). These 16 probes (4752 bytes) can be used to adjust

the tool’s results.

MGRP gathers this information by pre-computing the duration of the probe train

before sending it. From the output above we can see that the precomputed duration is

accurate enough. MGRP then sends the probe train and for every piggybacked payload it

tests whether the source TCP packet would have been sent within that duration window.

If yes, then it should be counted against thepbk_compete counter.

4.6 Fragmentation and Reassembly

In order to piggyback TCP payload on probes, MGRP may need to fragment TCP

packets (as we described in section4.5, case2). MGRP uses a scheme similar to IP

fragmentation [42, 43, 44]. In this section we describe in detail how MGRP performs this

fragmentation and how the MGRP receiver reassembles the packet.

On the MGRP sender each TCP packet that needs to be fragmented is assigned a

53

sequence number
timestamp

timestamp
TUN 0 TUN 1

bits 0 -15

flags unused

16 - 23 24 - 31

fragmented
payload

Fragmentation Header

(b) MGRP packet carrying the
a fragmented packet

proto

8-bit
protocol

of fragment

16-bit
fragmentation

offsetduplicate?

(a) Fragmentation
Header

fragoff

fragment?

more
fragments?

fragmentation ID

7 80 9 10 16 31

Figure 4.7: The MGRP Fragmentation Header

unique identifier. MGRP then extracts a portion of the TCP packet, calculates the frag-

mentation offset and fills a fragmentation header, whose fields are shown in Figure4.7.

MGRP then adds the TCP packet portion along with the fragmentation header inside an

MGRP packet. Figure4.5(a) shows an MGRP packet that contains the first fragment of

a TCP packet. For subsequent fragments, MGRP repeats the same process but uses the

same fragmentation identifier so that all the fragments can be reassembled at the receiver.

Figure4.5(b) shows an MGRP packet that contains a subsequent TCP fragment.

On the receiver, MGRP extracts the fragment, removes the fragmentation header

and performs packet reassembly. MGRP stores the fragment in a hash table keyed on the

unique fragmentation ID. For every fragment it adds, it checks whether it can reconstruct

the whole packet; if yes, it reassembles the packet and pushes it to TCP. Exactly like

IP, MGRP needs to have a reassembly timeout. RFC 1122 [44] indicates a reassembly

timeout must be fixed and recommends a value between 60 and 120 seconds. Current

Linux implementations use a value of 30 seconds3 and MGRP uses the same value. If the

3 In Linux use/proc/sys/net/ipv4/ipfrag_time to access/configure the reassembly timeout.

54

packet is not reassembled within 30 seconds of receiving the first fragment, then MGRP

discards all the collected fragments.

MGRP uses a fragmentation and reassembly method that is agnostic to the kind

of packet that is fragmented. We now only use TCP with MGRP, but the fragmentation

scheme can be applied without changes to UDP. Also MGRP does not need to keep any

special state for multiple TCP flows. The only state needed is the reassembly hash table

which stores packet fragments and reassembles each packet independently of any other.

4.6.1 The Reassembly Bucket

The reassembly code stores the fragments in the hash table as they arrive. Actual

reassembly is performed by a “reassembly bucket.” The hash is used to locate the bucket

that corresponds to each fragment. Each bucket is keyed by: (a) source address, (b) frag-

mented packet protocol (TCP, UDP, etc.), and (c) fragment ID. The reassembly process is

conceptually simple: add the new fragment to the fragment queue for that fragment ID,

and, if all fragments are present, reassemble the packet and push up to the next protocol.

Reassembly is straightforward if all the fragments arrive in order, but must consider

the possibility that packets will be lost or reordered. MGRP deals with this situation by

maintaining a list ofgaps that need to be filled before the packet can be successfully

reassembled. The method using gaps is an existing IP reassembly algorithm [43] (the

existing algorithm uses the termholesinstead ofgaps). MGRP implements this algorithm

with some adjustments to deal with the the peculiarities of MGRP.

The first gap in the list (representing the tail end of the packet) starts as open-ended

55

since MGRP does not know, until the last fragment is received, the size of the reassembled

packet. As fragments come in MGRP adjusts the gap list by shortening, removing or

splitting gaps, based on the offset of the received fragment. A fragment that is marked

as “last” always matches an open-ended gap. That is how the original gap becomes close

ended and eventually disappears. When the gap list becomes empty, MGRP is ready to

reassemble the packet.

In each reassembly bucket, in addition to the list of gaps, MGRP maintains a list

of fragment buffers. Each gap in the gap list maintains back-pointers to the fragments in

the fragment list that fill the data around the gap. Figure4.8 shows how the reassembly

process works. With this approach, MGRP can keep the fragment list ordered as an

indirect consequence of maintaining the gap list. When a fragment arrives, MGRP finds

which gap it “plugs”. There are four cases:

1. The new fragment fills the left side of the gap:MGRP inserts the new fragment

in the fragment list after the left backpointer and make the new fragment the left

backpointer of the gap. The gap remains in the gap list but shrinks in size and its

left offset increases (Figure4.8(b)).

2. The new fragment fills the middle portion of the gap: This can happen when

fragments are lost or delivered out of order. MGRP inserts the new fragment after

the left backpointer and splits the gap into two new smaller gaps. The left gap

retains the left backpointer of the original gap and points its right backpointer to the

new fragment. Similarly for the right gap (Figure4.8, cases (c) and (f)).

3. The new fragment fills the gap completely:MGRP uses the backpointers to insert

56

(empty)

gap list

fragment list

0

(a) Initial state of the reassembly bucket

gap list

fragment list

(c) fragment [400..599] arrives: open-ended gap splits

0
199

400
599

200
399

gap list

fragment list

(e) terminal fragment [1200..1399] arrives: open-end closes

0
199

400
599

200
399

gap list

fragment list

(b) fragment [0..199] arrives: open-ended gap shrinks

0
199

gap list

fragment list

(d) fragment [200..599] arrives: gap "pluged"

0
199

400
599

1200
1400

gap list

fragment list

(f) fragment [800..999] arrives: gap splits

0
199

400
599

200
399

1200
1399

800
999

gap list

fragment list

(g) fragment [1000..1199] arrives: gap "plugged"

0
199

400
599

200
399

1200
1399

800
999

1000
1199

gap list

fragment list

(h) fragment [600..799] arrives: all gaps "plugged"

0
199

400
599

200
399

1200
1399

800
999

1000
1199

600
799

packet reassembled

open

open open

open

Figure 4.8: The Reassembly Process

the new fragment into the fragment list. Since the left fragment backpointer is for

the fragment on the left of the gap, and the right backpointer for the fragment on

the right of the gap, the new fragment is inserted in the proper sorted position in the

fragment list. MGRP then removes the gap from the gap list. This is the only case

where the gap list shrinks, which brings us closer to being able to reassemble the

packet (Figure4.8, cases (d) and (g)).

4. The new fragment fills the right side of the gap:The gap and fragment lists are

updated similar to the left side case (case1). A special case is when the right side

of the gap is open ended, which is only matched by the last fragment. In that case,

57

ID FLAGS Fragments Status

3984 R.SF. 7 OK: reassembled 7 fragments and sent to TCP
3985 R.SF. 3 OK: reassembled 3 fragments and sent to TCP
3986 R.SF. 4 OK
3987 R.SF. 7 OK
3988 R.SF. 6 OK
3989 5 LOSS:cannot reassemble, 5 fragments received
3990 R.SF. 7 OK
3991 3 LOSS:only 3 fragments received
3992 R.SF. 7 OK
3993 2 LOSS:only 2 fragments received
3994 R.SF. 7 OK
3995 2 LOSS:only 2 fragments received
3996 R.SF. 7 OK
3997 2 LOSS:only 2 fragments received
3998 R.SF. 7 OK
3999 R.SF. 4 OK
4000 R.SF. 7 OK
4001 R.SF. 4 OK
4002 R.SF. 6 OK
4001 1 reassembly in progress, 1 fragment received

Table 4.2: A view of MGRP’s reassembly hash table in operation. Each line represents one reassembly
bucket and corresponds to one packet being reassembled. The first column contains the Fragment ID, the
second contains flags that indicate the status of the reassembly process and the third column shows the
number of fragments that have already been received. FlagR means packet was reassembled, FlagSmeans
packet was delivered to TCP, FlagF means packet was reassembled from fragments. So any entry that
appears asR.SF. means that packet has been successfully reassembled (dots indicate missing flags). Any
entry that appears as..... means that it may have received fragments but reassembly is not possible yet.
After a certain timeout these packets are declared lost and the reassembly process is abandoned.

the gap becomes a normal close-ended gap (Figure4.8(e)).

So the only complexity of the algorithm is to maintain the list of gaps according to

these four cases. When MGRP is ready to reassemble the packet, it just needs to traverse

the fragment list and combine all fragments into one large packet, since the fragment list

is always sorted.

A View of the Reassembly Hash Internals We have instrumented MGRP so that we

can, for debugging and diagnostic purposes, freeze a view of all the reassembly hash

58

buckets at any point of MGRP’s operation. Table4.2 shows such a view, simplified to

remove some details that would otherwise clutter presentation.

4.7 MGRP Parameters

MGRP provides many ways to control its operation, as we have described. This

section summarizes how tools and applications may fine tune the piggybacking operation

and optimize the performance delivered by MGRP.

4.7.1 For tools that send probes

Selectively Turning Off Piggybacking When tools send probe transactions (section3.1)

they have fine-grained control over every probe. We already saw (Figure3.3) how tools

use the Probe API to control the padding and gap of each probe. We now discuss how

tools can selectively turn piggybacking on/off for a single probe. This is accomplished

through a flag in the ancillary data passed for each probe during send.

The rationale behind the decision to give tools such fine-grained control stems from

the fact that tools are best equipped to decide if piggybacking makes sense for that par-

ticular probe. We discussed in Section3.2.2that while piggybacking decreases the band-

width wasted with padding it may increase the chance of loss. If a tool knows it is sending

high risk probes, i.e.,probes with a high probability of loss, then it is counterproductive

to piggyback those probes. But MGRP cannot know this automatically so it has to rely

on the tool to make that decision. For example, pathload bootstraps by sending a few

packet trains at very high rate. Since many of these packets are going to be lost, pathload

59

turns off piggybacking for the those initial packet trains. Alternatively, a tool can turn off

piggybacking for a portion of the packet train, usually the later probes, since those run

the highest danger of overflowing the network buffers. We return to this issue in the next

chapter (Section5.3).

Auditing Probe Generation It is very important to tools to be sure that probes are sent

with accurate gaps. MGRP provides an auditing mechanism that provides feedback about

the relative error in generating probes; this audit was used to produce Table4.1. Tools

can use this information to invalidate a probe train that does not meet some accuracy

threshold, or they can incorporate the error in their estimation algorithm (for example,

using the actual rate that the probe train was transmitted and not the theoretical one).

4.7.2 For applications that contribute payload

Opting-in to Piggybacking Applications need to opt-in to MGRP. This mechanism

works at the socket granularity. An application opens up an MGRP socket and then can

turn piggybacking on/off on that socket any number of times during the socket lifetime.

This provides control to an application to prevent any kind of alteration of its traffic for

any period of time. When an application turns off piggybacking for a socket, it also

turns off the payload buffer for that socket, which means that the application packets pass

through MGRP without any delay. In Section4.5.1we saw how applications that use TCP

sockets turn on piggybacking for the packets they send.

60

Bounding the Delay of Payload Buffering An application may find acceptable the

MGRP piggybacking and buffering but may want to impose a lower delay than the global

MGRP delay. This can be accomplished on a per-socket basis and can be changed during

the socket lifetime.

4.7.3 For global MGRP behavior

Payload Buffer Timeout This is the default fixed delay that MGRP adds to all appli-

cation packets in order to to increase the chances of piggybacking It can be overridden by

the application on a per-socket basis. Setting the global delay to 0 amounts to turning off

piggybacking.

Piggybacking Ratio This controls the initial portion of the probe transactions that can

potentially get piggybacked. A ratio of 1.0 indicates that all probes are candidates for

piggybacking. A ratio of 0.2 indicates that only the first fifth of the probe transaction is

eligible for piggybacking. The remaining four fifths cannot be piggybacked even if there

are available packets in the payload buffer. The reasoning is that losses tend to happen

at the end of packet trains, so this parameter gives us the opportunity to test various

piggybacking scenarios.

61

Chapter 5

Experimental Evaluation

To understand the costs and benefits of MGRP, we carried out several experiments.

Our experimental setup aims to simulate the media streaming scenario motivated by the

introduction. However, we imagine that this basic scenario could be extrapolated to more

interesting settings, e.g., adaptive, streaming media overlay networks [21, 16] and even

best-effort services like BitTorrent [45].

We begin in the next section by describing our experimental setup, and the next

section reports the results.

5.1 Experimental Setup

The network topology we use is shown in Figure5.1. In all experiments we transmit

a steady 4 Mbps TCP source traffic stream, representing the media stream, fromm3

to m5. 4 Mbps is the rate of high-definition streams for both Apple TV and the Vudu

Internet video service [46, 47]. We periodically send probe transactions along the same

path, representing (or actually implementing) a measurement tool probing for available

bandwidth, while varying certain parameters of the probe transactions (e.g., their length,

bandwidth, and spacing). We also measure the effects of using different kinds of cross

traffic, which is sent betweenc1 andc2, and shares a bottleneck linkx1x2 with the source

and probe traffic. We elaborate on the experimental parameters of the source traffic, cross

62

x1 x2

c1 c2
UDP or TCP
cross traffic

m3 m5

app

prober
rcv

app

prober
snd

Figure 5.1: Experiment topology. Source and probe traffic goes fromm3 to m5 and cross traffic fromc1
andc2 (UDP or TCP).

traffic, and probe transactions in the remainder of this section.

All experiments were run with and without MGRP enabled, and we measured the

performance of the source traffic, cross traffic, and measurement tool. When MGRP was

enabled, we used a buffering timeout of10 ms. We conducted the experiments on Emu-

lab [48], usingpc3000 hosts for all nodes, which are connected via 100 Mbps Ethernet.

We shape thex1x2 bottleneck link using the FreeBSD Dummynet [49], limiting the link

speed to 10Mbps (typical for a fiber-at-home user). Dabek et al. [34] report that the me-

dian RTT between PlanetLab nodes is 76 ms, and between DNS servers worldwide the

median RTT is 159 ms. Since higher RTTs lessen the penalty of MGRP’s buffering de-

lay, we present all results using a relatively low RTT of 40 ms, roughly the RTT between

Washington, D.C. and Kansas City, MO.

5.1.1 Source traffic

For our source traffic, we usenuttcp [50] (a variant of iperf [51]) to generate a

constant 4 Mbps stream at the application, which runs over TCP with CUBIC congestion

control [52] (NewReno [53] gave similar results). Since our goal is to explain the effects

of piggybacking data and measurement traffic, the application writes to TCP at a constant

63

Figure 5.2: The three different types of cross traffic

rate. An actual video streaming implementation might choose to scale down the video and

audio rates to avoid passively-detected congestion at some points during the experiments.

5.1.2 Cross traffic

In addition to the congestion-aware source traffic, we generate three types of cross

traffic between nodesc1 and c2, shown in Figure5.2: (a.) STEP, which transmits in

fixed-rate intervals lasting 45 seconds each (1, 3, 5, 6, 4, 2 Mbps), (b.) FIXED-5, which

transmits at a constant 5 Mbps for the duration of the experiment, and (c.) WEB, which

models web traffic with Poisson-distributed inter-arrival times. UDP-based cross traffic

(a. and b.) permits consideration of the effects of piggybacking on source traffic without

the added variable the cross traffic’s response to induced congestion. STEP provides

more of a challenge for measurement tools, while FIXED-5 provides relatively simple

64

conditions. TCP-based cross traffic (c.) allows us to consider the effects of measurement

on the cross traffic’s performance.

Both STEP and FIXED-5 use tcpreplay [54] to replay a snapshot of a 150 Mbps

trans-Pacific Internet link [55]. Replaying a trace permits us to test against actual Internet

packet size distributions and interleavings, but without cross-traffic congestion avoidance,

and at rates that are stationary over a reasonable period of time [56]. The WEB cross-

traffic uses the NTools [57] suite to generate up to ten concurrent TCP connections, with

Poisson-distributed inter-arrival rates over 5-second intervals. Like the source, each TCP

flow performs normal CUBIC congestion control. The flow size varies between 64 KB

and 5 MB, and is weighted toward flows in the 64-200 KB range. The initial seed to the

generator is fixed to provide consistent (though not identical) behavior between runs.

5.1.3 Probe Transactions

We use pathload [6], modified to use the MGRP Prove API, to send probe transac-

tions. Pathload is the gold standard of available bandwidth tools, as it is both robust and

fairly accurate [58, 59]. Pathload produces simple packet trains with uniform gaps, and

uses more bandwidth than other tools (approximately 5–10% of the residual bandwidth in

our experiments), which gave us an opportunity to test probe reuse in a non-trivial way.

As we show in Section5.2, the original pathload is sometimes slow to return re-

sults. We found that between each stream, the pathload implementation waitsRTT + 9 ∗

TXstream, whereTXstream is the amount of time it takes to transmit one stream. In an

effort to increase the number of measurement rounds performed by pathload, we slightly

65

modified pathload to reduce this pause between streams to oneRTT . We call this more

aggressive version pFAST, and the original pSLOW in our experimental results.1

5.1.3.1 Packet Trains

In addition to pathload, we ran some experiments with fixed-sized packet trains.

We did this for two main reasons. First, the basic primitive of many active measurement

tools is the packet train, so considering it separately from a particular tool’s implementa-

tion seems useful, e.g., to consider higher-rate measurements that would not be feasible

without piggybacking afforded by MGRP. Second, pathload responds to improvements in

network conditions by sending more traffic. This can make it somewhat more difficult to

evaluate the effects of MGRP vs. the effects of pathload’s implementation; considering

non-adaptive packet trains makes it possible to separate these effects.

As discussed in Chapter2, tools that use packet trains often sendN probe packets

of equal lengthL within a short interval. The gapG between sending successive packets

can be fixed (pathload, yaz, pathrate) or variable (pathchirp). When the gap is zero we

have trains of back-to-back packets (pathrate). There are also cases of tools where packet

trains are surrounded by special TTL-limited packets (pathneck).

We built a utility we callpktrain to generate packet trains at various configurations

using either traditional UDP probes or MGRP probes. The size, timing, and transmis-

sion rates of the packet trains in our experiments are shown in Table5.1. Note that all

1Both pSLOW and pFAST perform user-level timing and send over UDP when MGRP is OFF, and

use kernel timers and the probe API when MGRP is ON; the only difference is the delay between streams

within a round.

66

pk1 pk2 pk3

packet length 300 500 300

packets/train 10 20 10

packet gap (usec) 200 1000 0

train gap (msec) 20 20 10

inst. throughput (Mbps) 12.0 4.0 line rate

avg. throughput (Mbps) 1.1 2.0 2.3

Table 5.1: Parameters for packet train experiments

of the packet trains are relatively short (10-20 packets). Each train type demonstrates

different likely probing scenarios:pk1 has a relatively high burst rate (12.0 Mbps) but

low average rate (1.1 Mbps), and its ten-packet bursts approximate the sub-trains over

which pathload calculates changes in one-way delay;pk2has longer 20-packet trains at

lower rates (4.0 Mbps), but a higher overall rate (2.0 Mbps) and demonstrates what is

feasible with MGRP;pk3 is similar to capacity estimators such as pathrate, and transmits

10 packets back-to-back with an average probing rate of 2.3 Mbps.

5.2 Results

This section presents the results of our experiments. We present our results by the

cross traffic used: first STEP, then FIXED-5, and finally, WEB. For each kind of cross

traffic, we use the same 4 Mbps CUBIC TCP source and run several types of measurement

algorithms (pSLOW, pFAST, pk1, pk2, pk3) to test the effectiveness of MGRP against

measurement without MGRP. The MGRP buffering delay is set to 10 ms, and the network

RTT delay is 40 ms.

67

For each type of cross traffic and measurement algorithm, we perform four runs,

discarding any runs that did not complete due to experiment error. We measure the

throughput of the source, cross, and probe traffic at the bottleneck link—i.e., after any

losses have occurred—over one second intervals. We also measure how long it takes

pathload to complete a measurement, when using pFAST and pSLOW, and compare the

accuracy of these measurements with and without piggybacking enabled.

In general, the results of our experiments demonstrate that MGRP leads to bet-

ter application throughput and reduced jitter and is fair to cross traffic. Piggybacking

on MGRP reduces the time required for pathload to complete a measurement, allows it

to successfully complete measurements more often, and can be properly accounted for

so as not to impact measurement accuracy. MGRP also makes it possible to measure

at higher rates in conjunction with data traffic, an approach that would not be feasible

without MGRP. On the other hand, highly-variable cross traffic (i.e., for WEB) in com-

bination with bursty probe trains can exacerbate source packet losses in some cases (as

discussed in Section3.2.2); in the next section we discuss ways to address this problem

by piggybacking more selectively.

68

Figure 5.3: STEP: Timeseries plot, with pk2 probes Duration of a single experiment run. The bandwidths
of each type of traffic as measured at the 10 Mbps bottleneck link are stacked on top of each other. The top
plot is without MGRP, and with MGRP on the bottom. The black line shows the bandwidth of piggybacked
TCP segments.

5.2.1 STEP Experiment

The STEP experiment demonstrates all the potential benefits of MGRP.

Improvements to normal traffic

First, MGRP is able piggyback significant amounts application data, nearly elim-

inating probing overhead. We can see this clearly in Figure5.3, which plots a single

run using pk2 traffic—notice that the bottom plot has almost no black band—and in Fig-

ure 5.4, which is the same kind of plot, but for pFAST. Figure5.5 shows the average

throughput of each kind of traffic for the duration of the experiment for all runs. Probe-

only traffic appears as a black bar, and riders (“source/probe (pbk)”) contribute to the

source throughput. The overhead of piggybacked probe headers is included with “probe

69

Figure 5.4:STEP: Timeseries plot, with pFAST probes

 0

 2

 4

 6

 8

 10

mgrpOFF

mgrp10
mgrpOFF

mgrp10
mgrpOFF

mgrp10
mgrpOFF

mgrp10
mgrpOFF

mgrp10

M
bp

s
at

 b
ot

tle
ne

ck

pk1 pk2 pk3 pFASTpSLOW

cross
src/probe (pbk)
src (nopbk)
probe (nopbk)
available

Figure 5.5: STEP: Average per-second throughputs. Each pair of bars represents a different type of probe
traffic.

(nopbk),” and is minuscule for most experiments with MGRP enabled.

Second, MGRP “smooths out” source traffic because it competes less with probe

traffic. This effect can be seen in the time series plots mentioned above, and also in Fig-

ures5.6and5.7. These figures show the CDF of the source traffic throughput measured in

70

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pk1

mgrp10
mgrpOFF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pk2

mgrp10
mgrpOFF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pk3

mgrp10
mgrpOFF

Figure 5.6:STEP: Source throughputs while running packet train probes pk1, pk2, pk3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pSLOW

mgrp10
mgrpOFF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pFAST

mgrp10
mgrpOFF

Figure 5.7:STEP: Source throughputs while running Pathload measurements

one-second intervals, for different kinds of measurement traffic. Ideally, the CDF of our 4

Mbps source traffic would be a vertical line at 4 Mbps, indicating that the application was

able to sustain a constant 4 Mbps during the entire experiment. Any fluctuation below that

rate (to the left) is compensated for by a later return to higher throughputs in slow-start

(to the right). These higher throughputs are the result of queuing the application traffic,

and are not desirable in a streaming media scenario. Without MGRP, the source rates for

pSLOW and pFAST are comparable, but at higher probing rates (as in packet trains pk1,

pk2, and pk3), MGRP exhibits a significant improvement.

Finally, MGRP imposes no adverse effect on cross traffic, which sustains the re-

71

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

pSLOW

mgrp10
mgrpOFF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

pFAST

mgrp10
mgrpOFF

Figure 5.8:STEP: Completion times for pathload measurements.

quested rates, with minimal losses. This is clear from Figure5.5—the cross traffic parts

of the bar are fixed for all runs. Any effect on throughput is paid by the congestion-aware

TCP source application (as shown in Figure5.6, just discussed).

Improvements to measurement traffic

MGRP provides several benefits to measurement traffic as well. First, pathload is

able to complete its measurements more quickly and more often, because there is less

contention for the link. This can be seen in the CDF plots of pSLOW and pFAST comple-

tion times, shown in Figure5.8. With MGRP, 50% of pSLOW measurements complete

within 30.7 seconds, but without it, only 26% complete within that time and 48% fail to

complete at all (we time out pathload rounds after 60 seconds).

72

(a) mgrpOFF/pFAST

(b) mgrp10/pFAST

(c) mgrpOFF/pSLOW

(d) mgrp10/pSLOW

Figure 5.9: Pathload accuracy plots for STEP experiment

73

Second, these improvements do not adversely impact the accuracy of pathload’s es-

timates, once piggybacking is properly accounted for. Figure5.9presents for time-series

plots that illustrate the available bandwidth on the shared link during an experimental run.

The red line shows the actual available bandwidth tabulated by the receiving host on the

bottleneck link, based on the traffic it receives. The remaining dots illustrate pathload

estimates. We show estimates for pFAST and pSLOW, with and without MGRP piggy-

backing enabled. We can see here again that pathload is able to complete successfully

more often when piggybacking is enabled, and moreover that pFAST completes more

often than pSLOW. We can also see that when piggybacking is enabled, pathload will

overestimate available bandwidth when not adjusted for piggybacking, but is otherwise

as accurate as normal pathload when piggybacking is accounted for.

74

Figure 5.10:FIXED-5: Timeseries plot: pk2 probes

 0

 2

 4

 6

 8

 10

mgrpOFF

mgrp10
mgrpOFF

mgrp10
mgrpOFF

mgrp10
mgrpOFF

mgrp10
mgrpOFF

mgrp10

M
bp

s
at

 b
ot

tle
ne

ck

pk1 pk2 pk3 pFASTpSLOW

cross
src/probe (pbk)
src (nopbk)
probe (nopbk)
available

Figure 5.11:FIXED-5: Average per-second throughputs.

5.2.2 FIXED-5 Experiment

As can be seen in Figures5.10and5.11, MGRP again absorbs the measurement

traffic into the application traffic, imposing only a slight probing overhead due to probe

headers and occasional empty probes.

75

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

CD
F

throughput (mbps, 1sec averages)

mgrp10pk1
mgrpOFFpk1

mgrp10pk2
mgrpOFFpk2

mgrp10pk3
mgrpOFFpk3

Figure 5.12:FIXED-5: Combined source throughputs for pk1, pk2, pk3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pk1

mgrp10
mgrpOFF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pk2

mgrp10
mgrpOFF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pk3

mgrp10
mgrpOFF

Figure 5.13:FIXED-5: Source throughputs while running packet train probes pk1, pk2, pk3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pSLOW

mgrp10
mgrpOFF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pFAST

mgrp10
mgrpOFF

Figure 5.14:FIXED-5: Source throughputs while running Pathload measurements

As shown for pFAST and pSLOW in Figure5.14, source traffic throughputs are

essentially the same with and without MGRP, with a slight advantage to MGRP OFF

while running pFAST. With the (pk1, pk2, pk3) packet train runs, however, MGRP shows

a clear benefit (Figures5.10and5.13). In fact, as can be seen in Figure5.12, even with

76

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

pSLOW

mgrp10
mgrpOFF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

pFAST

mgrp10
mgrpOFF

Figure 5.15:FIXED-5: Completion times for pathload measurements.

drastically increased probing traffic, MGRP continues to sustain the source traffic, while

MGRP OFF penalizes the source traffic heavily. This fact is also shown in Figure5.11,

which shows that without MGRP, as the probe bandwidth increases the TCP source is

slowed significantly.

As in the STEP experiments, cross traffic back-off is non-existent with minimal

losses for all experiments.

Pathload completion times are similar both with and without MGRP. This is largely

due to the ease with which pathload can detect a constant amount of cross traffic. Note,

however, in Figure5.15that without MGRP there fewer complete pathload rounds. Fi-

nally, we note that Figure5.16 again illustrates that MGRP-enabled pathload produces

77

(a) mgrpOFF/pFAST

(b) mgrp10/pFAST

(c) mgrpOFF/pSLOW

(d) mgrp10/pSLOW

Figure 5.16: Pathload accuracy plots for FIXED experiment

78

 0

 2

 4

 6

 8

 10

mgrpOFF

mgrp10
mgrpOFF

mgrp10
mgrpOFF

mgrp10
mgrpOFF

mgrp10
mgrpOFF

mgrp10

M
bp

s
at

 b
ot

tle
ne

ck

pk1 pk2 pk3 pFASTpSLOW

cross
src/probe (pbk)
src (nopbk)
probe (nopbk)
available

Figure 5.17: WEB Average per-second throughputs. Each pair of bars represents a different type of probe
traffic.

accurate estimates when piggybacking is properly accounted for.

5.2.3 WEB Experiment

Unlike the STEP and FIXED-5 experiments, the WEB cross traffic uses TCP sources.

We may expect that in the presence of probing traffic with high burst rates, the cross traf-

fic suffers. Somewhat unexpectedly, the cross traffic suffers little with or without MGRP,

and the overall rates are comparable. Overall, the cross traffic throughput does not vary

greatly between experiments.

As can be seen in Figure5.17, average throughput across the whole experiment is

the same with both MGRP on and off. Figure5.18illustrates that MGRP exhibits slightly

more consistent source throughput than MGRP OFF for the packet train experiments, thus

exhibiting less jitter. However, as can be seen by the CDF plots, the source does not fare

as well with MGRP and pFAST: over 40% of the time, the application is unable to sustain

its target rate of 4 Mbps, but without MGRP the application pays a penalty only 20% of

the time (Figure5.19). With pSLOW, the MGRP penalty is less severe but still exists. We

79

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pk1

mgrp10
mgrpOFF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pk2

mgrp10
mgrpOFF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pk3

mgrp10
mgrpOFF

Figure 5.18:WEB: Source throughputs while running packet train probes pk1, pk2, pk3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pSLOW

mgrp10
mgrpOFF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

pFAST

mgrp10
mgrpOFF

Figure 5.19:WEB: Source throughputs while running Pathload measurements

discuss ideas for improving performance in this situation in the next section.

As in other experiments, MGRP greatly improves measurement completion times

(Figure5.20). With MGRP, pFAST measurements complete 20-25% faster at each of the

25th, 50th, and 75th percentiles, with even more significant improvements for pSLOW.

Average pathload probing rates are also 20-25% higher with MGRP. Finally, we can see

from Figure5.21 that once again adjusted MGRP-enabled pathload estimates are still

quite accurate, despite the highly-variable cross traffic. We can also see that for these

runs MGRP-enabled pathload is able to complete more often.

80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

pSLOW

mgrp10
mgrpOFF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

pFAST

mgrp10
mgrpOFF

Figure 5.20:WEB: Completion times for pathload measurements.

81

(a) mgrpOFF/pFAST

(b) mgrp10/pFAST

(c) mgrpOFF/pSLOW

(d) mgrp10/pSLOW

Figure 5.21: Pathload accuracy plots for WEB experiment

82

5.3 Discussion

As shown in the previous section, in most situations MGRP enables higher rates

of probing without impacting source or cross traffic, and greatly improves measurement

completion times overall. However, in the presence of the WEB cross traffic, using MGRP

penalizes the source traffic heavily.

What our discussion so far has not taken into account is the pattern and timing of

loss events. Since the WEB cross traffic is highly variable (see Figure5.2), pathload is

often too aggressive in increasing its rates; information gleaned from earlier trains quickly

becomes outdated, and higher-rate trains are transmitted into a more congested network.

As we mentioned in Section3.2.2, piggybacking can eliminate measurement-induced

losses when it reduces overhead below the available bandwidth (Figure5.10), or drasti-

cally reduce the occurrence of losses (Figure5.3), thus improving source throughput and

latency. However, piggybacking creates a shared fate between application and measure-

ment traffic, and can actually make source losses worse when the probing burst rate is too

high (Figure5.19).

We can see this effect in Figure5.22, which displays a dot for each pathload probe.

Each large grey rectangle shows a complete pathload measurement, which consists of

many probe rounds. Successful probes are light grey, dropped probes without riders

(nopbk) are medium grey, and dropped probes with riders (pbk) are black. These black

dots are application data losses, and cause TCP congestion avoidance to kick in, lowering

throughput and increasing latency. As is apparent from the plot, source losses are highly

correlated in particular probe trains (those at higher rates). They also tend to fall toward

83

Figure 5.22: Effect of the piggybacking ratio on losses of the source traffic. The top figure shows 100%
piggybacking and the middle shows 50% piggybacking. The bottom figure shows the losses inside the
packet trains for the 50% case. Losses only to probes is shown in gray, losses to both source and probes
(the piggybacked probes) are shown in black.

the end of probe trains (higher sequence numbers), when the bottleneck queue is already

full of earlier probes and cross traffic.

We experimented with two approaches to avoid this problem: making the mea-

surement tool piggybacking-aware, and an MGRP regulator which limits the number of

probes we piggyback on.

84

In the first case, we modified pathload to selectively enable piggybacking on probes

(via the Probe API) on rather than always setting the piggybacking flag in the call to

sendmsg() (Section3.1). Our modified version (run in all experiments with MGRP on)

disabled piggybacking during the initial “testing the waters phase” when pathload sends

several high-rate bursts. We considered having pathload avoid piggybacking on trains

that are on the high side of its binary search [6], or selectively piggybacking only the first

portion of those higher-rate trains, but implemented a more general solution instead.

In the second case, we added some policy tuning knobs inside of MGRP itself.

One knob controls the maximum percentage of a train that MGRP will add riders to. By

reducing the amount of the probe train that carries riders, we trade off data loss in probe

trains against the added congestion of competing traffic. Piggybacking on the first 50% of

the train seems to improve measurement times significantly while have a minor additional

impact on source traffic. However, a piggybacking-aware measurement tool would likely

be able to optimize further.

Our coarse piggybacking percentage implemented inside of MGRP is probably not

the optimal approach, since shorter probe trains (10-20 packets) will probably pay too

high a penalty. The MGRP regulator could instead fix a number of probes it is willing

to permit riders on (say, 50 consecutive probes in a transaction, rather than 50%), or

calculate the number based on a TCP source’s current congestion window.

85

Chapter 6

Case Study: MediaNet Overlay

Application layer overlaysform a network of nodes on top of the physical network

so that they can provide a service that is either not available at the network layer or is

not provided with an adequate quality of service. For example, NICE [60] is an over-

lay network for implementing scalable multicast, and RON [8] provides resilient packet

delivery services by routing around network-level route failures it discovers through mon-

itoring the paths between end hosts. To provide their service, overlays need to measure

the network during both their construction and their maintenance phases. Since they also

continuously send data traffic, overlays are ideal candidates for optimization through the

inline measurement that the Measurement Manager enables.

In this chapter we will demonstrate the utility of the measurement manager by using

it to enhance the functionality of MediaNet [21], an overlay that aims to provide adaptive,

user-specified quality-of-service guarantees for media streams. MediaNet’s original de-

sign incorporates only passive measurement so it suffers from the problem mentioned in

the introduction: It fails to assess directly whether more bandwidth has become available

along a path, and so its schedulers may make poor routing decisions. To address this prob-

lem, we augment MediaNet’s schedulers with available bandwidth estimates measured by

pathload running over MGRP, where pathload instances are organized into aestimation

overlaynetwork. By configuring this network alongside MediaNet’s overlay, measure-

86

ment sessions are able to seamlessly reuse MediaNet traffic when it is available. We show

that this approach leads to better overall performance than the original MediaNet and

MediaNet augmented with a measurement overlay that does not use MGRP.

The section begins with an overview of MediaNet as it currently works and its

shortcomings in detecting newly-available bandwidth. It then describes our Estimation

Overlay network for gathering available bandwidth estimates and how MediaNet was

modified to take advantage of them. Finally we present a series of experimental results

demonstrating the benefits of our approach.

6.1 MediaNet

MediaNet [21] is a forwarding overlay that delivers media streams. Each user sub-

mits to MediaNet’sglobal scheduler(GS) a request that specifies the source of a media

stream along with several alternative means of delivery, each tagged with a decreasing

level of utility. A configuration’s utility level indicates the user’s relative preference be-

tween configurations, from the most to least desired. A typical configuration will specify

at utility level 1.0 (the most desired) that a media stream be sent using the highest possible

bandwidth, while increasingly lower levels of utility will reduce bandwidth requirements.

In the original MediaNet paper and in the experiments conducted here, a full-bandwidth

MPEG-2 stream is specified at utility 1.0, while utility 0.5 allows its B frames to be

dropped if needed, nearly halving its bandwidth requirements, while utility 0.3 allows

both P and B frames to be dropped, more than halving its bandwidth requirements yet

87

further.1 MediaNet is agnostic about what adaptations are used, so long as lower util-

ity levels reduce bandwidth needs. For example, the user could specify the stream be

transcoded to a smaller frame size, or sent using a different, lower-bandwidth CODEC.

The MediaNet overlay network itself consists of a series of nodes, each of which

runs a singlelocal schedulerprocess (LS). The global scheduler combines all user re-

quests together and schedules them along the overlay network in a manner that attempts

to maximize each user’s utility. In the best case, the GS will be able to deliver all streams

with utility 1.0. Usually it will achieve this by combining streams into an application-

layer multicast tree, when possible, or by routing streams around congestion spots. Oth-

erwise, some streams may need to be reduced to utility< 1.0, by applying the specified

adaptations. Both of these approaches are shown in Figure6.1.

Once the GS has produced a global schedule, it reconfigures the local schedulers to

deliver, and as necessary transform, packets along the chosen overlay paths. In addition

to forwarding or adapting the traffic they receive, the LSes also report some statistics to

the GS. The GS uses these statistics to determine if a LS reconfiguration is needed to

maximize utility under current network conditions.

MediaNet uses TCP for its transport and maintains one TCP connection between

each two nodes that form an overlay link. MediaNet operates by selecting how the packets

1For an MPEG-2 video stream, I frames are essentially JPEG pictures, while P frames and B frames

exploit temporal locality, including “deltas” from adjacent frames. P frames rely on the most temporally-

recent P or I frame, and B frames rely on the prior I or P frame, and the next-appearing I or P frame.

Therefore, I frames are more important than P frames, while B frames are the least important. Most MPEG

decoders are implemented so that they can tolerate lost frames.

88

Figure 6.1: The basic operation of MediaNet: MediaNet forwards media streams from senders to receivers.
When it detects that the network path cannot handle the current rate of its streams, it adapts by (a) changing
the streaming rate between HIGH, MEDIUM and LOW, and (b) switching the routes that streams take, if
alternate routes are available.

of each media stream are switched between overlay links (or equivalently, between TCP

sessions). For example, in Figure6.1(a) we see aline configurationwhere MediaNet

has three overlay links with only one possible route between sender and receiver. If

network conditions deteriorate and the rate of a stream cannot be sustained, then the only

option to MediaNet is to downgrade the stream rate. In Figure6.1(b) we see adiamond

configurationwith 8 overlay links and two possible routes.

MediaNet needs to know the available bandwidth on all the links of the overlay,

whether they are used or not. Currently, MediaNet uses passive measurement to get ap-

proximate estimates of the available bandwidth on each link that it sends traffic, but gets

no estimates for unused links. Each overlay node keeps track of the TCP rate it can sustain

on each overlay link. If no loss occurs, this is the lower bound of the available bandwidth.

MediaNet knows that it can send up to that rate on that link, but does not know if it can

send more. If an application-level loss occurs (the LS will buffer packets it cannot send at

the desired rate, and then drop them selectively when the buffer becomes full) this implies

89

the current TCP rate cannot be sustained, so MediaNet needs to reconfigure that node to

send at a lower rate.

By using passive measurement, MediaNet can react to losses which indicate re-

duced bandwidth but it cannot easily reclaim that bandwidth once it becomes available

again or switch to inactive paths that have more bandwidth than the existing path. In its

original implementation, the GS treats the current, average sustained bandwidth along a

virtual link as a lower bound, and then it slowly “creeps” up, at a configurable rate, its

view of the upper bound of the available bandwidth. Eventually this upper bound will

reach a level that the GS will attempt to reconfigure the delivery schedule to try the link

again. If its guess was wrong then packets will be dropped, causing the GS’s estimate

of the available bandwidth to be readjusted and its schedule to be reconfigured. If the

creep rate is too high, the packet drops and reconfigurations can be disruptive to the user

experience. If the creep rate is too low, users will receive lower utility levels for longer

than necessary.

Note that Skype [17] faces a similar problem at the beginning of each voice/video

session: without any estimate about the bandwidth that the path can sustain, it cannot

determine what quality to start with. To avoid starting a call with quality that is too low,

Skype resorts to a simple duplication scheme where it sends each packet twice until it

can measure the conditions on the path and make an informed decision of the best stream

rate [13] to use.

90

6.1.1 Active Measurement with MGRP

It is clear that passive measurement techniques are not enough for MediaNet to

fulfill its goal. What MediaNet needs is to actively probe the network and get periodic

estimates of the actual bandwidth on all overlay links. One way to do this is for Medi-

aNet to use custom measurement techniques, like VDN [16], and reuse its own traffic to

measure the paths. But as we discussed in section1.1, this has the main drawback that the

estimation algorithm has to be tightly integrated with the packet delivery implementation.

This makes such an approach difficult to reuse and difficult to change.

Active measurement with MGRP alleviates the problems associated with coupling

estimation algorithms with application implementations, and gives you the best of both

worlds: the available bandwidth algorithm is written and run as a different process, which

seamlessly makes use of MediaNet traffic if it is available. Since MediaNet forwards

traffic using TCP and continuously sends application traffic on many of the links that it

needs to measure, this makes it a perfect client of the Measurement Manager and MGRP.

We use pathload to add active measurements of the available bandwidth to MediaNet.

Given the current Measurement Manager architecture, we still need to manage the

multiple instances of pathload that need to run between MediaNet nodes. In MediaNet

the local schedulers are responsible for passively measuring the overlay links adjacent

to their nodes and reporting the results to the global scheduler. This makes them natural

candidates for running the pathload processes continually, collecting the results every time

a pathload session ends and reporting them back to the GS. However, this approach still

does not address our modularity concerns since we need to change the local schedulers

91

to use aspecificactive measurement tool. It is still difficult to reuse (e.g., the mechanism

for running pathload and collecting results) and requires additional work if we decided to

use another tool.

The modularity of the Measurement Manager architecture and the fact that MGRP

works with any application and any active measurement tool creates a better opportunity

which will allow MediaNet to start using active measurement without any changes to the

local schedulers. This achieved by employing the notion of anEstimation Overlay.

6.2 Estimation Overlay

The Estimation Overlayis a separate measurement overlay service that performs

active measurements between pairs of nodes using MGRP. The Estimator Overlay cur-

rently measures, upon request, the available bandwidth between any two of its overlay

nodes. By setting this network up to mirror the structure of the MediaNet overlay, the

measurements of the Estimator Overlay will take advantage of existing MediaNet traf-

fic automatically, when it is available. MediaNet’s GS can then query this measurement

overlay to acquire per-link statistics for every link it needs to monitor; the local overlay

nodes do not have to be changed at all. These per-link measurements are in addition to

any reports the GS receives from the LSes about their own traffic. The combination of

the two provides MediaNet with a fuller picture of network conditions on its paths. It can

react quickly to reports of loss from the LSes and then ramp back up the streaming rates

when the estimation overlay reports high available bandwidth.

The Estimation Overlay provides measurement as a service. When applications

92

such as MediaNet need a particular measurement, they query the overlay which in turn

measures the network and responds with an estimate. This separation betweenwhat to

measureandhow to measureallows the estimator overlay to use a variety of estimation

algorithms and pick the best one suited for the task at hand. A typical trade-off is the one

between measurement accuracy and overhead. For example MediaNet needs estimates for

all of its links; both active and inactive. For links where MediaNet sends traffic, MGRP

piggybacking to sharply reduce the probe overhead, and the estimator can afford to use a

high-overhead algorithm, if it provides quick and accurate results. But for links that have

no traffic, the estimator may choose a less accurate algorithm that uses fewer probes. The

Estimation Overlay currently implements the pathload algorithm. A plan for future work

is to extend the estimator to combine together a number of existing tools (Chapter8).

6.3 MediaNet Experiments

We conducted a series of experiments to demonstrate how MediaNet operates and

how it can benefit from integration with MGRP.

6.3.1 Experimental Setup

Network Topology We use the network configuration shown in Figure6.2. One local

scheduler runs on each of the forwarder nodes (m3, m5) and the global scheduler runs on

a separate node. In our enhanced version the Estimation Overlay also runs between m3

and m5, and the GS queries it for available bandwidth between those nodes. Since there

is but one path between m3 and m5, if network conditions determine the GS can only

93

x1 x2

c1 c2UDP or TCP
cross traffic

m3 m5

Estimator
Overlay

pathload

MediaNet
Local Scheduler

MediaNet
Local Scheduler

Three MPEG Streams

Estimator
Overlay

pathload

probes

MediaNet
Global Scheduler

Queries for
available bandwidth

measurement

Figure 6.2: MediaNet experiment: The local schedulers schedule three MPEG streams between m3 and
m5. The global scheduler asks the estimator overlay for periodic estimates of the available bandwidth
between m3 and m5. The MediaNet streams share the bottleneck link (x1x2) with cross traffic from c1 to
c2.

control the sending rate of source traffic by applying adaptations from user specifications,

described next.

Source traffic For the source traffic, we loop three MPEG video streams. The I, P and

B frames in the MPEG stream are distributed according to Table6.1. For each stream

we provide a specification to the MediaNet GS that prefers the full stream at utility 1.0,

dropped B frames at utility 0.5, and dropped P and B frames at utility 0.3. Each video

stream requires about 145 KB/s to send at its full rate, about 88 KB/s to send only I

and P frames, and about 27 KB/s to send only I frames. Since the experimental network

permits only one path between the source and destination, all adaptation will take place

by dropping frames, rather than rerouting. In MediaNet, frames are dropped as early as

possible (in this case at the sender), which reduces the bandwidth sent across the network

overall.

94

Frame Type Average Size (B) Frequency (Hz)

I 13500 2
P 7625 8
B 2850 20

Table 6.1: MPEG frame distribution: full rate sends all three frame types, medium rate drops the B frames
and sends only the I and P frames, and the lowest rate uses only the I frames.

Figure 6.3: Cross traffic for the MediaNet experiment: UDP cross traffic that uses fixed-rate intervals of
variable duration. We use the following rates: 4, 8, 4, 7, 4, 8, 4 Mbps.

Cross traffic The MediaNet streams share the bottleneck link (x1x2) with cross traffic

from c1 to c2. We generate UDP cross traffic following the STEP pattern (also used for

experiments in Section5.1), which adjusts the bandwidth in a stepwise fashion for 240

seconds using fixed-rate variable-duration intervals (4, 8, 4, 7, 4, 8, 4 Mbps). Figure6.3

shows the cross traffic that we use.

6.3.2 Original MediaNet

Our baseline experiment considers the original MediaNet implementation, which

uses only passive measurement to adapt the media streams. Figure6.4 shows how Me-

diaNet adapts its streams in the presence of STEP traffic. All the plots have time on the

x-axis and depict 400 seconds of an experiment run that we have found to be representa-

tive of the many runs we considered. We now proceed to explain the plots in the figure.

95

Figure 6.4: Original MediaNet Experiment: We see that all the MPEG sessions start at high streaming rate
(e), (g) and (i) but around time 1270 MediaNet downgrades all streams due to high loss and no available
bandwidth since cross traffic (d) spikes. From the MPEG frame plot (f) we see that the first stream is
downgraded to medium quality (loses only the B frames) but the other two streams (h) and (j) lose both P
and B frames and are downgraded to low quality.

96

Cross Traffic Plots We already saw the cross traffic plot (d) that shows the UDP cross

traffic that is sent from c1, the source of the cross traffic. We can see clearly how the UDP

traffic is sent in fixed-rate intervals. The data for the traffic plots is extracted from the

Ethernet counters of the network devices and represent actual traffic sent. Plot (c) uses

the Ethernet counters on x1 (the ingress router to the bottleneck link) to plot the actual

traffic sent on the bottleneck link. The traffic on this plot combines the cross traffic, and

the traffic of the MPEG streams.

MPEG Stream Plots These plots are the bottom six plots in Figure6.4, subplots (e)

through (j). Each horizontal pair represents one MPEG stream and we will concentrate

on the first stream, subplots (e) and (f). Plot (e), the one on the left, shows the rate that

frames of the MPEG stream arrive at the receiver. This rate is not necessarily the playback

rate. For example, due to TCP slow start effects, the incoming MPEG rate dips for a few

seconds around time 1210 but does not lose any frames. So the stream can be decoded

correctly but requires the use of playback buffers, which are outside the scope of our

experiment.

Plot (f), the one on the right, shows the types of MPEG frames that are decoded

at any point of time. The top red dots represent I frames, the middle green dots are P

frames and the bottom blue dots represent B frames. Since the more frame types we have,

the better the quality of the decoded stream, it is desirable to have a plot that is as full

as possible with all three types of frames. For example, at the beginning of the session

we start with high quality but then we drop to medium quality after time 1275. The gap

across all three types at time 1210 is due to the TCP rate dip that we discussed earlier; no

97

frames were lost, but they were delayed (handled by the playback buffer).

Medianet Plots Plot (a) in Figure6.4 shows MediaNet’s view of the available band-

width on the network path between m3 and m5. At any point of time, the long horizontal

blue line represents the amount of bandwidth that the MediaNet GS thinks is available.

During reconfigurations, MediaNet ensures that the media streaming rates are adapted so

that when combined together they do not go above that known available bandwidth. The

dotted line indicates the actual available bandwidth, which is computed by subtracting

the bottleneck traffic (plot (c)) from the capacity of the x1x2 link (10 Mbps). This line is

shown in a more pronounced way in plot (b).

MediaNet computes a new value for the available bandwidth every time it receives

a report. Since this is the original MediaNet, we do not get any estimates from active

measurement tools and MediaNet has to rely solely on reports from the LSes. We see

these reports in the form of vertical impulses. A light blue impulse represents the rate

that the local scheduler could send successfully (representing a lower bound). A red

impulse on top of the blue impulse indicates that the LS tried to send traffic at a higher

rate than it could (representing an upper bound). The light blue “could send” impulses

push MediaNet’s estimate up, while the red “tried but failed to send” impulses push the

estimate down.

6.3.2.1 How Medianet Adaptation Works

Using the example run in Figure6.4 we can see how MediaNet adapts MPEG

streams as a result of loss. Around time 1200, before the cross traffic starts, all MPEG

98

sessions start using the highest streaming rate. The local schedulers succeed in send-

ing the desired rate and send reports to MediaNet, which result in the vertical light blue

impulses in (a). MediaNet starts forming an estimate for the available bandwidth (blue

horizontal line in (a)). Around time 1270 the second step of the UDP cross traffic kicks in

and overwhelms the bottleneck link. The local scheduler encounters loss which we see as

red dots in (e), (g), and (h). The LS sends a report to the GS; these appear in (a) as the red

impulses. As a result MediaNet pushes down its estimate of the available bandwidth and

initiates a reconfiguration. MediaNet then instructs the LS to downgrade the first MPEG

stream to medium level, and the other two to low level. This is reflected in the change of

streaming rate in (e), (g) and (i), and from the types of frames that disappear from plots

(f), (h) and (j).

From this example, we see the main drawback of the original operation of Me-

diaNet: it correctly downgrades the streams to adapt to reduced bandwidth but fails to

upgrade the streams when bandwidth becomes available again. This is apparent in (a)

where MediaNet’s view of the available bandwidth does not change after time 1270 even

though the dotted line shows that bandwidth becomes again available at time 1300, 1370

and 1450.

6.3.3 MediaNet with Active Measurement

In this set of experiments we demonstrate how the performance of MediaNet im-

proves when we supplement the reports that the global scheduler receives with active

network measurements from the estimator overlay, as we described in section6.1.1. The

99

main difference with the original MediaNet (Section6.3.2) is that now the estimator over-

lay runs pathload between m3 and m5 and sends periodic reports to the estimator. We will

present two sets of experiments. One where the estimator overlay uses the original version

of pathload (pSLOW), and one with the more aggressive version (pFAST) (Section5.1.3).

6.3.3.1 Summary of Results

In the following sections (6.3.3.2, 6.3.3.3and6.3.3.4) we present plots of represen-

tative experiment runs that show that we can improve the quality of service of the original

MediaNet (section6.3.2) by (1) incorporating active measurements using pathload, and

(2) using MGRP. We have repeated our experiments multiple times and the MGRP benefit

remains consistent across runs.

We will use three metrics to assess the quality of the service provided by MediaNet.

The first metric is theaverage number of decoded frames per second (fps). The higher the

frame rate, the better the quality of the MPEG stream. The second metric is theaverage

streaming rate (mbps), which is related to the frames per second, with higher rates more

desirable. Even if we increase the quality of the MPEG stream on average, we need to

make sure that playback is smooth and not full of glitches or freezes. To determine this

we use the third metric, theratio of frames that failed to decode. These failed frames are

usually a result of MediaNet reconfigurations and we need to keep their number and ratio

as low as possible. It is conceivable that we can improve on average the MPEG streaming

rate and the number of frames we decode per second, but at the same time have a high

ratio of failed frames.

100

experiment runs sec fps % over non-MGRP % over original

mgrpOFF.pOFF 14 337 30.11

mgrpOFF.pSLOW 22 336 39.58 31.44%

mgrp10.pSLOW 32 336 43.42 9.69% 44.19%

mgrpOFF.pFAST 10 335 39.10 29.87%

mgrp10.pFAST 22 336 52.08 33.19% 72.96%

Table 6.2: Increase of decoded MPEG frames/second with MGRP: The number of successfully decoded
MPEG frames appears in column 4 as a ratio of frames per second (fps). We see that using active measure-
ment improves MediaNet in both cases (column 6). But with MGRP, MediaNet can adapt the streaming
rates better so that the number of MPEG frames it sends and decodes per second (column 5) increases by
9-30%.

We collected results from multiple runs of all MediaNet modes of operation and

we present our results for the three quality metrics. We will show that MGRP improves

MediaNet’s performance across all metrics: it increases both the frame and streaming

rates, and either keeps the same or lowers the ratio of failed frames.

Table 6.2 shows the average number of decoded frames per second. Each row

represents a different MediaNet mode of operation. We collected results from multiple

runs with the same duration. Column 2 shows the number of runs and column 3 shows the

average duration of each run. For each row, we added all the frames that were successfully

decoded across runs, and divided by the total number of seconds. This produced the

frames-per-second (fps) metric on column 4. We then computed percentages to quantify

how much the frame rate increased in MGRP, compared to: (a) the active measurement

case, but without MGRP, (b) the original case. As we can see from the results (Table6.2),

it is very clear that using active measurement with MediaNet is a clear win, since we get

a 31.44% increase (column 6) even without MGRP. With MGRP, we get an even further

increase (column 5) where frame rate increases by 9.69% for pSLOW and 33.19% for

101

experiment runs sec mbps % over non-MGRP % over original

mgrpOFF.pOFF 14 337 1.84

mgrpOFF.pSLOW 22 336 1.96 6.29%

mgrp10.pSLOW 32 336 2.05 4.40% 11.21%

mgrpOFF.pFAST 10 335 1.86 0.94%

mgrp10.pFAST 22 336 2.28 22.52% 23.86%

Table 6.3: Increase of MPEG streaming rate with MGRP: The MPEG streaming rate appears in column 4
as Megabits per Second (mbps). MGRP provides a clear improvement over the non-MGRP case in both
cases of active measurement (pSLOW and pFAST) where it increases the streaming rate by 4-22%. The
improvement on streaming rate is less than the improvement on the number of frames decoded (Table6.2)
since MediaNet uses three different frame sizes, and most of the increase in frames was due to small-sized
frames.

pFAST, compared with the non-MGRP case.

Table6.3 shows the average streaming rate. For each row we added all the sizes

of frames that were decoded correctly and divided them by the total number of seconds.

This produced the average MPEG streaming rate (mbps). With MGRP we get an increase

of 4.40% for pSLOW and 22.52% for pFAST, compared to the non-MGRP case. The

difference between the percentage increase of the streaming rate metric (mbps) and the

increase of the frame rate is expected, since we have three different kinds of frames with

different sizes. With MGRP, the number of the much smaller frames increase, which

explains how the large increase in frame rate, translates to a more moderate increase of

streaming rate.

Table6.4shows the ratio of the frames that failed to decode. These failed frames are

usually the result of frame losses during MediaNet reconfigurations and result in glitches

or freezes during playback. It is important to keep this ratio low, but there is a trade-off

between using reconfigurations to change back to higher streaming rates, and disrupting

102

experiment runs sec bad frames % over non-MGRP % over original

mgrpOFF.pOFF 14 337 0.0009

mgrpOFF.pSLOW 22 336 0.0080 785.70%

mgrp10.pSLOW 32 336 0.0079 -0.76% 782.09%

mgrpOFF.pFAST 10 335 0.0114 1162.93%

mgrp10.pFAST 22 336 0.0100 -12.07% 1013.73%

Table 6.4: Occurence of decoding failures in MediaNET with MGRP: The ratio of the frames that failed
to be decoded over the total frames appears in column 4. We see that MGRP (column 5) lowers the failure
ratio slightly (less than 1%) for pSLOW, and more substantially for pFAST (around 12%). This is a good
result because it shows that the gains of MGRP (in frame and stream rate) are not at the expense of the
frame decoding process.

the video playback by introducing failed frames as a result of reconfigurations. The results

in tables6.2and6.3shows that MGRP improves the operation of MediaNet. Our goal is

to show that these MGRP gains (which are average gains) do not increase the occurence

of failed frames (which momentarily affect quality).

From Table6.4we see that MGRP not only does not increase the failed frames, but

also reduces them. Column 4 shows the ratio of frames that failed to be decoded over

the total number of frames. In column 5 we see the percentage that MGRP increases that

ratio, compared to the non-MGRP case. For both pSLOW and pFAST the percentages are

negative. In pSLOW, MGRP achieves a 0.76% reduction, and in pFAST a 12% reduction.

In any case, the ratio of bad frames is quite low. For pSLOW, about 0.8% of frames fail

to decode, and for pFAST about 1% of frames fail to decode (with or without MGRP).

The very large increase in the failure rate of active measurement compared to the

original MediaNet (column 6), is expected, and is due to the baseline ratio being too close

to zero. In the original mode, MediaNet hardly makes any reconfigurations so the number

of failed frames is negligible. We can see from the table that only 0.09% of frames fail to

103

decode in the original case. The failed frames is the price for using active measurement

and reconfigurations to maximize the MPEG streaming rates. This table shows that the

price for that approach is well worth it.

The results in tables6.2, 6.3and6.4make clear that MGRP improves the operation

of MediaNet, by increasing the MPEG streaming rates without increasing the frames that

cannot be decoded. So the experiment runs that we describe in detail in the following

sections are representative of the improvements that MediaNet gets by using MGRP.

6.3.3.2 Using Original Pathload (pSLOW)

Figure6.5shows how MediaNet operates with the addition of the new pathload esti-

mates. Plots (a) and (b) now show the pathload estimates as green X points. In plot (a) we

see how the pathload estimates refine MediaNet’s knowledge about the available band-

width. MediaNet’s estimate (horizontal blue line) now follows closer the actual band-

width (dotted line). Compare this to the original MediaNet (Figure6.4(a)). In plot (b), we

show one point for every available bandwidth estimate that MediaNet receives from the

active measurement overlay, which can be compared to the actual available bandwidth to

visually asses the accuracy of the estimates.

The benefit to the MGRP streams is evident. In plots (e), (g) and (i), we see how

all three streams are upgraded to a higher streaming rate around time 1350, after the

downgrade at time 1270. This upgrade was not possible in the original case, and is due

to MediaNet now receiving a pathload estimate. As we see in plot (a), the estimate at

time 1350 prompts MediaNet to raise its bandwidth ceiling from about 2 Mbps to about

104

Figure 6.5: Medianet with Active Measurement but without MGRP (mgrpOFF/pSLOW)

105

6 Mbps. This triggers a reconfiguration since all the MPEG streams are using rates that

are lower than the maximum quality rate. After the reconfiguration, MediaNet instructs

the local scheduler to raise the rate of all of the MPEG streams to the highest level, since

6 Mbps appears to MediaNet to be more than enough to accommodate the three MPEG

streams of 1.16 Mbps each.

However, pathload overestimated the available bandwidth at time 1350. Compare in

plot (b) the difference between the pathload estimate (green dot) and the actual bandwidth

(red line). This leads MediaNet to raise the available bandwidth ceiling too high. Once

the local scheduler attempts to send at the higher rate, it incurs loss and reports back to the

GS. This prompts another reconfiguration and finally the stream rates stabilize at HIGH,

MEDIUM and MEDIUM for the time period [1370,1420]. We can see from plots (h) and

(j) that streams 2 and 3 briefly used the higher rate (all frames are present).

This experiment demonstrates that the interplay between active and passive mea-

surement is useful in guiding MediaNet to adapt the stream rates better than the original

case. Without the active measurements of pathload, MediaNet would have never upgraded

to the higher rates when bandwidth became available again, and without the passive mea-

surements of the local scheduler, MediaNet would not have adjusted the stream rates when

the estimate is too high.

It is also clear however, that the accuracy and timeliness of the estimates provided

by the estimator overlay have a direct effect on the operation of MediaNet. In this experi-

ment, pathload demonstrates some shortcomings: (1) it tends to overestimate the available

bandwidth, and (2) estimates take on the order of 20 seconds but can be much longer (we

have set a timeout of 60 seconds). These are limitations of pathload that are especially

106

apparent during periods of lower actual bandwidth (a fact we also showed in our experi-

ments in Chapter5).

6.3.3.3 Using Original Pathload (pSLOW) with MGRP

Figure6.6 shows the same MediaNet session we presented in the previous section

but now going over MGRP. Plot (b), in addition to the pathload estimates (green x), also

shows the pathload estimates prior to being adjusted for piggybacking (as we discussed

throughout section5.2), shown as a blue cross. Otherwise the plots are the same we

presented in the previous section.

We notice in plot (a) that pathload over MGRP provides estimates more often than

the non-MGRP case and with similar accuracy. This agrees with our results in Chapter5.

The higher frequency of pathload estimates improves the adaptation of MediaNet so that

the the three streams, taken together, achieve higher streaming rates in the MGRP case.

The plots (e, g, i) in Figure6.6 show that most of the time in the MGRP case all three

streams are using the MEDIUM rate, with brief excursions to the HIGH and LOW rates.

In the non-MGRP case (Figure6.5), the first stream performs better but the other two

spend half of the time in the LOW rate. Also, towards the end of the experiment, around

time 1500, in the MGRP case MediaNet reverts sooner to the HIGH rate than the non-

MGRP case, because pathload returns an estimate sooner.

However, MGRP does not eliminate the limitations of pathload. Pathload still times

out twice for 100 seconds during the time period [1375,1475] where the available band-

width bounces back from zero. This happened exactly in the same way for the non-MGRP

107

Figure 6.6: MediaNet experiment with three MPEG streams using mgrp10/pSLOW

108

case. By not producing an estimate during that period, MediaNet misses in both cases the

opportunity to bump up the MPEG streaming rates.

6.3.3.4 Using Aggressive Pathload (pFAST)

In Chapter5 we showed that with MGRP we can run a more aggressive version

of pathload (pFAST as compared to pSLOW) so that we can shorten the time it takes to

produce an estimate. We have repeated the above experiment for both the non-MGRP

case (Figure6.7) and with MGRP turned on (Figure6.8).

We see from Figure6.8(b) that Medianet with MGRP receives estimates from

pathload more often. Plot (a) shows that MediaNet follows the actual available bandwidth

more closely and in a more timely manner. This enables MediaNet to take advantage of

periods of increased bandwidth that are between periods of low bandwidth, and bump

up the streaming rates to HIGH (plots (e) through (j)). There are two such 50 second

periods in our experiment: [1300,1350] and [1375,1425]. For the same time periods in

the non-MGRP case (Figure6.7) the streaming rates remain at MEDIUM. On the other

hand, pathload timeouts occur with MGRP too, which is the reason why MediaNet did

not upgrade the streams earlier in the period [1300,1350]. But it still outperforms the

non-MGRP case.

109

Figure 6.7: MediaNet experiment with three MPEG streams using mgrpOFF/pFAST

110

Figure 6.8: MediaNet experiment with three MPEG streams using mgrp10/pFAST

111

6.4 MediaNet lessons for the Estimation Overlay

In this chapter we integrated MediaNet with the Measurement Manager. Instead of

using pathload directly, we introduced the notion of the Estimation Overlay (section6.2).

While experimenting with MediaNet we found the estimator overlay to be a valuable

abstraction that concealed the complexities of running active measurement tools and sim-

plified the process of collecting results.

However, because of limitations of pathload, MediaNet cannot achieve optimal

adaptation. The time it takes for pathload to produce an estimate is too long. Sometimes

the estimates are too high which leads MediaNet to upgrade rates when no bandwidth is

available. Also the tendency of pathload to time out during transitions between low and

high bandwidth prevents MediaNet from upgrading the streaming rates early. MediaNet

would settle for a less accurate measurement, as long as it is reported quickly and pre-

dictably. In the simplest case, it is worth more to MediaNet to get just anindication that

the available bandwidth has increased but to get it very soon after the change, rather than

get a very accurate numerical estimate that is delayed.

In short, we can imagine improving the estimation overlay in the following ways:

1. Implement many algorithms for each network property, and use the simplest and

fastest that fits the application requirements.

2. Know the limitations of each algorithm. Applications may find them unacceptable

and may want to use a different algorithm. Or, there may be certain environments

that some algorithms perform better than others.

112

3. Provide some sort of quality metric and error margin for the estimates provided.

We discuss more ideas about the estimation overlay in Chapter8.

113

Chapter 7

Related Work

The need for end-to-end measurement has generated a large body of research. In

this section we present a sample of the work most related to the Measurement Manager.

Our work is differentiated by the body of literature in the following ways:

• The Measurement Manager is a new architecture for end-to-end network measure-

ment that is integrated at the Layer 4 of the IP protocol stack. Probing and mea-

surement are separate components of the architecture and each can evolve indepen-

dently.

• The Measurement Manager provides generic inline measurements. Transport pay-

load is reused on-demand to fill empty probes; if no payload is available probes

are sent out empty. To our knowledge, the Measurement Manager is the first ker-

nel service to attempt to fill empty probe padding with useful payload, to reduce

measurement overhead.

• The Measurement Manager architecture was designed from the start to piggyback

transport payload in probes. Most existing approaches to inline measurement in-

stead employ trickery to embed their probes into TCP streams.

• The Measurement Manger is independent of applications, transport protocols and

measurement algorithms, providing a small set of probing primitives for building

114

efficient estimation algorithms.

7.1 Network measurement tools

Network measurement tools infer network characteristics by observing the effects

of injected or normally-sent packets. We used existing tools to shape the Probing API

primitives. The number of available network measurement tools is quite large [61, 62].

We list here a sample of the tools that we studied in detail while designing the Measure-

ment Manager architecture; they are described in more detail in Chapter2.

• Pathchar [22, 63] uses variable packet size probing to estimate path characteristics.

• Pathload [6] uses packet trains with uniform spacing to estimate available band-

width and has been covered in detail in Section2.2.1.

• Pathchirp [15] uses packet trains with variable packet spacing to estimate available

bandwidth. It uses fewer probes than pathload but is not as accurate [58] (also

verified by our experiments).

• Pathrate [7] uses packet pair probing to estimate path capacity.

• Pathneck [25] uses recursive packet trains (TTL-limited probes surrounded by nor-

mal packets) to locate bottleneck links along a network path.

MGRP does not provide support for TTL-limited packets, or packets sent over ICMP,

currently precluding us from implementing Pathneck and some other tools. We believe

we could add this missing support without difficulty.

115

7.2 End-to-end Measurement Services

There are a number of systems that export end-to-end measurement services to

endhosts and use a similar API to ours. The Measurement Manager extends and comple-

ments those systems by providing generic inline probing and by using transport payload

on-demand to mitigate the intrusive nature of active probing without sacrificing measure-

ment flexibility.

• MAD [26] is a system for Multi-user Active Measurement that provides measure-

ment as a system service in the Linux kernel. Like the Measurement Manager,

MAD generates probes on behalf of probers, but does not do any piggybacking and

has a more restrictive Probe API. Probers specify probes with an assembly-like lan-

guage, which schedules probes according to a discrete clock. MAD aims at being

accurate and provides an interface for system self-measurement, so that probe tools

can measure the error in the probing process.

• Periscope [27] is a programmable probing framework implemented in the Linux

kernel. Periscope follows the active probing approach and exports an API that

active measurement tools can use to define arbitrary probing structures (such as

packet pairs and packet trains) which are then sent by the system. Periscope sends

the probes asICMP ECHO REQUESTS and can collect remote timestamps using the

ICMP response packets. Like the Measurement Manager, Periscope generates the

probes inside the kernel for greater accuracy.

• Scriptroute [28] is a system that allows ordinary Internet users to conduct network

116

measurements from multiple vantage points. Users submit measurement scripts in

which they construct their probe traffic (using aSend-train API) and the Scriptroute

server generates the probes using raw sockets. The primary goal of the system is to

perform measurements on behalf of unauthenticated users in a flexible but secure

manner. The Measurement Manager operates at a layer lower than Scriptroute and

can complement its operation (for example by integrating them at the last stage of

the Scriptroute’sNetwork Guardianmodule where the system sends out the probes).

• Pásztor and Veitch[29] present a precision infrastructure for active probing that

uses Real-Time Linux to send probe streams with high accuracy. Like the Mea-

surement Manager, this system has two separate components, one for measurement

and one for probing. The focus of this work is to send the probes as accurately as

possible with commodity equipment and software.

• pktd [30] is a packet capture and injection agent that performs passive and active

measurement on behalf of client measurement tools. The focus of this work is to

provide controlled and fine-grained access to the resources of the network device.

As in the case of Scriptroute, pktd operates above the Measurement Manager, which

can be integrated with pktd’sInjection Managerto send out precise probe patterns

with payload piggybacking.

• NIMI [64] is a large-scale measurement infrastructure that consists of diversely-

administered hosts. A user of NIMI submits measurement requests that are sched-

uled for some future time. The focus of this work is to scale the infrastructure

to a large number of measurement servers that can execute a broad range of mea-

117

surement tools in a safe manner. NIMI requires authenticated access for use of its

measurement services (in contrast, for example, to Scriptroute’s unauthenticated

access).

• iPlane [65] is a scalable overlay service that provides predictions of Internet end-

to-end path properties. iPlane uses structural information (router-level and au-

tonomous system topology), systematic active measurements (sending probes) and

opportunistic measurements (monitoring actual data transfers) to gather its mea-

surement data. iPlane participates in BitTorrent swarms and creates connections to

existing peers for the explicit purpose of observing network behavior. It then uses

the TCP packet traces of the BitTorrent sessions to infer network properties. Using

BitTorrent this way does not save any bandwidth; all transfers may consist of actual

data (i.e.,not probes) but the data is wasted (it is not stored or uploaded). iPlane can

benefit from the Measurement Manager by collecting measurements from existing

data transfers without the need to initiate data transfers solely for the purpose of

measurement.

• Sophia [66] is and information plane for networked systems that is deployed on

PlanetLab [67]. Sophia is a distributed system that collects, stores, propagates, ag-

gregates and reacts to observations about the network’s current conditions. It pro-

vides a distributed logic programming environment for constructing queries about

“sensor” measurements of the network. Queries can retrieve cached measurements

or induce new ones.

• The Routing Underlay [68] is a shared measurement infrastructure that sits be-

118

tween overlay networks and the underlying Internet. Overlay services can query

the routing underlay whenever they need measurements instead of independently

probing the Internet on their own.

• The Congestion Manager [20], while not being strictly a measurement service,

has been the inspiration for the Measurement Manager. The Congestion Manager

(CM) integrates congestion management across all applications and transport pro-

tocols between two Internet hosts. The CM maintains congestion parameters and

enablesshared state learningby exposing an API for applications to learn about the

network’s congestion state. Similar to the Measurement Manager, the CM defines

a protocol that resides on top of the IP layer.

7.3 Piggybacking measurements

It is generally accepted that active measurement techniques yield more accurate re-

sults and are faster than passive techniques. However, since they inject probes into the

network these techniques can be very intrusive and do not scale. To reduce the overhead

of active measurement techniques some research has explored the option of piggyback-

ing probes on transport payload. Most of the research in this area has concentrated on

manipulating TCP to send inline probes for specific active algorithms. The Measurement

Manager on the other hand is a measurement architecture that provides generic inline

measurement as an integral part of the architecture and is not dependent on a specific

transport protocol or measurement algorithm.

• TCP Probe [69] is a sender-side only extension to TCP that estimates the bot-

119

tleneck capacity of a network path using a portion of the TCP packets as probes.

TCP Probe uses the CapProbe [70] algorithm that was originally designed as a

standalone active measurement tool. Since CapProbe relies on packet-pair probes

to estimate capacity, TCP Probe needs to send a portion of the TCP packets back-

to-back and retrieve the arrival (remote) timestamps. Due to the bursty nature of

TCP, TCP Probe can easily find TCP packets to send back-to-back [71]. However,

retrieving both timestamps from the remote (unaware) TCP side is not as straight-

forward due to the delayed acknowledgment mechanism of TCP (one ACK gener-

ated for every two packets). To circumvent TCP’s mechanism, TCP Probe inverts

the TCP packets inside a packet-pair, which forces the remote side to generate one

ACK for each packet of the packet-pair.

• TFRC Probe [72] is another example of a piggybacking technique similar to TCP Probe.

In this case, the CapProbe [70] algorithm has been integrated with the TFRC proto-

col [73] to perform inline capacity measurement using TFRC data packets. TFRC

is an equation-based congestion control protocol for unreliable, rate-adaptive appli-

cations. Both TCP Probe and TFRC Probe are part of the OverProbe [74] project,

which provides a toolkit for the management of overlay networks with mobile users.

• ImTCP [75] is an inline measurement mechanism for actively measuring avail-

able bandwidth using TCP packets. ImTCP combines a measurement algorithm

for available bandwidth [76] with the TCP Reno algorithm. Like the Measure-

ment Manager, ImTCP uses a buffer to temporarily store the TCP packets and then

spaces the packets to conform with the sending pattern of a particular probe stream.

120

The Measurement Manager is more flexible and generic as it can combine any

probe stream with TCP traffic and is not tied to a specific measurement algorithm.

When the TCP packets are not enough to cover the entire probe stream ImTCP does

not send the probe; the Measurement Manager on the other hand sends additional

probes on-demand using only partially the TCP packets. ImTCP has been extended

to also include inline capacity estimation [77].

• ICIM [78] is a variation of ImTCP that does not modify the spacing of TCP packets

but adjusts the lengths of TCP bursts. ICIM measures available bandwidth for large

bandwidth environments in the presence of interrupt coalescence [79], which has a

negative effect on network measurements.

• TCP Sidecar [80] is a technique for transparently injecting measurement probes

into non-measurement TCP streams. TCP Sidecar injects probes by replaying

packets inside a TCP stream and making them look like retransmissions. It does

not piggyback on existing TCP payload; all probes occupy additional space but

this method has the advantage of passing through firewalls and avoiding detection

by intrusion detection systems. The replayed packets can be any size and can be

TTL-limited so that they can be used for traceroute-like probing. TCP Sidecar is

another example of a system that separates measurement and probing and is not

tied to a specific measurement algorithm, much like the Measurement Manager.

Passenger [81] is a measurement algorithm based on TCP Sidecar that discovers

router-level Internet topology by piggybacking on TCP streams.

• Sting [82] uses TCP as an implicit measurement service to measure the end-to-end

121

packet loss rate between two hosts (in both directions). Sting does not use real

data (no piggybacking) but manipulates the TCP connection to get loss measure-

ments. For an example of TCP manipulation, Sting sends packets with overlapping

sequence numbers so that each packet contributes only one byte to the the receive

buffer. This trick allows Sting to send multiple TCP packets back-to-back at the

beginning of a TCP session.

• Sprobe [83] uses the packet pair technique to measure the bottleneck bandwidth.

Sprobe is inspired by Sting and it manipulates TCP to get its measurements in both

downstream and upstream directions.

• Hoe [84] uses passive measurements of TCP packets to infer available bandwidth.

The estimate is used to set the slow start thresholdssthresh (instead of using the

default value) thus improving the startup behavior of TCP.

• TAgent [18] was our initial attempt at the Measurement Manager architecture,

proposing the idea of seamless combination of active probing with application data.

TAgent was implemented as a user-space process that proxied both tools and appli-

cations, combining their traffic before handing it to the kernel, and likewise demul-

tiplexed the combined traffic at the receiver. Implementing TAgent in user space

was the source of many problems. In particular it created a severe performance

bottleneck, and it was hard-pressed to properly simulate the kernel under abnormal

(e.g., high congestion) conditions.

Jain and Dovrolis [16] propose to integrate probing into application traffic, rather

than TCP traffic, to create a custom measurement service. They present a streaming media

122

overlay network called VDN (forvideo distribution network) that shapes the transmission

of streaming media packets to resemble a pathload train, which it can use to infer available

bandwidth. MGRP similarly allows application and measurement traffic to be scheduled

together.

Skype [17] also probes the network with its own packets to measure available band-

width and loss rate together [13]. This enables Skype to determine if periods of high loss

are due to congestion. If not, then Skype employs a redundancy scheme where it dupli-

cates voice packets that it has already sent to maintain high voice quality.

Compared to these approaches, using MGRP permits applications and measurement

tools to be kept separate. MGRP can piggybackanyapplication traffic onto measurement

probes headed for the same destination, and likewise, an application can easily take ad-

vantage of a range of tools. A newly developed tool simply uses the MGRP API to

immediately benefit from the lower overhead that comes from piggybacking.

7.4 Measurement in TCP

The Additive Increase Multiplicative Decrease (AIMD) algorithm of TCP Reno

is in effect an end-to-end measurement method to roughly estimate the portion of the

bandwidth that a TCP flow can use. Since TCP was never intended to be optimal in all

environments, a number of TCP variants have been proposed that use different estima-

tors to enhance TCP congestion control in a variety of network environments and traffic

conditions:

• TCP Westwood [85] uses end-to-end bandwidth estimation to set the values of the

123

congestion windowcwinand the slow-start thresholdsshthres.

• TCP Vegas [86] uses round-trip time to measure the current throughput rate and

compares it with an expected throughput rate. It then infers the bottleneck backlog

and adjusts its congestion window to prevent congestion from occurring.

• TCP Veno [87] targets the wireless domain and combines TCP Vegas and TCP Reno.

It measures the network congestion level so that it can distinguish between losses

due to congestion and losses due to error.

• Adaptive TCP A common characteristic of most TCP variants is that they use

the same algorithm for every network environment. This makes some TCP variants

better suited than others for a specific environment (for example, wireless or high

speed paths). While not common, another approach is to make TCP more adap-

tive, by using multiple estimators depending on the conditions. As an example,

TCP Westwood has been extended [88] to selectadaptivelybetween two estimators

based on the predominant cause of packet loss.

7.5 Passive Measurement

Passive measurement techniques, which examine existing traffic to infer character-

istics of the network, have seen substantial research. MGRP is an optimization technique

for activemeasurement algorithms—by piggybacking application data on measurement

probes, the performance cost of active algorithms approaches that of passive algorithms.

124

Chapter 8

Future Work

In this chapter we briefly sketch plans for further work, including (1) the devel-

opment of a more general estimation service that could run over MGRP and be used by

applications and transport protocols, (2) ways in which the Measurement Manager and the

estimation service can optimize file downloads and make operation of TCP more adap-

tive; and (3) the development of new probing paradigms that account in their design for

the fact they may be piggybacked.

8.1 An Estimation Service

In our Measurement Manager architecture, MGRP is the core component. MGRP

deals directly with probes and exports a probing service to applications above it. The

actual estimation algorithms have remained outside of MGRP. This has been deliberate

and has many benefits, since theestimation processis separate from theprobing process,

allowing us to optimize each separately. However our work has demonstrated that an

estimation servicecould be a natural addition to our architecture. In section6.2we intro-

duced the Estimation Overlay and discussed how it addressed the needs of MediaNet. In

section6.4we used lessons learned from the MediaNet experiments to hint at extensions

that would make such an estimation service even more useful.

One way to introduce estimation services to the Measurement Manager is to intro-

125

duce a new separate component, theEstimator, with the task of performing measurements

on behalf of applications. When clients, such as applications or transport protocols, need

a particular measurement, they can query theEstimatorwhich in turn measures the net-

work and responds with an estimate. To come up with an estimate, theEstimatoruses

MGRP to send out probes and collect observations. All the details about the measure-

ment process are abstracted so that theEstimatoris free to use the algorithm best suited

for every request. The challenge is to make the estimator service abstract enough, so that

theEstimatorhas latitude in its implementation, but at the same time not too abstract, so

that clients find the service useful.

MGRP
MGRP Probe API

Estimator
sends probes

Estimator API
(kernel)

Estimator

RTT

avail-bw

jitter

capacity

latency

Applications

Estimator API
(userspace)

Transport
Protocols

Figure 8.1: We can add an Estimator Service to the Measurement Manager on top of MGRP that imple-
ments estimation algorithms and provides measurement services to clients. TheEstimatorcan be imple-
mented as a service in user-space (for applications) and in kernel-space (for transport protocols).

Figure8.1 shows how clients can query theEstimatorfor measurement estimates.

We envision theEstimatorproducing simple estimates such as RTT, delay, jitter and loss

rate and more involved estimates such as available bandwidth, path capacity and the de-

tection of congestion and bottleneck links. Estimates are associated with aquality tuple

that indicates howgoodan estimate is in terms of timeliness (age of sample), confidence

(how accurate the algorithm is) and overhead (how expensive it was to acquire). Clients

126

use this information to reason about estimates in their algorithms. Measurement queries

can be on-demand queries(what is the current RTT?), periodic queries(give me available

bandwidth estimates every minute)or event-driven(notify me whenever jitter exceeds a

threshold). The challenge is to identify how applications use measurements and thus

provide an API that fits their needs.

While applications or network services (such as MediaNet, as shown in Chapter6)

are natural clients for an estimation service, we imagine that transport protocols can also

benefit. Consider the case of TCP. Its operation depends on the calculation of the Retrans-

mission Timeout (RTO) that is based on the Round-Trip Time (RTT). The more accurate

the RTT, the better the operation of TCP. Instead of calculating the RTT itself, TCP has

the option to ask theEstimatorfor periodic RTT estimates, based not only on the packets

that the specific TCP flow contributes but based on all packets (TCP or not) that travel

along the relevant path. It is clear that with such an approach the estimator can evolve in

time to include better RTT estimators without the need for any changes to TCP. These es-

timators can take into account special path properties like wireless segments. In addition

to RTT, we can rework TCP to use the the estimator for more involved estimates, such

as delay (used by TCP Vegas [86]), available bandwidth (used by TCP Westwood [85],

TCP Nice [89]) or packet loss classification (used by TCP Veno [87]) to detect when

losses are due to random transmission errors (as is the typical case in wireless networks)

and not due to congestion. In effect, just as the Congestion Manager [20] proposes to ex-

tract congestion control services from transport protocol implementations into a separate,

reusable module, the Estimation Service could allow network estimates to be handled in

the same way, by a separate component.

127

8.2 Applications of the Measurement Manager

The creation of an Estimation Service can have a major impact on the operation of

current applications and transport protocols. In this section we will describe how future

work can use the Measurement Manager to optimize file downloading and improve the

adaptiveness of TCP in a variety of networking environments.

8.2.1 Optimizing File Downloads

We used the MediaNet overlay in Chapter6 to demonstrate the utility and benefits

of the Measurement Manager for media streaming applications. Future work can integrate

MGRP with applications that download files and show how the Measurement Manager

optimizes download times. We can use peer-to-peer applications, like BitTorrent [45], or

more traditional client-server approaches, like a download manager.

8.2.1.1 BitTorrent

BitTorrent [45] is a file distribution system where clients that are downloading the

same file at the same time are uploading pieces of the file to each other. At any given time

a BitTorrent peer is connected to multiple other peers (either downloading, uploading or

both) and chooses those peers at random or with minimal measurement. This approach

can yield suboptimal download times [65]. Future work can show that by using the Mea-

surement Manager, a BitTorrent peer can enhance its operation in multiple ways:

1. Find best download peers When a peer downloads from other peers, it needs to

find those peers with the best download rate. By using the Measurement Manager a

128

BitTorrent peer can measure the available bandwidth and capacity of each network

path for both used and unused paths and pick the best peer subset.

2. Find best upload paths When a peer has finished downloading a file, it needs to

determine which peers have the best upload rate, and start uploading pieces of the

file to them. By using the Measurement Manager, the peer already has estimates

about the upload capacity of paths it has used (since it can measure whenever it

exchanges traffic) and can very quickly evaluate the remaining paths (by initiating

short uploads).

3. Detect shared bottlenecks In both cases (download and upload), a BitTorrent

peer can use the Measurement Manager to detect when it is using peers that share

the same bottleneck link, which can result in suboptimal performance.

A good BitTorrent client candidate for MGRP modifications is Transmission [90],

which is written in C. Future work can modify this client to use the Measurement Manager

for the network measurement operations we have outlined above.

Compared to MediaNet, BitTorrent uses TCP in a different way to transport data.

MediaNet uses long term TCP sessions between a small set of nodes to send a steady

stream of media packets, does not saturate the path and is more interested in the timeliness

of packet delivery. BitTorrent, on the other hand, uses much shorter TCP sessions between

a potentially large number of nodes, saturates the path and is interested in throughput. So

MediaNet and BitTorrent combined provide a well rounded evaluation of the benefits of

the Measurement Manager.

129

8.2.1.2 Download Managers

For a more traditional approach to file downloading, future work can integrate the

Measurement Manager with a download manager, such as aria2 [91]. The problem of

downloading a file from a number of possible locations is a common problem and web-

sites typically require users to pick a mirror by hand. Download managers are designed to

optimize file download speeds. One way that they use is to perform segmented download-

ing from multiple mirror locations. We can demonstrate how the Measurement Manager

enables a download manager to quickly measure the available bandwidth and capacity of

all available mirrors, detect bottlenecks and then pick the best subset of mirrors to down-

load from, while all along downloading parts of the file. Our approach is to separate the

file downloading into two phases. The first phase is a short measurement phase and the

second is a longer download phase.

1. Measurement Phase In the measurement phase the download manager measures

roughly the downlink paths of all possible mirrors using the Measurement Manager

(using fast and high-overhead measurement algorithms). But since all probes can

carry transport payload, we can combine this phase with segmented downloading

to download chunks of the file inside the probes, in effect canceling out the high

overhead. Due to the way that measurement algorithms operate, we may not want

to induce congestion during this phase (by using TCP that saturates all available

bandwidth). Part of this future work will be to implement a version of TCP (similar

to TCP Nice [89]) that sends only when there are probes to piggyback on.

2. Download phase Measurements from the first phase will help the download man-

130

ager to pick a small subset of high-quality nodes (with respect to download speed)

and enter the download phase where the remaining segments of the file are down-

loaded at full speed. For longer downloads (in the order of minutes) we may need

to repeat the short measurement phase multiple times to ensure that we keep down-

loading from the best subset of mirrors.

8.2.2 Optimizing TCP

In addition to providing payload for piggybacking, TCP may also use theEstima-

tion Servicefor measurements (which we touched upon in Section8.1). Future work

can start by modifying existing TCP implementations incrementally to use theEstimation

Servicefor each of the following measurements:

1. RTT estimates First we can modify TCP to query theEstimatorfor RTT esti-

mates that TCP uses for the estimation of the retransmission timeout (RTO). This

will provide TCP with more RTT samples (since it can use packets across all TCP

streams), which improves the accuracy of the RTT estimate and leads to a more

responsive TCP.

2. Loss detection We can take this one step further and delegate loss notifications

to the estimator; TCP instructs the estimator to monitor the path, to detect losses

and to inform TCP about them. Detecting losses in theEstimatorinstead of in TCP

has the potential benefit of differentiating between losses due to errors (such as in

wireless environments) and due to congestion. Instead of modifying the TCP algo-

rithm for every special network environment, theEstimatorcan run more elaborate

131

algorithms (that can change as the network environments change). When TCP gets

a loss notification from theEstimatorit also gets an indication about the nature of

the loss, which TCP can use to increase throughput (for example, by not reducing

the congestion window in the presence of losses due to errors).

3. Special measurements In a similar way we envision using theEstimator for

more substantial measurements that now are performed in TCP. In future work we

can select one of the TCP varieties that need special measurements, such as TCP

Westwood [85] (available bandwidth), TCP Vegas [86] (delay) or TCP Veno [87]

(wireless), and integrate it with the Measurement Manager.

8.2.2.1 Adaptive TCP

We expect that by removing estimation algorithms we can make TCP simpler and

easier to adapt when new algorithms come along or new network conditions become more

prevalent (such as wireless environments). In future work we can explore anAdaptive

TCP approach where TCP detects the current network conditions using theEstimator

and selects the most appropriate congestion control algorithm on the fly. Contrast this

with the typical approach where users need to select manually the best TCP algorithm

when requiring optimal performance out of TCP transfers (very high bandwidth transfers,

wireless environments, backup transfers). This stems from the fact that TCP was never

intended to be optimal in every environment.TCP can use the Measurement Manager to

switch automatically between a number of specialized congestion control algorithms and

deliver near-optimal performance for a number of different networking environments.

132

8.3 New Probing Paradigms

By retrofitting existing probe tools we do not leverage the full power of MGRP.

That is because the current paradigm for probing is to try to send as probes with as little

overhead as possible. Tools accomplish this by using specially crafted probe sequences

that they expect to be sent with precise timing. These sequences can be quite long (like

pathload’s 100-probe streams), but since they are spaced apart they do not incur high

overhead. We will refer to this asinelastic probing, as it does not allow for any flexibility

with the probe sizes or gaps. As we demonstrated in Chapter5, this kind of probing

makes suboptimal use of MGRP piggybacking because the burst patterns of probes and

applications differ greatly.

What if we change the way that we do probing, now that we have access to appli-

cation traffic through MGRP? We believe that MGRP can enable a new kind of probing

that is more efficient and more effective. Tools can become more flexible in specifying

probe sequences, so that MGRP can maximize piggybacking, and in return they can send

out many more probes.

We list here new probing techniques that appear promising with MGRP:

1. Opportunistic Probing: MGRP can turn every application packet into a probe by

wrapping timing information around it. Tools do not have any control over probe

sizes or probe spacing, but can have an endless supply of probe data. This resembles

passive measurement, but provides additional high-resolution information about the

timing of the probes and can collect both sender and receiver statistics. Also, be-

cause of the bursty nature of most transport protocols, the “random” probes that are

133

generated by using application packets are not so random. They look like packet

trains with small packet spacing, which can be used by the tool for estimation. This

is how a tool would request the probes from MGRP:

PROBE SEQUENCE

num of probes any

probe size any

probe spacing up to 200 microsec

2. Elastic Probing: Opportunistic probing may lack the structure for meaningful es-

timation of certain network properties. The next step is to add some structure to

these “random” packet trains by turning them into “proper” packet trains. The idea

is that we micro-shape every TCP burst into a set of ”primitive” packet trains that

then we can then plug into estimation algorithms. As an example:

PROBE SEQUENCE

num of probes any

probe size fixed, 300 bytes

probe spacing fixed, any up to 200 microsec

3. Semi-Elastic Probing: If Elastic Probing is still not sufficient for a tool to apply

its estimation algorithm, then MGRP can use a relaxed variation of the Inelastic

Probing (current probing method used by tools). Instead of demanding an exact

probe sequence, the tool can relax the packet size and number of probes in the

sequence. The tool can specify a range of valid packet sizes, a range of packet train

lengths and minimum thresholds. If for example the tool needs to probe at a certain

rate, MGRP can adjust the probe spacing on the fly based on the packet size chosen.

134

Here is an example how pathload could mitigate the effect of its long probe train

when there is no transport payload to piggyback on:

PROBE SEQUENCE

num of probes 40..100

probe size fixed, 300 bytes

probe spacing fixed, 200 microsec

This guarantees to pathload that MGRP will send the probe stream with precise

timing and fixed packet sizes, but allows MGRP not to send more than 40 probes

per stream if there are no payload packets to piggyback on.

These relaxed constraints allow MGRP to fit better the probes to the available TCP

packet bursts and make better use of piggybacking. It also gives the tool a simple

way to control the overhead. If there are no TCP packets, then the probes incur the

minimum acceptable overhead; if there are TCP packets available, then the packet

train expands to make use of them, incurring no extra overhead.

135

Chapter 9

Conclusions

In this dissertation we have presented the Measurement Manager, a practical, mod-

ular, and efficient architecture for performing end-to-end network measurements between

hosts. Our core insight was that applications can pool together their data packets to be

reused as padding inside network probes. This piggybacking technique saves network

bandwidth and reduces overall network losses.

To substantiate our claim we have designed and implemented a new transport proto-

col, the Measurement Manager Protocol (MGRP), that combines probes and data payload

on the fly. In MGRP, active measurement algorithms specify the probes they wish to send

using aProbe APIand applications allow MGRP to use data from their own packets to

fill the otherwise wasted probe padding.

We have conducted an extensive series of experiments to empirically evaluate our

system. We ported active measurement tools to use MGRP and examined each aspect

of piggybacking in detail. As a case study, we built anEstimation Overlaythat we used

with MediaNet, an existing media forwarding overlay. We showed that, compared to

sending active probes without reusing their empty padding, piggybacking can improve

application throughput, is fair to cross traffic, and reduces the time required to complete

measurements.

In this dissertation we have demonstrated that the Measurement Manager architec-

136

ture is superior to existing measurement services and techniques because it is (1)flexible,

by providing a generic Probe API that is sufficient to implement a range of active mea-

surement algorithms, (2)efficient, by reusing the empty probe padding in a systematic

way, and (3)modular, by allowing tools and applications to be written separately and

seamlessly combined.

In summary, this dissertation makes the following contributions:

• We designed a new architecture that provides a systematic and transparent way for

applications to reuse their own traffic for network measurement.

• We designed and implemented a new transport protocol, the Measurement Manager

Protocol (MGRP), that implements piggybacking and integrated it with the Linux

kernel network stack.

• We analyzed a range of active measurement tools and derived a generic Probe API

that tools use send their probes through MGRP.

• We provided experimental evidence that piggybacking data packets on measure-

ment probes is not only feasible but improves source and cross traffic as well as the

performance of measurement algorithms, while not affecting their accuracy.

• We showed that the Measurement Manager can be used to build a genericEstimator

Overlaywhich can serve the measurement needs of Application Layer Overlays,

and provided a specific example with an existing overlay.

The ability of MGRP topiggyback any data packetonany probeis pivotal in mak-

ing our measurement system unique in the sense that any measurement algorithm can now

137

be writtenas if active, but implementedas if passive. The Measurement Manager is an

architecture with broad applications that saves bandwidth, improves the responsiveness

of measurement tools and can be used to build a genericmeasurement overlay networkas

well as expanding the solution space for estimation algorithms.

138

Bibliography

[1] “What is BitTorrent,” http://www.bittorrent.org/introduction.html.

[2] M. Crovella and B. Krishnamurthy,Internet Measurement: Infrastructure, Traffic
and Applications. Wiley, July 2006.

[3] J. Postel, “Transmission Control Protocol,” RFC 793 (Standard), Sep. 1981.

[4] V. Jacobson, “Congestion Avoidance and Control,” inACM SIGCOMM, 1988.

[5] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport
Protocol for Real-Time Applications,” RFC 3550 (Standard), July 2003.

[6] M. Jain and C. Dovrolis, “Pathload: A Measurement Tool for End-to-End Available
Bandwidth,” in Passive and Active Measurement Workshop, 2002.

[7] C. Dovrolis, P. Ramanathan, and D. Moore, “What do packet dispersion techniques
measure?” in IEEE INFOCOM, 2001.

[8] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris, “Resilient
Overlay Networks,” in ACM Symposium on Operating Systems Principles, 2001.

[9] S. Hansell, “Video is Dominating Internet Traffic, Pushing Prices Up,” Article
in the New York Times, October 2008,http://bits.blogs.nytimes.com/2008/10/31/
video-is-dominating-internet-traffic-pushing-prices-up/.

[10] E. E. Westberg and R. A. Miller, “The Basis for Using the Internet to Support the
Information Needs of Primary Care,” Journal of the American Medical Informatics
Association, vol. 6, no. 1, pp. 6–25, Jan/Feb 1999.

[11] B. Tulu and S. Chatterjee, “Internet-based telemedicine: An empirical investigation
of objective and subjective video quality,” Decision Support Systems, vol. 45, no. 4,
pp. 681–696, Nov. 2008.

[12] D. Hassoun, “Dynamic stream switching with Flash Media Server 3,”
April 2008, http://www.adobe.com/devnet/flashmediaserver/articles/dynamic
streamswitching.html.

[13] D. Bonfiglio, M. Mellia, M. Meo, N. Ritacca, and D. Rossi, “Tracking Down Skype
Traffic,” in IEEE INFOCOM, 2008.

[14] L. D. Cicco, S. Mascolo, and V. Palmisano, “Skype Video Responsiveness to
Bandwidth Variations,” in ACM NOSSDAV ’08, May 2008.

[15] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell, “pathChirp:
Efficient Available Bandwidth Estimation for Network Paths,” in Passive and Active
Measurement Workshop, 2003.

139

http://www.bittorrent.org/introduction.html
http://www.bittorrent.org/introduction.html
http://tools.ietf.org/rfc/rfc793.txt
http://tools.ietf.org/rfc/rfc3550.txt
http://tools.ietf.org/rfc/rfc3550.txt
http://www-static.cc.gatech.edu/~jain/publications/pam02.pdf
http://www-static.cc.gatech.edu/~jain/publications/pam02.pdf
http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/Papers/infocom01.ps
http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/Papers/infocom01.ps
http://nms.lcs.mit.edu/papers/ron-sosp2001.pdf
http://nms.lcs.mit.edu/papers/ron-sosp2001.pdf
http://bits.blogs.nytimes.com/2008/10/31/video-is-dominating-internet-traffic-pushing-prices-up/
http://bits.blogs.nytimes.com/2008/10/31/video-is-dominating-internet-traffic-pushing-prices-up/
http://www.jamia.org/cgi/content/abstract/6/1/6
http://www.jamia.org/cgi/content/abstract/6/1/6
http://dx.doi.org/10.1016/j.dss.2007.12.009
http://dx.doi.org/10.1016/j.dss.2007.12.009
http://www.adobe.com/devnet/flashmediaserver/articles/dynamic_stream_switching.html
http://www.adobe.com/devnet/flashmediaserver/articles/dynamic_stream_switching.html
http://www.tlc-networks.polito.it/mellia/papers/skype_info08.pdf
http://www.tlc-networks.polito.it/mellia/papers/skype_info08.pdf
http://www.spin.rice.edu/Software/pathChirp/pathchirp-1.3.3.ps
http://www.spin.rice.edu/Software/pathChirp/pathchirp-1.3.3.ps

[16] M. Jain and C. Dovrolis, “Path Selection using Available Bandwidth Estimation in
Overlay-based Video Streaming,” in IFIP Networking, 2007.

[17] “Skype web site,” http://skype.com/.

[18] P. Papageorgiou and M. Hicks, “Merging Network Measurement with Data
Transport,” in Passive and Active Measurement Workshop, March 2005.

[19] P. Papageorgiou, J. McCann, and M. Hicks, “MGRP: Active Measurement, Pas-
sively,” Oct. 2008, Under submission to NSDI’09.

[20] H. Balakrishnan, H. S. Rahul, and S. Seshan, “An Integrated Congestion
Management Architecture for Internet Hosts,” in ACM SIGCOMM, 1999.

[21] M. Hicks, A. Nagarajan, and R. van Renesse, “User-Specified Adaptive Scheduling
in a Streaming Media Network,” in IEEE Conference on Open Architectures and
Network Programming, 2003.

[22] V. Jacobson, “pathchar - a tool to infer characteristics of Internet paths,” Presented
at the Mathematical Sciences Research Institute (MSRI); slides available from
ftp://ftp.ee.lbl.gov/pathchar/msri-talk.pdf, April 1997.

[23] J. Sommers, P. Barford, and W. Willinger, “A Proposed Framework for Calibration
of Available Bandwidth Estimation Tools,” in IEEE Symposium on Computers and
Communications, June 2006.

[24] J. Sommers, P. Barford, N. Duffield, and A. Ron, “Improving accuracy in end-to-end
packet loss measurement,” inACM SIGCOMM, 2005, pp. 157–168.

[25] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang, “Locating Internet
Bottlenecks: Algorithms, Measurements, and Implications,” in ACM SIGCOMM,
2004.

[26] J. Sommers and P. Barford, “An Active Measurement System for Shared
Environments,” in Internet Measurement Conference, 2007.

[27] K. Harfoush, A. Bestavros, and J. Byers, “PeriScope: An Active Probing API,” in
Passive and Active Measurement Workshop, 2002.

[28] N. Spring, D. Wetherall, and T. Anderson, “Scriptroute: A facility for distributed
Internet measurement,” in USENIX Symposium on Internet Technologies and
Systems, 2003.

[29] A. Pásztor and D. Veitch, “A Precision Infrastructure for Active Probing,” in
Passive and Active Measurement Workshop, 2001.

[30] J. M. Gonzalez and V. Paxson, “pktd: A Packet Capture and Injection Daemon,” in
Passive and Active Measurement Workshop, 2003.

140

http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/Papers/manish-netw07.pdf
http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/Papers/manish-netw07.pdf
http://skype.com/
http://www.cs.umd.edu/users/pavlos/papers/pam05/papageorgiou05merging.pdf
http://www.cs.umd.edu/users/pavlos/papers/pam05/papageorgiou05merging.pdf
http://wind.lcs.mit.edu/papers/BRS99.ps
http://wind.lcs.mit.edu/papers/BRS99.ps
http://www.cs.umd.edu/~mwh/papers/medianet.pdf
http://www.cs.umd.edu/~mwh/papers/medianet.pdf
ftp://ftp.ee.lbl.gov/pathchar/msri-talk.pdf
ftp://ftp.ee.lbl.gov/pathchar/msri-talk.pdf
http://www.cs.wisc.edu/~jsommers/pubs/sommersj-calibration.pdf
http://www.cs.wisc.edu/~jsommers/pubs/sommersj-calibration.pdf
http://www.cs.cmu.edu/%7Ehnn/papers/bottleneck.pdf
http://www.cs.cmu.edu/%7Ehnn/papers/bottleneck.pdf
http://www.imconf.net/imc-2007/papers/imc20.pdf
http://www.imconf.net/imc-2007/papers/imc20.pdf
http://www.csc.ncsu.edu/faculty/harfoush/Papers/2002-005-periscope.pdf
http://www.cs.washington.edu/research/networking/scriptroute/papers/scriptroute.pdf
http://www.cs.washington.edu/research/networking/scriptroute/papers/scriptroute.pdf
http://www.ripe.net/pam2001/Papers/talk_04.ps.gz
http://moat.nlanr.net/PAM2003/PAM2003papers/3798.pdf

[31] M. Jain and C. Dovrolis, “End-to-End Available Bandwidth: Measurement
methodology, Dynamics, and Relation with TCP Throughput,” in ACM SIGCOMM,
2002.

[32] J. E. Sommers, “Calibrated Network Measurement,” Doctoral Dissertation, 2007.

[33] W. R. Stevens,Unix Network Programming, Volume 1: Sockets and XTI, 2nd ed.
Prentice Hall, 1998.

[34] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A Decentralized Network
Coordinate System,” inProceedings of the ACM SIGCOMM ’04 Conference, Port-
land, Oregon, August 2004.

[35] S. A. Baset and H. G. Schulzrinne, “An Analysis of the Skype Peer-to-Peer Internet
Telephony Protocol,” IEEE INFOCOM, pp. 1–11, April 2006.

[36] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control Protocol
(DCCP),” RFC 4340 (Proposed Standard), March 2006.

[37] Online, “DCCP Stack for Linux,” Linux Networking Wiki, http://linux-net.osdl.
org/index.php/DCCP.

[38] J. Corbet, “Linux gets DCCP,” Article on LWN.net,http://lwn.net/Articles/149756/,
Aug. 2005.

[39] T. Narten, “Assigning Experimental and Testing Numbers Considered Useful,”
RFC 3692 (Best Current Practice), Jan. 2004.

[40] “Assigned Internet Protocol Numbers,” http://www.iana.org/assignments/
protocol-numbers.

[41] J. Corbet, “The high-resolution timer API,” Article on LWN.net, http:
//lwn.net/Articles/167897/, Jan. 2006.

[42] J. Postel, “Internet Protocol,” RFC 791 (Standard), Sep. 1981.

[43] D. D. Clark, “Internet Protocol,” RFC 815, July 1982.

[44] R. Braden, “Internet Protocol,” RFC 1122, Oct. 1989.

[45] B. Cohen, “Incentives Build Robustness in BitTorrent,” in Workshop on Economics
of Peer-to-Peer Systems, 2003.

[46] D. Pogue, “For Purists, a Cut Above in Movies,” Article in the New
York Times, October 2008,http://www.nytimes.com/2008/10/02/technology/
personaltech/02pogue.html.

[47] “VUDU FAQs: Networking,” http://supports.vudu.com/categories/Networking/.

141

http://www-static.cc.gatech.edu/~jain/publications/sigcomm02.pdf
http://www-static.cc.gatech.edu/~jain/publications/sigcomm02.pdf
http://tools.ietf.org/rfc/rfc4340.txt
http://tools.ietf.org/rfc/rfc4340.txt
http://linux-net.osdl.org/index.php/DCCP
http://linux-net.osdl.org/index.php/DCCP
http://linux-net.osdl.org/index.php/DCCP
http://lwn.net/Articles/149756/
http://lwn.net/Articles/149756/
http://tools.ietf.org/rfc/rfc3692.txt
http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/protocol-numbers
http://www.iana.org/assignments/protocol-numbers
http://lwn.net/Articles/167897/
http://lwn.net/Articles/167897/
http://lwn.net/Articles/167897/
http://tools.ietf.org/rfc/rfc791.txt
http://tools.ietf.org/rfc/rfc815.txt
http://tools.ietf.org/rfc/rfc1122.txt
http://www.bittorrent.org/bittorrentecon.pdf
http://www.nytimes.com/2008/10/02/technology/personaltech/02pogue.html
http://www.nytimes.com/2008/10/02/technology/personaltech/02pogue.html
http://supports.vudu.com/categories/Networking/

[48] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,
C. Barb, and A. Joglekar, “An Integrated Experimental Environment for Distributed
Systems and Networks,” inOSDI, Boston, MA, Dec. 2002, pp. 255–270.

[49] L. Rizzo, “Dummynet web site,” http://info.iet.unipi.it/∼luigi/ip dummynet/.

[50] B. Fink and R. Scott, “Nuttcp web site,” http://www.lcp.nrl.navy.mil/nuttcp/.

[51] “ iperf: A tool for measuring TCP and UDP bandwidth performance,”
http://dast.nlanr.net/Projects/Iperf/.

[52] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,”
SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, 2008.

[53] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification to TCP’s fast
recovery algorithm,” RFC 3782 (Proposed Standard), United States, 2004.

[54] A. Turner, “Tcpreplay tools,” http://tcpreplay.synfin.net/trac/.

[55] “Samplepoint-F150 Mbps trans-pacific trace (200803201500),” March 2008,
http://mawi.wide.ad.jp/mawi/samplepoint-F/20080318/200803201500.html.

[56] Y. Zhang and N. Duffield, “On the constancy of Internet path properties,” inIMW
’01: Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement.
New York, NY, USA: ACM, 2001, pp. 197–211.

[57] N. Vegh, “NTools traffic generator/analyzer and network emulator package,”
http://norvegh.com/ntools/.

[58] A. Shriram, M. Murray, Y. Hyun, N. Brownlee, A. Broido, M. Fomenkov, and
kc claffy, “Comparison of Public End-to-End Bandwidth Estimation Tools on
High-Speed Links,” in Passive and Active Measurement Workshop, 2005.

[59] J. Strauss, D. Katabi, and F. Kaashoek, “A Measurement Study of Available
Bandwidth Estimation Tools,” in Internet Measurement Conference, 2003.

[60] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Application Layer
Multicast,” in ACM SIGCOMM, 2002.

[61] L. Cottrell and SLAC, “Network Monitoring Tools,” http://www.slac.stanford.edu/
xorg/nmtf/nmtf-tools.html.

[62] CAIDA, “ Performance Measurement Tools Taxonomy,” http://www.caida.org/
tools/taxonomy/performance.xml.

[63] A. B. Downey, “Using pathchar to estimate Internet link characteristics,” in ACM
SIGCOMM, 1999.

[64] V. Paxson, A. K. Adams, and M. Mathis, “Experiences with NIMI,” in Passive and
Active Measurement Workshop, 2000.

142

http://info.iet.unipi.it/~luigi/ip_dummynet/
http://www.lcp.nrl.navy.mil/nuttcp/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://tcpreplay.synfin.net/trac/
http://mawi.wide.ad.jp/mawi/samplepoint-F/20080318/200803201500.html
http://norvegh.com/ntools/
http://www.cs.unc.edu/~alok/Papers/34310310.pdf
http://www.cs.unc.edu/~alok/Papers/34310310.pdf
http://pdos.csail.mit.edu/papers/spruce:imc03.pdf
http://pdos.csail.mit.edu/papers/spruce:imc03.pdf
http://www.cs.wisc.edu/~suman/pubs/sigcomm02.pdf
http://www.cs.wisc.edu/~suman/pubs/sigcomm02.pdf
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
http://www.caida.org/tools/taxonomy/performance.xml
http://www.caida.org/tools/taxonomy/performance.xml
http://www.caida.org/tools/taxonomy/performance.xml
http://www.sigcomm.org/sigcomm99/papers/session7-1.pdf
http://pam2000.cs.waikato.ac.nz/pdf_papers/P006.pdf

[65] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishnamurthy,
and A. Venkataramani, “iPlane: An Information Plane for Distributed Services,” in
OSDI, 2006.

[66] M. Wawrzoniak, L. Peterson, and T. Roscoe, “Sophia: An Information Plane for
Networked Systems,” in Workshop on Hot Topics in Networks, 2003.

[67] “PlanetLab - An open platform for developing, deploying, and accessing
planetary-scale services,” http://www.planet-lab.org/.

[68] A. Nakao, L. Peterson, and A. Bavier, “A Routing Underlay for Overlay Networks,”
in ACM SIGCOMM, 2003.

[69] A. Persson, C. A. C. Marcondes, L.-J. Chen, M. Y. S. L. Lao, and M. Gerla., “TCP
Probe: A TCP with built-in Path Capacity Estimation,” in IEEE Global Internet
Symposium, 2005.

[70] R. Kapoor, L.-J. Chen, L. Lao, M. Gerla, and M. Y. Sanadidi, “CapProbe: A Simple
and Accurate Capacity Estimation Technique,” in ACM SIGCOMM, 2004.

[71] R. Kapoor, L.-J. Chen, M. Y. Sanadidi, and M. Gerla, “Accuracy of Link
Capacity Estimates using Passive and Active Approaches with CapProbe,” in IEEE
Symposium on Computers and Communications, 2004.

[72] L.-J. Chen, T. Sun, D. Xu, M. Y. Sanadidi, and M. Gerla, “Access Link Capacity
Monitoring with TFRC Probe,” in IEEE/IFIP Workshop on End-to-End Monitoring
Techniques and Services, 2004.

[73] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-Based Congestion
Control for Unicast Applications,” in ACM SIGCOMM, 2000.

[74] “OverProbe: A Toolkit for the Management of Overlay Networks with Mobile
Users,” http://www.cs.ucla.edu/NRL/OverProbe/.

[75] C. L. T. Man, G. Hasegawa, and M. Murata, “Available Bandwidth Measurement
via TCP Connection,” in IEEE/IFIP Workshop on End-to-End Monitoring
Techniques and Services, 2004.

[76] C. L. T. Man, G. Hasegawa, and M. Murata, “A New Available Bandwidth
Measurement Technique for Service Overlay Networks,” in IEEE/IFIP Workshop
on End-to-End Monitoring Techniques and Services, 2003.

[77] C. L. T. Man, G. Hasegawa, and M. Murata, “An Inline Measurement Method for
Capacity of End-to-end Network Path,” in IEEE/IFIP Workshop on End-to-End
Monitoring Techniques and Services, 2005.

[78] C. L. T. Man, G. Hasegawa, and M. Murata, “ICIM: An Inline Network
Measurement Mechanism for Highspeed Networks,” in IEEE/IFIP Workshop on
End-to-End Monitoring Techniques and Services, 2006.

143

http://iplane.cs.washington.edu/osdi06.pdf
http://www.cs.princeton.edu/nsg/papers/infoplane_hotnets_03/sophia.pdf
http://www.cs.princeton.edu/nsg/papers/infoplane_hotnets_03/sophia.pdf
http://www.planet-lab.org/
http://www.planet-lab.org/
http://www.planet-lab.org/
http://acm.org/sigcomm/sigcomm2003/papers/p11-nakao.pdf
http://www.cs.ucla.edu/NRL/OverProbe/papers/tcpprobe_gi_2005.pdf
http://www.cs.ucla.edu/NRL/OverProbe/papers/tcpprobe_gi_2005.pdf
http://www.cs.ucla.edu/NRL/CapProbe/files/04_SIGCOMM_CapProbe.pdf
http://www.cs.ucla.edu/NRL/CapProbe/files/04_SIGCOMM_CapProbe.pdf
http://www.cs.ucla.edu/NRL/CapProbe/files/04_ISCC_CapProbe.pdf
http://www.cs.ucla.edu/NRL/CapProbe/files/04_ISCC_CapProbe.pdf
http://www.cs.ucla.edu/NRL/CapProbe/files/04_E2EMON_TFRC_Probe.pdf
http://www.cs.ucla.edu/NRL/CapProbe/files/04_E2EMON_TFRC_Probe.pdf
http://www.icir.org/tfrc/tcp-friendly.pdf
http://www.icir.org/tfrc/tcp-friendly.pdf
http://www.cs.ucla.edu/NRL/OverProbe/
http://www.cs.ucla.edu/NRL/OverProbe/
http://www.cs.ucla.edu/NRL/OverProbe/
http://www.anarg.jp/imtcp/paper/Cao-E2EMON2004.pdf
http://www.anarg.jp/imtcp/paper/Cao-E2EMON2004.pdf
http://www.anarg.jp/imtcp/paper/Cao-E2EMON2003.pdf
http://www.anarg.jp/imtcp/paper/Cao-E2EMON2003.pdf
http://www.anarg.jp/imtcp/paper/Cao-E2EMON2005.pdf
http://www.anarg.jp/imtcp/paper/Cao-E2EMON2005.pdf
http://www.anarg.jp/imtcp/paper/Cao-E2EMON2006.pdf
http://www.anarg.jp/imtcp/paper/Cao-E2EMON2006.pdf

[79] R. Prasad, M. Jain, and C. Dovrolis, “Effects of Interrupt Coalescence on Network
Measurements,” in Passive and Active Measurement Workshop, 2004.

[80] R. Sherwood and N. Spring, “A Platform for Unobtrusive Measurements on
PlanetLab,” in USENIX Workshop on Real, Large Distributed Systems, 2006.

[81] R. Sherwood and N. Spring, “Touring the Internet in a TCP Sidecar,” in Internet
Measurement Conference, 2006.

[82] S. Savage, “Sting: a TCP-based Network Measurement Tool,” in USENIX
Symposium on Internet Technologies and Systems, 1999.

[83] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “SProbe: A Fast Technique
for Measuring Bottleneck Bandwidth in Uncooperative Environments,” in IEEE
INFOCOM, 2002.

[84] J. C. Hoe, “Improving the Start-up Behavior of a Congestion Control Scheme for
TCP,” in ACM SIGCOMM, 1996.

[85] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, “TCP Westwood:
Bandwidth Estimation for Enhanced Transport over Wireless Links,” in ACM
MobiCom, 2001.

[86] L. Brakmo and L. Peterson, “TCP Vegas: End to End Congestion Avoidance on
a Global Internet,” IEEE Journal on Selected Areas in Communications, vol. 13,
no. 8, pp. 1465–1480, Oct. 1995.

[87] C. P. Fu and S. C. Liew, “TCP Veno: TCP Enhancement for Transmission Over
Wireless Access Networks,” IEEE Journal on Selected Areas in Communications,
vol. 21, no. 2, pp. 216–228, Feb. 2003.

[88] M. Gerla, B. K. F. Ng, M. Y. Sanadidi, M. Valla, and R. Wang, “TCP
Westwood with Adaptive Bandwidth Estimation to Improve Efficiency/Friendliness
Tradeoffs,” Computer Communications Journal, vol. 27, no. 1, pp. 41–58, Jan.
2004.

[89] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP Nice: A Mechanism for
Background Transfers,” in OSDI, 2002.

[90] “Transmission - A lightweight BitTorrent client,” http://transmission.m0k.org/.

[91] “aria2 - The high speed download utility,” http://aria2.sourceforge.net/.

144

http://www-static.cc.gatech.edu/~jain/publications/pam04.pdf
http://www-static.cc.gatech.edu/~jain/publications/pam04.pdf
http://www.cs.umd.edu/~capveg/worlds06.paper.pdf
http://www.cs.umd.edu/~capveg/worlds06.paper.pdf
http://www.imconf.net/imc-2006/papers/p10-sherwood.pdf
http://www.cs.ucsd.edu/~savage/papers/Usits99.pdf
http://sprobe.cs.washington.edu/sprobe.ps
http://sprobe.cs.washington.edu/sprobe.ps
http://www.sigcomm.org/sigcomm96/papers/hoe.pdf
http://www.sigcomm.org/sigcomm96/papers/hoe.pdf
http://www.cs.ucla.edu/NRL/hpi/tcpw/tcpw_papers/2001-mobicom-0.pdf
http://www.cs.ucla.edu/NRL/hpi/tcpw/tcpw_papers/2001-mobicom-0.pdf
http://www.cs.toronto.edu/syslab/courses/csc2209/06au/papers/vegas.pdf
http://www.cs.toronto.edu/syslab/courses/csc2209/06au/papers/vegas.pdf
http://www.ntu.edu.sg/home5/ZHOU0022/papers/CPFu03a.pdf
http://www.ntu.edu.sg/home5/ZHOU0022/papers/CPFu03a.pdf
http://www.cs.ucla.edu/NRL/hpi/tcpw/tcpw_papers/tcpwcrb-cc2003.pdf
http://www.cs.ucla.edu/NRL/hpi/tcpw/tcpw_papers/tcpwcrb-cc2003.pdf
http://www.cs.ucla.edu/NRL/hpi/tcpw/tcpw_papers/tcpwcrb-cc2003.pdf
http://www.cs.utexas.edu/~arun/pubs/nice.pdf
http://www.cs.utexas.edu/~arun/pubs/nice.pdf
http://transmission.m0k.org/
http://transmission.m0k.org/
http://aria2.sourceforge.net/
http://aria2.sourceforge.net/

