
Path Projection for User-Centered Static Analysis Tools

Khoo Yit Phang Jeffrey S. Foster Michael Hicks Vibha Sazawal

University of Maryland, College Park
{khooyp,jfoster,mwh,vibha}@cs.umd.edu

ABSTRACT
The research and industrial communities have made great
strides in developing sophisticated defect detection tools based
on static analysis. To date most of the work in this area has
focused on developing novel static analysis algorithms, but
has neglected study of other aspects of static analysis tools,
particularly user interfaces. In this work, we present a novel
user interface toolkit called Path Projection that helps users
visualize, navigate, and understand program paths, a com-
mon component of many tools’ error reports. We performed
a controlled user study to measure the benefit of Path Pro-
jection in triaging error reports from Locksmith, a data race
detection tool for C. We found that Path Projection im-
proved participants’ time to complete this task without af-
fecting accuracy, while participants felt Path Projection was
useful and strongly preferred it to a more standard viewer.

1. INTRODUCTION
Recent years have seen major advances in the development

of defect detection tools based on static analysis. However,
most research to date has focused on designing new static
analysis algorithms. We believe it is equally important to
study the other aspects of static analysis tools. Indeed, Pin-
cus states that “Actual analysis is only a small part of any
program analysis tool [used at Microsoft]. In PREfix, [it is]
less than 10% of the ‘code mass’.” [23].

Generally speaking, static analysis tool users must per-
form two tasks: triage, deciding whether a report is a true
or false positive, and remediation, fixing a true bug. An ef-
fective tool will assist the engineer in performing these tasks.
However, while many tools support categorizing and man-
aging error reports, most provide limited assistance for de-
ciding whether a report is true, and if so, how to fix it.

To address this problem, we present Path Projection, a
new user interface toolkit that helps users visualize, navi-
gate, and understand program paths (e.g., call stacks, con-
trol flow paths, or data flow paths), a common component
of many static analysis tools’ error reports. Path Projection
aims to help engineers understand error reports, improving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE ’08 Atlanta, Georgia USA.
Copyright 2008 ACM 978-1-60558-382-2/08/11 ...$5.00.

the speed and accuracy of triage and remediation.
Our toolkit accepts an XML error report containing a

set of paths and automatically generates a concise source
code visualization of these paths. First, we use function call
inlining to insert the bodies of called functions just below
the corresponding call sites, rearranging the source code in
path order. Second, we use code folding to hide potentially-
irrelevant statements that are not involved in the path. Fi-
nally, we show multiple paths side by side for easy compari-
son. By synthesizing the visualization directly from the error
report, Path Projection greatly reduces the user’s effort to
examine the code for the error report.

Additionally, we have observed that users often lack suffi-
cient experience or knowledge of a particular static analysis
tool to triage its error report efficiently. Instead, users will
often spend time discerning information about the program
that is not relevant to the triaging task. Our solution to
this problem is a tool-specific checklist that gives users a
systematic procedure to perform triage. Anecdotal obser-
vations from our pilot studies suggest that checklists can
dramatically reduce triaging times. We believe checklists
can be useful additions to many static analysis interfaces,
and merit further study.

We have evaluated Path Projection’s utility by perform-
ing a controlled experiment in which users triaged reports
produced by Locksmith [24], a static data race detection tool
for C. We measured users’ completion time and accuracy in
triaging Locksmith reports, comparing Path Projection to
a “standard” viewer that we designed to include the textual
error report along with commonly-used IDE features. Both
interfaces also include a checklist for Locksmith to keep our
participants focused on the triaging task.

Our results show that Path Projection reduced users’ times
to triage an error report by roughly one minute, an 18% im-
provement, without reducing accuracy. Also, seven of eight
users preferred Path Projection over the standard viewer.

In summary, this paper makes two main contributions.
First, we present Path Projection, a novel toolkit for visual-
izing program paths (Section 3). While mature static anal-
ysis tools can have sophisticated graphical user interfaces
(Section 7), these are often integrated and cannot easily be
used by other tools. In contrast, we show how to apply Path
Projection to Locksmith and to BLAST [5].

Second, we present quantitative and qualitative evidence
of Path Projection’s benefits in triaging Locksmith error re-
ports (Sections 5 and 6). To our knowledge, ours is the first
study to consider the task of triaging defect detection tool
error reports, and the first to consider the user interface in
this context. Our study results provide some scientific un-

derstanding of which features are most important for making
users more effective when using static analysis tools.

Due to space constraints, our discussion of Path Projec-
tion, checklists, and our experiments is brief. Further details
can be found in a companion technical report [18].

2. MOTIVATION: PROGRAM PATHS
The simplest way for a static analysis tool to report a po-

tential defect is to indicate a line in the file where the defect
was detected. However, while this works reasonably well
for C or Java compiler errors, static analysis designers have
long realized it is insufficient for understanding the results
of more sophisticated static analyses. Accordingly, many
static analysis tools provide a program path, i.e., some set of
program statements, with each error message. For example,
CQual [15] and MrSpidey [11] report paths corresponding to
data flow; BLAST [5] and SDV [3] provide counterexample
traces; Code Sonar [14] provides a failing path with pre- and
post-conditions; and Fortify SCA [12] provides control flow
paths that could induce a failure.

Because static analysis tools often make conservative as-
sumptions, they typically produce false positives, i.e., re-
ports that do not correspond to actual bugs. The user must
therefore triage a tool’s reports by, e.g., tracing the reported
paths, to decide if a problem could actually occur at run-
time.

Unrealizable paths in Locksmith. To understand the chal-
lenges that occur when tracing program paths, we consider
the problem of triaging error reports in Locksmith, a data
race detection tool for C [24]. Locksmith reports paths
whose execution could lead concurrent threads to access a
shared variable simultaneously. However, like many other
tools, Locksmith employs a path-insensitive analysis, mean-
ing it assumes that any branch in the program could be
taken both ways. Thus, to triage an error report, a user
must decide whether a pair of reported accesses is simulta-
neously realizable, i.e., if there is some execution in which
both could happen at once.

The triaging process is conceptually simple: we must ex-
amine the control flow logic along the paths and ensure it
does not prevent both accesses from occurring at once. How-
ever, in practice, performing this task is non-trivial, taking
a surprising amount of effort using typical code editors.

Consider Figure 1, a screenshot of our standard viewer,
which represents the assistance a typical editor or IDE would
give users in understanding textual error reports. A sample
Locksmith error report is shown in the pane labeled (1).1

This error report comes from aget, a multithreaded FTP
client. The report first identifies prev as the shared variable
involved in the race. Then, it lists two call stacks leading
to conflicting accesses to prev, the first via a thread created
in main, and the second via a different thread created in
resume get. No lock is held at either access.

We arrived at the screenshot in Figure 1 by tracing through
the error report. We began by clicking a hyperlink (2) to
jump to the thread creation site for path 1. Next, we ex-
amined the code above the thread creation site, which re-
quired some scrolling, and saw that this thread is uncondi-
tionally created. Later, we will want to relate this thread
creation site with the one in path 2, so we split the win-

1Note that this report format is slightly different than Lock-
smith’s current output, but the differences are merely syntactic.

dow to keep this code visible (3). Then, we inspected the
function signal waiter by clicking on the hyperlink (first se-
lecting the lower viewer so the target of the link was shown
there). We eventually created several splits to keep track of
the relevant code of the remaining functions in the report.

The resulting display is cluttered and hard to manage,
and if we were to continue, we would likely be forced to
collapse splits, which would make it harder to refer back to
code along the path. In general, when examining program
paths with standard viewers, mundane tasks such as search-
ing, scrolling, navigating, viewing, or combining occur with
such frequency that they add up to a significant cognitive
burden on the user and distract from the actual program un-
derstanding task. In our experience, it can be quite tedious
to triage error reports even for small programs such as aget,
which has only 2,000 lines of code. Since static analysis tools
can yield hundreds of defect reports on large programs, we
believe it is crucial to make triaging error reports easier.

The goal of Path Projection is to make tracing paths much
easier by reducing the cognitive load on the user. In our user
study, we focused on the task of triaging Locksmith error
reports by looking for unrealizable paths. However, we also
believe that Path Projection is generally applicable to many
other program understanding tasks involving path tracing.

We should add that, besides unrealizable paths, there are
several other reasons Locksmith may report a false positive,
e.g., it may incorrectly decide that a variable is shared, or
it may decide a lock is not held when it is [24]. For many
programs that we have looked at, Locksmith’s lock state
analysis is accurate, and warnings often involve only simple
sharing (e.g., of global variables, or via simple aliasing), so
our current work focuses on tracing program paths. These
other cases are certainly important, and we intend to address
them in future work.

3. PATH PROJECTION
The input to our Path Projection toolkit is an XML error

report and the program source. Path Projection combines
two techniques—function call inlining and path-derived code
folding—to “project” the source code onto the error path.

Figure 2 shows the Path Projection interface for the error
report from Figure 1. Path Projection first lays out the code
by inlining function calls (1), i.e., by inserting the code for
each call along the path directly below the calling line. In
the close-up of Figure 2, main calls resume get, so the body
of resume get is displayed directly below the call site. Then
resume get calls http get (via pthread create), so the latter’s
body is inlined, and so on. As a result, the code is visually
arranged in path order, so the user no longer has to jump
around the program to trace a path.

Next, Path Projection applies code folding to hide away
irrelevant code (2), so that the user is initially shown as
much of the path as will fit in one screen. We show only
lines that are implicated in the error report, and the func-
tion names or conditional guards of enclosing lexical blocks
(including matching braces). This degree-of-interest model
is similar to that proposed by Furnas [13]. Note that Path
Projection’s code folding is more selective than the block-
level folding that is more common in code editors; in the
latter, an entire lexical block has to be unfolded to reveal
even a single implicated line. Our code folding heuristic can
also be thought of as a simple form of program slicing [30].

Path Projection can also show paths side by side, with

4

3

1

2

Figure 1: Standard viewer showing 5 splits: one for each function call in path 1, and the first function call in
path 2 (picture in color; labels described in text)

inlining and code folding applied to each path separately to
avoid conflating the context of different paths. Side-by-side
path display is particularly useful for triaging Locksmith
error reports, so the user may easily compare several paths.

At times during triaging, a user may wish to look at code
outside a reported path. At a coarse level, the user may dis-
able code folding for an entire function by clicking the corre-
sponding expansion button. For finer control, the user may
also use the multi-query feature to search for and highlight
multiple terms at once (3). Matching terms are revealed de-
spite folded code, and each term is given a distinct color to
make it easy to locate. For Locksmith, we find multi-query
especially useful when preset with pthread-related functions.
Lastly, Path Projection includes a reveal definition facility
that uses inlining to show the definition of any function or
variable along the path.

Let us continue our earlier example, now using Path Pro-
jection to trace path 2. Unlike before, we can mostly ig-
nore the error report, since it is apparent that main calls
resume get, which calls pthread create in a loop, and so on.
We can tell at a glance that the conflicting access is in
updateProgressBar, underlined in red. Thus, we just need to
examine the conditionals along the path, as we would with
the other interface. If we are unfamiliar with the code, we
can use reveal definition to show the body of read log, used
in the conditional in main, and multi-query to show uses of
foffset in http get. From this we can decide that the path is
indeed realizable. Furthermore, we see there is another call
to pthread create earlier in main. This is the call in path 1,
and so we now see that both paths may occur at once.

Notice that with Path Projection, we are no longer dis-
tracted by mundane tasks such as window management, and
can focus on the task of understanding program paths. In
many cases, this task becomes a simple matter of reading
each column in the Path Projection display from top to bot-
tom, and we can triage error reports more easily.

Applying Path Projection to other tools. Path Projec-
tion is designed to be a general toolkit for visualizing path-
based error reports. More precisely, Path Projection is a
standalone tool that takes as input an XML error report and
the source code under analysis, and produces a web browser-
based visualization of the code, as shown. The XML format
encodes paths as lists of function calls, function returns, and
any implicated lines in those functions.

In addition to Locksmith, we have applied Path Projection
to counterexample traces produced by BLAST [5], a software
model checking tool. Such traces are not call stacks, as
in Locksmith, but rather are execution traces that include
function calls and returns. We use a short awk script to
post-process a BLAST trace into our XML format.

We believe that Path Projection makes it much easier to
understand BLAST’s error reports. BLAST error reports
can be confusing in their textual form. For example, paths
can be hundreds of lines long and, as a result, it can be
quite difficult to keep track of the execution context, e.g., by
matching function calls and returns. Using Path Projection
for BLAST reports, however, it is quite easy to tell when
functions are called, and when they return. In fact, the
structure of the path is usually apparent without having to

1

2 {

3

Figure 2: Path Projection (top) and a close-up.
This and additional screenshots are available at
http://www.cs.umd.edu/projects/PL/PP.

refer to the error report. Our technical report [18] contains
a screenshot and more detailed discussion of using BLAST
with Path Projection.

4. CHECKLIST
To understand an error report, the user must develop a

way to take the information in the report and relate it to
the potential problem with the code. Moreover, to decide
whether an error report is a false positive, the user has to un-
derstand something about the sources of imprecision in the
analysis. To static analysis experts, this triaging procedure
often seems obvious, but participants in our pilot studies
(who were not static analysis experts) had trouble even with
extensive tutorials. Participants often developed their own
ad hoc, inconsistent procedures that neglected some sources
of imprecision (and thus sometimes wrongly concluded a re-
port to be a true bug) or assumed non-existent sources of
imprecision (and therefore wasted time verifying conditions
certain to hold).

We addressed this situation by encoding the triaging pro-
cedure as a checklist that enumerates the steps required to
triage a specific report. A triaging checklist is tool- and
error-specific: different tools have different sources of im-
precision and different kinds of error reports.

For Locksmith, the principle source of imprecision we are

concerned with is unrealizable paths, and the error reports
list a set of program paths that access a shared variable
with inconsistent locking. Thus, our checklist for Locksmith
breaks down triaging into a set of sub-tasks: checking simul-
taneous realizability for each pair of possibly-racing paths
listed in the error report.

Figure 1 (4) shows part of our checklist, a tab that asks the
user to decide whether paths 1 and 2 may race. These tabs
are automatically generated from the error report. As check-
lists are not user-interface specific, we included the same
checklist in both the Path Projection and Standard Viewer.

This particular tab first directs the user to determine
whether the two threads are in a parent-child or other (child-
child) relationship. If the user selects child-child, as shown,
then the user has to check whether the two children are mu-
tually exclusive, e.g., spawned in mutually exclusive branches
of an if statement, which would preclude a race. If they are
not, the last question simply asks the user if there is a race
for reasons that we did not anticipate. Details of other tabs
can be found in our companion technical report [18].

Comparing the results of our pilot study to the one re-
ported in the next section, users triaged error reports 41%
faster with checklists than without them. Though there were
other differences in the procedures and the interfaces, our
observations suggest that most of the improvement is due
to the checklist. Therefore, we believe that a tool-specific
checklist has independent value, and that tool developers
should consider designing checklists for use with their tools.

5. EXPERIMENTAL EVALUATION
We evaluated Path Projection’s utility in a controlled user

study in which participants triage Locksmith error reports
using either Path Projection (PP) or the standard viewer
(SV). In this task, PP provides an advantage over SV in
triaging if it is faster, easier, and/or more accurate. The
discussion of our experiments and results is brief due to space
constraints. Full details can be found in our companion
technical report [18].

Participants. We recruited eight student participants (3
undergraduate, 5 graduate) from the UMD Computer Sci-
ence Department. All participants had taken at least one
college-level class involving multithreaded programming (not
necessarily in C). On a 1 (no experience) to 5 (very experi-
enced) scale, participants rated themselves as 3 or 4 in their
ability to debug data races. Two participants had previously
used a race detection tool (Locksmith and Eraser [27]).

Procedure. Each participant performs the triaging task in
two sessions, first with one interface and then with the other.
All participants receive the same set of problems in the same
sessions: 1.1, 1.2, and 1.3 in Session 1, and 2.1, 2.2, and
2.3 in Session 2. However, half of the participants use PP
in Session 1 and half use SV, and the participants switch
interfaces for the second session.

Each session begins with short tutorials on pthreads and
data races in general, and on Locksmith in particular, with
emphasis on the items in the triaging checklist. The partic-
ular features of the user interface (PP or SV) are explained
in a subsequent tutorial.

Next comes a single practice trial and three actual trials,
all of which follow the same procedure. In each trial, we first
ask participants to triage a Locksmith error report. Triaging
ends when participants complete and submit the triaging

Completion times and accuracy for each trial

Session 1 Session 2
Trial 1.1 1.2 1.3 mean 2.1 2.2 2.3 mean

User SV PP
1 8:36 14:14 9:44 10:51 7:07 4:48* 4:02 5:19
2 5:07* 3:10 5:50 4:42 4:16 2:29* 2:10* 2:58
5 7:46 2:34 5:38* 5:20 5:13 3:43* 1:18* 3:25
7 5:40 6:23 7:35 6:33 3:05 3:53* 2:32 3:10

6:51 3:43
User PP SV

0 6:27* 6:09 8:32* 7:03 9:42 5:16* 3:11* 6:03
3 6:38 7:18 8:35 7:30 11:18 6:21 3:39 7:06
4 8:21 2:11 4:43 5:05 5:26* 4:27* 2:46* 4:13
6 7:11 2:52 4:50** 4:57 4:33 4:06* 1:58* 3:32

6:09 5:14

Tabs 3 2 6 6 3 3

* one incorrectly answered tab in the checklist

Session 1 Session 2

0
10

0
20

0
30

0
40

0

Completion time (sec)

Standard Viewer
Path Projection

Session 1 Session 2

0
20

40
60

80
10

0
12

0

Duration in error report (sec)

Standard Viewer
Path Projection

Figure 3: Quantitative data

checklist. Immediately afterward, we present participants
with the same problem and ask them to explain out loud
the steps they took to verify the warning. This allows us to
compare their descriptions with our expectations, and gives
the users a chance to revisit their reasoning without bias
from the experimenter. After the experiment, participants
complete a questionnaire and interview to determine their
opinion of the user interface.

We ran the experiment on Mac OS X 10.5.2 with a 24-
inch wide-screen LCD monitor. To avoid bias due to OS
competency, all keyboard shortcuts were disabled except for
cut, copy, paste, find, and find-next, and participants were
informed of these shortcuts.

Programs. Each trial’s error report was drawn from a pro-
gram to which we had previously applied Locksmith [24].
Reports from programs engine and pfscan were used during
the tutorial and practice trials. Trials 1.1–1.3 use reports
from aget, and trials 2.1–2.3 use reports from knot. Overall,
there were 23 checklist tabs to complete for the experiment,
8 true positives and 15 false positives. Note that we chose
reports in which imprecision in the sharing and lock state
analysis do not contribute to the report’s validity, so as to
focus on the task of tracing the program path.

6. EXPERIMENTAL RESULTS
Completion time. We measured the time it took each par-
ticipant to complete each trial, defined as the interval from
loading the user interface until the participant submitted
a completed checklist. The top part of Figure 3 lists the
results, and the chart in the lower-left corner of the figure

shows the mean completion times for each interface/session
combination. We found in general that PP results in shorter
completion times than SV.

More precisely, the mean completion time is 6:02 minutes
for SV and 4:56 minutes for PP, a 1:06 minute (or 18%)
reduction. A standard way to test the significance of this
result is to run a user interface (within subjects) by presen-
tation order (between subjects) mixed ANOVA on the mean
of the three completion times for each participant in each
session. This test revealed a statistically significant interac-
tion effect between the interface and the presentation order
(F (1, 6) = 6.046, p = 0.004).2 We believe this is a learning
effect—notice that for the SV-PP order (SV first, PP sec-
ond), the mean time improved 3:08 minutes from the first
session to the second, and for the PP-SV order the mean
time improved 55 seconds. We ran two one-way, within-
subjects ANOVAs, analyzing each presentation order sep-
arately, and found that both of these improvements were
statistically significant. (F (1, 3) = 12.78, p = 0.038 for SV-
PP, and F (1, 3) = 19.33, p = 0.022 for PP-SV).

However, notice that the SV-PP improvement is much
greater than the PP-SV improvement. We applied Cohen’s d,
a standard mean difference test, which showed that the SV-
PP improvement was large (d = 1.276), and the PP-SV
improvement was small-to-medium (d = 0.375). This pro-
vides evidence that while there is a learning effect, PP still
improves user performance significantly.

Note we did not distinguish correct and incorrect answers
when analyzing completion times. It is unclear how incorrect
answers affect timings, especially since in many cases, only
one tab out of several contained an incorrect answer.

Accuracy. The chart at the top of Figure 3 also indicates,
for each trial, how many checklist tabs were answered incor-
rectly. The total number of checklist tabs to complete per
trial is at the bottom of the chart. Our results show that
user mistakes were evenly distributed across both interfaces,
10 (10.9%) under PP and 9 (9.8%) under SV. For each par-
ticipant, we summed the number of mistakes in each session
and compared the sums for each interface using a Wilcoxon
rank-sum test. This showed that the difference is not sig-
nificant (p = 0.770), suggesting the distribution of errors is
comparable for both interfaces. Thus, using PP, participants
came to similarly accurate conclusions in less time.

Time in error report. The chart in the bottom right of Fig-
ure 3 shows the mean times spent with the mouse hovering
over the error report for each session and interface. On aver-
age, participants spent 20 seconds in the error report under
PP, compared to 94 seconds under SV, a dramatic differ-
ence. We believe this difference occurs because PP makes
paths clearly visible in the source code display, whereas in
SV, hyperlinks in the error report are heavily used to reveal
relevant parts of the code. One participant even noted that
the error report is “necessary for the standard viewer, but
just a convenience in [PP].”

Qualitative results. We asked each participant to rate, on
a scale of 1-5, whether each interface was quick to learn, led
them to confidence in their answer, and made races easy
to verify. There was no statistically significant difference
in users’ responses between the two interfaces. However,

2As is standard, we consider a p-value of less than 0.05 to indicate
a statistically significant result.

when asked whether they preferred PP overall, 7 out of 8
responded that they somewhat or strongly agreed.

We also asked users to rate individual features of PP on a
scale of 1-5, in particular the error report, checklist, function
inlining, code folding, multi-query, and that multi-query re-
veals folded code. Participants rated all these features some-
what or very useful, with statistical significance.

The checklist was very well received overall. One partic-
ipant said, “[It] saved me from having to memorize rules.”
Interestingly, two participants felt that, while the checklist
reduced mistakes, it made triaging take longer. This con-
flicts with our experience—as we mentioned earlier, partici-
pants in our pilot study, which did not include the checklist,
took notably longer to triage error reports than participants
in our current study.

We thought that participants would be wary about func-
tion inlining and code folding, since the former is an unfa-
miliar visualization and the latter hides away much code.
However, participants rated both very highly, saying partic-
ularly that code folding was “the best feature,”“my favorite
feature,” and “I love using this feature [code folding].”

Threats to validity. There are a number of potential threats
to the validity of our results. The core threat is whether our
results generalize. We had a small number of participants,
all of whom were students rather than expert programmers.
The set of programs (N = 2) and error reports (N = 6)
in the experiment was small. Moreover, participants were
asked to triage error reports for unfamiliar programs. How-
ever, even with these limitations, our experiment did pro-
duce statistically significant and anecdotally useful informa-
tion for our population and sample trials. We leave carrying
out a wider range of experiments to future work.

One minor threat is that the SV interface is not a pro-
duction-quality IDE. This was a deliberate choice to reduce
bias from prior IDE experience, but we may have omitted
features that would be useful for our task.

Another concern is whether the checklist could bias the re-
sults. We do not think so, since the checklist is derived from
the imprecision and error report format of Locksmith, as
discussed in Section 4, rather than being interface-specific.

7. RELATED WORK
Error report triaging is essentially a program comprehen-

sion task. There has been substantial research into tools
for assisting program comprehension tasks, often related to
code maintenance and re-engineering (e.g., SHriMP [29] and
Code Surfer [1], to name just two recent tools). As far as we
are aware, none of these tools has been specifically designed
to support users of static analysis for defect detection.

Conversely, many defect detection tools that use static
analysis provide custom user interfaces [3, 21, 7, 17, 14, 1,
11, 6], IDE plug-ins [19, 12, 28, 15], or both [25]. However,
we are not aware of any prior studies that measure the im-
pact of the user interface on a static analysis tool’s efficacy.
Indeed, many proprietary tools have licenses that prohibit
publishing the results of studies about their tools.

We surveyed these tools based on publicly-available screen-
shots and literature and compared their features with Path
Projection (Table 1). Most interfaces share some features
with Path Projection, but Path Projection’s multi-query and
path-derived (error-specific) code folding seem to be new; no
tool provides a checklist to help with triaging.

Features (legend below)

Tool HLR HPC CF FCI AC AQ OV

Path Projection × × × ×
SDV [3] × ×
PREFix [21] × ×
PREFast [21] × n/a ×
Prevent [6] × ×
Code Sonar [14] × × × × ×
MrSpidey [11] × × × ×
Fortify SCA [12] × × ×
Klocwork [19] × ×
Fluid [28] × ×
FindBugs (GUI) [25] × × n/a

FindBugs (Eclipse) × × n/a

CQual [15] ×

HLR : hyperlinked error report AC : annotated code with analysis
HPC : highlighted path in code AQ : analysis queries
CF : code folding OV : other visualization (see text)
FCI : function call inlining

Table 1: Summary of tool interface features

Code Sonar has many features in common with Path Pro-
jection, but we believe its design could be improved. For
example, several of Code Sonar’s features interleave colored
lines of text with the source code, causing the source code to
be discontinuous and hard to follow. A few tools annotate
the source code with summaries of their analysis, a feature
not (yet) in Path Projection. MrSpidey also allows the user
to interactively query its analysis for possible run-time val-
ues of a given expression. Two tools provide graphical vi-
sualization of paths: Fortify SCA illustrates paths as UML-
style interaction diagrams, and MrSpidey overlays lines on
the source code to illustrate value flows.

Research in bug triaging has focused on detecting dupli-
cate bug reports [26], assigning bug-fixing responsibility [2,
8], or visualizing the progress of bug reports [9]. There has
also been work on improving error messages [10, 22, 4, 16,
31], and on organizing them by priority [20]. Path Projec-
tion, and our study, differs from this work in exploring how
triage can be performed more accurately and efficiently.

8. CONCLUSIONS
This paper introduced Path Projection, a new program

visualization toolkit designed to help programmers navigate
and understand program paths, a common output of many
static analysis tools. We measured the performance of Path
Projection for triaging error reports from Locksmith and
found that, compared to a standard viewer, Path Projection
reduces completion times with no adverse effect on accuracy.

We believe our work is the first to study the impact of a
user interface on the efficiency and accuracy of triaging static
analysis error reports. In future work, we intend to explore
other potential applications of Path Projection beyond bug
triage, and to study the use of checklists to complement
static analysis tools. Path Projection is available at
http://www.cs.umd.edu/projects/PL/PP.

Acknowledgments
We thank François Guimbretière, Bill Pugh, Chris Hayden,
Iulian Neamtiu, Brian Corcoran, and Polyvios Pratikakis,
and our study participants for their help with this research.
This research was supported in part by National Science
Foundation grants IIS-0613601, CCF-0430118, and CCF-
0541036.

9. REFERENCES
[1] P. Anderson, T. Reps, T. Teitelbaum, and M. Zarins.

Tool support for fine-grained software inspection.
IEEE Software, 20(4):42–50, July/August 2003.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix
this bug? In ICSE ’06, pages 361–370, 2006.

[3] T. Ball and S. K. Rajamani. The SLAM Project:
Debugging System Software via Static Analysis. In
Proceedings of the 29th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 1–3, Portland, Oregon,
Jan. 2002.

[4] M. Beaven and R. Stansifer. Explaining type errors in
polymorphic languages. ACM Lett. Program. Lang.
Syst., 2(1-4):17–30, 1993.

[5] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala,
and R. Majumdar. The Blast query language for
software verification. In R. Giacobazzi, editor, Static
Analysis, 11th International Symposium, volume 3148
of Lecture Notes in Computer Science, pages 2–18,
Verona, Italy, Aug. 2004. Springer-Verlag.

[6] Coverity, Inc. Coverity Prevent SQS, 2007.
http://www.coverity.com/html/prod_prevent.html.

[7] R. F. Crew. ASTLOG: A Language for Examining
Abstract Syntax Trees. In Proceedings of the
Conference on Domain-Specific Languages, Santa
Barbara, California, Oct. 1997.

[8] D. Cubranic and G. C. Murphy. Automatic bug triage
using text categorization. In SEKE’04, pages 92–97,
2004.

[9] M. D’Ambros, M. Lanza, and M. Pinzger. “A Bug’s
Life” Visualizing a Bug Database. VISSOFT ’07,
pages 113–120, 24-25 June 2007.

[10] D. Duggan and F. Bent. Explaining type inference.
Science of Computer Programming, 27(1):37–83, 1996.

[11] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich,
and M. Felleisen. Catching Bugs in the Web of
Program Invariants. In PLDI ’96, pages 23–32, 1996.

[12] Fortify Software Inc. Fortify Source Code Analysis,
2007.
http://www.fortifysoftware.com/products/sca/.

[13] G. W. Furnas. Generalized Fisheye Views. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 16–23, Boston,
Massachusetts, Apr. 1986.

[14] GrammaTech, Inc. CodeSonar, 2007.
http://www.grammatech.com/products/codesonar/

overview.html.

[15] D. Greenfieldboyce and J. S. Foster. Visualizing Type
Qualifier Inference with Eclipse. In Workshop on
Eclipse Technology eXchange, Vancouver, British
Columbia, Canada, Oct. 2004.

[16] C. Haack and J. B. Wells. Type error slicing in
implicitly typed higher-order languages. Sci. Comput.
Program., 50(1-3):189–224, 2004.

[17] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A System
and Language for Building System-Specific, Static
Analyses. In PLDI ’02, pages 69–82, 2002.

[18] Y. P. Khoo, J. S. Foster, M. Hicks, and V. Sazawal.
Path Projection for User-Centered Static Analysis
Tools. Technical Report CS-TR-4919, Department of
Computer Science, University of Maryland, College

Park, Aug. 2008.

[19] Klocwork Inc. Klocwork Enterprise Development
Suite, 2007. http://www.klocwork.com.

[20] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler.
Correlation exploitation in error ranking. In FSE ’04,
pages 83–93, 2004.

[21] J. R. Larus, T. Ball, M. Das, R. DeLine,
M. Fahndrich, J. Pincus, S. K. Rajamani, and
R. Venkatapathy. Righting Software. IEEE Software,
21(3):92–100, May/June 2004.

[22] M. Neubauer and P. Thiemann. Discriminative sum
types locate the source of type errors. In ICFP ’03,
pages 15–26, 2003.

[23] J. Pincus. User Interaction Issues in Defect Detection
Tools. Presentation at UW/MSR Research Summer
Institute, 2001. http://research.microsoft.com/
users/jpincus/uwmsrsi01.ppt.

[24] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith:
Context-Sensitive Correlation Analysis for Race
Detection. In PLDI ’06, pages 320–331, 2006.

[25] B. Pugh et al. FindBugs, 2007.
http://findbugs.sourceforge.net.

[26] P. Runeson, M. Alexandersson, and O. Nyholm.
Detection of Duplicate Defect Reports Using Natural
Language Processing. In ICSE ’07, pages 499–510,
2007.

[27] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A Dynamic Data Race Detector
for Multi-Threaded Programs. In SOSP ’97, pages
27–37, 1997.

[28] W. Scherlis et al. The Fluid Project, 2007.
http://www.fluid.cs.cmu.edu:8080/Fluid.

[29] M.-A. Storey. A Cognitive Framework For Describing
and Evaluating Software Exploration Tools. PhD
thesis, Computing Science, Simon Fraser University,
Canada, 1998.

[30] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352–357, July 1984.

[31] J. Yang, J. Wells, P. Trinder, and G. Michaelson.
Improved type error reporting, 2000.

