
PLAN: A Packet Language for Active Networks

Michael W. Hicks, University of Maryland, College Park
Pankaj Kakkar, Microsoft

Jonathan T. Moore, Ipsum Networks
Carl A. Gunter, University of Illinois Urbana-Champaign

Scott M. Nettles, The University of Texas at Austin

May 25, 2006

Abstract

The Internet protocols were designed to emphasize simple rout-
ing elements and intelligent hosts. However, there are applications
that benefit from allowing hosts to customize or program routers, a
concept known as active networking. Since routers are shared, this
raises challenges with delivering sufficient flexibility while preserving
or improving performance, security, and safety. PLAN (Packet Lan-
guage for Active Networks) is a language designed for the SwitchWare
active network architecture. This architecture comprises active pack-
ets containing PLAN programs that invoke service routines over an
active OS. PLAN is based on the polymorphic lambda calculus and
provides a restricted set of primitives and datatypes that enables rea-
soning about its impact on network resources based on features of the
language design. This paper focuses on the PLAN language with the
aim of consolidating a variety of studies that were carried out in the
years after its introduction in 1998. These studies include the require-
ments for PLAN, its design, programming in PLAN, the specification
and theory of PLAN, and its use in networking applications.

1 Introduction

Modern packet-switched networks, like the Internet, transport data in pack-
ets that consist of a header, containing control information, and a payload,
containing the data itself. One way of looking at the header is as a program
in a primitive “programming language” defined by the packet format specifi-
cation. This program is interpreted by the protocol software in routers and
end-hosts and the execution of the program causes the packet to be sent

1

to the next router along the path to the destination. If a desired service
cannot be expressed by the current protocol, then the packet format and its
semantics must change. Or, using our analogy, the programming language
and its specification must change.

In the Internet, the dominant packet ‘language’ is the Internet Protocol
(IP) [50], which defines the interoperability layer of the networks that make
up the internetwork. Since IP’s creation, a variety of services have been
proposed that would require changes to IP to support; examples include
core-stateless fair queuing [58], anycast [33], IP traceback [53], and others.
Since IP is such a widely-deployed protocol, changes to it must be deliberated
and agreed upon by a standards body. Furthermore, for the changes to be
of use, the new standard must be deployed in all of the routers that would
use it—a daunting task. As a consequence, the introduction of new network
services at this level is very slow. For example, there was a span of four
or more years from the time RSVP was conceptualized [11] to the time it
was deployed [48], even in a very limited manner. Further, consider that
the first IPv6 request-for-comments (RFC) appeared in 1995 [10], its latest
RFC [12] is dated 1998, and yet it is still not widely deployed [34].

Another problem with IP and similar internetworking approaches in-
volves its strategy for providing interoperability between the many possible
higher-level protocols that might use IP and the many possible link technolo-
gies that might make up the individual networks connected by IP. The idea
is simple, every high-level protocol must use IP and IP supports every link
technology of interest. Thus, IP becomes the neck of an hourglass through
which all data is funnelled. The problem is that all applications must use
whatever services are provided by IP and it is impossible for applications to
customize the network according to their own needs.

Active networks propose to deal with both of these problems by making
the network infrastructure programmable. If the level of abstraction could
be raised from that of the bits in IP packet headers to that of a more general
programming language, the evolution of the network could proceed at the
pace of technology, since changes would occur at the level of the program—
not the programming language. Moreover, rather than treat the network as
a black-box (or ‘cloud’) that provides only end-to-end service, an application
can customize its processing within the network using its programming in-
terface. For example, an application could specify its own policies for packet
dropping [8] or aggregation [56] when resources are overloaded.

If this idea is to be realized, a new architectural and programming phi-
losophy is required. Our aim in this paper is to consolidate research that was
carried out on the Packet Language for Active Networks (PLAN), which was

2

developed as part of the SwitchWare [2] active network architecture. This
architecture provides for three layers consisting of active packets containing
PLAN programs that invoke service routines over a secure active OS. PLAN
is based on the polymorphic lambda calculus and provides a restricted set
of primitives and datatypes that enables reasoning about its impact on net-
work resources based on features of the language design. In this approach,
each packet contains a PLAN program that replaces the IP packet header
and payload, and these programs, in turn, tie together service calls to cre-
ate more complex network functions. Therefore, PLAN can be viewed as a
network-level ‘glue’ language for node-resident services.

Our decision to define a new language was driven by a variety of unique
requirements that are described in the next section. For instance, the need
for programs that fit within individual packets suggests the use of a com-
pact scripting language. Mobility suggests the need for a ‘safe’ language,
while network availability demands a way to limit the resource utilization of
programs. Since mobility is the main aim of the language, it is important to
make its computational model fundamentally distributed, rather than pro-
vided by a special library extension. In the end, the choice was to design
a new language realizing all of these goals well, but relying on programs in
other languages to provide more heavyweight functions.

PLAN [22] was one of the first active networking systems, and the first
to be demonstrated at the DARPA active networks workshops [28]. It was
the first packet scripting language and the first to use language-based re-
source restrictions to limit the impact of an active packet on the network [2].
PLAN has received the most formal analysis of any active networking sys-
tem, including an abstract calculus [30, 31], mathematical specification [32],
formal simulations, and theorems about invariants and properties of ap-
plications [64]. The PLAN system was also the foundation or target of a
number of studies of security [21], including trust management [18], infor-
mation flow [30], and active firewalls [23, 24]. PLAN introduced the idea of
implementing network layers through the use of a quotation-like mechanism
(chunks) and was the first active network system to show that it could im-
plement Internet (IP-based) functionality (as part of the PLANet system)
and then improve upon it to support Multicast and Packet-directed rout-
ing (FBAR) among other things [25]. PLAN has a substantial reference
implementation [4] that has been widely distributed and used in a variety
of case studies and supports compilation to a novel resource-sensitive byte
code language called SNAP (Safe and Nimble Active Packets) [39, 40, 26].

The rest of the paper describes the PLAN language and system, its
architecture, specification, and our implementations of it. We base our

3

Packet level Service level
Language PLAN flexible
Code location in packet on node
Expressibility limited general purpose
Authentication? no when needed

Table 1: Comparison of the Packet and Service levels

discussion on PLAN version 3.22.

2 Requirements and Design

We will argue that any active networking approach must balance the tensions
among the following issues: flexibility, safety and security, performance,
and usability. To this end, our architecture partitions the problem into
two levels: the packet language level and the service language level, whose
roles are summarized in Table 1. PLAN, our packet language, is intended
for high-level control, while most of the complex functionality resides in
services (which, for maximum flexibility, can be dynamically loaded over
the network). This approach allows us to draw a clean boundary between
lightweight and heavyweight programmability. We now explore in more
detail how our two-level architecture helps us to achieve specific design goals.

2.1 Flexibility

A central goal of any active network architecture should be to provide
Internet-like service at Internet-like cost, while further providing augmented
capabilities for service evolution and customization. The Internet allows any
user with a network connection to have some basic services, like basic packet
delivery provided by IP, basic information services like DNS, and protocols
like HTTP, FTP, SMTP, and so forth. Similarly, a goal of a PLAN-based
active network should be to allow any user of the network to have access to
basic services; these services should naturally include some ‘activeness’ to
allow application-specific customization.

At the same time, the programmable infrastructure should capture the
non-user (control-plane) operations, like routing, network management, and
error reporting. Active networks provide the opportunity to unify the vari-
ety of protocols of the IP Internet into a single programmable framework.
This way, protocols like SNMP, RIP, OSPF, ICMP, and ARP would be

4

programmed using the underlying infrastructure, rather than defined sepa-
rately.

Given these goals, the key question is: how should this flexibility be
provided? Our two-level architecture mirrors the model of the Internet:
the packet language is responsible for basic actions concerning how data
is transmitted, while the node-resident services implement the complexities
of higher-level protocols. That is, PLAN should be able to express ‘little’
programs for network configuration and diagnostics, and to provide the dis-
tributed communication/computing glue that connects router-resident ser-
vices into larger protocols. To do this, PLAN must do three things: em-
body a model of distributed computing; have some simple, transmissible
datatypes; and perhaps most importantly, be able to cope with and recover
from errors in a general way. PLAN moves us away from a world with a
fixed set of operations and into one where node-resident services can be
easily combined on-the-fly.

2.2 Safety and Security

The shared nature of a network (and especially the Internet) requires that
security be taken very seriously. Clearly, this means that increased pro-
grammability must be added in a safe and secure manner. By safety we
mean reducing the risk of mistakes or unintended behavior, and by security
we mean the usual concept of protecting privacy, integrity, and availability
in the face of malicious attack. These are really two sides of the same coin,
since flaws in the safety of a system are often used in a deliberate fashion to
undermine security.

Our security model mirrors that of the Internet: ‘normal’ user pack-
ets require no special privileges for transport, while other special packets
could require authorization. For example, routing protocols like RIP and
OSPF [7, 43], or management protocols like SNMP [15] all utilize encryp-
tion and/or authorization to prevent user tampering. Our implementation
of this model is made manifest in the two levels of our architecture: PLAN
packets are designed to be safe by construction, and thus usable by anyone,
while individual services may require authorization. For example, a service
for updating a node’s routing table (used by a routing protocol or a network
administrator) would require authorization.

To make PLAN safe for general use, it is functional, stateless, and
strongly-typed. This means that PLAN programs are pointer-safe, and con-
currently executing programs cannot interfere with one another. In addi-
tion, PLAN provides strong resource usage guarantees: all PLAN programs

5

are guaranteed to terminate when evaluating on a single network node (as
long as all called service routines terminate), and any program’s traversal
throughout the network is strictly bounded by a counter set at its creation.
Finally, PLAN has a formal specification (presented in Section 5) to help
reason about the security behavior of its packet programs.

A final design principle that was motivated by the need for safety and
security is that PLAN was designed to be as simple as possible. Features
were added only if we could justify them with specific packet programming
examples. This contributes to safety and security because it limits the ac-
tions a user (or attacker) can take to as small a set as possible. It also makes
specification and correct implementations easier, also contributing to safety
and security. The tension here is that in making PLAN simple we may limit
its flexibility to greatly.

2.3 Performance

To provide Internet-like service at Internet-like cost implies that we stream-
line common-case processing as much as possible. This was a basic motiva-
tion behind our security model: by limiting the expressibility of the packet
language so that anyone could use it, we could avoid performing authoriza-
tion checks on every packet, which entail the need for expensive (relative to
basic switching) cryptographic authentication. Furthermore, PLAN’s sim-
plicity keeps interpretation lightweight, and thus common tasks can be done
quickly. We have avoided adding heavyweight features to PLAN in the belief
that such features can be accessed at the service level if they are needed.

2.4 Usability

PLAN programs execute remotely, which makes it difficult to determine the
causes of unexpected behavior. Therefore, it is important to provide the
PLAN programmer with a priori assurances about a program’s behavior.
We provide some guarantees as part of our design: all PLAN programs are
statically typeable and are guaranteed to terminate, as mentioned above.

PLAN is based on the first-order, polymorphic lambda calculus, mak-
ing it easier to specify a formal semantics, and allowing programs to be
expressed succinctly. In addition, it provides error handling facilities to
simplify dealing with protocol errors.

6

2.5 Why a New Language?

Now that the reader has a basic idea of the design goals for PLAN, we
can revisit the question of why we need a new language. The need for
PLAN to be very simple and lightweight, which serves all of our design goals
except flexibility, provides a compelling argument that no general purpose
language is really suitable. In fact, the requirement that programs need
not be authenticated would seem to make it insecure to use most general-
purpose languages. On the other hand, the need to tailor the language to
the active networking domain eliminates existing special-purpose languages.
Finally, even if we consider special-purpose languages explicitly designed for
distributed computing, we find that they are targeted an environment that
assumes a working network and are not well suited for use as a low-level
network software implementation vehicle.

3 PLAN Overview

PLAN has four features that facilitate network programming: (1) primi-
tives for remote evaluation, (2) a language-level device for encapsulating a
computation, called a chunk, (3) means to customize a packet’s routing and
error handling, and (4) means to access general-purpose, node-resident ser-
vices. These features, along with ones found in more typical programming
languages such as data-structure and control flow constructs, facilitate pro-
gramming a variety of useful networking tasks, including diagnostics like
ping and traceroute for finding paths to remote machines, UDP-style data
delivery, distributed routing protocol computations, and address-resolution.

However, because PLAN is designed as a replacement for IP, we must
be concerned with the resource usage and security properties of PLAN pro-
grams. PLAN has two key properties concerning the resource usage of its
programs: all programs are guaranteed to (1) terminate on each node at
which they evaluate, and (2) visit only a fixed number of network nodes.
These properties aim to ensure that PLAN programs do not make it easier
to inflict denial-of-service attacks on network nodes than is already possi-
ble with IP. PLAN is also a type-safe language, meaning that its programs
cannot illegally interact with the nodes on which they run, say by buffer
overflows, unsafe casts from integers to pointers, etc..

This section describes PLAN informally, though with care. Some formal
detail can be found in Section 5, where we describe PLAN’s mathematical
specification, and in an appendix to the paper, where a BNF-style grammar
is presented. We begin by introducing the semantics of remote evaluation

7

in PLAN, and present a small example program that performs an active
ping, to test whether a remote machine is accessible and available. We then
explain how remote evaluation is implemented using PLAN packets, and
how packets can customize their routing. Next, we describe how PLAN’s
resource bounding properties are made possible, and discuss how PLAN
programs can handle errors. Finally, we conclude our discussion of remote
evaluation by fleshing out some remaining details.

3.1 Chunks and Remote Evaluation

At the core of PLAN’s design is its use of remote evaluation, implemented
by the primitive OnRemote. OnRemote takes two main arguments what to
evaluate and where to evaluate it. More specifically, its first argument is a
chunk, and the second argument is a host address.

3.1.1 Chunks

A chunk, which stands for code hunk, can be thought of as a suspended
function call: all of the arguments have been evaluated, but the function
invocation itself has yet to occur. Chunk literals resemble regular function
applications except that the function name is surrounded by bars, as in
|f|(1). The bars illustrate that the evaluation of the function itself is de-
layed. When a chunk is transmitted to a remote site, the function named in
the chunk expression (e.g., f) is invoked in a remote environment where all
top-level bindings are available; as such it does not obey the usual lexical
scoping of functions. This allows a form of recursive function call to be done
with chunks, but not permitted with normal function calls; we say more on
this in Section 3.3.

When a chunk is sent to a remote machine for evaluation, its code and
arguments must be marshalled for transport. PLAN does not provide user-
defined mutable state, so all marshalled values can simply be copied. An
additional important benefit of this fact is that concurrently running PLAN
programs can only share state through service routines, which implies that
only the service language must concern itself with concurrency.

Chunks are first-class, meaning they may be manipulated as values. In
addition to being provided to OnRemote for remote evaluation, a chunk may
be evaluated locally by passing it to the eval service, which resolves the
function name with the current top-level environment, performs the applica-
tion, and returns the result. Chunks are quite similar to thunks, as provided
in functional languages, but are not as general due to the changed scoping

8

fun ping (source, destination) =
if thisHostIs(destination) then

OnRemote(|ack|(), source, _, _)
else

OnRemote(|ping|(source, dest), dest, _, _)

fun ack() = print("Success")

Figure 1: Programming ping in PLAN

rules. A detailed discussion of many of the uses of chunks is presented in
Section 4.2.

3.1.2 OnRemote

Remote evaluation is implemented by bundling the given chunk into a PLAN
packet and injecting that packet into the network. The network routes the
packet, perhaps in a customized way, to its evaluation destination to be
evaluated. Like sending a packet, remote evaluation is asynchronous: once
the packet is sent to the remote node, the current PLAN program continues
without waiting for a response. Furthermore, like IP, remote evaluation
is best-effort. There is no guarantee that a remote invocation will actually
occur, as the packet might be dropped by the network. PLAN provides error-
handling facilities to deal with these uncertainties, described in Section 3.4.
We look at PLAN packets more closely in Section 3.6.

Using OnRemote, we can program ping in PLAN, which is used to test
if a remote host in the network is both reachable and available. In the IP
Internet, ping is provided as a special packet type in the ICMP protocol [49],
while it can be programmed using standard facilities in PLAN, as shown in
Figure 1. In the figure, the underscores indicate values that we will not
consider until later.

To run the program, the ping function is invoked with the address of the
remote host in the destination argument, and the address of the requesting
host in the source argument. The program is first evaluated on the source.
If the source is not also the destination, then the call to thisHostIs will
return false, and the first OnRemote will remotely invoke the ping function
at the destination, with the same arguments. There the call to thisHostIs
returns true, so the second OnRemote invokes the ack function back on the

9

source, which prints the message Success.
The ping program calls two functions not defined in the program text,

thisHostIs and print. When a PLAN program evaluates at a node, such
calls are resolved to node-resident functions called service routines. It is
expected that all PLAN nodes will provide a set of service routines called
the core services; these core routines include thisHostIs, print, and others
like getHostByName to perform name lookups, or getNeighbors to get a list
of the hosts immediately neighboring the current host. Other services may
be available, but may be subject to authorization checks. We discuss services
in greater depth in Section 3.5.

3.2 Routing

The ping program describes what should happen at the source and destina-
tion nodes, but not how the PLAN packet makes its way to the destination.
This observation raises a larger question: on which nodes should a packet’s
program be evaluated? At one extreme, adopted by some packet program-
ming languages [66, 54, 45, 13], we could require that a packet’s program
evaluate on every node it traverses. Another extreme, embodied by the
IP-based Internet, is that customized computation is only allowed at the
endpoints. In PLAN, we take the middle ground and allow a packet to eval-
uate at any number of programmer-specified nodes between its source and
ultimate destination. In between its evaluation points, each one indicated
by the a field evalDest stored in the packet, the packet is routed by the
network. More justification of this approach is made in Section 3.6.3.

Rather than leave routing entirely up to the whims of the network (as
is the case with IP packets), a program can specify how it is to be routed
by naming a per-packet routing function. This function is a node-resident
service that takes as an argument a destination address, and returns back
the address of the next hop on the way to that destination. When a packet
arrives at a node that is not its evaluation destination, the routing function
is called, and the packet is forwarded to the next hop, as returned by the
function. In the case that a packet does not require customized routing, it
can specify the defaultRoute function, available in the core service set. In
our experience, defaultRoute is used most often, but we have used custom
routing as well [25].

Alternatively, the packet can perform its own routing, by setting the
evalDest field hop by hop in the network, as described further in Section 3.6.

10

3.3 Resource Bounds

Because the network is a shared infrastructure, it must ensure that its pack-
ets do not consume an unfair amount of resources. In the IP-based Internet,
all unicast IP packets have a time-to-live (TTL) field, a fixed maximum
size, and have very simple header processing, so they satisfy the following
resource usage property:

The amounts of bandwidth, memory, and CPU cycles that a sin-
gle packet can cause to be consumed is linearly related to the
initial size of the packet and to some resource bound(s) initially
present in the packet.

While this property does not prevent all forms of denial-of-service attack
(particularly distributed denial-of-service (DDOS) attacks), it has allowed
the Internet to scale effectively to hundreds of millions hosts.

If PLAN packets are to replace IP packets, it stands to reason that they
should also satisfy this property, or one like it, or else enable hackers to
more easily mount denial-of-service attacks. To this end, all PLAN pro-
grams satisfy two resource-usage properties. First, every PLAN program
will terminate on each node on which it executes. Second, PLAN pack-
ets are limited in the number of nodes on which they may execute by a
per-packet counter called the resource bound (or RB).

PLAN’s termination guarantee arises from its simple flow of control con-
structs: statement sequencing, conditional execution, iteration over (bounded
size) lists using the common functional programming combinator fold1, and
exceptions, all in the usual style. Although function calls are supported,
notably absent are recursive function calls and constructs that allow un-
bounded iteration. The lack of recursion and unbounded iteration imply
that all PLAN programs terminate on each node on which they run.

PLAN’s second guarantee ensuring limited time in the network arises
from a per-packet RB counter that indicates the sum total of nodes a packet
or any of its progeny (created by OnRemote) may traverse. Such a limit
becomes clear when we consider the following program:

1For those not familiar with functional programming, fold takes three arguments: a
function f to execute for each element of the list, an initial accumulator a, and the list
itself.

fold(f, a, [b1; b2; . . . ; bn])

has the meaning
f(. . . f(f(a, b1), b2) . . . , bn).

11

fun ping_pong(pingHost, pongHost) =
OnRemote (|ping_pong|(pongHost, pingHost), pongHost, _, _)

Unchecked, this program would bounce back and forth between pingHost
and pongHost indefinitely. Instead, each node that a packet traverses decre-
ments the packet’s RB by one. In addition, when a parent packet creates
a child packet, it must donate some of its resource bound to that child
(as we describe below). Finally, since eval(c) is essentially the same as
OnRemote(c,h) in which h is the local host, calling eval subtracts 1 from
the resource bound.

Unfortunately, these two properties are not enough to satisfy the resource
usage property stated above. In particular, the fact that PLAN programs
must terminate does not imply they do so only using a linear amount of
resources. For example, the following program runs in time exponential in
its size, even though it does no allocation and does not even use iterators:

fun f1():unit = ()
fun f2():unit = (f1(); f1())
fun f3():unit = (f2(); f2())
fun f4():unit = (f3(); f3())

fun exponential():unit = (f4(); f4())

To avoid pathological programs of this sort, we impose two additional
constraints:

1. Given function f which calls functions g1, g2, ... gn:

f ∈ valid iff g1, g2, ... gn ∈ valid and

calls(f) = 0 or
calls(g1) + calls(g2) + ... + calls(gn) ≤ 1

where calls(g) is the number of PLAN functions called from function
g.

2. Iteration with fold must be limited to a constant amount (e.g., lists of
length 5), and use consumption of resource bound beyond that point
(i.e. subtract 1 for every 5 elements traversed).

Some other active network systems [45, 66, 13, 54] attempt to ensure the
resource bounding property by imposing fixed CPU and memory counters
at each node to limit evaluation resource cost. While straightforward, this

12

method weakens a priori guarantees of correctness, since a program could be
terminated at any time (of course, this is already somewhat the case, since
OnRemote and the closely related OnNeighbor are unreliable). Furthermore,
care must be exercised to perform this termination safely; Hawblitzel et
al. [20] have shown that termination of threads in the JVM can be unsafe,
and Java remains a popular language for active network implementation.
Some discussion of the tradeoffs for safety relative to PLAN and other lan-
guages can be found in [17].

3.4 Preventing and Handling Errors

PLAN aims to simplify the process of distributed programming by both
preventing many errors in its programs, and by providing useful means for
handling them when they arise. PLAN uses strong typing to rule out many
errors, and its termination guarantee rules out others. Types can be in-
ferred by the compiler using essentially the Hindley-Milner algorithm also
employed by Standard ML, with some minor modifications. Although PLAN
programs are mostly statically typeable, in our implementation they are dy-
namically checked. This unorthodox approach arose from the demands of
remote programming: static typeability is a benefit to help debugging be-
fore injecting a packet into the network, while dynamic checking provides
efficient safety (from the nodes’ point of view) for mobile scripting code. In
addition to a fairly standard set of base types, PLAN provides a homoge-
neous, variable-length list type and a heterogeneous, fixed-size tuple type,
but no support for general recursive types, since their utility is questionable
without general recursion. PLAN also supports parametric polymorphism,
in the style of Standard ML, and similar to templates in C++.

Anomalous conditions are signalled to PLAN programs through excep-
tions. For example, OnRemote will raise the exception NotEnoughRB if the
packet does not have enough resource bound to send a new packet. However,
because of the asynchrony of OnRemote, exceptions alone are not sufficient
for handling all errors. Using a synchronous OnRemote, a thrown exception
could be propagated back to the calling program to be handled; instead,
the program that called OnRemote, if it even still exists, is in no position to
handle the exception.

Therefore, so that the application is notified when something goes wrong,
PLAN provides two error handling mechanisms based on callbacks. First, an
abort service is provided which allows a program to execute a chunk on its
source node. This is accomplished by extracting the source address from the
packet header and sending to it an error packet carrying the chunk. Once

13

fun exnreport(h:host,e:exn) =
(print("I raised "); print(e);
print(" on "); print(h))

fun main(home:host,...) =
try

...
handle e =>

abort(|exnreport|(hd(thisHost()),e))

Figure 2: A general error-reporting mechanism

there, any remaining resource bound is discarded, and the chunk is evalu-
ated. Coupling the abort service with exceptions provides for reasonably
flexible error-handling; an example is shown in Figure 2.

However, evaluation on remote nodes may raise exceptions not antic-
ipated by the programmer, and some errors are severe enough that they
cannot be handled within PLAN (for example, a transmission error may
result in a type-incorrect program that is rejected by the interpreter). For
these cases, we provide a mechanism for error handling through a special
field in the packet header. The handler field names a service to be invoked
on the source in case an error or exception not handled in the program is
raised. This essentially corresponds to an implicit call to the abort service
where the chunk to be executed is simply a call to the named handler service.

For both of these cases, error-handling semantics dictates that the source
field names the host where the packet’s oldest ancestor was injected. For
example, in the ping program, up to three packets will be created: the first
by the ping user application, and the second two by OnRemote calls in the
ping function. Because the first packet will create the second two, it is
termed the parent of those packets. Each of the child packets will share
its parent’s source field. This allows child packets to report back to their
originating application, and for errors to go to the right host.

3.5 Services

PLAN programs essentially ‘glue’ together service routines, like thisHostIs
and print from the ping example. PLAN is lexically-scoped, with the avail-
able services occupying the initial bindings in the namespace. Because ser-

14

vice invocations are syntactically identical to normal function invocations,
a PLAN program may shadow a service routine by defining a local function
of the same name. By the same token, if a name fails to resolve at invoca-
tion time, the interpreter assumes the program is attempting to invoke an
unavailable service routine, and raises a ServiceNotPresent exception.

Since we want basic programs like ping to be available to all users, a
number of ‘core’ services are made available throughout the network, in-
cluding thisHostIs and print. Of course, many computations will require
services that should not be available to all users. For example, we could
provide a PLAN interface to the router’s Management Information Base
(MIB) [38] so that PLAN packets could be used for network management.
A simple approach to preventing unauthorized access to protected services
would be for such services to have arguments that allow whatever security
credentials that are needed to be carried in the packet and the passed to the
service.

In addition to the simple approach, we also provide a more powerful
namespace-based approach to security. While the details are presented in
another paper [24], we present the basic idea here. In addition to eval is a
related service called authEval, which takes as arguments a chunk, a digital
signature, and a public key.2 authEval verifies the signature against the bi-
nary representation of the chunk and the provided public key. If successful,
the chunk is evaluated; otherwise, an exception is raised. During evalua-
tion, the program’s namespace is expanded to include bindings to services
commensurate with its level of privilege of the given key. If the program
tries to access a protected service for which it does not have appropriate
privilege, the service will be not be in the program’s namespace, resulting
in ServiceNotPresent being thrown.

3.6 Remote Evaluation Revisited

Now that we have had a good overview of PLAN, we can refine and com-
plete our discussion of remote evaluation. First, we present our implemen-
tation of PLAN packets, summarizing the fields as we have discussed to this
point. Second, we present OnRemote in its full generality, now incorporat-
ing PLAN’s notions of resource bounding and routing functions. Finally,
we introduce the remote evaluation primitive OnNeighbor, presenting an
alternative ping implementation that makes use of it.

2Our implementation actually makes use of shared-key cryptography, rather than public
key cryptography, requiring an initial key generation phase. Otherwise, the description
here is accurate.

15

Field Explanation
chunk code top-level functions and values

entry point first function to execute
bindings arguments for entry function

evalDest node on which to evaluate
RB global resource bound
routFun routing function name
source source node of initial packet
handler function for error-handling

Figure 3: The PLAN packet

3.6.1 PLAN packets

The PLAN packet format is shown in Figure 3. The primary element of
each packet is its chunk, which consists of three components: the code, the
entry point, and the bindings; the latter two are referred to collectively as
the invocation. The code consists of a series of definitions that bind variables
to either functions, simple values (i.e. integers, strings, etc.), or exceptions.

The invocation defines the function call (i.e., function name entry point
and actual parameters a1, . . . , an—the bindings) to be evaluated at the eval-
uation destination (or evalDest), which is stored in the packet. To resolve
variables mentioned in the invocation, the set of all definitions in the code
part and the core service functions serve as the legal environment for the
call.

The remaining fields in the packet are used to support the features we
have thus far described: the RB field stores the packet’s current resource
bound, and is decremented on each hop the packet traverses; the routFun
field names the packet’s routing function (e.g., defaultRoute); the source
field names the origination host of the packet’s oldest ancestor, needed for
error reporting; and the handler field is used when dealing with exceptions
that escape the program scope.

3.6.2 OnRemote revisited

For simplicity, we have so far presented OnRemote as taking only two argu-
ments. It takes two additional arguments:

1. The amount of resource bound to give to the packet being sent. The
amount specified must be greater than zero and no greater than the

16

parent’s current resource bound. This way, a parent packet can create
multiple child packets, and give some resource bound to each. Once a
packet’s resource bound is exhausted, it may not create further pack-
ets.

2. A routing function name. This is stored in the packet’s routFun field
and used on each intermediate hop as described above.

The program in Figure 1 can be altered to accommodate these changes
by using the call getRB() to get the current packet’s resource bound and
provide it to the child, and the defaultRoute function for doing the routing.

A more terse (and efficient) ping program is as follows:

fun ping () =
OnRemote(|print|("Success")), getSource(), getRB(), defaultRoute);

To use this program, the host application sets the packet’s evalDest to the
remote host to ping. The local host interpreter forwards the packet to the
destination where it evaluates ping, and thus the OnRemote command. As
a result, a new packet is sent back to the source (the source address is
extracted using the service routine getSource) with all of the remaining
resource bound (the packet’s resource bound is extracted using the service
routine getRB), using the service function defaultRoute for routing. When
the packet arrives at the destination (i.e. back at the source), the print
service will send Success to the host application to be printed.

3.6.3 OnNeighbor: neighbor evaluation

OnRemote is useful in the case that packet computation occurs only sporadi-
cally along its path. However, the packet may need to perform computation
on every hop, or use arbitrary computation to calculate the hop itself. The
OnNeighbor primitive is provided for these circumstances. OnNeighbor is
similar to OnRemote except that the evalDest argument must be a neighbor
of (that is, directly connected to) the current node, eliminating the need for
routing. Therefore, rather than requiring a routing function as its fourth
argument, it requires the link layer device handle on which to send the
packet.

PLAN’s two remote evaluation primitives, OnRemote and OnNeighbor,
correspond to network-layer and link-layer packet transmission, respec-
tively. That is, OnRemote can send a packet to any node in the network,
requiring routing, while OnNeighbor can send a packet to hosts that are
directly connected to it through the specified network device; no routing

17

fun ping_eval(dst:host) =
if thisHostIs(dst) then (* got there *)
let val p:(host * dev) = defaultRoute(getSource()) in
OnNeighbor(|ack_eval|(getSource()), fst p, getRB (), snd p)
end

else (* not there yet *)
let val p:(host * dev) = defaultRoute(dst) in
OnNeighbor(|ack_eval|(dst), fst p, getRB (), snd p)
end

fun ack_eval(src:host) =
if thisHostIs(src) then (* got there *)
print ("Success")

else (* not there yet *)
let val p:(host * dev) = defaultRoute(src) in
OnNeighbor(|ack_eval|(src), fst p, getRB (), snd p)
end

Figure 4: PLAN ping that evaluates on all intervening nodes

is performed. Using only OnNeighbor ensures that a packet is in complete
control of its processing (i.e. it evaluates on every hop between the source
and its ultimate destination). In fact, the semantics of OnRemote can be
implemented using OnNeighbor and some additional PLAN code, as shown
for ping from Figure 1 in Figure 4.

Here, the routing function defaultRoute is called directly by the PLAN
program to determine the next hop. It returns a pair consisting of the host
address of the next hop and the device through which to send to reach that
host. Observe that our very simple ping program has expanded quite a
lot to deal with hop-by-hop routing. Preventing this code blowup, as well
as some performance considerations, motivated our providing OnRemote to
complement OnNeighbor.

4 Programming in PLAN

In this section, we showcase the interesting features of PLAN with pro-
gramming examples. We will see that PLAN’s remote evaluation primitives

18

allow us to make better use of network resources by providing fine control
over packets’ movements. Furthermore, PLAN’s chunk abstractions provide
mechanisms for encapsulating code and data, allowing for dynamic protocol
composition and signalling.

4.1 Custom Routing

4.1.1 Traceroute

Traceroute is a utility for discovering a path between two nodes in the net-
work. In the IP-based implementation of traceroute, the originating host
sends out ICMP ECHO packets towards the destination with successively
increasing TTL values. Successive ICMP packets, in theory, time out one
hop closer to the destination. When a packet times out, another ICMP er-
ror message is sent back to the source indicating a TTL expiry and the IP
address of the host on which it occurred. The source simply collects these
timeout messages to construct the route. If the remote host is unreachable,
the path collected will be up to the point where the network has failed.

We can implement traceroute in PLAN using OnNeighbor; the PLAN
code is shown in Figure 5. Like the standard IP version, the PLAN algorithm
ensures that if the destination is unreachable due to a failure in the network,
all of the nodes up to that point will be reported. In particular, at each node,
traceroute sends back the name of the current host with the number of
hops traversed so far, and creates a new packet that is sent to the next hop
to continue the process.

To start, a host application injects a traceroute packet to evaluate at
the source. At each host on which it evaluates, the traceroute function
sends an ack packet3 back to the source. This packet carries with it the host
and the number of hops it is away from the source, which is then printed to
the host application. In addition, if the traceroute packet is not yet at the
destination, it determines the next hop towards the destination, and sends
another traceroute packet there.

The execution of traceroute is depicted visually in Figure 6 between a
source node A and a destination node D. Each arrow in Figure 6 represents
a single packet, and is labelled with its entry point function name, where
the arrowheads indicate the nodes on which the packet evaluates. Thus all
ack packets are evaluated only at node A, the source, while the traceroute
packets are evaluated at each node on the way to the destination D.

3For brevity, we shall refer to a packet whose chunk has function foo as its entry point
as a foo packet.

19

fun traceroute (dst:host, count:int) =
let val this:host = hd(thisHost())
in
(OnRemote(|ack|(this, count),

getSource(), count, defaultRoute);
if (not (thisHostIs(dst)) then
let val p:(host * dev) = defaultRoute(dst)
in
OnNeighbor(|traceroute|(dst, count+1),

fst p, getRB (), snd p)
end
else ())

end

fun ack(h:host, count:int) =
(print(h); print(" : "); print(count); print("\n"))

Figure 5: PLAN traceroute

This example illustrates the use of pairs and lists in PLAN. Pairs are
needed because defaultRoute returns a pair (of type host * dev), and we
need to access its fields to provide to OnNeighbor.4 Lists are used by the
service function thisHost, which returns as a list all of the addresses that
may be used to refer to the current host. Like in the IP Internet, when
PLAN hosts may be multi-homed, meaning they have access to multiple
networks, with a different address on each network.

Now, contrast the above traceroute program with the standard IP
traceroute mechanism. Our PLAN traceroute uses fewer network trans-
missions than this scheme, since we have only one “outgoing” traceroute
packet, whereas the standard traceroute must re-traverse earlier nodes with
each successive outgoing ICMP request. In addition, only having one outgo-
ing packet means a route change in the middle of our traceroute query will
not affect the accuracy of our result; the PLAN traceroute will still report
hops along a coherent (albeit old) route, whereas the standard mechanism
might present a mix of hops from the old and new routes.

4For those unfamiliar with pairs, the first field of a pair is accessed using the function
fst, while the second field is accessed using the function snd.

20

traceroute

traceroute

traceroute

Host

Router

Router

B

C

A

D

Router

host application

traceroute

output

ack

ack

ack

ack

Figure 6: Evaluation of the traceroute program

Moreover, PLAN admits other implementations. For example, a collec-
troute program could collect the path between the source and destination
and only send the result upon reaching the destination. This uses even fewer
resources than PLAN’s traceroute, but at the cost of failing to report a prefix
of the path when their are downed nodes. This flexibility is a central moti-
vation behind active networks: different programs (in this case, diagnostics)
can be created on the fly, without standardization.

4.1.2 Multicast

While both ping and traceroute are diagnostic functions, PLAN can also
express more general network computations, such as multicast. The idea
behind multicast is to trade off computation for bandwidth. Consider the
topology depicted in Figure 7. If a program at node A were to send packets
individually to nodes B, C, D and E, a total of 6 transmissions would occur:
A → B, A → C, A → C → D, and A → C → E. A multicast packet takes
advantage of common prefixes among destination nodes, resulting in only
4 transmissions: A → B, A → C, C → D, and C → E. However, the
reduction in messages is compensated for by additional computation as the
multicast tree must be computed by the routers.

Figure 8 illustrates a PLAN program that multicasts a computation to

21

B

E

D

C

A

Figure 7: A sample network topology

a list of destinations. Each time multicast evaluates, the local function
find hops is called for each node in the destination list addrs by the prim-
itive foldl. The result is a pair containing the list of next hops in the
multicast tree and a list of the remaining destinations. multicast is then
invoked remotely on each hop parameterized by the new list of destinations.
Note that find hops also evaluates the designated task when the function
is evaluating at a destination. This is done via a call to eval on the chunk
task.

Observe that each of the child packets is sent using the following code:

foldl(send_packs,(getRB()/length(hops),dests),hops)

Here, the amount of resource bound to give to each child packet is deter-
mined by getRB()/length(hops). In effect, the assumption is that each
branch of the multicast tree is roughly balanced, in that each will require
equal amounts of resource bound to deliver all of the packets. Of course,
this assumption is not true in general, and we may end up giving too much
resource bound to one branch and not enough to another. To prevent this
problem, some systems, like ANTS [66, 65], do not enforce a conservation
of resource bound, as PLAN does, but enforce strictly decreasing resource
bound : the resource bound of each child must be strictly less than that of
the parent, but the sum of resource bound of all of the children can exceed
that of the parent. This is the same approach as taken by IP multicast, and
effectively solves the RB distribution problem, since each child can be given
one less than the parent’s bound. The drawback here is that a packet can
much more easily wage a denial of service attack on the network than with
PLAN.

In related work (Section 6), we discuss a different approach based on
Bloom filters [9]. Although one could imagine applying this Bloom filter
approach to PLAN, we can solve the problem of resource bound splitting

22

by tracking the shape of the multicast tree. In a traditional multicast im-
plementation, the multicast tree is identified by a key that indexes a hop
table at each node. When a multicast packet arrives at a node, it indexes
the table with its key, and forwards its payload to each hop listed in the
table. In PLAN, we could implement this table using soft state, and ad-
ditionally store the required RB counts in the table, along with the hops.
The added requirement is that this information be kept up-to-date when
adding members to the tree. In particular, when a node adds an additional
hop to its table, it needs to send a message to its parent in the tree so
that it can increase its RB count, which does the same until the root of the
tree is reached. This approach is compatible with the standard methods for
maintaining multicast trees.

4.2 Chunks

Just because packets are programs does not mean that many of the familiar
features of conventional packets do not need to be supported. In particular,
the desire to build networks using layering requires that PLAN programs
support encapsulation, while the need to support services such as check-
summing and fragmentation means that PLAN programs must sometimes
be treated as data. In this section, we explore how PLAN chunks can be
layered in two ways: to support the implementation of micro-protocols [29]
and to provide adaptive protocols [14, 62].

4.2.1 Micro-protocols

Most commonly-used protocols like TCP and IP are complex, with a variety
of functionality and many options. Developing and testing such protocols
can be difficult and error prone, and the resulting protocols are not par-
ticularly flexible. These problems have motivated past research on micro-
protocols [47, 62]. Each micro-protocol embodies a single function or option;
more complex behavior is achieved by composing many micro-protocols.

We will present here two micro-protocols: one for a packet checksum,
and one for fragmentation. These protocols will also serve to show how
chunks provide some basic networking implementation techniques within
the context of packets as programs.

In PLAN, micro-protocols are built by composing chunks. In general,
each micro-protocol takes a chunk plus additional arguments and returns
one or more new chunks which add the micro-protocol’s functionality. This
is analogous to encapsulation in traditional networking, where, as a packet

23

fun multicast(addrs:host list,task:chunk): unit =
let

(* This function has two purposes:
- if this node is a destination, perform the task and remove
the address from the destination list

- calculate a list of next hops to take which form the tree *)
fun find_hops(res:(host * dev) list * host list,dest:host):
(host * dev) list * host list =
let val hops: (host * dev) list = fst res

val dests: host list = snd res in
if thisHostIs(dest) then
(eval(task); (hops,remove(dest,dests)))

else
let val hop_info:host*dev = defaultRoute(dest) in

if member(hop_info,hops) then (hops,dests)
else (hop_info::hops,dests)

end
end

(* This function is called by fold for each hop to be taken.
It sends the multicast packet to each hop *)

fun send_packs(params:int*host list,hop:host*dev): int*host =
(OnNeighbor(|multicast|(snd params,task),

fst hop,fst params,snd hop);
params)

(* The list of hops and pruned destinations *)
val hops_dests:(host*dev) list * host list =
foldl(find_hops,([],addrs),addrs)

val hops: (host*dev) list = fst hops_dests
val dests: host list = snd hops_dests
val num_hops: int = length(hops) in

(* If we haven’t reached the end of the road, send out more
packets, else quit *)

if num_hops > 0 then
foldl(send_packs,(getRB()/length(hops),dests),hops)

else
()

end

Figure 8: Packet-directed multicast PLAN.

24

svc verifyChecksum : (blob,int) -> bool
svc evalBlob : blob -> ’a

fun unchecksum(c:blob, sum:int): unit =
if verifyChecksum(c,sum) then
(evalBlob(c);())

else
() (* drop packet *)

Figure 9: Code for a checksum chunk

svc reassemble :
(blob,int,bool,key) -> ’a

fun defrag(frag:blob, seqnum:int,
morefrags:bool, session:key)

: unit =
(reassemble(frag, seqnum, morefrags,

session); ())

Figure 10: Code for a fragmentation chunk

moves down the network stack, each protocol layer encapsulates the higher-
level packet while perhaps adding additional header information for itself.
The difference is that code as well as data is encapsulated.

For example, suppose we had a chunk c to which we would like to add
checksumming. We can invoke a checksum service on c which converts it
into a stream of bits (i.e., a “blob” type in PLAN) via the standard PLAN
marshaling system, computes a checksum sum, and then wraps them in a
chunk with a code segment like that shown in Figure 9. When this new
chunk d is evaluated, unchecksum is called using c and sum as arguments.
Unchecksum then calls the verifyChecksum service to ensure that c still has
the proper checksum, and then either evaluates c or aborts, as appropriate.

As another example, consider the task of fragmentation; namely, we have
some chunk c to transmit and evaluate remotely, but it may be larger than

25

svc defaultRoute : host -> host * dev

fun send_frag (x:int*host,c:chunk)
: int * host =

(OnRemote(c,snd x,fst x,defaultRoute);
x)

svc checksum : chunk -> chunk
svc fragment : (chunk,int) -> chunk list
svc pathMTU : host -> int
svc length : ’a list -> int
svc getRB : void -> int

fun udp_deliver (b:blob, p:port,
dest:host) : unit =

let val c:chunk = |deliver|(p,b)
val d:chunk = checksum(c)
val ds:chunk list = fragment(d,pathMTU(dest))
val l:int = length(ds) in

(foldl(send_frag, (getRB()/l,dest), ds); ())
end

Figure 11: UDP-style delivery

the MTU of the intervening path. We can have a fragment service that
takes c (and the MTU size, as determined in advance, and returned by a
pathMTU service), represents it as a “blob,” and divides it into MTU-sized5

pieces. Each fragment is then wrapped in a chunk with a code segment as
shown in Figure 10. The bindings for these new chunks would each have a
piece of the original chunk, a sequence number, an indication whether it was
the last fragment or not, and a unique identifier. The new chunks, when
evaluated, simply register themselves with the reassemble service on the
destination. This service collects all the incoming fragments, puts them in
the proper order, reconstitutes the original chunk, and then evaluates it.

Figure 11 shows the composition of our two protocols to form a UDP-like
5Less the overhead for the reassembly chunk.

26

delivery service. At the highest level, we have some data (represented as a
blob) which we want to deliver to a specific port on a specific host. First we
create the chunk c, which encapsulates this behavior. Then we create a new
chunk d which adds checksumming. After querying the appropriate path
MTU, we then invoke the fragment service to get a list of fragmentation
chunks. If the original chunk was small enough to fit within one link-layer
frame, these chunks take the form shown in Figure 126. Finally, we use
foldl to apply send frag to send each fragment to dest.

As the fragments arrive they will be evaluated causing them to be placed
in the reassembly table. Once the table is complete, they will be reassembled
into chunk d, which when evaluated will verify the checksum, resulting in
chunk c. When c is evaluated it will call deliver with port argument p
causing data argument d to be delivered to the correct port.

Both of the above micro-protocols share the same basic structure: a
service on the source is invoked with a chunk plus some configuration pa-
rameters. This results in the creation of a new chunk which carries the code
to perform the destination side of the micro-protocol; note that this code
may refer to services that reside on the destination (and need not necessarily
reside on the source). The new chunk could then potentially be wrapped
in yet another micro-protocol or simply sent across the network. At the
destination, the chunks simply “unwrap” themselves.

This common structure makes many things easy. For one, we can have
dynamic, per-application policy drive the composition of micro-protocols,
rather than having dependencies built into complex protocols. Indeed, in
our above example, rather than have fragments of a checksummed delivery
packet, we could have invoked fragment first, and then done a checksum on
each resulting chunk, thus ending up with checksummed fragments of the
original chunk. Each micro-protocol takes a chunk and returns a chunk or
list of chunks, so they may be arbitrarily ordered in a type-correct way. Of
course, the order does matter from a semantic point of view.

Second, micro-protocols can be coded to avoid redundant functionality.
For example, if a path only has Ethernet interfaces, the checksum service
might simply return the original packet, as the checksum would be redundant
with the underlying CRC check. Similarly, the fragment service can (and
does) just return the original chunk if it was already small enough. Either
of these optimizations remove the need to execute certain receiving code at
the destination.

6If fragmentation was actually required, we would have only a part of the innermost
two chunks; however, for ease of illustration, we have not shown this case.

27

entry
point

fun defrag(frag:blob, seqnum:int,
 morefrags:bool, session:key) : unit =
 (reassemble(frag,seqnum,morefrags,session);
 ())

entry
point

fun unchecksum(c:blob, sum:int) : unit =
 if verifyChecksum(c,sum) then
 (evalBlob(c);())
 else
 () (* drop packet *)

entry
point

code

bindings

defrag

frag = code

bindings

unchecksum

c = code

bindings

deliver

(empty)

p = <port>
b = <data>

sum = n

seqnum = 1
morefrags = false
session = <key>

Figure 12: Chunk encapsulation

28

In fact, the destination will not even have to do a test to determine that
it need not execute the receiving code. Since the demultiplexing path is
encoded in the way the chunks are encapsulated, the unnecessary code will
simply not be called as an arriving chunk “unwraps” itself. This mechanism
is in fact quite powerful and allows us to do straightforward asynchronous
protocol adaptation, as we see in the next section.

4.2.2 Asynchronous Adaptation

Adaptive protocols are ones that can be dynamically reconfigured. In partic-
ular, they can react to changing network conditions to improve performance.
For example, if a data stream is bottlenecked due to a low bandwidth link, it
might be desirable to compress the stream. Similarly, many checksum errors
arising from a noisy link might suggest using an error correction scheme to
introduce redundancy.

In most approaches to adaptive protocols, a primary problem is synchro-
nization. Namely, a source and a destination must agree on the structure
of the protocol stack they are using: a protocol where the sender encrypts
data but the receiver fails to decrypt it would hardly be useful. As described
in [62], such signaling protocols can often be complex (and sometimes ex-
pensive).

With PLAN chunks, there is no need for negotiation between the end-
points for correct functionality. A sender need only start using a new se-
quence of encapsulated chunks, and they will be correctly handled at the
receiver because the structure of the “protocol stack” is encoded in the pack-
ets themselves. There need be no delay for the protocol switch to happen
safely. Indeed, this adaptation is independent of the underlying routing in-
frastructure; there is no need for nodes to maintain peering protocol agree-
ments with each other, or to handle “handoffs” when a route changes. Of
course, it may be still be important for a sender and receiver to exchange
information to maintain an accurate network view so that a policy regarding
the insertion and removal of micro-protocols may be reasonably applied, but
this need not be synchronized with the actual protocol switchover.

Furthermore, adaptation with PLAN chunks is not limited to endpoints.
It is straightforward to add micro-protocols just over some portion of the
network infrastructure, as in the style of Protocol Boosters [14]. In this
case, a router might intercept incoming PLAN packets, wrap their top-
level chunks in a new “boosting” micro-protocol, and send them on to a
“de-boosting” location. Once there, the wrapper chunk will perform the
receive-side of the micro-protocol and then send the original top-level chunk

29

fun vpnEnter(c:chunk,dest:host) =
let val afterTun:chunk = |fwd|(c,dest)
let val peer:host = vpnRoute(dest)
let val ec:chunk = encryptForPeer(afterTun,peer)
let val sig:blob = signForPeer(ec,peer)
let val id:blob = idForPeer(peer)
in
OnRemote(|authEval|(ec,sig,id),peer,

getRB(),defaultRoute)
end

fun fwd(c:chunk,dest:host) =
OnRemote(c,dest,getRB(),defaultRoute)

Figure 13: PLAN VPN code for tunnel entrance

on to its final destination. Conventional, non-active packets can be treated
the same way, essentially letting them tunnel in an active packet to allow
dynamic protocol composition.

We make these ideas more concrete by presenting two examples. Both in-
volve micro-protocols which are applied at points within the network rather
than just at the endpoints of a communication.

Virtual private networks Our first scenario considers a virtual private
network, in which we have several networks of trusted nodes that we wish
to connect by traversing untrusted links. We would like to give all the end
hosts the illusion of being within a single trusted network. This can be
accomplished in a straightforward manner by encrypting and encapsulating
packets between trusted networks. In the Internet, IPSec [6] may be used
in exactly this way.

We can achieve a similarly elegant implementation using PLAN chunks,
as shown in Figure 13. An end host transmits an unencrypted packet which
is intercepted by a firewall machine when it is about to leave its trusted
network. The firewall extracts the top level chunk c and final destination
dest from the packet, and then runs the algorithm shown in vpnEnter,

30

fun vpnExit(enc:blob,peer:host) =
let val c:chunk = decryptFromPeer(enc,peer)
in
eval(c)

end

Figure 14: Chunk executed after authEval on VPN tunnel exit

building up a series of encapsulated chunks. This process is implemented
(and best explained) by working backwards.

After the packet exits the VPN tunnel, we want to restore the original
packet’s intention to evaluate c on dest; thus we create the afterTun chunk
to do exactly that. Now, the next step is to encrypt our new chunk for the
tunnel; first we figure out where the tunnel exit is by calling the vpnRoute
service to tell us the corresponding gateway for our ultimate destination
dest. We assume that the VPN gateways will maintain pairwise shared
secret keys (obtained via a mutual-authentication protocol such as described
in [24]) for efficiency, so we use the encryptForPeer service to encrypt our
afterTun chunk for transmission.

The resulting chunk, ec, is set to call the vpnExit function (shown in
Figure 14) to arrange for decryption on the tunnel exit. This function,
given an encrypted chunk (represented as a generic blob bytearray) and
an originating endpoint, asks the current node to decode and evaluate the
encrypted chunk. Of course, the tunnel exit will want to verify that the
said chunk actually came from a participant in the VPN; i.e. only VPN
participants should be able to invoke the decryptFromPeer service. To
ensure this, we use the signForPeer and idForPeer services to digitally
sign ec. We finally evaluate an authEval chunk on the tunnel endpoint
with OnRemote.

When the chunk arrives at the endpoint to be evaluated, this stack of
chunks “unwinds.” First, authEval authenticates the signed chunk against
the provided signature and evaluates the chunk contents. Assuming this suc-
ceeds, the chunk will be allowed to access privileged services, like decryptFromPeer,
that would not otherwise be available. Next, the chunk calls vpnExit, which
decrypts the encrypted chunk (producing afterTun again) and evaluates it.
AfterTun then calls fwd which sends the original toplevel chunk c along on

31

its way to dest.

Mobile computing Our second scenario considers mobile computing over
wireless links, which are more noisy than wire-based LANs. Wireless links
often have poor TCP throughput, as negative acknowledgments due to
checksum failures are interpreted (incorrectly) as network congestion. To
compensate for packet errors, the networking software on the laptop could
engage a forward error correction (FEC) micro-protocol when operating in
mobile mode. While FEC often operates at the physical or link layer, it can
be profitable to use FEC at the network layer [52, 19], as we propose to do
here.

With PLAN chunks, we can easily limit the FEC just to the wireless link,
thus conserving overall bandwidth in the rest of the (less lossy) network.
On the source, we wrap our original chunk and its intended destination in a
wrapper chunk which registers itself with the FEC service on the other side
of the link. This service would check the encapsulated chunk for errors; if
none are present, it can be unwrapped and forwarded onwards. We would
periodically generate an additional parity packet which also registers itself
with the FEC service. In turn, when the FEC service finds errors, it would
attempt to apply received parity packets to correct the errors. Any original
chunks that can be corrected are unwrapped and forwarded onwards. If an
error corrupts the encapsulating packet (i.e. the one that registers with the
FEC service), then that packet will fail to decode and must be dropped;
this would be no different if a network-layer protocol like IP were used to
encapsulate user data.

One issue is that the laptop might cross a cell boundary, thus switching
gateways. Normally, this would require some amount of synchronization
and communication, but since the FEC chunks are carried with the pack-
ets, the new gateway immediately knows that forward error correction is
being used by the laptop. At worst, the laptop may have to retransmit the
batch of packets which were being transmitted when the switch occurred.
Here, actively specifying the required processing within the PLAN packets
themselves saves us additional communication over the lossy link.

5 Specification and Implementation

PLAN has a formal specification and several implementations. This section
discusses some of the challenges in the specification and some characteristics
of the implementations in OCaml and Java.

32

5.1 Specification

Two features of the PLAN language have an interesting impact on its spec-
ification. First, a language that is almost exclusively intended for writing
mobile programs places special emphasis on issues of trust and distributed
evaluation. These impact the determinism of the specification and the role
of types. Second, the fact that PLAN is a ‘glue’ language over a general
purpose layer of services makes reasoning about guarantees about PLAN
more complex. This raises new challenges for reasoning about PLAN rel-
ative to functions in its service layer. Let us consider each of these is-
sues in more detail. The specification of PLAN per se can be found at
http://www.cis.upenn.edu/∼switchware/ and a discussion of the seman-
tics can be found in [32].

5.1.1 Types

Consider a basic programming task in which data is read from an input
file, analyzed, and the outcome is written to an output file. If this program
fails in the middle of its evaluation, then the output file may be left in an
incomplete state. To help reduce the likelihood of this problem, we can
provide a static or dynamic type system for the language that may catch
the cause of the failure at the point the program is compiled or perhaps
before it has begun an incorrect modification of the output file. In either
case, it is helpful to have a semantic specification of the language that can
indicate the range of possible actions that could occur in a program with
a type error. If the language provides static analysis, then this answer is
easy since the error will be detected before running the program. If it uses
dynamic type checking, then the answer is harder, but typically can be seen
in tracing the program to the point at which it had the type error. Now,
suppose we are given a program that makes a remote call. In a statically
typed language we can check the remote code and prevent type errors in
advance of the call.

However, reasoning about the effect of a dynamic error is significantly
more complicated if the remote call can evaluate concurrently with the call-
ing program, and the two processes communicate with one another. This
overall problem becomes more challenging in a mobile language like PLAN
where programs principally evaluate by splitting into collections of remote
evaluations on nodes that cannot be predicted statically from the spawning
programs. All of this suggests that the simplicity of static type checking
would greatly aid reasoning about PLAN programs. However, a semantics

33

that relies on static typechecking is problematic for PLAN. First, a node
executing a PLAN program needs to develop its own trust in the PLAN
program and will therefore carry out checks necessary to provide adequate
security for its execution environment. Second, static typechecking of chunks
is not always possible. Third, static checking of whole PLAN programs at
intermediary nodes may be undesirable for performance reasons. For ex-
ample, a value may be placed in a chunk or conditional branch may be
intended for evaluation only on a destination node and not on intermedi-
ary nodes. Thus static evaluation would cause many unnecessary checks on
intermediate nodes.

These design considerations lead to two characteristics of the PLAN
specification. First, it should be possible for a conformant implementation
to exploit any of a gradation of typechecking options. Second, it should
be possible to take a program and determine its entire range of potential
behaviors in a PLAN network. Concerning the first point, active nodes
have an entire spectrum of possibilities vis-a-vis type checking available to
them, with static and dynamic type checking being the two extremes of this
range. Routers could, for example, start the execution of the program with
dynamic checking and statically type-check it at the same time, terminating
the execution if a type error is found either dynamically or in the static
check. Alternatively, one could statically check selected fragments of the
program that looked like they would benefit from static analysis and check
other parts dynamically. This is similar to optimizations for dynamically
typed languages that omit runtime checks for parts of the program known
to be type correct after an initial analysis phase. Concerning the second
point, this flexibility raises concerns for the predictability of the behavior of
PLAN programs. Consider, for instance, the following program:

fun foo () : unit =
(OnRemote (|foo| (), host1, ...);
OnRemote (|foo| (), host1, ...);
OnRemote (|foo| (), host1, ...);
1 + true)

This program first sends three PLAN packets to host1, and each will try
to execute foo () after getting there. Then it tries to add the integer 1 to
the boolean value true, generating a type error. Static type checking will
catch this error before execution while dynamic type checking will catch this
error only after the three packets have been sent. Allowing for a range of
alternative modes of type-checking means that any of 0, 1, 2 or 3 packets
could have been sent to host1. We are not aware of another langauge and

34

typing system that allows this kind of flexibility. For instance, a statically
typed language would reject the program without evaluating it, therefore
sending 0 packets, whereas a dynamically typed language would send three
packets and then fail with a type error.

The PLAN semantics is therefore designed to enable reasoning about
all possible type error points. This is done by the use of a ‘small step’
semantics. Programs with type errors may validly terminate at any point
when the type error is recognized, even if it is not the current evaluation
point. However, an evaluation point that contains a type error will cause
termination of the program with an error.

5.1.2 Reasoning with Services

All widely-used general-purpose languages offer some capability for library
extensions. When these libraries are written in the langauge itself using only
its basic standardized constructs then properties can be proved by study of
the language specification alone. However, if the library contains functions
whose semantics is outside of the language, then reasoning about these re-
quires supplementary semantic information. For example, most languages
have I/O primitives whose semantics is at least partially dependent on the
system for which the language is compiled. Many other operations may ex-
ist, such as functions to control new hardware, whose meaning is not feasible
to include in the language definition itself. Scripting languages take this to
a new level, however, since it is not unusual for most of their operations to
lie in this class of external calls. For example, a shell language that executes
each of three programs in some sequence with various parameters will have
only a small part of its meaning explained by the semantic specification of
the shell language. PLAN is like a shell language because of its fundamen-
tal reliance on a service layer. This has a profound impact on reasoning
about PLAN programs, basically saying that properties of ‘pure’ PLAN will
be comparatively easy to obtain, but somewhat limited to use. One can
therefore expect reasoning about PLAN to be a relative kind of reasoning.

As an example of this phenomena, consider the challenge of reasoning
about whether a network of PLAN nodes would preserve basic information
flow properties on which autonomous systems connected to the Internet
often rely. Suppose, for instance, that users of a network indulge in the use of
cleartext password protocols on a broadcast wireline LAN. These passwords
are quite vulnerable to sniffing by insiders attached to the LAN, but they
are not especially vulnerable to the wider network. Let us call this ‘security
Against Outsiders’ or AO security for short. AO security broadly means that

35

someone who can sniff a password is someone ‘you can fire’, that is, someone
who can be made accountable. This kind of security is common in protected
domains, such as companies operating behind firewalls. Of course, cleartext
passwords are discouraged and security sensitive organizations and users
avoid them, but more sophisticated attacks like traffic analysis display the
same AO security characteristics. In general, routers do not offer ordinary
users any capabilities that would allow them to steal passwords or do traffic
analysis.

But suppose the routers at an institution are running a PLAN network—
do the AO security properties change? A simple answer can be given in a
simple case: if there are no PLAN services other than the standard ones,
then there is no risk of monitoring that is added by the routers. Pure PLAN
programs even from the same user do not ‘communicate’ with one another
except at endpoints. However, many PLAN programs rely on services for
which interference is less obvious. For example, a program that leaves a
routing label for subsequent packets implicitly communicates with these
subsequent packets. In particular, an outsider could use the labels to direct
legitimate packets off of the network. The problem is non-trivial to reason
about. If the attacker cannot find the labels (for instance, they may be
large random numbers), then they do not aid him, but if the labels are
sent by packets that are themselves subject to diversion then the labels are
vulnerable. A detailed discussion of AO security guarantees and how to
reason about them relative to various PLAN service layer functions can be
found in [30]. This work relies on an abstraction of the PLAN specification
called uPLAN, a theoretical calculus based on PLAN. Transferring results
from uPLAN to PLAN is still a challenge, but it is similar to that faced by
other studies that rely on language abstractions to control the complexity
of real languages.

5.2 Implementation

When choosing an implementation language for PLAN, we had several
specific requirements. First, to make the claim that the network is pro-
grammable, services must be dynamically loadable. This means that our
implementation language must allow some form of dynamic code loading.
Second, the heterogeneous nature of an internetwork means that the imple-
mentation language should be easily portable. Third, our implementation
language needed to provide strong typing for safety. We have completed
implementations of PLAN in two languages that meet these requirements:
OCaml [36, 35] and the Pizza [46] extension to Java [16]. Our most current

36

implementation is in OCaml, due to better performance and ease-of-use.
A partial/experimental version is part of the Mobile Active Network Envi-
ronment (MANE) at The University of Texas at Austin [57]. It is based
on a experimental language, Popcorn, which compiles to Typed Assembly
Language [41, 42] and supports dynamic updating [27].

We currently transmit abstract syntax trees in our packets, and use an
RPC-style marshalling scheme for the arguments to the invocation func-
tion. This same marshalling scheme could be extended to allow nodes to
offer services from different languages. However, our services are currently
implemented in the same language as the PLAN interpreter, so service calls
are simply function calls within the interpreter.

New services may be dynamically installed over the network by having
PLAN programs pass bytecodes as arguments to special service installa-
tion routines. In principle, though, services could be transmitted in various
forms (such as source code) and installed via compilation, perhaps taking
advantage of run-time code generation.

PLAN has been taught in both a graduate-level network primer course
and an Active Networking seminar at the University of Pennsylvania, where
students were asked to use PLAN to implement useful network services
on a small testbed network of five nodes. Feedback from the students on
the PLAN system was encouraging. One common comment was on the
ease of dynamically installing services written in Java (Pizza was the main
implementation language at the time), thus validating our initial design
decision of following a two-level approach.

More details about the OCaml implementation of PLAN and Query Cer-
tificate Manager [18] (a trust management system used with PLAN in [24])
can be found in [4].

6 Related Work

Postscript [59] and Java [16] are the most well known examples of using
programmability and mobile code to increase the flexibility of a system. The
first application of programmable network routing may be the Softnet [68]
system, which provided for the execution of packets of multi-threaded M-
FORTH code. Numerous other motivations for the advent of active networks
are described in [60]. A more recent survey of active networking technology
can be found in [51].

The fundamental idea of Active Packets first appeared in Wall [63]. In
this paper, Wall outlined a new approach to networking. Quoting from the

37

paper’s abstract:

“Network algorithms are usually stated from the viewpoint of the
network nodes, but they can often be stated more clearly from
the viewpoint of an active message, a process that intentionally
moves from node to node.”

Although PLAN differs in many important particulars from Wall’s vision,
perhaps the most significant advance for packet programming over Wall’s
work is the introduction of chunks.

Since the initiation of DARPA’s Active Networking program there have
been many Active Packet systems proposed, including the Active Network
Transfer System (ANTS) [66, 65], Smart Packets [55], ALIEN [5, 1], and
SNAP [40, 39]. Below we briefly discuss some of these systems principally
in comparison to PLAN. We also discuss an additional approach to resource
use bounding and some work related to dynamic protocol stack modification.

6.1 Other Active Packet Systems

6.1.1 ANTS

The Active Network Transport System (ANTS) [66] was one of the first
active packet systems developed. In an ANTS capsule (ANTS terminology
for an AP), programs are written in a restricted subset of Java and are
transported as Java bytecodes. Although ANTS differs from PLAN in key
ways, what is striking is way that they are under the surface solving the
same key problems. For a detailed comparison see [28].

A novel aspect of ANTS is that capsule programs are transported by
reference. Capsule programs are cached at nodes and if a referenced program
is not node resident, it is fetched from the node that sent the capsule. This is
advantageous when many capsules use the same program and is important
because the overhead of using Java bytecodes both in terms of size and
processing power for linking, verification, and perhaps JIT compilation is
significant. PLAN could support such an approach without changes in the
language it would have less of an impact because PLAN programs are both
more succinct and we have control over intermediate representations and
runtime costs

PAN [45, 44] is a follow-on project to ANTS, also developed at MIT. The
main question Nygren et al. address is: are the computational overheads of
providing active processing too high to ever achieve practical performance?
Fortunately for us, the answer was “no.” PAN achieves its high performance

38

through the use of in-kernel packet execution, code caching, and standard
network performance tuning such as minimizing data copies. A key compo-
nent of PAN’s performance lies in its use of native x86 code as the interme-
diate representation for APs. Although this results in high performance, it
also sacrifices safety, especially since the x86 code is dynamically linked into
the kernel.

6.1.2 Smart Packets

The Smart Packets project [55] from BBN targets network management
tasks. Because Smart Packets are meant to be deployed in potentially mis-
configured or failed networks, they must be extremely robust. In particular,
they have been designed to be self-contained, so that no new router state is
required. Furthermore, useful programs should be encodable within a sin-
gle link layer frame so that fragmentation may be avoided. Smart Packets
are coded using two equivalent languages: Sprocket is a safe subset of C
extended with primitives for MIB access; Sprocket, in turn, may be com-
piled to Spanner, a compactly-representable CISC-like assembly language.
Sprocket, like PLAN, provides for resource control, although it uses both
hop and instruction counts.

6.1.3 ALIEN and SANE

ALIEN [5, 1] is an active networking architecture also developed at the Uni-
versity of Pennsylvania. SANE (Secure Active Network Environment) [3] is
a specific instance of the ALIEN architecture. Like PLAN, ALIEN supports
both APs and Active Extensions. In fact, the PLANet implementation of
PLAN [25] uses the same Active Extension system as SANE.

A crucial difference between ALIEN and PLAN is that ALIEN uses pack-
ets written in a general purpose language, specifically for SANE, OCaml [36],
a dialect of ML supporting dynamic linking of bytecodes. Although OCaml
bytecodes are typesafe, the use of an unrestricted general purpose lan-
guage for APs means that security must be enforced outside the language.
SANE uses public key cryptography to establish security associations be-
tween neighboring nodes. Using these associations, it is possible to guar-
antee the origin and integrity of the OCaml bytecodes. Unfortunately the
need to perform cryptographic security for each packet results in unaccept-
ably low performance [5, 1]. This result indicates that the PLAN approach,
which avoids such security measures unless needed is the preferred approach.

39

6.1.4 PLAN-P

PLAN-P [61] is not an AP system, but rather is a modification of PLAN
to support programming services rather than packets. The PLAN-P work
focuses on studying the use of optimization techniques based on partial
evaluation to provide fast implementations of these service routines.

6.1.5 SNAP

Safe and Nimble Active Packets (SNAP) [40, 39] is the first second-generation
AP system, drawing from most of the systems mentioned above. However,
not surprisingly since its principle designer (Jon Moore) is one of PLAN’s
designers, SNAP is most directly an evolution of PLAN. Along a number
of dimensions, SNAP takes the same approach as PLAN. For example, it
is a safe, restricted domain-specific language that shares PLAN’s division
between AP programs and services.

However, SNAP improves on PLAN (and other AP systems) in some
significant ways. First, it is designed to be high-performance without sac-
rificing safety. It does this in part by carefully avoiding aspects of PLAN
that proved costly, such as marshalling and garbage collection. It also uses
a much lower-level representation than PLAN, being a byte-code language.
The result is that SNAP’s LINUX implementation has performance quite
close to that of IP packets. Like PLAN, SNAP provides a guarantee of re-
source safety. SNAP programs run in time, space, and bandwdith that is
linear in the length of the packet. However, it achieves this bound by a simple
low-level restriction: all branching instructions must have forward targets.
While this is a significant restriction, we have found that the many useful
PLAN programs can be compiled to SNAP programs [26], with correspond-
ing performance benefits. An active network with PLAN as its high-level
packet language, but SNAP as its low-level wire-format, would have improve
the performance of PLAN, and the usability of SNAP.

6.2 Dynamic Protocol Stack Modification

Chunks are one of PLAN’s most novel feature and they provide an ele-
gant and lightweight method to modify protocols stacks on-the-fly. En-
semble [62] is a toolkit for distributed application development in which
applications may adapt and dynamically reconfigure their protocol stacks.
However, Ensemble uses a Protocol Switch Protocol that halts communi-
cation, synchronizes through a central coordinating participant, and then

40

resumes communication. PLAN chunks do not require this pause for syn-
chronization and do not need centralized coordination. Furthermore, PLAN
chunks are not limited to an end-host only regime of operation.

Protocol Boosters [14, 37] interpose additional functionality within the
network infrastructure. These boosters enhance performance in a way that
is transparent to the applications communicating across the “boosted” sub-
nets. However, for multi-component boosters, signaling is required to sup-
port the addition or removal of a booster. Finally, because they reside in
the network infrastructure itself, some boosters are subject to failures due to
routing changes sending boosted packets around their intended de-boosting
element. PLAN chunks are not subject to these failures because the chunk
encapsulation essentially records which micro-protocols have been applied
and must be undone at the destination.

6.3 Resource Use Bounding

Although PLAN, like most AP systems uses a combination of bounding
resource use on each node and hop-count limits, another approach, used
by the Icarus system [67], relies on carrying a Bloom filter [9] in a packet.
Each network link has its own bitmask that it bitwise ORs into the bloom
filter; if the filter is unchanged, the network assumes it has already seen this
packet and drops it. This approach combines the programming convenience
of strictly decreasing resource bounds while preventing classes of denial of
service attacks by ensuring loop freedom. However, the false positive rate
of this approach depends heavily upon the relative sizes of the Bloom filter,
the link bitmasks, and the number of network links, and it is as yet unclear
how to appropriately set these constants.

7 Conclusions

PLAN’s design began with a few basic ideas all motivated by the need to
tradeoff flexibility, safety and security, performance, and usability:

1. That a special purpose domain specific language could achieve safety
and security by limiting its expressibility and yet remain flexible enough
to allow a wide variety of useful packet programs to be written.

2. That a two-level architecture in which PLAN served primarily to glue
together functionality residing at the service layer would prove to both
provide a security model that was lightweight and yet secure when

41

needed and a model of composition that made node-resident services
significantly more flexible.

3. That a low-level distributed systems programming language based
around unreliable remote evaluation would prove a good programmable
packet analog to the usual functionality of static packets.

We believe that these initial elements of PLAN were fundamental to finding
a sweet spot in the AP design space that added significant flexibility with
little compromise in the other important factors.

In particular, we believe that PLAN shows that many of the key chal-
lenges of building AP systems are surmountable, in particular that AP sys-
tems can have good safety and security. PLAN also has shown that even
with its simple and limited programming model, quite sophisticated network
algorithms can easily be expressed and deployed. Active packets can take
the place of passive headers and to good effect.

We invite readers to browse the PLAN home page,

http://www.cis.upenn.edu/∼switchware/PLAN

which makes available detailed documentation and downloadable software.

Acknowledgments

We would like to thank Alex Garthwaite and Suresh Jagannathan for their
valuable feedback on previous drafts of this paper. We would also like to
thank Jonathan Smith for using PLAN in his TCOM500 class at the Uni-
versity of Pennsylvania.

References

[1] D. S. Alexander. ALIEN: A Generalized Computing Model of Active
Networks. PhD thesis, University of Pennsylvania, September 1998.

[2] D. Scott Alexander, William A. Arbaugh, Michael Hicks, Pankaj
Kakkar, Angelos Keromytis, Jonathan T. Moore, Carl A. Gunter,
Scott M. Nettles, and Jonathan M. Smith. The SwitchWare active net-
work architecture. IEEE Network Magazine, 12(3):29–36, 1998. Special
issue on Active and Controllable Networks.

42

[3] D. Scott Alexander, William A. Arbaugh, Angelos D. Keromytis, and
Jonathan M. Smith. A secure active network architecture: Realization
in SwitchWare. IEEE Network Special Issue on Active and Controllable
Networks, 12(3):37–45, 1998.

[4] D. Scott Alexander, Michael W. Hicks, Pankaj Kakkar, Angelos D.
Keromytis, Marianne Shaw, Jonathan T. Moore, Carl A. Gunter,
Trevor Jim, Scott M. Nettles, and Jonathan M. Smith. The Switch-
Ware active network implementation. In Greg Morrisett, editor, ML
Workshop, Baltimore, Maryland, September 1998. http://www.cis.
upenn.edu/∼gunter/dist/AlexanderHKKSMGJNS98.ps.

[5] D. Scott Alexander and Jonathan M. Smith. The Architecture of
ALIEN. In Covaci, editor, Proceedings, First International Working
Con- ference on Active Networks, pages 1–12, Berlin, June-July 1999.
Springer-Verlag.

[6] R. Atkinson. Security Architecture for the Internet Protocol. Technical
Report RFC 1825, IETF, August 1995.

[7] Fred Baker and Randall Atkinson. RIP-2 MD5 authentication. RFC
2082, IETF, January 1997.

[8] Samrat Bhattacharjee, Kenneth L. Calvert, and Ellen W. Zegura. On
active networking and congestion. Technical Report GIT-CC-96-02,
Georgia Tech, 1996.

[9] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allow-
able Errors. Communications of the ACM, 13(7):422–426, July 1970.

[10] Scott Bradner and Allison Mankin. The Recommendation for the IP
Next Generation Protocol. RFC 1752, IETF, January 1995.

[11] D. Clark, Scott Shenker, and L. Zhang. Supporting real-time applica-
tions in an integrated service packet network: Architecture and mech-
anism. In Proceedings, 1992 SIGCOMM Conference, pages 14–26, Au-
gust 1992.

[12] Stephen E. Deering and Robert M. Hinden. Internet Protocol, Version
6 (IPv6) Specification. RFC 2460, IETF, December 1998.

[13] Takashi Egawa, Koji Hino, and Yohei Hasegawa. Fast and secure packet
processing environment for per-packet QoS customization. In Proceed-

43

ings of the IFIP-TC6 Third International Working Conference (IWAN
2001), September/October 2001.

[14] D. C. Feldmeier, A. J. McAuley, J. M. Smith, D. Bakin, W. S. Mar-
cus, and T. Raleigh. Protocol boosters. IEEE JSAC, Special Issue on
Protocol Architectures for the 21st Century, 16(3):437–444, April 1998.

[15] James M. Galvin and Keith McCloghrie. Security protocols for version
2 of the simple network management protocol (SNMPv2). RFC 1446,
IETF, April 1993.

[16] James Gosling, Bill Joy, and Guy Steele. The Java Language Specifica-
tion. Addison Wesley, 1996.

[17] Carl A. Gunter. Micro mobile programs. In Ricardo Baeza-Yates,
Ugo Montanari, and Nicola Santoro, editors, Foundations of Informa-
tion Technology in the Era of Network and Mobile Computing, pages
356–369, Montreal, Canada, August 2002. IFIP 17th World Computer
Congress — TC1 Stream / International Conference on Theoretical
Computer Science (TCS 2002), Kluwer.

[18] Carl A. Gunter and Trevor Jim. Policy-directed certificate retrieval.
Software - Practice and Experience, 30(15):1609–1640, 2000.

[19] I. Hadzic, W. S. Marcus, and J. M. Smith. On-the-fly programmable
hardware for networks. In Proceedings of the IEEE GLOBECOM Con-
ference, November 1998.

[20] Chris Hawblitzel, Chi-Chao Chang, Grzegorz Czajkowski, Deyu Hu,
and Thorsten von Eicken. Implementing Multiple Protection Domains
in Java. In Proceedings of the 1998 USENIX Annual Technical Confer-
ence, June 1998.

[21] Michael Hicks. PLAN System Security. Technical Report MS-CIS-98-
25, University of Pennsylvania, July 1998.

[22] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter,
and Scott Nettles. PLAN: A packet language for active networks. In
Proceedings of the 1998 ACM SIGPLAN International Conference on
Functional Programming, pages 86–93. ACM, September 1998.

[23] Michael Hicks and Angelos D. Keromytis. A secure PLAN. In Stefan
Covaci, editor, Proceedings of the First International Working Confer-

44

ence on Active Networks, volume 1653 of Lecture Notes in Computer
Science, pages 307–314. Springer-Verlag, June 1999.

[24] Michael Hicks, Angelos D. Keromytis, and Jonathan M. Smith. A
Secure PLAN (Extended Version). IEEE Transactions on Systems,
Man, and Cybernetics, Special Issue on Programmable Networks, 2003.
To appear.

[25] Michael Hicks, Jonathan T. Moore, D. Scott Alexander, Carl A. Gunter,
and Scott Nettles. PLANet: An active internetwork. In Proceedings
of the Eighteenth IEEE Computer and Communication Society INFO-
COM Conference, pages 1124–1133. IEEE, March 1999.

[26] Michael Hicks, Jonathan T. Moore, and Scott Nettles. Compiling PLAN
to SNAP. In Ian W. Marshall, Scott Nettles, and Naoki Wakamiya,
editors, Proceedings of the Third International Working Conference on
Active Networks, volume 2207 of Lecture Notes in Computer Science,
pages 134–151. Springer-Verlag, October 2001.

[27] Michael Hicks, Jonathan T. Moore, and Scott Nettles. Dynamic Soft-
ware Updating. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 13–23.
ACM, June 2001.

[28] Michael Hicks, Jonathan T. Moore, David Wetherall, and Scott Net-
tles. Experiences with Capsule-based Active Networking. In Proceedings
of the DARPA Active Networks Conference and Exposition (DANCE),
San Francisco, CA, May 2002. IEEE.

[29] Norman C. Hutchinson and Larry L. Peterson. The x-Kernel: An Ar-
chitecture for Implementing Network Protocols. IEEE Transactions on
Software Engineering, 17(1):64–76, January 1991.

[30] Pankaj Kakkar, Carl A. Gunter, and Mart́ın Abadi. Reasoning About
Secrecy for Active Networks. In Proceedings of the Computer Security
Foundations Workshop, 2000.

[31] Pankaj Kakkar, Carl A. Gunter, and Mart́ın Abadi. Reasoning about
secrecy for active networks. Journal of Computer Security, 11(2), April
2003.

[32] Pankaj Kakkar, Michael Hicks, Jonathan T. Moore, and Carl A.
Gunter. Specifying the PLAN networking programming language.

45

In Higher Order Operational Techniques in Semantics, volume 26 of
Electronic Notes in Theoretical Computer Science. Elsevier, September
1999. http://www.elsevier.nl/locate/entcs/volume26.html.

[33] Dina Katabi and John Wroclawski. A framework for scalable global
IP-anycast (GIA). In SIGCOMM, pages 3–15, 2000.

[34] George Lawton. Is IPv6 Finally Gaining Ground? IEEE Computer,
34(8):11–15, August 2001.

[35] Xavier Leroy. The Objective Caml System, Release 3.02. Institut Na-
tional de Recherche en Informatique et Automatique (INRIA), 2001.
Available at http://caml.inria.fr.

[36] Xavier Leroy, Didier Remy, and Pierre Weis. Objective Caml—a Gen-
eral Purpose High-level Programming Language. ERCIM News, (36),
January 1999.

[37] A. Mallet, J. D. Chung, and J. M. Smith. Operating Systems Support
for Protocol Boosters. In HIPPARCH Workshop, June 1997.

[38] K. McCloghrie and M. Rose. Management information base for network
management of TCP/IP-based internets: MIB-II. RFC 1213, IETF,
March 1991.

[39] Jonathan T. Moore. Practical Active Packets. PhD thesis, University
of Pennsylvania, September 2002.

[40] Jonathan T. Moore, Michael Hicks, and Scott Nettles. Practical Pro-
grammable Packets. In Proceedings of the Twentieth IEEE Com-
puter and Communication Society INFOCOM Conference, pages 41–50.
IEEE, April 2001.

[41] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard
Samuels, Frederick Smith, David Walker, Stephanie Weirich, and Steve
Zdancewic. TALx86: A Realistic Typed Assembly Language. In Sec-
ond Workshop on Compiler Support for System Software, Atlanta, May
1999.

[42] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From Sys-
tem F to Typed Assembly Language. ACM Transactions on Program-
ming Languages and Systems, 21(3):527–568, May 1999.

[43] John Moy. OSPF version 2. RFC 2328, IETF, April 1998.

46

[44] Erik L. Nygren. The Design and Implementation of a High Perfor-
mance Active Network Node. Master’s thesis, Massachusetts Institute
of Technology, February 1998.

[45] Erik L. Nygren, Stephen J. Garland, and M. Frans Kaashoek. PAN:
A High-Performance Active Network Node Supporting Multiple Mo-
bile Code Systems. In Proceedings of the 2nd Workshop on Open Ar-
chitectures and Network Programming (OPENARCH’99), pages 78–89,
March 1999.

[46] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory
into practice. In Proceedings of the 24th ACM Symposium on Principles
of Programming Languages (POPL’97), Paris, France, pages 146–159.
ACM, 1997.

[47] Sean W. O’Malley and Larry L. Peterson. A dynamic network archi-
tecture. ACM Transactions on Computer Systems, 10(2):110–143, May
1992.

[48] D. Pappalardo. BBN to test RSVP. Network World, 13(50):1,14, De-
cember 1996.

[49] J. Postel. Internet control message protocol. Technical Report RFC
792, IETF, September 1981.

[50] J. Postel. Internet protocol. Technical Report RFC 791, IETF, Septem-
ber 1981.

[51] Konstantinos Psounis. Active networks: Applications, security, safety,
and architectures. IEEE Communications Surveys, 2(1), 1999.

[52] L. Rizzo. On the feasibility of software FEC. Technical Report
LR-970131, DEIT. Available as http://www.iet.unipi.it/∼luigi/
softfec.ps.

[53] Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson.
Practical network support for ip traceback. In SIGCOMM’00, 2000.

[54] Beverly Schwartz, Alden W. Jackson, W. Timothy Strayer, Wenyi
Zhou, R. Dennis Rockwell, and Craig Partridge. Smart packets: Ap-
plying active networks to network management. ACM Transactions on
Computer Systems, 18(1):67–88, February 2000.

47

[55] Beverly Schwartz, Wenyi Zhou, Alden W. Jackson, W. Timothy
Strayer, Dennis Rockwell, , and Craig Partridge. Smart packets for
active networks. In Proceedings of the Second IEEE Conference on
Open Architectures and Network Programming (OPENARCH), pages
90–97, March 1999.

[56] Amit Sehgal, Kenneth L. Calvert, and Jim Griffioen. A flexible concast-
based grouping service. In IWAN’02, 2002.

[57] Seong-Kyu Song, Stephen Shannon, Michael Hicks, and Scott Nettles.
Evolution in Action: Using Active Networking to Evolve Network Sup-
port for Mobility. In Fourth International Working Conference on Ac-
tive Networks (IWAN’2002), 2002.

[58] Ion Stoica, Scott Shenker, and Hui Zhang. Core-stateless fair queueing:
A scalable architecture to approximate fair bandwidth allocations in
high speed networks. In SIGCOMM’98, 1998.

[59] Adobe Systems. PostScript Language Reference Manual. Addison-
Wesley, 1985.

[60] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie,
David J. Wetherall, and Gary J. Minden. A survey of active network
research. IEEE Communications Magazine, 35(1):80–86, January 1997.

[61] Scott Thibault, Charles Consel, and Gilles Muller. Safe and efficient
active network programming. In Proceedings of the Seventeeth IEEE
Symposium on Reliable Distributed Systems, pages 135–143, 1998.

[62] Robbert van Renesse, Ken Birman, Mark Hayden, Alexey Vaysburd,
and David Karr. Building Adaptive Systems Using Ensemble. Technical
Report TR97-1638, Cornell University, July 1997.

[63] David Wayne Wall. Messages as Active Agents. In Proceedings, 9th
Annual POPL, pages 34–39, 1982.

[64] Bow-Yaw Wang, José Meseguer, and Carl A. Gunter. Specification
and formal verification of a PLAN algorithm in Maude. In Tenh Lai,
editor, Proceedings of the 2000 ICDCS Workshop on Distributed System
Validation and Verification, pages E:49–E:56. IEEE Computer Society,
April 2000.

48

[65] David Wetherall. Active Network Vision and Reality: Lessons from
a Capsule-based System. Operating Systems Review, 34(5):64–79, De-
cember 1999.

[66] David J. Wetherall, John Guttag, and David L. Tennenhouse. ANTS:
A toolkit for building and dynamically deploying network protocols. In
Proceedings of the First IEEE Conference on Open Architectures for
Signalling (OPENARCH), pages 117–129, April 1998.

[67] Andrew Whitaker and David Wetherall. Forwarding Without Loops in
Icarus. In Proceedings of the 5th Workshop on Open Architectures and
Network Programming (OPENARCH’02), pages 63–75, June 2002.

[68] J. Zander and R. Forchheimer. Softnet—An approach to higher level
packet radio. In Proceedings, AMRAD Conference, San Francisco, 1983.

Appendix: PLAN grammar

Note: This is intended to be a human-readable form of the grammar; it is
not intended to indicate precedence or associativity of operators.

program ::= def-list
def-list ::= def | def def-list
def ::= fundef | exndef | valdef

fundef ::= fun var (paramlist) : type-expr = expr
| fun var () : type-expr = expr

param ::= var : type-expr
paramlist ::= param | param paramlist
exndef ::= exception var
valdef ::= val var : type-expr = expr

type-expr ::= tuple-type-list
tuple-type-list ::= nontuple-type-list * tuple-type-list
nontuple-type-list ::= nonlist-type-exp | nonlist-type-exp list
nonlist-type-exp ::= base-type | (type-expr)

base-type ::= unit | int | char | string | bool | host | port
| key | blob | exn | dev | chunk

expr ::= value
| op-expr

49

| if expr then expr else expr
| raise var
| try expr handle id => expr
| let def-list in expr end
| (expr-list)

arg-list ::= expr | expr , arg-list
expr-list ::= expr | expr ; expr-list

value ::= var | true | false | () | [] | [expr-list]
| int-literal | char-literal | string-literal
| (arg-list)
| |var |(arg-list)
| |var |()

op-expr ::= id () | id (arg-list)
| unary-op expr
| expr binary-op expr
| nary-op-expr

unary-op ::= ~ | not | hd | tl | fst | snd | # int-literal | noti
| explode | implode | ord | chr

binary-op ::= / | % | ∗ | + | – | and | or | < | <= | > | >= | = | <> | :: | ^
| << | >> | xori | andi | ori

nary-op-expr ::= OnRemote (expr , expr , expr , expr)
| OnNeighbor (expr , expr , expr)
| foldr (expr , expr , expr)
| foldl (expr , expr , expr)

int-literal ::= digit | nonzero-digit digit-string
digit-string ::= digit | digit digit-string
nonzero-digit ::= [1 - 9]
digit ::= [0 - 9]

char-literal ::= ’ character ’
character ::= ~[’, \] | \\ | \n | \t | \b | \r | \’ | \”

string-literal ::= ”” | ” strchar-list ”
strchar-list ::= strchar | strchar strchar-list
strchar ::= ~[”, \] | \\ | \n | \t | \b | \r | \’ | \”

id ::= var | var . id
var ::= varstartchar | varstartchar varchar-list
varstartchar ::= [a - z, A - Z]

50

varchar ::= [a - z, A - Z, 0 - 9,]
varchar-list ::= varchar | varchar varchar-list

51

