
PLAN: A Packet Language for Active Networks

MICHAEL W. HICKS

University of Maryland, College Park

PANKAJ KAKKAR

University of Pennsylvania

JONATHAN T. MOORE

University of Pennsylvania

CARL A. GUNTER

University of Pennsylvania

and

SCOTT M. NETTLES

The University of Texas at Austin

General Terms: Active Networks, Languages

Additional Key Words and Phrases: packet programming language

1. INTRODUCTION

Modern packet-switched networks, like the Internet, transport data in packets that
consist of a header, containing control information, and a payload, containing the
data itself. One way of looking at the header is as a program in a primitive “pro-
gramming language” defined by the packet format specification. This program is
interpreted by the protocol software in routers and end-hosts and the execution
of the program causes the packet to be sent to the next router along the path to
the destination. If a desired service cannot be expressed by the current protocol,
then the packet format and its semantics must change. Or, using our analogy, the
programming language and its specification must change.

In the Internet, the dominant packet ‘language’ is the Internet Protocol (IP) [Pos-
tel 1981b], which defines the interoperability layer of the networks that make up
the internetwork. Since IP’s creation, a variety of services have been proposed that
would require changes to IP to support; examples include core-stateless fair queu-
ing [Stoica et al. 1998], anycast [Katabi and Wroclawski 2000], IP traceback [Savage

Author’s addresses: M. Hicks, Department of Computer Science, University of Maryland, A.V.

Williams Building, College Park, MD 20742. J. Moore, P. Kakkar, C. Gunter, Department of Com-

puter and Information Science, University of Pennsylvania, 200 South 33rd Street, Philadelphia,
PA 19104. S. Nettles, The University of Texas at Austin, Electrical and Computer Engineering,

1 University Station C0803, Austin, TX 78712-0240

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2001 ACM 0164-0925/99/0100-0111 $5.00

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD, Pages 1–??.

2 · Michael Hicks et al.

et al. 2000], and others. Since IP is such a widely-deployed protocol, changes to it
must be deliberated and agreed upon by a standards body. Furthermore, for the
changes to be of use, the new standard must be deployed in all of the routers that
would use it—a daunting task. As a consequence, the introduction of new network
services at this level is very slow. For example, there was a span of four or more
years from the time RSVP was conceptualized [Clark et al. 1992] to the time it was
deployed [Pappalardo 1996], even in a very limited manner. Further, consider that
the first IPv6 request-for-comments (RFC) appeared in 1995 [Bradner and Mankin
1995], its latest RFC [Deering and Hinden 1998] is dated 1998, and yet it is still
not widely deployed [Lawton 2001].

Another problem with IP and similar internetworking approaches involves its
strategy for providing interoperability between the many possible higher-level pro-
tocols that might use IP and the many possible link technologies that might make
up the individual networks connected by IP. The idea is simple, every high-level
protocol must use IP and IP supports every link technology of interest. Thus, IP
becomes the neck of an hourglass through which all data is funnelled. The problem
is that all applications must use whatever services are provided by IP and it is
impossible for applications to customize the network according to their own needs.

Active networks propose to deal with both of these problems by making the net-
work infrastructure programmable. If the level of abstraction could be raised from
that of the bits in IP packet headers to that of a more general programming lan-
guage, the evolution of the network could proceed at the pace of technology, since
changes would occur at the level of the program—not the programming language.
Moreover, rather than treat the network as a black-box (or ‘cloud’) that provides
only end-to-end service, an application can customize its processing within the net-
work using its programming interface. For example, an application could specify its
own policies for packet dropping [Bhattacharjee et al. 1996] or aggregation [Sehgal
et al. 2002] when resources are overloaded.

If this idea is to be realized, a key question is: what programming language is
needed? This paper proposes a two-level approach: the packets of the network are
programmed in a new programming language PLAN (Packet Language for Active
Networks), and these packets can make use of general-purpose services that reside
on the nodes. That is, each packet contains a PLAN program that replaces the IP
packet header and payload, and these programs, in turn, tie together service calls
to create more complex network functions. Therefore, PLAN can be viewed as a
network-level ‘glue’ language for node-resident services.

Our decision to define a new language was driven by a variety of unique require-
ments that are described in the next section. For instance, the need for programs
that fit within individual packets suggests the use of a compact scripting language.
Mobility suggests the need for a ‘safe’ language, while network availability demands
a way to limit the resource utilization of programs. Since mobility is the main aim
of the language, it is important to make its computational model fundamentally
distributed, rather than provided by a special library extension. In the end, the
choice was to design a new language realizing all of these goals well, but relying on
programs in other languages to provide more heavyweight functions.

The rest of the paper describes the PLAN language and system, its architecture,
specification, and our implementations of it. We base our discussion on PLAN 3.22,
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 3

Packet level Service level

Language PLAN flexible

Code location in packet on node
Expressibility limited general purpose

Authentication? no when needed

Table I. Comparison of the Packet and Service levels

our current design and implementation. We omit detailed discussion of application
experience and performance. These are described in other work.

2. REQUIREMENTS AND DESIGN

We will argue that any active networking approach must balance the tensions among
the following issues: flexibility, safety and security, performance, and usability. To
this end, our architecture partitions the problem into two levels: the packet language
level and the service language level, whose roles are summarized in Table I. PLAN,
our packet language, is intended for high-level control, while most of the complex
functionality resides in services (which, for maximum flexibility, can be dynamically
loaded over the network). This approach allows us to draw a clean boundary
between lightweight and heavyweight programmability. We now explore in more
detail how our two-level architecture helps us to achieve specific design goals.

2.1 Flexibility

A central goal of any active network architecture should be to provide Internet-
like service at Internet-like cost, while further providing augmented capabilities for
service evolution and customization. The Internet allows any user with a network
connection to have some basic services, like basic packet delivery provided by IP,
basic information services like DNS, and protocols like HTTP, FTP, SMTP, and
so forth. Similarly, a goal of a PLAN-based active network should be to allow any
user of the network to have access to basic services; these services should naturally
include some ‘activeness’ to allow application-specific customization.

At the same time, the programmable infrastructure should capture the non-user
(control-plane) operations, like routing, network management, and error report-
ing. Active networks provide the opportunity to unify the variety of protocols of
the IP Internet into a single programmable framework. This way, protocols like
SNMP, RIP, OSPF, ICMP, and ARP would be programmed using the underlying
infrastructure, rather than defined separately.

Given these goals, the key question is: how should this flexibility be provided?
Our two-level architecture mirrors the model of the Internet: the packet language
is responsible for basic actions concerning how data is transmitted, while the node-
resident services implement the complexities of higher-level protocols. That is,
PLAN should be able to express ‘little’ programs for network configuration and
diagnostics, and to provide the distributed communication/computing glue that
connects router-resident services into larger protocols. To do this, PLAN must
do three things: embody a model of distributed computing; have some simple,
transmissible datatypes; and perhaps most importantly, be able to cope with and
recover from errors in a general way. PLAN moves us away from a world with

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

4 · Michael Hicks et al.

a fixed set of operations and into one where node-resident services can be easily
combined on-the-fly.

2.2 Safety and Security

The shared nature of a network (and especially the Internet) requires that security
be taken very seriously. Clearly, this means that increased programmability must
be added in a safe and secure manner. By safety we mean reducing the risk of
mistakes or unintended behavior, and by security we mean the usual concept of
protecting privacy, integrity, and availability in the face of malicious attack. These
are really two sides of the same coin, since flaws in the safety of a system are often
used in a deliberate fashion to undermine security.

Our security model mirrors that of the Internet: ‘normal’ user packets require no
special privileges for transport, while other special packets could require authoriza-
tion. For example, routing protocols like RIP and OSPF [Baker and Atkinson 1997;
Moy 1998], or management protocols like SNMP [Galvin and McCloghrie 1993] all
utilize encryption and/or authorization to prevent user tampering. Our implemen-
tation of this model is made manifest in the two levels of our architecture: PLAN
packets are designed to be safe by construction, and thus usable by anyone, while
individual services may require authorization. For example, a service for updating a
node’s routing table (used by a routing protocol or a network administrator) would
require authorization.

To make PLAN safe for general use, it is functional, stateless, and strongly-typed.
This means that PLAN programs are pointer-safe, and concurrently executing pro-
grams cannot interfere with one another. In addition, PLAN provides strong re-
source usage guarantees: all PLAN programs are guaranteed to terminate when
evaluating on a single network node (as long as all called service routines termi-
nate), and any program’s traversal throughout the network is strictly bounded by
a counter set at its creation. Finally, PLAN has a formal specification (presented
in Section 5) to help reason about the security behavior of its packet programs.

A final design principle that was motivated by the need for safety and security is
that PLAN was designed to be as simple as possible. Features were added only if
we could justify them with specific packet programming examples. This contributes
to safety and security because it limits the actions a user (or attacker) can take to
as small a set as possible. It also makes specification and correct implementations
easier, also contributing to safety and security. The tension here is that in making
PLAN simple we may limit its flexibility to greatly.

2.3 Performance

To provide Internet-like service at Internet-like cost implies that we streamline
common-case processing as much as possible. This was a basic motivation behind
our security model: by limiting the expressibility of the packet language so that any-
one could use it, we could avoid performing authorization checks on every packet,
which entail the need for expensive (relative to basic switching) cryptographic au-
thentication. Furthermore, PLAN’s simplicity keeps interpretation lightweight, and
thus common tasks can be done quickly. We have avoided adding heavyweight fea-
tures to PLAN in the belief that such features can be accessed at the service level
if they are needed.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 5

2.4 Usability

PLAN programs execute remotely, which makes it difficult to determine the causes
of unexpected behavior. Therefore, it is important to provide the PLAN pro-
grammer with a priori assurances about a program’s behavior. We provide some
guarantees as part of our design: all PLAN programs are statically typeable and
are guaranteed to terminate, as mentioned above.

PLAN is based on the first-order, polymorphic lambda calculus, making it easier
to specify a formal semantics, and allowing programs to be expressed succinctly.
In addition, it provides error handling facilities to simplify dealing with protocol
errors.

2.5 Why a New Language?

Now that the reader has a basic idea of the design goals for PLAN, we can revisit
the question of why we need a new language. The need for PLAN to be very simple
and lightweight, which serves all of our design goals except flexibility, provides a
compelling argument that no general purpose language is really suitable. In fact,
the requirement that programs need not be authenticated would seem to make it
insecure to use most general-purpose languages. On the other hand, the need to
tailor the language to the active networking domain eliminates existing special-
purpose languages. Finally, even if we consider special-purpose languages explicitly
designed for distributed computing, we find that they are targeted an environment
that assumes a working network and are not well suited for use as a low-level
network software implementation vehicle.

3. PLAN OVERVIEW

PLAN has four features that facilitate network programming: (1) primitives for
remote evaluation, (2) a language-level device for encapsulating a computation,
called a chunk, (3) means to customize a packet’s routing and error handling, and
(4) means to access general-purpose, node-resident services. These features, along
with ones found in more typical programming languages such as data-structure
and control flow constructs, facilitate programming a variety of useful networking
tasks, including diagnostics like ping and traceroute for finding paths to remote
machines, UDP-style data delivery, distributed routing protocol computations, and
address-resolution.

However, because PLAN is designed as a replacement for IP, we must be con-
cerned with the resource usage and security properties of PLAN programs. PLAN
has two key properties concerning the resource usage of its programs: all programs
are guaranteed to (1) terminate on each node at which they evaluate, and (2) visit
only a fixed number of network nodes. These properties aim to ensure that PLAN
programs do not make it easier to inflict denial-of-service attacks on network nodes
than is already possible with IP. PLAN is also a type-safe language, meaning that
its programs cannot illegally interact with the nodes on which they run, say by
buffer overflows, unsafe casts from integers to pointers, etc..

This section describes PLAN informally, though with care. Some formal detail
can be found in Section 5, where we describe PLAN’s mathematical specification,
and in an appendix to the paper, where a BNF-style grammar is presented. We

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

6 · Michael Hicks et al.

begin by introducing the semantics of remote evaluation in PLAN, and present
a small example program that performs an active ping, to test whether a remote
machine is accessible and available. We then explain how remote evaluation is
implemented using PLAN packets, and how packets can customize their routing.
Next, we describe how PLAN’s resource bounding properties are made possible, and
discuss how PLAN programs can handle errors. Finally, we conclude our discussion
of remote evaluation by fleshing out some remaining details.

3.1 Chunks and Remote Evaluation

At the core of PLAN’s design is its use of remote evaluation, implemented by the
primitive OnRemote. OnRemote takes two main arguments what to evaluate and
where to evaluate it. More specifically, its first argument is a chunk, and the second
argument is a host address.

3.1.1 Chunks. A chunk, which stands for code hunk, can be thought of as a sus-
pended function call: all of the arguments have been evaluated, but the function
invocation itself has yet to occur. Chunk literals resemble regular function appli-
cations except that the function name is surrounded by bars, as in |f|(1). The
bars illustrate that the evaluation of the function itself is delayed. When a chunk
is transmitted to a remote site, the function named in the chunk expression (e.g.,
f) is invoked in a remote environment where all top-level bindings are available;
as such it does not obey the usual lexical scoping of functions. This allows a form
of recursive function call to be done with chunks, but not permitted with normal
function calls; we say more on this in Section 3.3.

When a chunk is sent to a remote machine for evaluation, its code and arguments
must be marshalled for transport. PLAN does not provide user-defined mutable
state, so all marshalled values can simply be copied. An additional important
benefit of this fact is that concurrently running PLAN programs can only share
state through service routines, which implies that only the service language must
concern itself with concurrency.

Chunks are first-class, meaning they may be manipulated as values. In addition
to being provided to OnRemote for remote evaluation, a chunk may be evaluated
locally by passing it to the eval service, which resolves the function name with
the current top-level environment, performs the application, and returns the result.
Chunks are quite similar to thunks, as provided in functional languages, but are
not as general due to the changed scoping rules. A detailed discussion of many of
the uses of chunks is presented in Section 4.2.

3.1.2 OnRemote. Remote evaluation is implemented by bundling the given chunk
into a PLAN packet and injecting that packet into the network. The network routes
the packet, perhaps in a customized way, to its evaluation destination to be eval-
uated. Like sending a packet, remote evaluation is asynchronous: once the packet
is sent to the remote node, the current PLAN program continues without waiting
for a response. Furthermore, like IP, remote evaluation is best-effort. There is
no guarantee that a remote invocation will actually occur, as the packet might be
dropped by the network. PLAN provides error-handling facilities to deal with these
uncertainties, described in Section 3.4. We look at PLAN packets more closely in
Section 3.6.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 7

fun ping (source, destination) =

if thisHostIs(destination) then

OnRemote(|ack|(), source, _, _)

else

OnRemote(|ping|(source, destination), destination, _, _)

fun ack() = print("Success")

Fig. 1. Programming ping in PLAN

Using OnRemote, we can program ping in PLAN, which is used to test if a remote
host in the network is both reachable and available. In the IP Internet, ping is
provided as a special packet type in the ICMP protocol [Postel 1981a], while it can
be programmed using standard facilities in PLAN, as shown in Figure 1. In the
figure, the underscores indicate values that we will not consider until later.

To run the program, the ping function is invoked with the address of the remote
host in the destination argument, and the address of the requesting host in the
source argument. The program is first evaluated on the source. If the source is
not also the destination, then the call to thisHostIs will return false, and the first
OnRemote will remotely invoke the ping function at the destination, with the same
arguments. There the call to thisHostIs returns true, so the second OnRemote
invokes the ack function back on the source, which prints the message Success.

The ping program calls two functions not defined in the program text, thisHostIs
and print. When a PLAN program evaluates at a node, such calls are resolved
to node-resident functions called service routines. It is expected that all PLAN
nodes will provide a set of service routines called the core services; these core rou-
tines include thisHostIs, print, and others like getHostByName to perform name
lookups, or getNeighbors to get a list of the hosts immediately neighboring the
current host. Other services may be available, but may be subject to authorization
checks. We discuss services in greater depth in Section 3.5.

3.2 Routing

The ping program describes what should happen at the source and destination
nodes, but not how the PLAN packet makes its way to the destination. This obser-
vation raises a larger question: on which nodes should a packet’s program be evalu-
ated? At one extreme, adopted by some packet programming languages [Wetherall
et al. 1998; Schwartz et al. 2000; Nygren et al. 1999; Egawa et al. 2001], we could
require that a packet’s program evaluate on every node it traverses. Another ex-
treme, embodied by the IP-based Internet, is that customized computation is only
allowed at the endpoints. In PLAN, we take the middle ground and allow a packet
to evaluate at any number of programmer-specified nodes between its source and
ultimate destination. In between its evaluation points, each one indicated by the
a field evalDest stored in the packet, the packet is routed by the network. More
justification of this approach is made in Section 3.6.3.

Rather than leave routing entirely up to the whims of the network (as is the
case with IP packets), a program can specify how it is to be routed by naming a
per-packet routing function. This function is a node-resident service that takes as

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

8 · Michael Hicks et al.

an argument a destination address, and returns back the address of the next hop
on the way to that destination. When a packet arrives at a node that is not its
evaluation destination, the routing function is called, and the packet is forwarded
to the next hop, as returned by the function. In the case that a packet does not
require customized routing, it can specify the defaultRoute function, available in
the core service set. In our experience, defaultRoute is used most often, but we
have used custom routing as well [Hicks et al. 1999].

Alternatively, the packet can perform its own routing, by setting the evalDest
field hop by hop in the network, as described further in Section 3.6.

3.3 Resource Bounds

Because the network is a shared infrastructure, it must ensure that its packets do
not consume an unfair amount of resources. In the IP-based Internet, all unicast
IP packets have a time-to-live (TTL) field, a fixed maximum size, and have very
simple header processing, so they satisfy the following resource usage property:

The amounts of bandwidth, memory, and CPU cycles that a single packet
can cause to be consumed is linearly related to the initial size of the packet
and to some resource bound(s) initially present in the packet.

While this property does not prevent all forms of denial-of-service attack (particu-
larly distributed denial-of-service (DDOS) attacks), it has allowed the Internet to
scale effectively to hundreds of millions hosts.

If PLAN packets are to replace IP packets, it stands to reason that they should
also satisfy this property, or one like it, or else enable hackers to more easily mount
denial-of-service attacks. To this end, all PLAN programs satisfy two resource-usage
properties. First, every PLAN program will terminate on each node on which it
executes. Second, PLAN packets are limited in the number of nodes on which they
may execute by a per-packet counter called the resource bound (or RB).

PLAN’s termination guarantee arises from its simple flow of control constructs:
statement sequencing, conditional execution, iteration over (bounded size) lists us-
ing the common functional programming combinator fold1, and exceptions, all in
the usual style. Although function calls are supported, notably absent are recursive
function calls and constructs that allow unbounded iteration. The lack of recursion
and unbounded iteration imply that all PLAN programs terminate on each node
on which they run.

PLAN’s second guarantee ensuring limited time in the network arises from a
per-packet RB counter that indicates the sum total of nodes a packet or any of its
progeny (created by OnRemote) may traverse. Such a limit becomes clear when we
consider the following program:

1For those not familiar with functional programming, fold takes three arguments: a function f

to execute for each element of the list, an initial accumulator a, and the list itself.

fold(f, a, [b1; b2; . . . ; bn])

has the meaning

f(. . . f(f(a, b1), b2) . . . , bn).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 9

fun ping_pong(pingHost, pongHost) =
OnRemote (|ping_pong|(pongHost, pingHost), pongHost, _, _)

Unchecked, this program would bounce back and forth between pingHost and
pongHost indefinitely. Instead, each node that a packet traverses decrements the
packet’s RB by one. In addition, when a parent packet creates a child packet,
it must donate some of its resource bound to that child (as we describe below).
Finally, since eval(c) is essentially the same as OnRemote(c,h) in which h is the
local host, calling eval subtracts 1 from the resource bound.

Unfortunately, these two properties are not enough to satisfy the resource usage
property stated above. In particular, the fact that PLAN programs must terminate
does not imply they do so only using a linear amount of resources. For example,
the following program runs in time exponential in its size, even though it does no
allocation and does not even use iterators:

fun f1():unit = ()
fun f2():unit = (f1(); f1())
fun f3():unit = (f2(); f2())
fun f4():unit = (f3(); f3())

fun exponential():unit = (f4(); f4())

To avoid pathological programs of this sort, we impose two additional constraints:

(1) Given function f which calls functions g1, g2, ... gn:

f ∈ valid iff g1, g2, ... gn ∈ valid and

calls(f) = 0 or
calls(g1) + calls(g2) + ... + calls(gn) ≤ 1

where calls(g) is the number of PLAN functions called from function g.
(2) Iteration with fold must be limited to a constant amount (e.g., lists of length

5), and use consumption of resource bound beyond that point (i.e. subtract 1
for every 5 elements traversed).

Some other active network systems [Nygren et al. 1999; Wetherall et al. 1998;
Egawa et al. 2001; Schwartz et al. 2000] attempt to ensure the resource bounding
property by imposing fixed CPU and memory counters at each node to limit evalua-
tion resource cost. While straightforward, this method weakens a priori guarantees
of correctness, since a program could be terminated at any time (of course, this is
already somewhat the case, since OnRemote and the closely related OnNeighbor are
unreliable). Furthermore, care must be exercised to perform this termination safely;
Hawblitzel et al. [Hawblitzel et al. 1998] have shown that termination of threads in
the JVM can be unsafe, and Java remains a popular language for active network
implementation. Some discussion of the tradeoffs for safety relative to PLAN and
other languages can be found in [Gunter 2002].

3.4 Preventing and Handling Errors

PLAN aims to simplify the process of distributed programming by both preventing
many errors in its programs, and by providing useful means for handling them when

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

10 · Michael Hicks et al.

fun exnreport(h:host,e:exn) =

(print("I raised "); print(e);

print(" on "); print(h))

fun main(home:host,...) =

try

...

handle e =>

abort(|exnreport|(hd(thisHost()),e))

Fig. 2. A general error-reporting mechanism

they arise. PLAN uses strong typing to rule out many errors, and its termination
guarantee rules out others. Types can be inferred by the compiler using essentially
the Hindley-Milner algorithm also employed by Standard ML, with some minor
modifications. Although PLAN programs are mostly statically typeable, in our
implementation they are dynamically checked. This unorthodox approach arose
from the demands of remote programming: static typeability is a benefit to help
debugging before injecting a packet into the network, while dynamic checking pro-
vides efficient safety (from the nodes’ point of view) for mobile scripting code. In
addition to a fairly standard set of base types, PLAN provides a homogeneous,
variable-length list type and a heterogeneous, fixed-size tuple type, but no support
for general recursive types, since their utility is questionable without general recur-
sion. PLAN also supports parametric polymorphism, in the style of Standard ML,
and similar to templates in C++.

Anomalous conditions are signalled to PLAN programs through exceptions. For
example, OnRemote will raise the exception NotEnoughRB if the packet does not have
enough resource bound to send a new packet. However, because of the asynchrony
of OnRemote, exceptions alone are not sufficient for handling all errors. Using a
synchronous OnRemote, a thrown exception could be propagated back to the calling
program to be handled; instead, the program that called OnRemote, if it even still
exists, is in no position to handle the exception.

Therefore, so that the application is notified when something goes wrong, PLAN
provides two error handling mechanisms based on callbacks. First, an abort service
is provided which allows a program to execute a chunk on its source node. This is
accomplished by extracting the source address from the packet header and sending
to it an error packet carrying the chunk. Once there, any remaining resource
bound is discarded, and the chunk is evaluated. Coupling the abort service with
exceptions provides for reasonably flexible error-handling; an example is shown in
Figure 2.

However, evaluation on remote nodes may raise exceptions not anticipated by the
programmer, and some errors are severe enough that they cannot be handled within
PLAN (for example, a transmission error may result in a type-incorrect program
that is rejected by the interpreter). For these cases, we provide a mechanism for
error handling through a special field in the packet header. The handler field names
a service to be invoked on the source in case an error or exception not handled in
the program is raised. This essentially corresponds to an implicit call to the abort

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 11

service where the chunk to be executed is simply a call to the named handler service.
For both of these cases, error-handling semantics dictates that the source field

names the host where the packet’s oldest ancestor was injected. For example, in
the ping program, up to three packets will be created: the first by the ping user
application, and the second two by OnRemote calls in the ping function. Because
the first packet will create the second two, it is termed the parent of those packets.
Each of the child packets will share its parent’s source field. This allows child
packets to report back to their originating application, and for errors to go to the
right host.

3.5 Services

PLAN programs essentially ‘glue’ together service routines, like thisHostIs and
print from the ping example. PLAN is lexically-scoped, with the available ser-
vices occupying the initial bindings in the namespace. Because service invocations
are syntactically identical to normal function invocations, a PLAN program may
shadow a service routine by defining a local function of the same name. By the
same token, if a name fails to resolve at invocation time, the interpreter assumes
the program is attempting to invoke an unavailable service routine, and raises a
ServiceNotPresent exception.

Since we want basic programs like ping to be available to all users, a number of
‘core’ services are made available throughout the network, including thisHostIs
and print. Of course, many computations will require services that should not
be available to all users. For example, we could provide a PLAN interface to
the router’s Management Information Base (MIB) [McCloghrie and Rose 1991] so
that PLAN packets could be used for network management. A simple approach
to preventing unauthorized access to protected services would be for such services
to have arguments that allow whatever security credentials that are needed to be
carried in the packet and the passed to the service.

In addition to the simple approach, we also provide a more powerful namespace-
based approach to security. While the details are presented in another paper [Hicks
et al. 2003], we present the basic idea here. In addition to eval is a related ser-
vice called authEval, which takes as arguments a chunk, a digital signature, and
a public key.2 authEval verifies the signature against the binary representation
of the chunk and the provided public key. If successful, the chunk is evaluated;
otherwise, an exception is raised. During evaluation, the program’s namespace is
expanded to include bindings to services commensurate with its level of privilege
of the given key. If the program tries to access a protected service for which it
does not have appropriate privilege, the service will be not be in the program’s
namespace, resulting in ServiceNotPresent being thrown.

3.6 Remote Evaluation Revisited

Now that we have had a good overview of PLAN, we can refine and complete our
discussion of remote evaluation. First, we present our implementation of PLAN
packets, summarizing the fields as we have discussed to this point. Second, we

2Our implementation actually makes use of shared-key cryptography, rather than public key cryp-
tography, requiring an initial key generation phase. Otherwise, the description here is accurate.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

12 · Michael Hicks et al.

Field Explanation

chunk code top-level functions and values

entry point first function to execute

bindings arguments for entry function

evalDest node on which to evaluate

RB global resource bound

routFun routing function name

source source node of initial packet

handler function for error-handling

Fig. 3. The PLAN packet

present OnRemote in its full generality, now incorporating PLAN’s notions of re-
source bounding and routing functions. Finally, we introduce the remote evalua-
tion primitive OnNeighbor, and contrast it with OnRemote, presenting an alternative
ping implementation that makes use of it.

3.6.1 PLAN packets. The PLAN packet format is shown in Figure 3. The
primary element of each packet is its chunk, which consists of three components:
the code, the entry point, and the bindings; the latter two are referred to collectively
as the invocation. The code consists of a series of definitions that bind variables to
either functions, simple values (i.e. integers, strings, etc.), or exceptions.

The invocation defines the function call (i.e., function name entry point and ac-
tual parameters a1, . . . , an—the bindings) to be evaluated at the evaluation desti-
nation (or evalDest), which is stored in the packet. To resolve variables mentioned
in the invocation, the set of all definitions in the code part and the core service
functions serve as the legal environment for the call.

The remaining fields in the packet are used to support the features we have
thus far described: the RB field stores the packet’s current resource bound, and is
decremented on each hop the packet traverses; the routFun field names the packet’s
routing function (e.g., defaultRoute); the source field names the origination host
of the packet’s oldest ancestor, needed for error reporting; and the handler field is
used when dealing with exceptions that escape the program scope.

3.6.2 OnRemote revisited. For simplicity, we have so far presented OnRemote as
taking only two arguments. It takes two additional arguments:

(1) The amount of resource bound to give to the packet being sent. The amount
specified must be greater than zero and no greater than the parent’s current
resource bound. This way, a parent packet can create multiple child packets,
and give some resource bound to each. Once a packet’s resource bound is
exhausted, it may not create further packets.

(2) A routing function name. This is stored in the packet’s routFun field and used
on each intermediate hop as described above.

The program in Figure 1 can be altered to accommodate these changes by using
the call getRB() to get the current packet’s resource bound and provide it to the
child, and the defaultRoute function for doing the routing.

A more terse (and efficient) ping program is as follows:
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 13

fun ping () =
OnRemote(|print|("Success")), getSource(), getRB(), defaultRoute);

To use this program, the host application sets the packet’s evalDest to the remote
host to ping. The local host interpreter forwards the packet to the destination
where it evaluates ping, and thus the OnRemote command. As a result, a new
packet is sent back to the source (the source address is extracted using the service
routine getSource) with all of the remaining resource bound (the packet’s resource
bound is extracted using the service routine getRB), using the service function
defaultRoute for routing. When the packet arrives at the destination (i.e. back
at the source), the print service will send Success to the host application to be
printed.

3.6.3 OnNeighbor: neighbor evaluation. OnRemote is useful in the case that
packet computation occurs only sporadically along its path. However, the packet
may need to perform computation on every hop, or use arbitrary computation to
calculate the hop itself. The OnNeighbor primitive is provided for these circum-
stances. OnNeighbor is similar to OnRemote except that the evalDest argument
must be a neighbor of (that is, directly connected to) the current node, eliminat-
ing the need for routing. Therefore, rather than requiring a routing function as
its fourth argument, it requires the link layer device handle on which to send the
packet.

PLAN’s two remote evaluation primitives, OnRemote and OnNeighbor, corre-
spond to network-layer and link-layer packet transmission, respectively. That is,
OnRemote can send a packet to any node in the network, requiring routing, while
OnNeighbor can send a packet to hosts that are directly connected to it through the
specified network device; no routing is performed. Using only OnNeighbor ensures
that a packet is in complete control of its processing (i.e. it evaluates on every
hop between the source and its ultimate destination). In fact, the semantics of
OnRemote can be implemented using OnNeighbor and some additional PLAN code,
as shown for ping from Figure 1 in Figure 4.

Here, the routing function defaultRoute is called directly by the PLAN program
to determine the next hop. It returns a pair consisting of the host address of the
next hop and the device through which to send to reach that host. Observe that
our very simple ping program has expanded quite a lot to deal with hop-by-hop
routing. Preventing this code blowup, as well as some performance considerations,
motivated our providing OnRemote to complement OnNeighbor.

4. PROGRAMMING IN PLAN

In this section, we showcase the interesting features of PLAN with programming
examples. We will see that PLAN’s remote evaluation primitives allow us to make
better use of network resources by providing fine control over packets’ movements.
Furthermore, PLAN’s chunk abstractions provide mechanisms for encapsulating
code and data, allowing for dynamic protocol composition and signalling.

4.1 Custom Routing

4.1.1 Traceroute. Traceroute is a utility for discovering a path between two
nodes in the network. In the IP-based implementation of traceroute, the originating

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

14 · Michael Hicks et al.

fun ping_eval(dst:host) =

if thisHostIs(dst) then (* got there *)

let val p:(host * dev) = defaultRoute(getSource()) in

OnNeighbor(|ack_eval|(getSource()), fst p, getRB (), snd p)

end

else (* not there yet *)

let val p:(host * dev) = defaultRoute(dst) in

OnNeighbor(|ack_eval|(dst), fst p, getRB (), snd p)

end

fun ack_eval(src:host) =

if thisHostIs(src) then (* got there *)

print ("Success")

else (* not there yet *)

let val p:(host * dev) = defaultRoute(src) in

OnNeighbor(|ack_eval|(src), fst p, getRB (), snd p)

end

Fig. 4. PLAN ping that evaluates on all intervening nodes

host sends out ICMP ECHO packets towards the destination with successively
increasing TTL values. Successive ICMP packets, in theory, time out one hop
closer to the destination. When a packet times out, another ICMP error message is
sent back to the source indicating a TTL expiry and the IP address of the host on
which it occurred. The source simply collects these timeout messages to construct
the route. If the remote host is unreachable, the path collected will be up to the
point where the network has failed.

We can implement traceroute in PLAN using OnNeighbor; the PLAN code is
shown in Figure 5. Like the standard IP version, the PLAN algorithm ensures that
if the destination is unreachable due to a failure in the network, all of the nodes up
to that point will be reported. In particular, at each node, traceroute sends back
the name of the current host with the number of hops traversed so far, and creates
a new packet that is sent to the next hop to continue the process.

To start, a host application injects a traceroute packet to evaluate at the source.
At each host on which it evaluates, the traceroute function sends an ack packet3

back to the source. This packet carries with it the host and the number of hops it
is away from the source, which is then printed to the host application. In addition,
if the traceroute packet is not yet at the destination, it determines the next hop
towards the destination, and sends another traceroute packet there.

The execution of traceroute is depicted visually in Figure 6 between a source node
A and a destination node D. Each arrow in Figure 6 represents a single packet,
and is labelled with its entry point function name, where the arrowheads indicate
the nodes on which the packet evaluates. Thus all ack packets are evaluated only
at node A, the source, while the traceroute packets are evaluated at each node
on the way to the destination D.

3For brevity, we shall refer to a packet whose chunk has function foo as its entry point as a foo
packet.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 15

fun traceroute (dst:host, count:int) =

let val this:host = hd(thisHost())

in

(OnRemote(|ack|(this, count),

getSource(), count, defaultRoute);

if (not (thisHostIs(dst)) then

let val p:(host * dev) = defaultRoute(dst)

in

OnNeighbor(|traceroute|(dst, count+1),

fst p, getRB (), snd p)

end

else ())

end

fun ack(h:host, count:int) =

(print(h); print(" : "); print(count); print("\n"))

Fig. 5. PLAN traceroute

traceroute

traceroute

traceroute

Host

Router

Router

B

C

A

D

Router

host application

traceroute

output

ack

ack

ack

ack

Fig. 6. Evaluation of the traceroute program

This example illustrates the use of pairs and lists in PLAN. Pairs are needed be-
cause defaultRoute returns a pair (of type host * dev), and we need to access its
fields to provide to OnNeighbor.4 Lists are used by the service function thisHost,
which returns as a list all of the addresses that may be used to refer to the current
host. Like in the IP Internet, when PLAN hosts may be multi-homed, meaning
they have access to multiple networks, with a different address on each network.

4For those unfamiliar with pairs, the first field of a pair is accessed using the function fst, while
the second field is accessed using the function snd.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

16 · Michael Hicks et al.

B

E

D

C

A

Fig. 7. A sample network topology

Now, contrast the above traceroute program with the standard IP traceroute
mechanism. Our PLAN traceroute uses fewer network transmissions than this
scheme, since we have only one “outgoing” traceroute packet, whereas the stan-
dard traceroute must re-traverse earlier nodes with each successive outgoing ICMP
request. In addition, only having one outgoing packet means a route change in the
middle of our traceroute query will not affect the accuracy of our result; the PLAN
traceroute will still report hops along a coherent (albeit old) route, whereas the
standard mechanism might present a mix of hops from the old and new routes.

Moreover, PLAN admits other implementations. For example, a collectroute
program could collect the path between the source and destination and only send the
result upon reaching the destination. This uses even fewer resources than PLAN’s
traceroute, but at the cost of failing to report a prefix of the path when their
are downed nodes. This flexibility is a central motivation behind active networks:
different programs (in this case, diagnostics) can be created on the fly, without
standardization.

4.1.2 Multicast. While both ping and traceroute are diagnostic functions, PLAN
can also express more general network computations, such as multicast. The idea
behind multicast is to trade off computation for bandwidth. Consider the topology
depicted in Figure 7. If a program at node A were to send packets individually to
nodes B, C, D and E, a total of 6 transmissions would occur: A → B, A → C,
A → C → D, and A → C → E. A multicast packet takes advantage of com-
mon prefixes among destination nodes, resulting in only 4 transmissions: A → B,
A → C, C → D, and C → E. However, the reduction in messages is compen-
sated for by additional computation as the multicast tree must be computed by the
routers.

Figure 8 illustrates a PLAN program that multicasts a computation to a list of
destinations. Each time multicast evaluates, the local function find hops is called
for each node in the destination list addrs by the primitive foldl. The result is a
pair containing the list of next hops in the multicast tree and a list of the remaining
destinations. multicast is then invoked remotely on each hop parameterized by
the new list of destinations. Note that find hops also evaluates the designated
task when the function is evaluating at a destination. This is done via a call to
eval on the chunk task.

Observe that each of the child packets is sent using the following code:

foldl(send_packs,(getRB()/length(hops),dests),hops)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 17

fun multicast(addrs:host list,task:chunk): unit =

let

(* This function has two purposes:

- if this node is a destination, perform the task and remove

the address from the destination list

- calculate a list of next hops to take which form the tree *)

fun find_hops(res:(host * dev) list * host list,dest:host):

(host * dev) list * host list =

let val hops: (host * dev) list = fst res

val dests: host list = snd res in

if thisHostIs(dest) then

(eval(task); (hops,remove(dest,dests)))

else

let val hop_info:host*dev = defaultRoute(dest) in

if member(hop_info,hops) then (hops,dests)

else (hop_info::hops,dests)

end

end

(* This function is called by fold for each hop to be taken.

It sends the multicast packet to each hop *)

fun send_packs(params:int*host list,hop:host*dev): int*host =

(OnNeighbor(|multicast|(snd params,task),

fst hop,fst params,snd hop);

params)

(* The list of hops and pruned destinations *)

val hops_dests:(host*dev) list * host list =

foldl(find_hops,([],addrs),addrs)

val hops: (host*dev) list = fst hops_dests

val dests: host list = snd hops_dests

val num_hops: int = length(hops) in

(* If we haven’t reached the end of the road, send out more

packets, else quit *)

if num_hops > 0 then

foldl(send_packs,(getRB()/length(hops),dests),hops)

else

()

end

Fig. 8. Packet-directed multicast PLAN.

Here, the amount of resource bound to give to each child packet is determined by
getRB()/length(hops). In effect, the assumption is that each branch of the mul-
ticast tree is roughly balanced, in that each will require equal amounts of resource
bound to deliver all of the packets. Of course, this assumption is not true in general,
and we may end up giving too much resource bound to one branch and not enough
to another. To prevent this problem, some systems, like ANTS [Wetherall et al.
1998; Wetherall 1999], do not enforce a conservation of resource bound, as PLAN
does, but enforce strictly decreasing resource bound : the resource bound of each

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

18 · Michael Hicks et al.

child must be strictly less than that of the parent, but the sum of resource bound
of all of the children can exceed that of the parent. This is the same approach
as taken by IP multicast, and effectively solves the RB distribution problem, since
each child can be given one less than the parent’s bound. The drawback here is
that a packet can much more easily wage a denial of service attack on the network
than with PLAN.

In related work (Section 6), we discuss a different approach based on Bloom
filters [Bloom 1970]. Although one could imagine applying this Bloom filter ap-
proach to PLAN, we can solve the problem of resource bound splitting by tracking
the shape of the multicast tree. In a traditional multicast implementation, the
multicast tree is identified by a key that indexes a hop table at each node. When a
multicast packet arrives at a node, it indexes the table with its key, and forwards
its payload to each hop listed in the table. In PLAN, we could implement this table
using soft state, and additionally store the required RB counts in the table, along
with the hops. The added requirement is that this information be kept up-to-date
when adding members to the tree. In particular, when a node adds an additional
hop to its table, it needs to send a message to its parent in the tree so that it can
increase its RB count, which does the same until the root of the tree is reached.
This approach is compatible with the standard methods for maintaining multicast
trees.

4.2 Chunks

Just because packets are programs does not mean that many of the familiar fea-
tures of conventional packets do not need to be supported. In particular, the desire
to build networks using layering requires that PLAN programs support encapsula-
tion, while the need to support services such as checksumming and fragmentation
means that PLAN programs must sometimes be treated as data. In this section, we
explore how PLAN chunks can be layered in two ways: to support the implemen-
tation of micro-protocols [Hutchinson and Peterson 1991] and to provide adaptive
protocols [Feldmeier et al. 1998; van Renesse et al. 1997].

4.2.1 Micro-protocols. Most commonly-used protocols like TCP and IP are com-
plex, with a variety of functionality and many options. Developing and testing
such protocols can be difficult and error prone, and the resulting protocols are
not particularly flexible. These problems have motivated past research on micro-
protocols [O’Malley and Peterson 1992; van Renesse et al. 1997]. Each micro-
protocol embodies a single function or option; more complex behavior is achieved
by composing many micro-protocols.

We will present here two micro-protocols: one for a packet checksum, and one
for fragmentation. These protocols will also serve to show how chunks provide
some basic networking implementation techniques within the context of packets as
programs.

In PLAN, micro-protocols are built by composing chunks. In general, each micro-
protocol takes a chunk plus additional arguments and returns one or more new
chunks which add the micro-protocol’s functionality. This is analogous to encapsu-
lation in traditional networking, where, as a packet moves down the network stack,
each protocol layer encapsulates the higher-level packet while perhaps adding ad-
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 19

svc verifyChecksum : (blob,int) -> bool

svc evalBlob : blob -> ’a

fun unchecksum(c:blob, sum:int): unit =

if verifyChecksum(c,sum) then

(evalBlob(c);())

else

() (* drop packet *)

Fig. 9. Code for a checksum chunk

svc reassemble :

(blob,int,bool,key) -> ’a

fun defrag(frag:blob, seqnum:int,

morefrags:bool, session:key)

: unit =

(reassemble(frag, seqnum, morefrags,

session); ())

Fig. 10. Code for a fragmentation chunk

ditional header information for itself. The difference is that code as well as data is
encapsulated.

For example, suppose we had a chunk c to which we would like to add check-
summing. We can invoke a checksum service on c which converts it into a stream
of bits (i.e., a “blob” type in PLAN) via the standard PLAN marshaling system,
computes a checksum sum, and then wraps them in a chunk with a code segment
like that shown in Figure 9. When this new chunk d is evaluated, unchecksum is
called using c and sum as arguments. Unchecksum then calls the verifyChecksum
service to ensure that c still has the proper checksum, and then either evaluates c
or aborts, as appropriate.

As another example, consider the task of fragmentation; namely, we have some
chunk c to transmit and evaluate remotely, but it may be larger than the MTU of
the intervening path. We can have a fragment service that takes c (and the MTU
size, as determined in advance, and returned by a pathMTU service), represents it
as a “blob,” and divides it into MTU-sized5 pieces. Each fragment is then wrapped
in a chunk with a code segment as shown in Figure 10. The bindings for these
new chunks would each have a piece of the original chunk, a sequence number, an
indication whether it was the last fragment or not, and a unique identifier. The new
chunks, when evaluated, simply register themselves with the reassemble service
on the destination. This service collects all the incoming fragments, puts them in
the proper order, reconstitutes the original chunk, and then evaluates it.

5Less the overhead for the reassembly chunk.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

20 · Michael Hicks et al.

svc defaultRoute : host -> host * dev

fun send_frag (x:int*host,c:chunk)

: int * host =

(OnRemote(c,snd x,fst x,defaultRoute);

x)

svc checksum : chunk -> chunk

svc fragment : (chunk,int) -> chunk list

svc pathMTU : host -> int

svc length : ’a list -> int

svc getRB : void -> int

fun udp_deliver (b:blob, p:port,

dest:host) : unit =

let val c:chunk = |deliver|(p,b)

val d:chunk = checksum(c)

val ds:chunk list = fragment(d,pathMTU(dest))

val l:int = length(ds) in

(foldl(send_frag, (getRB()/l,dest), ds); ())

end

Fig. 11. UDP-style delivery

Figure 11 shows the composition of our two protocols to form a UDP-like delivery
service. At the highest level, we have some data (represented as a blob) which we
want to deliver to a specific port on a specific host. First we create the chunk
c, which encapsulates this behavior. Then we create a new chunk d which adds
checksumming. After querying the appropriate path MTU, we then invoke the
fragment service to get a list of fragmentation chunks. If the original chunk was
small enough to fit within one link-layer frame, these chunks take the form shown
in Figure 126. Finally, we use foldl to apply send frag to send each fragment to
dest.

As the fragments arrive they will be evaluated causing them to be placed in the
reassembly table. Once the table is complete, they will be reassembled into chunk d,
which when evaluated will verify the checksum, resulting in chunk c. When c is
evaluated it will call deliver with port argument p causing data argument d to be
delivered to the correct port.

Both of the above micro-protocols share the same basic structure: a service on
the source is invoked with a chunk plus some configuration parameters. This results
in the creation of a new chunk which carries the code to perform the destination
side of the micro-protocol; note that this code may refer to services that reside on
the destination (and need not necessarily reside on the source). The new chunk
could then potentially be wrapped in yet another micro-protocol or simply sent
across the network. At the destination, the chunks simply “unwrap” themselves.

6If fragmentation was actually required, we would have only a part of the innermost two chunks;
however, for ease of illustration, we have not shown this case.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 21

entry
point

fun defrag(frag:blob, seqnum:int,
 morefrags:bool, session:key) : unit =
 (reassemble(frag,seqnum,morefrags,session);
 ())

entry
point

fun unchecksum(c:blob, sum:int) : unit =
 if verifyChecksum(c,sum) then
 (evalBlob(c);())
 else
 () (* drop packet *)

entry
point

code

bindings

defrag

frag = code

bindings

unchecksum

c = code

bindings

deliver

(empty)

p = <port>
b = <data>

sum = n

seqnum = 1
morefrags = false
session = <key>

Fig. 12. Chunk encapsulation

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

22 · Michael Hicks et al.

This common structure makes many things easy. For one, we can have dynamic,
per-application policy drive the composition of micro-protocols, rather than having
dependencies built into complex protocols. Indeed, in our above example, rather
than have fragments of a checksummed delivery packet, we could have invoked
fragment first, and then done a checksum on each resulting chunk, thus ending up
with checksummed fragments of the original chunk. Each micro-protocol takes a
chunk and returns a chunk or list of chunks, so they may be arbitrarily ordered in a
type-correct way. Of course, the order does matter from a semantic point of view.

Second, micro-protocols can be coded to avoid redundant functionality. For ex-
ample, if a path only has Ethernet interfaces, the checksum service might simply
return the original packet, as the checksum would be redundant with the under-
lying CRC check. Similarly, the fragment service can (and does) just return the
original chunk if it was already small enough. Either of these optimizations remove
the need to execute certain receiving code at the destination.

In fact, the destination will not even have to do a test to determine that it need
not execute the receiving code. Since the demultiplexing path is encoded in the
way the chunks are encapsulated, the unnecessary code will simply not be called as
an arriving chunk “unwraps” itself. This mechanism is in fact quite powerful and
allows us to do straightforward asynchronous protocol adaptation, as we see in the
next section.

4.2.2 Asynchronous Adaptation. Adaptive protocols are ones that can be dy-
namically reconfigured. In particular, they can react to changing network condi-
tions to improve performance. For example, if a data stream is bottlenecked due to
a low bandwidth link, it might be desirable to compress the stream. Similarly, many
checksum errors arising from a noisy link might suggest using an error correction
scheme to introduce redundancy.

In most approaches to adaptive protocols, a primary problem is synchronization.
Namely, a source and a destination must agree on the structure of the protocol
stack they are using: a protocol where the sender encrypts data but the receiver
fails to decrypt it would hardly be useful. As described in [van Renesse et al. 1997],
such signaling protocols can often be complex (and sometimes expensive).

With PLAN chunks, there is no need for negotiation between the endpoints for
correct functionality. A sender need only start using a new sequence of encapsulated
chunks, and they will be correctly handled at the receiver because the structure of
the “protocol stack” is encoded in the packets themselves. There need be no delay
for the protocol switch to happen safely. Indeed, this adaptation is independent
of the underlying routing infrastructure; there is no need for nodes to maintain
peering protocol agreements with each other, or to handle “handoffs” when a route
changes. Of course, it may be still be important for a sender and receiver to ex-
change information to maintain an accurate network view so that a policy regarding
the insertion and removal of micro-protocols may be reasonably applied, but this
need not be synchronized with the actual protocol switchover.

Furthermore, adaptation with PLAN chunks is not limited to endpoints. It
is straightforward to add micro-protocols just over some portion of the network
infrastructure, as in the style of Protocol Boosters [Feldmeier et al. 1998]. In this
case, a router might intercept incoming PLAN packets, wrap their top-level chunks
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 23

fun vpnEnter(c:chunk,dest:host) =

let val afterTun:chunk = |fwd|(c,dest)

let val peer:host = vpnRoute(dest)

let val ec:chunk = encryptForPeer(afterTun,peer)

let val sig:blob = signForPeer(ec,peer)

let val id:blob = idForPeer(peer)

in

OnRemote(|authEval|(ec,sig,id),peer,

getRB(),defaultRoute)

end

fun fwd(c:chunk,dest:host) =

OnRemote(c,dest,getRB(),defaultRoute)

Fig. 13. PLAN VPN code for tunnel entrance

in a new “boosting” micro-protocol, and send them on to a “de-boosting” location.
Once there, the wrapper chunk will perform the receive-side of the micro-protocol
and then send the original top-level chunk on to its final destination. Conventional,
non-active packets can be treated the same way, essentially letting them tunnel in
an active packet to allow dynamic protocol composition.

We make these ideas more concrete by presenting two examples. Both involve
micro-protocols which are applied at points within the network rather than just at
the endpoints of a communication.

4.2.2.1 Virtual private networks. Our first scenario considers a virtual private
network, in which we have several networks of trusted nodes that we wish to con-
nect by traversing untrusted links. We would like to give all the end hosts the
illusion of being within a single trusted network. This can be accomplished in a
straightforward manner by encrypting and encapsulating packets between trusted
networks. In the Internet, IPSec [Atkinson 1995] may be used in exactly this way.

We can achieve a similarly elegant implementation using PLAN chunks, as shown
in Figure 13. An end host transmits an unencrypted packet which is intercepted
by a firewall machine when it is about to leave its trusted network. The firewall
extracts the top level chunk c and final destination dest from the packet, and then
runs the algorithm shown in vpnEnter, building up a series of encapsulated chunks.
This process is implemented (and best explained) by working backwards.

After the packet exits the VPN tunnel, we want to restore the original packet’s
intention to evaluate c on dest; thus we create the afterTun chunk to do exactly
that. Now, the next step is to encrypt our new chunk for the tunnel; first we
figure out where the tunnel exit is by calling the vpnRoute service to tell us the
corresponding gateway for our ultimate destination dest. We assume that the
VPN gateways will maintain pairwise shared secret keys (obtained via a mutual-
authentication protocol such as described in [Hicks et al. 2003]) for efficiency, so we
use the encryptForPeer service to encrypt our afterTun chunk for transmission.

The resulting chunk, ec, is set to call the vpnExit function (shown in Figure 14)
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

24 · Michael Hicks et al.

fun vpnExit(enc:blob,peer:host) =

let val c:chunk = decryptFromPeer(enc,peer)

in

eval(c)

end

Fig. 14. Chunk executed after authEval on VPN tunnel exit

to arrange for decryption on the tunnel exit. This function, given an encrypted
chunk (represented as a generic blob bytearray) and an originating endpoint, asks
the current node to decode and evaluate the encrypted chunk. Of course, the tunnel
exit will want to verify that the said chunk actually came from a participant in the
VPN; i.e. only VPN participants should be able to invoke the decryptFromPeer
service. To ensure this, we use the signForPeer and idForPeer services to digitally
sign ec. We finally evaluate an authEval chunk on the tunnel endpoint with
OnRemote.

When the chunk arrives at the endpoint to be evaluated, this stack of chunks
“unwinds.” First, authEval authenticates the signed chunk against the provided
signature and evaluates the chunk contents. Assuming this succeeds, the chunk
will be allowed to access privileged services, like decryptFromPeer, that would
not otherwise be available. Next, the chunk calls vpnExit, which decrypts the
encrypted chunk (producing afterTun again) and evaluates it. AfterTun then
calls fwd which sends the original toplevel chunk c along on its way to dest.

4.2.2.2 Mobile computing. Our second scenario considers mobile computing over
wireless links, which are more noisy than wire-based LANs. Wireless links often
have poor TCP throughput, as negative acknowledgments due to checksum failures
are interpreted (incorrectly) as network congestion. To compensate for packet er-
rors, the networking software on the laptop could engage a forward error correction
(FEC) micro-protocol when operating in mobile mode. While FEC often oper-
ates at the physical or link layer, it can be profitable to use FEC at the network
layer [Rizzo ; Hadzic et al. 1998], as we propose to do here.

With PLAN chunks, we can easily limit the FEC just to the wireless link, thus
conserving overall bandwidth in the rest of the (less lossy) network. On the source,
we wrap our original chunk and its intended destination in a wrapper chunk which
registers itself with the FEC service on the other side of the link. This service would
check the encapsulated chunk for errors; if none are present, it can be unwrapped
and forwarded onwards. We would periodically generate an additional parity packet
which also registers itself with the FEC service. In turn, when the FEC service finds
errors, it would attempt to apply received parity packets to correct the errors. Any
original chunks that can be corrected are unwrapped and forwarded onwards. If an
error corrupts the encapsulating packet (i.e. the one that registers with the FEC
service), then that packet will fail to decode and must be dropped; this would be
no different if a network-layer protocol like IP were used to encapsulate user data.

One issue is that the laptop might cross a cell boundary, thus switching gateways.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 25

Normally, this would require some amount of synchronization and communication,
but since the FEC chunks are carried with the packets, the new gateway immedi-
ately knows that forward error correction is being used by the laptop. At worst, the
laptop may have to retransmit the batch of packets which were being transmitted
when the switch occurred. Here, actively specifying the required processing within
the PLAN packets themselves saves us additional communication over the lossy
link.

5. SPECIFICATION AND IMPLEMENTATION

PLAN has a formal specification and several implementations. This section dis-
cusses some of the challenges in the specification and some characteristics of the
implementations in OCaml and Java.

5.1 Specification

Two features of the PLAN language have an interesting impact on its specification.
First, a language that is almost exclusively intended for writing mobile programs
places special emphasis on issues of trust and distributed evaluation. These impact
the determinism of the specification and the role of types. Second, the fact that
PLAN is a ‘glue’ language over a general purpose layer of services makes reasoning
about guarantees about PLAN more complex. This raises new challenges for rea-
soning about PLAN relative to functions in its service layer. Let us consider each
of these issues in more detail. The specification of PLAN per se can be found at
http://www.cis.upenn.edu/~switchware/ and a discussion of the semantics can
be found in [Kakkar et al. 1999].

5.1.1 Types. Consider a basic programming task in which data is read from an
input file, analyzed, and the outcome is written to an output file. If this program
fails in the middle of its evaluation, then the output file may be left in an incomplete
state. To help reduce the likelihood of this problem, we can provide a static or
dynamic type system for the language that may catch the cause of the failure at
the point the program is compiled or perhaps before it has begun an incorrect
modification of the output file. In either case, it is helpful to have a semantic
specification of the language that can indicate the range of possible actions that
could occur in a program with a type error. If the language provides static analysis,
then this answer is easy since the error will be detected before running the program.
If it uses dynamic type checking, then the answer is harder, but typically can be
seen in tracing the program to the point at which it had the type error. Now,
suppose we are given a program that makes a remote call. In a statically typed
language we can check the remote code and prevent type errors in advance of the
call.

However, reasoning about the effect of a dynamic error is significantly more com-
plicated if the remote call can evaluate concurrently with the calling program, and
the two processes communicate with one another. This overall problem becomes
more challenging in a mobile language like PLAN where programs principally eval-
uate by splitting into collections of remote evaluations on nodes that cannot be
predicted statically from the spawning programs. All of this suggests that the sim-
plicity of static type checking would greatly aid reasoning about PLAN programs.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

26 · Michael Hicks et al.

However, a semantics that relies on static typechecking is problematic for PLAN.
First, a node executing a PLAN program needs to develop its own trust in the
PLAN program and will therefore carry out checks necessary to provide adequate
security for its execution environment. Second, static typechecking of chunks is not
always possible. Third, static checking of whole PLAN programs at intermediary
nodes may be undesirable for performance reasons. For example, a value may be
placed in a chunk or conditional branch may be intended for evaluation only on
a destination node and not on intermediary nodes. Thus static evaluation would
cause many unnecessary checks on intermediate nodes.

These design considerations lead to two characteristics of the PLAN specifica-
tion. First, it should be possible for a conformant implementation to exploit any
of a gradation of typechecking options. Second, it should be possible to take a
program and determine its entire range of potential behaviors in a PLAN network.
Concerning the first point, active nodes have an entire spectrum of possibilities vis-
a-vis type checking available to them, with static and dynamic type checking being
the two extremes of this range. Routers could, for example, start the execution of
the program with dynamic checking and statically type-check it at the same time,
terminating the execution if a type error is found either dynamically or in the static
check. Alternatively, one could statically check selected fragments of the program
that looked like they would benefit from static analysis and check other parts dy-
namically. This is similar to optimizations for dynamically typed languages that
omit runtime checks for parts of the program known to be type correct after an
initial analysis phase. Concerning the second point, this flexibility raises concerns
for the predictability of the behavior of PLAN programs. Consider, for instance,
the following program:

fun foo () : unit =
(OnRemote (|foo| (), host1, ...);
OnRemote (|foo| (), host1, ...);
OnRemote (|foo| (), host1, ...);
1 + true)

This program first sends three PLAN packets to host1, and each will try to execute
foo () after getting there. Then it tries to add the integer 1 to the boolean value
true, generating a type error. Static type checking will catch this error before
execution while dynamic type checking will catch this error only after the three
packets have been sent. Allowing for a range of alternative modes of type-checking
means that any of 0, 1, 2 or 3 packets could have been sent to host1. We are not
aware of another langauge and typing system that allows this kind of flexibility. For
instance, a statically typed language would reject the program without evaluating
it, therefore sending 0 packets, whereas a dynamically typed language would send
three packets and then fail with a type error.

The PLAN semantics is therefore designed to enable reasoning about all possible
type error points. This is done by the use of a ‘small step’ semantics. Programs with
type errors may validly terminate at any point when the type error is recognized,
even if it is not the current evaluation point. However, an evaluation point that
contains a type error will cause termination of the program with an error.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 27

5.1.2 Reasoning with Services. All widely-used general-purpose languages offer
some capability for library extensions. When these libraries are written in the
langauge itself using only its basic standardized constructs then properties can be
proved by study of the language specification alone. However, if the library contains
functions whose semantics is outside of the language, then reasoning about these
requires supplementary semantic information. For example, most languages have
I/O primitives whose semantics is at least partially dependent on the system for
which the language is compiled. Many other operations may exist, such as functions
to control new hardware, whose meaning is not feasible to include in the language
definition itself. Scripting languages take this to a new level, however, since it is not
unusual for most of their operations to lie in this class of external calls. For example,
a shell language that executes each of three programs in some sequence with various
parameters will have only a small part of its meaning explained by the semantic
specification of the shell language. PLAN is like a shell language because of its
fundamental reliance on a service layer. This has a profound impact on reasoning
about PLAN programs, basically saying that properties of ‘pure’ PLAN will be
comparatively easy to obtain, but somewhat limited to use. One can therefore
expect reasoning about PLAN to be a relative kind of reasoning.

As an example of this phenomena, consider the challenge of reasoning about
whether a network of PLAN nodes would preserve basic information flow properties
on which autonomous systems connected to the Internet often rely. Suppose, for
instance, that users of a network indulge in the use of cleartext password protocols
on a broadcast wireline LAN. These passwords are quite vulnerable to sniffing by
insiders attached to the LAN, but they are not especially vulnerable to the wider
network. Let us call this ‘security Against Outsiders’ or AO security for short. AO
security broadly means that someone who can sniff a password is someone ‘you
can fire’, that is, someone who can be made accountable. This kind of security
is common in protected domains, such as companies operating behind firewalls.
Of course, cleartext passwords are discouraged and security sensitive organizations
and users avoid them, but more sophisticated attacks like traffic analysis display
the same AO security characteristics. In general, routers do not offer ordinary users
any capabilities that would allow them to steal passwords or do traffic analysis.

But suppose the routers at an institution are running a PLAN network—do the
AO security properties change? A simple answer can be given in a simple case:
if there are no PLAN services other than the standard ones, then there is no risk
of monitoring that is added by the routers. Pure PLAN programs even from the
same user do not ‘communicate’ with one another except at endpoints. However,
many PLAN programs rely on services for which interference is less obvious. For
example, a program that leaves a routing label for subsequent packets implicitly
communicates with these subsequent packets. In particular, an outsider could use
the labels to direct legitimate packets off of the network. The problem is non-trivial
to reason about. If the attacker cannot find the labels (for instance, they may be
large random numbers), then they do not aid him, but if the labels are sent by
packets that are themselves subject to diversion then the labels are vulnerable.
A detailed discussion of AO security guarantees and how to reason about them
relative to various PLAN service layer functions can be found in [Kakkar et al.
2000]. This work relies on an abstraction of the PLAN specification called uPLAN,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

28 · Michael Hicks et al.

a theoretical calculus based on PLAN. Transferring results from uPLAN to PLAN
is still a challenge, but it is similar to that faced by other studies that rely on
language abstractions to control the complexity of real languages.

5.2 Implementation

When choosing an implementation language for PLAN, we had several specific re-
quirements. First, to make the claim that the network is programmable, services
must be dynamically loadable. This means that our implementation language must
allow some form of dynamic code loading. Second, the heterogeneous nature of an
internetwork means that the implementation language should be easily portable.
Third, our implementation language needed to provide strong typing for safety. We
have completed implementations of PLAN in two languages that meet these require-
ments: OCaml [Leroy et al. 1999; Leroy 2001] and the Pizza [Odersky and Wadler
1997] extension to Java [Gosling et al. 1996]. Our most current implementation is in
OCaml, due to better performance and ease-of-use. A partial/experimental version
is part of the Mobile Active Network Environment (MANE) at The University of
Texas at Austin [Song et al. 2002]. It is based on a experimental language, Popcorn,
which compiles to Typed Assembly Language [Morrisett et al. 1999; Morrisett et al.
1999] and supports dynamic updating [Hicks et al. 2001b].

We currently transmit abstract syntax trees in our packets, and use an RPC-
style marshalling scheme for the arguments to the invocation function. This same
marshalling scheme could be extended to allow nodes to offer services from dif-
ferent languages. However, our services are currently implemented in the same
language as the PLAN interpreter, so service calls are simply function calls within
the interpreter.

New services may be dynamically installed over the network by having PLAN
programs pass bytecodes as arguments to special service installation routines. In
principle, though, services could be transmitted in various forms (such as source
code) and installed via compilation, perhaps taking advantage of run-time code
generation.

PLAN has been taught in both a graduate-level network primer course and an
Active Networking seminar at the University of Pennsylvania, where students were
asked to use PLAN to implement useful network services on a small testbed network
of five nodes. Feedback from the students on the PLAN system was encouraging.
One common comment was on the ease of dynamically installing services written
in Java (Pizza was the main implementation language at the time), thus validating
our initial design decision of following a two-level approach.

More details about the OCaml implementation of PLAN and Query Certificate
Manager [Gunter and Jim 2000] (a trust management system used with PLAN
in [Hicks et al. 2003]) can be found in [Alexander et al. 1998].

6. RELATED WORK

Postscript [Systems 1985] and Java [Gosling et al. 1996] are the most well known
examples of using programmability and mobile code to increase the flexibility of a
system. The first application of programmable network routing may be the Soft-
net [Zander and Forchheimer 1983] system, which provided for the execution of
packets of multi-threaded M-FORTH code. Numerous other motivations for the
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 29

advent of active networks are described in [Tennenhouse et al. 1997]. A more re-
cent survey of active networking technology can be found in [Psounis 1999].

The fundamental idea of Active Packets first appeared in Wall [Wall 1982]. In
this paper, Wall outlined a new approach to networking. Quoting from the paper’s
abstract:

“Network algorithms are usually stated from the viewpoint of the network
nodes, but they can often be stated more clearly from the viewpoint of an
active message, a process that intentionally moves from node to node.”

Although PLAN differs in many important particulars from Wall’s vision, perhaps
the most significant advance for packet programming over Wall’s work is the intro-
duction of chunks.

Since the initiation of DARPA’s Active Networking program there have been
many Active Packet systems proposed, including the Active Network Transfer Sys-
tem (ANTS) [Wetherall et al. 1998; Wetherall 1999], Smart Packets [Schwartz et al.
1999], ALIEN [Alexander and Smith 1999; Alexander 1998], and SNAP [Moore
et al. 2001; Moore 2002]. Below we briefly discuss some of these systems princi-
pally in comparison to PLAN. We also discuss an additional approach to resource
use bounding and some work related to dynamic protocol stack modification.

6.1 Other Active Packet Systems

6.1.1 ANTS. The Active Network Transport System (ANTS) [Wetherall et al.
1998] was one of the first active packet systems developed. In an ANTS capsule
(ANTS terminology for an AP), programs are written in a restricted subset of Java
and are transported as Java bytecodes. Although ANTS differs from PLAN in key
ways, what is striking is way that they are under the surface solving the same key
problems. For a detailed comparison see [Hicks et al. 2002].

A novel aspect of ANTS is that capsule programs are transported by reference.
Capsule programs are cached at nodes and if a referenced program is not node
resident, it is fetched from the node that sent the capsule. This is advantageous
when many capsules use the same program and is important because the overhead
of using Java bytecodes both in terms of size and processing power for linking,
verification, and perhaps JIT compilation is significant. PLAN could support such
an approach without changes in the language it would have less of an impact because
PLAN programs are both more succinct and we have control over intermediate
representations and runtime costs

PAN [Nygren et al. 1999; Nygren 1998] is a follow-on project to ANTS, also
developed at MIT. The main question Nygren et al. address is: are the computa-
tional overheads of providing active processing too high to ever achieve practical
performance? Fortunately for us, the answer was “no.” PAN achieves its high per-
formance through the use of in-kernel packet execution, code caching, and standard
network performance tuning such as minimizing data copies. A key component of
PAN’s performance lies in its use of native x86 code as the intermediate represen-
tation for APs. Although this results in high performance, it also sacrifices safety,
especially since the x86 code is dynamically linked into the kernel.

6.1.2 Smart Packets. The Smart Packets project [Schwartz et al. 1999] from
BBN targets network management tasks. Because Smart Packets are meant to be

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

30 · Michael Hicks et al.

deployed in potentially misconfigured or failed networks, they must be extremely
robust. In particular, they have been designed to be self-contained, so that no
new router state is required. Furthermore, useful programs should be encodable
within a single link layer frame so that fragmentation may be avoided. Smart
Packets are coded using two equivalent languages: Sprocket is a safe subset of C
extended with primitives for MIB access; Sprocket, in turn, may be compiled to
Spanner, a compactly-representable CISC-like assembly language. Sprocket, like
PLAN, provides for resource control, although it uses both hop and instruction
counts.

6.1.3 ALIEN and SANE. ALIEN [Alexander and Smith 1999; Alexander 1998]
is an active networking architecture also developed at the University of Pennsyl-
vania. SANE (Secure Active Network Environment) [Alexander et al. 1998] is a
specific instance of the ALIEN architecture. Like PLAN, ALIEN supports both
APs and Active Extensions. In fact, the PLANet implementation of PLAN [Hicks
et al. 1999] uses the same Active Extension system as SANE.

A crucial difference between ALIEN and PLAN is that ALIEN uses packets writ-
ten in a general purpose language, specifically for SANE, OCaml [Leroy et al. 1999],
a dialect of ML supporting dynamic linking of bytecodes. Although OCaml byte-
codes are typesafe, the use of an unrestricted general purpose language for APs
means that security must be enforced outside the language. SANE uses public key
cryptography to establish security associations between neighboring nodes. Us-
ing these associations, it is possible to guarantee the origin and integrity of the
OCaml bytecodes. Unfortunately the need to perform cryptographic security for
each packet results in unacceptably low performance [Alexander and Smith 1999;
Alexander 1998]. This result indicates that the PLAN approach, which avoids such
security measures unless needed is the preferred approach.

6.1.4 PLAN-P. PLAN-P [Thibault et al. 1998] is not an AP system, but rather
is a modification of PLAN to support programming services rather than packets.
The PLAN-P work focuses on studying the use of optimization techniques based
on partial evaluation to provide fast implementations of these service routines.

6.1.5 SNAP. Safe and Nimble Active Packets (SNAP) [Moore et al. 2001; Moore
2002] is the first second-generation AP system, drawing from most of the systems
mentioned above. However, not surprisingly since its principle designer (Jon Moore)
is one of PLAN’s designers, SNAP is most directly an evolution of PLAN. Along a
number of dimensions, SNAP takes the same approach as PLAN. For example, it
is a safe, restricted domain-specific language that shares PLAN’s division between
AP programs and services.

However, SNAP improves on PLAN (and other AP systems) in some significant
ways. First, it is designed to be high-performance without sacrificing safety. It
does this in part by carefully avoiding aspects of PLAN that proved costly, such as
marshalling and garbage collection. It also uses a much lower-level representation
than PLAN, being a byte-code language. The result is that SNAP’s LINUX imple-
mentation has performance quite close to that of IP packets. Like PLAN, SNAP
provides a guarantee of resource safety. SNAP programs run in time, space, and
bandwdith that is linear in the length of the packet. However, it achieves this bound
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 31

by a simple low-level restriction: all branching instructions must have forward tar-
gets. While this is a significant restriction, we have found that the many useful
PLAN programs can be compiled to SNAP programs [Hicks et al. 2001a], with cor-
responding performance benefits. An active network with PLAN as its high-level
packet language, but SNAP as its low-level wire-format, would have improve the
performance of PLAN, and the usability of SNAP.

6.2 Dynamic Protocol Stack Modification

Chunks are one of PLAN’s most novel feature and they provide an elegant and
lightweight method to modify protocols stacks on-the-fly. Ensemble [van Renesse
et al. 1997] is a toolkit for distributed application development in which applications
may adapt and dynamically reconfigure their protocol stacks. However, Ensemble
uses a Protocol Switch Protocol that halts communication, synchronizes through a
central coordinating participant, and then resumes communication. PLAN chunks
do not require this pause for synchronization and do not need centralized coordi-
nation. Furthermore, PLAN chunks are not limited to an end-host only regime of
operation.

Protocol Boosters [Feldmeier et al. 1998; Mallet et al. 1997] interpose additional
functionality within the network infrastructure. These boosters enhance perfor-
mance in a way that is transparent to the applications communicating across the
“boosted” subnets. However, for multi-component boosters, signaling is required
to support the addition or removal of a booster. Finally, because they reside in
the network infrastructure itself, some boosters are subject to failures due to rout-
ing changes sending boosted packets around their intended de-boosting element.
PLAN chunks are not subject to these failures because the chunk encapsulation
essentially records which micro-protocols have been applied and must be undone
at the destination.

6.3 Resource Use Bounding

Although PLAN, like most AP systems uses a combination of bounding resource
use on each node and hop-count limits, another approach, used by the Icarus sys-
tem [Whitaker and Wetherall 2002], relies on carrying a Bloom filter [Bloom 1970]
in a packet. Each network link has its own bitmask that it bitwise ORs into the
bloom filter; if the filter is unchanged, the network assumes it has already seen
this packet and drops it. This approach combines the programming convenience
of strictly decreasing resource bounds while preventing classes of denial of service
attacks by ensuring loop freedom. However, the false positive rate of this approach
depends heavily upon the relative sizes of the Bloom filter, the link bitmasks, and
the number of network links, and it is as yet unclear how to appropriately set these
constants.

7. CONCLUSIONS

PLAN’s design began with a few basic ideas all motivated by the need to tradeoff
flexibility, safety and security, performance, and usability:

(1) That a special purpose domain specific language could achieve safety and se-
curity by limiting its expressibility and yet remain flexible enough to allow a
wide variety of useful packet programs to be written.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

32 · Michael Hicks et al.

(2) That a two-level architecture in which PLAN served primarily to glue together
functionality residing at the service layer would prove to both provide a secu-
rity model that was lightweight and yet secure when needed and a model of
composition that made node-resident services significantly more flexible.

(3) That a low-level distributed systems programming language based around un-
reliable remote evaluation would prove a good programmable packet analog to
the usual functionality of static packets.

We believe that these initial elements of PLAN were fundamental to finding a sweet
spot in the AP design space that added significant flexibility with little compromise
in the other important factors.

In particular, we believe that PLAN shows that many of the key challenges of
building AP systems are surmountable, in particular that AP systems can have
good safety and security. PLAN also has shown that even with its simple and
limited programming model, quite sophisticated network algorithms can easily be
expressed and deployed. Active packets can take the place of passive headers and
to good effect.

We invite readers to browse the PLAN home page,

http://www.cis.upenn.edu/~switchware/PLAN

which makes available detailed documentation and downloadable software.

Acknowledgments

We would like to thank Alex Garthwaite and Suresh Jagannathan for their valuable
feedback on previous drafts of this paper. We would also like to thank Jonathan
Smith for using PLAN in his TCOM500 class at the University of Pennsylvania.

REFERENCES

Alexander, D. S. 1998. ALIEN: A Generalized Computing Model of Active Networks. Ph.D.

thesis, University of Pennsylvania.

Alexander, D. S., Arbaugh, W. A., Keromytis, A. D., and Smith, J. M. 1998. A secure active
network architecture: Realization in SwitchWare. IEEE Network Special Issue on Active and

Controllable Networks 12, 3, 37–45.

Alexander, D. S., Hicks, M. W., Kakkar, P., Keromytis, A. D., Shaw, M., Moore, J. T.,
Gunter, C. A., Jim, T., Nettles, S. M., and Smith, J. M. 1998. The SwitchWare active

network implementation. In ML Workshop, G. Morrisett, Ed. Baltimore, Maryland. http:

//www.cis.upenn.edu/~gunter/dist/AlexanderHKKSMGJNS98.ps.

Alexander, D. S. and Smith, J. M. 1999. The Architecture of ALIEN. In Proceedings, First
International Working Con- ference on Active Networks, Covaci, Ed. Springer-Verlag, Berlin,

1–12.

Atkinson, R. 1995. Security Architecture for the Internet Protocol. Tech. Rep. RFC 1825, IETF.
August.

Baker, F. and Atkinson, R. 1997. RIP-2 MD5 authentication. RFC 2082, IETF. January.

Bhattacharjee, S., Calvert, K. L., and Zegura, E. W. 1996. On active networking and

congestion. Technical Report GIT-CC-96-02, Georgia Tech.

Bloom, B. H. 1970. Space/Time Trade-offs in Hash Coding with Allowable Errors. Communica-

tions of the ACM 13, 7 (July), 422–426.

Bradner, S. and Mankin, A. 1995. The Recommendation for the IP Next Generation Protocol.
RFC 1752, IETF. January.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 33

Clark, D., Shenker, S., and Zhang, L. 1992. Supporting real-time applications in an inte-

grated service packet network: Architecture and mechanism. In Proceedings, 1992 SIGCOMM
Conference. 14–26.

Deering, S. E. and Hinden, R. M. 1998. Internet Protocol, Version 6 (IPv6) Specification. RFC

2460, IETF. December.

Egawa, T., Hino, K., and Hasegawa, Y. 2001. Fast and secure packet processing environment for

per-packet QoS customization. In Proceedings of the IFIP-TC6 Third International Working

Conference (IWAN 2001).

Feldmeier, D. C., McAuley, A. J., Smith, J. M., Bakin, D., Marcus, W. S., and Raleigh,
T. 1998. Protocol boosters. IEEE JSAC, Special Issue on Protocol Architectures for the 21st

Century 16, 3 (April), 437–444.

Galvin, J. M. and McCloghrie, K. 1993. Security protocols for version 2 of the simple network

management protocol (SNMPv2). RFC 1446, IETF. April.

Gosling, J., Joy, B., and Steele, G. 1996. The Java Language Specification. Addison Wesley.

Gunter, C. A. 2002. Micro mobile programs. In Foundations of Information Technology in the
Era of Network and Mobile Computing, R. Baeza-Yates, U. Montanari, and N. Santoro, Eds.
IFIP 17th World Computer Congress — TC1 Stream / International Conference on Theoretical
Computer Science (TCS 2002), Kluwer, Montreal, Canada, 356–369.

Gunter, C. A. and Jim, T. 2000. Policy-directed certificate retrieval. Software - Practice and

Experience 30, 15, 1609–1640.

Hadzic, I., Marcus, W. S., and Smith, J. M. 1998. On-the-fly programmable hardware for
networks. In Proceedings of the IEEE GLOBECOM Conference.

Hawblitzel, C., Chang, C.-C., Czajkowski, G., Hu, D., and von Eicken, T. 1998. Imple-
menting Multiple Protection Domains in Java. In Proceedings of the 1998 USENIX Annual

Technical Conference.

Hicks, M., Keromytis, A. D., and Smith, J. M. 2003. A Secure PLAN (Extended Version). IEEE

Transactions on Systems, Man, and Cybernetics, Special Issue on Programmable Networks. To

appear.

Hicks, M., Moore, J. T., Alexander, D. S., Gunter, C. A., and Nettles, S. 1999. PLANet:
An active internetwork. In Proceedings of the Eighteenth IEEE Computer and Communication

Society INFOCOM Conference. IEEE, 1124–1133.

Hicks, M., Moore, J. T., and Nettles, S. 2001a. Compiling PLAN to SNAP. In Proceedings of

the Third International Working Conference on Active Networks, I. W. Marshall, S. Nettles,
and N. Wakamiya, Eds. Lecture Notes in Computer Science, vol. 2207. Springer-Verlag, 134–

151.

Hicks, M., Moore, J. T., and Nettles, S. 2001b. Dynamic Software Updating. In Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM, 13–23.

Hicks, M., Moore, J. T., Wetherall, D., and Nettles, S. 2002. Experiences with Capsule-
based Active Networking. In Proceedings of the DARPA Active Networks Conference and

Exposition (DANCE). IEEE, San Francisco, CA.

Hutchinson, N. C. and Peterson, L. L. 1991. The x-Kernel: An Architecture for Implementing

Network Protocols. IEEE Transactions on Software Engineering 17, 1 (January), 64–76.

Kakkar, P., Gunter, C. A., and Abadi, M. 2000. Reasoning About Secrecy for Active Networks.

In Proceedings of the Computer Security Foundations Workshop.

Kakkar, P., Hicks, M., Moore, J. T., and Gunter, C. A. 1999. Specifying the PLAN network-
ing programming language. In Higher Order Operational Techniques in Semantics. Electronic
Notes in Theoretical Computer Science, vol. 26. Elsevier. http://www.elsevier.nl/locate/

entcs/volume26.html.

Katabi, D. and Wroclawski, J. 2000. A framework for scalable global IP-anycast (GIA). In

SIGCOMM. 3–15.

Lawton, G. 2001. Is IPv6 Finally Gaining Ground? IEEE Computer 34, 8 (August), 11–15.

Leroy, X. 2001. The Objective Caml System, Release 3.02. Institut National de Recherche en
Informatique et Automatique (INRIA). Available at http://caml.inria.fr.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

34 · Michael Hicks et al.

Leroy, X., Remy, D., and Weis, P. 1999. Objective Caml—a General Purpose High-level Pro-

gramming Language. ERCIM News 36 (January).

Mallet, A., Chung, J. D., and Smith, J. M. 1997. Operating Systems Support for Protocol
Boosters. In HIPPARCH Workshop.

McCloghrie, K. and Rose, M. 1991. Management information base for network management
of TCP/IP-based internets: MIB-II. RFC 1213, IETF. March.

Moore, J. T. 2002. Practical active packets. Ph.D. thesis, University of Pennsylvania.

Moore, J. T., Hicks, M., and Nettles, S. 2001. Practical Programmable Packets. In Proceedings
of the Twentieth IEEE Computer and Communication Society INFOCOM Conference. IEEE,

41–50.

Morrisett, G., Crary, K., Glew, N., Grossman, D., Samuels, R., Smith, F., Walker, D.,

Weirich, S., and Zdancewic, S. 1999. TALx86: A Realistic Typed Assembly Language. In
Second Workshop on Compiler Support for System Software. Atlanta.

Morrisett, G., Walker, D., Crary, K., and Glew, N. 1999. From System F to Typed Assembly

Language. ACM Trans. Program. Lang. Syst. 21, 3 (May), 527–568.

Moy, J. 1998. OSPF version 2. RFC 2328, IETF. April.

Nygren, E. L. 1998. The Design and Implementation of a High Performance Active Network

Node. M.S. thesis, Massachusetts Institute of Technology.

Nygren, E. L., Garland, S. J., and Kaashoek, M. F. 1999. PAN: A High-Performance Active
Network Node Supporting Multiple Mobile Code Systems. In Proceedings of the 2nd Workshop
on Open Architectures and Network Programming (OPENARCH’99). 78–89.

Odersky, M. and Wadler, P. 1997. Pizza into Java: Translating theory into practice. In Pro-

ceedings of the 24th ACM Symposium on Principles of Programming Languages (POPL’97),

Paris, France. ACM, 146–159.

O’Malley, S. W. and Peterson, L. L. 1992. A dynamic network architecture. ACM Transac-
tions on Computer Systems 10, 2 (May), 110–143.

Pappalardo, D. 1996. BBN to test RSVP. Network World 13, 50 (December), 1,14.

Postel, J. 1981a. Internet control message protocol. Tech. Rep. RFC 792, IETF. September.

Postel, J. 1981b. Internet protocol. Tech. Rep. RFC 791, IETF. September.

Psounis, K. 1999. Active networks: Applications, security, safety, and architectures. IEEE Com-

munications Surveys 2, 1.

Rizzo, L. On the feasibility of software FEC. Tech. Rep. LR-970131, DEIT. Available as
http://www.iet.unipi.it/~luigi/softfec.ps.

Savage, S., Wetherall, D., Karlin, A., and Anderson, T. 2000. Practical network support
for ip traceback. In SIGCOMM’00.

Schwartz, B., Jackson, A. W., Strayer, W. T., Zhou, W., Rockwell, R. D., and Partridge,

C. 2000. Smart packets: Applying active networks to network management. ACM Transactions

on Computer Systems 18, 1 (February), 67–88.

Schwartz, B., Zhou, W., Jackson, A. W., Strayer, W. T., Rockwell, D., , and Partridge,
C. 1999. Smart packets for active networks. In Proceedings of the Second IEEE Conference on

Open Architectures and Network Programming (OPENARCH). 90–97.

Sehgal, A., Calvert, K. L., and Griffioen, J. 2002. A flexible concast-based grouping service.

In IWAN’02.

Song, S.-K., Shannon, S., Hicks, M., and Nettles, S. 2002. Evolution in Action: Using Ac-

tive Networking to Evolve Network Support for Mobility. In Fourth International Working
Conference on Active Networks (IWAN’2002).

Stoica, I., Shenker, S., and Zhang, H. 1998. Core-stateless fair queueing: A scalable architecture

to approximate fair bandwidth allocations in high speed networks. In SIGCOMM’98.

Systems, A. 1985. PostScript Language Reference Manual. Addison-Wesley.

Tennenhouse, D. L., Smith, J. M., Sincoskie, W. D., Wetherall, D. J., and Minden, G. J.

1997. A survey of active network research. IEEE Communications Magazine 35, 1 (January),

80–86.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

PLAN: A Packet Language for Active Networks · 35

Thibault, S., Consel, C., and Muller, G. 1998. Safe and efficient active network programming.

In Proceedings of the Seventeeth IEEE Symposium on Reliable Distributed Systems. 135–143.

van Renesse, R., Birman, K., Hayden, M., Vaysburd, A., and Karr, D. 1997. Building Adap-
tive Systems Using Ensemble. Technical Report TR97-1638, Cornell University. July.

Wall, D. W. 1982. Messages as Active Agents. In Proceedings, 9th Annual POPL (Albuquerque).
34–39.

Wetherall, D. 1999. Active Network Vision and Reality: Lessons from a Capsule-based System.
Operating Systems Review 34, 5 (December), 64–79.

Wetherall, D. J., Guttag, J., and Tennenhouse, D. L. 1998. ANTS: A toolkit for building

and dynamically deploying network protocols. In Proceedings of the First IEEE Conference on
Open Architectures for Signalling (OPENARCH). 117–129.

Whitaker, A. and Wetherall, D. 2002. Forwarding Without Loops in Icarus. In Proceedings of

the 5th Workshop on Open Architectures and Network Programming (OPENARCH’02). 63–75.

Zander, J. and Forchheimer, R. 1983. Softnet—An approach to higher level packet radio. In

Proceedings, AMRAD Conference. San Francisco.

Appendix: PLAN grammar

Note: This is intended to be a human-readable form of the grammar; it is not
intended to indicate precedence or associativity of operators.

program ::= def-list
def-list ::= def | def def-list
def ::= fundef | exndef | valdef

fundef ::= fun var (paramlist) : type-expr = expr
| fun var () : type-expr = expr

param ::= var : type-expr
paramlist ::= param | param paramlist
exndef ::= exception var
valdef ::= val var : type-expr = expr

type-expr ::= tuple-type-list
tuple-type-list ::= nontuple-type-list * tuple-type-list
nontuple-type-list ::= nonlist-type-exp | nonlist-type-exp list
nonlist-type-exp ::= base-type | (type-expr)

base-type ::= unit | int | char | string | bool | host | port
| key | blob | exn | dev | chunk

expr ::= value
| op-expr
| if expr then expr else expr
| raise var
| try expr handle id => expr
| let def-list in expr end
| (expr-list)

arg-list ::= expr | expr , arg-list
expr-list ::= expr | expr ; expr-list

value ::= var | true | false | () | [] | [expr-list]

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

36 · Michael Hicks et al.

| int-literal | char-literal | string-literal
| (arg-list)
| |var |(arg-list)
| |var |()

op-expr ::= id () | id (arg-list)
| unary-op expr
| expr binary-op expr
| nary-op-expr

unary-op ::= ~ | not | hd | tl | fst | snd | # int-literal | noti
| explode | implode | ord | chr

binary-op ::= / | % | ∗ | + | – | and | or | < | <= | > | >= | = | <> | :: | ^
| << | >> | xori | andi | ori

nary-op-expr ::= OnRemote (expr , expr , expr , expr)
| OnNeighbor (expr , expr , expr)
| foldr (expr , expr , expr)
| foldl (expr , expr , expr)

int-literal ::= digit | nonzero-digit digit-string
digit-string ::= digit | digit digit-string
nonzero-digit ::= [1 - 9]
digit ::= [0 - 9]

char-literal ::= ’ character ’
character ::= ~[’, \] | \\ | \n | \t | \b | \r | \’ | \”

string-literal ::= ”” | ” strchar-list ”
strchar-list ::= strchar | strchar strchar-list
strchar ::= ~[”, \] | \\ | \n | \t | \b | \r | \’ | \”

id ::= var | var . id
var ::= varstartchar | varstartchar varchar-list
varstartchar ::= [a - z, A - Z]
varchar ::= [a - z, A - Z, 0 - 9,]
varchar-list ::= varchar | varchar varchar-list

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, Date TBD.

