A Secure PLAN

Michael Hicks,Member, IEEE Angelos D. KeromytisMember, IEEE Jonathan M. Smithiellow, IEEE

Abstract—Active Networks, being programmable, promise services. In addition to basic packet delivery provided by IP,
greater flexibility than current networks. Programmability, how- pasic information services like DNS, and protocols like HTTP,
ever, may introduce safety and security risks. FTP, and SMTP are provided. Similarly, a goal of PLANet is to

This paper describes the design and implementation of a llow an r of the network to hav to basi Vi .
security architecture for the active network PLANet [1]. Se- allow any user ot the network {o have access 1o basIC Services,

curity is obtained with a two-level architecture that combines these services should naturally include some ‘activeness.” This
a functionally restricted packet language, PLAN [2], with an goal implies that some functionality, like packet delivery in

environment of general-purpose service routines governed by the current Internet, should not mandate authorization. There
trust management [3]. In particular, a technique is used which g 3 nragmatic reason to make the same choice: the converse

expands or contracts a packet'’s service environment based on its assumbtion. in whickall packetsrequire broper authorization
level of privilege, termed namespace-based security P ! P q prop

The design and implementation of an active-network firewall before they can be executed, can be extremely costly. This
and virtual private network is used as an application of the is because authorization requirasthentication each packet
security architecture. Measurements of the system show that the must be associated with a principal that is relevant to the autho-
addition of the firewall imposes an approximately 34% latency rization policy. Packet-level authentication uses cryptography
B;irkrg:.d and as litle as a 6.7% space overhead to INCOMING 44 ensure that a packet's identity is not spoofed and its contents

have not been tampered with, and cryptographic operations,
particularly public-key operations, can be quite expensive
relative to normal packet processing. For example, adding a
30% overhead to packet processing (based on measurements
I. INTRODUCTION of software-based cryptography that we report at the end of the

CTIVE Networks [4] offer the ability to program the paper) on each node would severely degrade the performance
of the network.

network on a per-router, per-user, or even per-packet .
basis. Unfortunately, this added programmability threatep PLANet was designed so that the programs at the packet

S . .
. ; . ?vel are the lowest common denominator with respect to
the security of the system by allowing a wider range o

possible attacks. Any feasible Active Network architecturseecumy' Thqt 1S, aII_packet programs by .th.e .mselves (without
therefore requires strong security guarantees. We would | %Ils to service routines) are safe by definition thanks to the

. : rmal properties of our packet language, PLAN. This is the
these guarantees to come at the lowest possible price to the :
o - same model as in the IP Internet—all IP packets are acceptable
flexibility, performance, and usability of the system.

At the University of Pennsylvania, we have developeay default and need not be authorized inside the network.

an Active Internetwork called PLANet [1]. PLANet's node ecurity, therefore, boils down to the services: in particular, a
architecture consists of two levels: tlp:ackét leveland the packet remains safe as long as it only makes calls to service

. . routines that are themselves safe; therefore, we must ask the
service level All programs at the packet level reside in the T . . y .
uestion “which services can be considered safe?” While for

messages, or packets, that are sent between the nOdeso(r)ne services the answer is clear (for example, determinin
the system. These programs are written in PLAN, the Paclﬁ 1 pe 9

Language for Active Networks [2]. Packet programs are simplee address of the current node should be safe), service safety
by nature, and serve to ‘glue’ together service level program

S ultimately a matter of local policy. For example, a router in
just as a shell-script glues together calls to more complicate

ﬁ(i center of the network may allow very few service routines,
; . Wwhile an end-host might provide a more liberal execution
utilities. In contrast, service level programs (®ervice rou-

tineg, reside at each node and are invoked by PLAN prograne]ngonment.. Mo_reO_/er, a Services safety in general is likely
) . : not absolute: using it might be acceptable for some packets
evaluating there. Service routines are general-purpose and ma .
: : not for others. For example, a properly authorized network
be dynamically loaded across the network [5]. This genera ,
) . . management packet should be allowed to update a node’s
architecture is shared by many so-called active packet systems

ncludng ANTS (B, SNAP [0, PAN 10] and ers. (110 0% WilE S e et smou e
A central goal of PLANet is to provide Internet-like service paper p g P

. : Security architecture in PLANet. We focus on the task of
as a baseline, augmented by active capabilities. The InterBe . Lo

) . diding a secure service infrastructure based on the foun-
allows any user with a network connection to have some bag

Index Terms— Active networks, security, active packets, PLAN,
programming languages, active firewall.

(o . . .
ation of a safe packet language, in this case PLAN. While
This is an extended version of the paper that appeared at the DARPA ActREl architecture was developed specmcally for PLANet, we

Networks Conference and Exposition (DANCE), May 2002. believe it is more broadly applicable. In particular, it will apply
Manuscript received August 2002; revised March 2003. to any active network infrastructure that manages general-
M. Hicks is with the University of Maryland, College Park. d id . . bi . ith f
A. D. Keromytis is with Columbia University. purpose, node-resident services in combination with safe

J. M. Smith is with the University of Pennsylvania. (whether active or passive) packets. Our approach to service

security is also relevant to extensible systems, like some welPassive networks are vulnerable to these same attacks; active
servers and operating systems. networks simply expand the ‘vocabulary’ of an attacker. For
We begin by presenting a description of our architecture, axample, an attacker can mount a denial-of-service attack
ter describing the attacks it protects against. We then follow oper the Internet by attempting to overload a web server
with a description of the implementation of this architecture iwith a constant flow of HTTP GET requests. If the attacker
PLANet. After a discussion of PLAN and its relevant charadias enough resources (such as a coordinated fleet of ‘drone’
teristics, we present possible methods of security managemeaichines to make requests), it can overwhelm the ability of
and the ones we have chosen to implemantnespace-basedthe server to perform useful work. An active network can
securitywith policy-based parameterizatiolVe describe how make such attacks easier (particularly when, like PLANet, it
we enable authentication, and manage relevant security infprevides active packets) because it increases the maximum
mation, such as which service routines are available to whiamount of resources required to process a single packet, and
principals, using QCM (Query Certificate Manager [11]). Wéhus the attacker needs fewer resources to overwhelm its
then demonstrate how we have used our system to implemtrget. The goal of PLANet’s security architecture is to reduce
two applications: a simple active firewall, and a virtual privatthe effect and increase the difficulty of mounting attacks,
network for active packets. Finally, we present some relatgdrticularly denial-of-service attacks, while still preserving
work and conclude. the utility of the network’s active capabilities. At this point,
auditing techniques can be used to discover the source of an
attacker, such as IP traceback [14], [15] and pushback [12].

)) Moreover, such techniques are more easily implemented and
To evaluate the effectiveness of any security system, Wepjoyed in an active setting.

must consider the threats it defends against. Therefore, we
begin by describing the behaviors that threaten an actiée

network, and then describe our two-level security architecture Architecture)) _ N
designed to secure against them. As already described in Section I, we partition the problem

of defending against these attacks into the packet level and
the service level, using different mechanisms at each level. At
A. Threat Model the packet level, security is obtained ¥imctional restriction
The two major threats to any active networking systethe limited nature of the PLAN language prevents attacks from
are to thepublic resourceof the system: the CPU, memory,being formulated, particularly denial-of-service and protection
and network; and to theontentsof the system: the packetsattacks. We justify this claim in the next section.
themselves and the information stored on routers. These threatAt the service level, we make use of an authorization system
imply two forms of attack: to govern access to services. While some services may be

. Denial-of-Service Because of the greater expressibiliponsidered usable by all (we call these the ‘core’ services),
of active network programs (compared to traditiondh@ny services that are necessary for the operation of the active
passive packet headers), there is greater potential for i€ should not be made available to all packets; an example
misuse of the system’s public resources, thus denyiM‘ﬁ-’Uld be network management functions. Our architecture
service to other programs. For general programs, tRasociates with each principah set of service routines and
public resources should be fairly apportioned, while thof@licies that are allowed at its level of privilege. The policies
with more privilege could gain additional latitude. We2® enforced and the routines are made available after the
address only active node-specific denial-of-service (Do8 er has peen successfully authorized. This architecture is
considerations; the much harder network DoS problem |&/Strated in Figure 1. _
better addressed through other means (e.g., [12], [13]). This scheme provides access control for system services.

« Protection. Programs should be protected from intertlowever, once access to these resources is obtained, finer-
ference by other programs. In particular, one prograffainéd management may be required. For example, more
should not be able to read or write data private to anothéan just say that a packet may or may not have access to

program without authorization, either while the packel service, we might say that a service is accessible but only
program is in transit or when it is running (i.e., no packethen called with certain parameters. We flesh out the details of

or program snooping). This property implies prograﬁhis architecture in the next two sections. We describe PLAN'’s
isolation. security properties in the next section, and then present our

In responding to these attacks with a security system, thére /'¢€ management methodology.

may be attacks on the security system itself. As mentioned,
we would like to allot greater privilege to some packets, such
as those associated with a node’s administrator. Therefore, it iLAN [2] is a small functional language resembling
important that these packets be properly authenticated, and M4t [16], [17]. It differs most importantly from other func-
no impersonation aspoofingattacks be possible. Similarly, thetional languages in that it provides language-level support,
authentication and authorization mechanisms should also bg i

A principal may be a network node or a user. Each principal holds a

robust agains_teplay attacks, in Which valid, but old message%ublic/private key pair, and is identified (at least for security purposes) by its
are replayed in an attempt to gain illegal access. public key.

II. OVERVIEW OF SECUREPLAN

Ill. PACKET SECURITY VIA PLAN

fun reply(payload) =
print ("Success")

fun ping(payload) =
OnRemote(|reply|(payload),

AL L N getSource (), getRB (),
: L defaultRoute)

[service installation }

T o Fig. 2. Ping in PLAN. Service invocations are in italics.

‘| routing
OnRemote(|f|(1+3), host ,...);

OnRemote takes two additional arguments (the in the
above example):

« A resource bounccount, which is greater thad. Each
packet has associated with it a resource bound that is
decremented on each hop, as with the IP “Time To
Live” (TTL) counter. When a new packet is created
with OnRemote, its resource bound is initialized by
subtracting the specified amount from the parent packet
program.

Do « A routing function This is the name of the service that

T e adelbadbaibaiat NN is to provide hop-by-hop lookups to route the packet
S L to its final destination. A variant o®BnRemote, called

OnNeighbor , does not require a routing function, but

Fig. 1. PLANet's security architecture. The contents of the dashed box are restricts spawned packets to execute only on immediately

available to all incoming packets, while the dotted boxes encapsulate service gdjacent nodes. These packets are therefore responsible
packages available only to select users. Services may be further restricted by for their own routing

what parameters they can be called with.
Remote evaluation wittOnRemote is best-effort and asyn-
chronous: theOnRemote call returns immediately and does
using the primitiveOnRemote among others, for evaluating not wait for any result from the spawned packet.
an expression at a remote node. Invoki@gRemote results p) AN provides the ability to manipulate programs as data,
in a newly spawned packet that is sent to and evaluated\&{ 5 construct known as ehunk (short for ‘code hunk’). A
the remote location. PLAN was designed as the foundation gf ;nk may be thought of as a function that is waiting to be
PLANet's security, with the intention that all PLAN programssyecyted. In PLAN, chunks are first-class—they can be passed
can be considered safe. In this section we introduce PLAN 5rquments to functions and stored in variables—and consist

core services

PLAN packet

and describe the language’s security properties. internally of some PLAN code, a function name, and a list of
_ values to be used as arguments during the application. A chunk
A. PLAN: The Packet Language for Active Networks is typically used as an argument@mRemote to specify some

PLAN supports standard programming features, such esde to evaluate remotely. The syntiiX4) in the above
functions and arithmetic, and features common to functionakample is used to define a chunk literal; when this chunk is
programming, like lists and the list iteratdold (intuitively, evaluated, the functioh will be executed with the argument
fold executes a given functiofi for each element of a given4. A chunk can also be evaluated manually by passing it to
list, accumulating a result as it goes). Two notable restrictiotie eval service, which resolves the function name with the
are that functions may not be recursive and iteration mustrrent environment, performs the application, and returns the
be bounded. PLAN programs call service routines present tgsult. The codeval(|f|(4)) is thus equivalent to simply
the executing node using normal function call syntax. Thes#wvoking f(4) . Chunks play an important role in service
services are implemented in a full programming language susgcurity, as we discuss in Section V.
as C, Java [18], Cyclone [19], ML [16], or any other language. Figure 2 shows how to prograping in PLAN. This pro-

PLAN'’s OnRemote primitive is used to direct a computa-gram is executed by packaging it into a packet and sending it to
tion to take place on a different node, and has the effect ofir ping target, indicating it should evaluate the funcimg
creating a new packet that is sent to that node to initiate thpon arrival. This results in the chumdeply|(payload)
computation. The computation is specified as a function caking created and sent back to the source of the original
to perform remotely, along with or more arguments that arepacket, as determined via thlgetSource service routine.
evaluated locally. The following example executes the functidrhe call togetRB returns all of the current packet's resource
f at the nodehost with the argument; the arithmeticl +3 bound, which is here donated to the new packet. The new
is performed by the invoking node. packet is routed using thdefaultRoute routing service.

When the return packet evaluates at the source, it prints tfeJava. Systems using language-based protection typically
message “success.” restrict sharing, at some performance cost, to support safe
termination [22], [27]. Operating systems have traditionally
segregated processes into distinct address spaces, at a sig-
nificant performance penalty to interprocess communication,
PLAN was designed so that all PLAN programs by thei§o that they can be killed abruptly without worry of shared
nature are imperViOUS to the attacks we described above. Thﬁources_ In PLANet we require neither mechanism because

is, PLAN programs (which do not call service routines, or onlyje are guaranteed that packet programs will terminate on their
call ‘safe’ ones) should not be able to mount denial-of-serviggyn.

attacks nor should they be able to interfere with other packets
or node-resident code and/or data. This is achieved in thr8e R _
ways: . Resource Bounding
. Strong Typing. In weakly-typed languages, like C, se- While guaranteed termination is an important property, to
curity restrictions can be overcome by, for exammé’;}dequately _defend against denial-of-service attacks_ we must
using unsafe casts to change integers into pointers, %E;engthen it to bound the resources consumed prior to ter-
by exploiting unchecked array accesses to force buff nation. The folloyvmg property applies to IP packets, and
overflows. PLAN prevents such protection attacks byPuld well be considered for active packets:
enforcing strong typing, as is done in languages like Java, The amounts of bandwidth, memory, and CPU cycles
ML, and Modula-3. that a single packet can cause to be consumed
« Limited expressibility. PLAN is not a general-purpose ~ should belinearly relatedto the initial size of
language, but is resource- and expression-limited in order the packet and to some resource bound(s) initially
to prevent CPU and memory denial-of-service attacks. In Present in the packet.
particular, all PLAN programs are guaranteed to termBuch a property is useful for active networks because it directly
naté&, since PLAN does not provide a means to expresslates a router’s resource usage to the number and size of the
non-fixed-length iteration or recursion. In addition, PLANdackets it processes. For example, it can know the maximum
does not provide means for its programs to directlgmount of memory needed to execute the packet, based on
communicate, meaning that one program cannot direcitg size. If a router is experiencing overload, it can decide to
access or affect another (communication is possible indirop packets based solely on their maximum possible resource
rectly through services). usage (based on their size), without having to partially evaluate
« Packet Counting While PLAN'’s language restrictions them or examine their contents.
can bound CPU and memory resource usage on a singl®f course, even a linear relationship is unhelpful if the con-
node, they are not sufficient in restricting usenetwork stant of proportionality is large. As we discussed earlier, the
resources. For this purpose, PLAN packets have-a constant of proportionality for routing IP packets is very small,
source boundcounter which is decremented each time which requires an attacker to amass substantial resources to
packet is sent. Therefore, the number of hops that a PLANount a denial-of-service attack by flooding. We would prefer
program and any of its progeny may take is limited bgt the least to retain this state of the affairs for an active
the initial value of this counter, thus preventing denialretwork.
of-service attacks on the network infrastructure. To satisfy a linearity property in PLAN, we must rule

The first mechanism is widely understood in both the actit programs like the following one, which executes in time
networks community and the extensible operating systei@éPonential in its length.
and mobile code communities [6], [9], [20]-[24]. It has the,, 1

; . - : un f1() = ()
nice benefit that capability-style protection can be enforceg, fo 10 1

. : . n f2() = (f1(); f10)

by the language, dramatically reducing protection costs. Thg, f3() (f20; f20)
latter two mechanisms have come into common usage f40) = (f30): f3()
p_acket-bas_ed active networ_k schemes [6]_, [9], [25], but 'F'?Gn exponential() = (f4(); f4()
first technique of the two is less appreciated. Most active
network systems of which we are aware assume that a genefdlis program defines five functions (that do nothing), but
purpose, type-safe language combined with resource counf&@uires a total oB1 function calls to completely evaluate
is sufficient; misbehaving threads are simply killed when thegxponential ~ (or 2™ — 1 calls, wheren is the number of
exceed their resource limits. function definitions). We prevent such programs by requiring

However, abrupt termination is both potentially unsoundfat for any PLAN functionf, which calls some number
and quite costly [26]. In particular, without careful engineer@f other PLAN functionsg;...g,, the sum total of PLAN
ing, abruptly terminating a packet may leave the system in ##ctions called byg...g, is at mostl. Moreover, we place
inconsistent state, since packets may be manipulating shafegonstant bound on the length of lists to be iterated over
resources when they are killed. This problem led Sun yyith fold ; each multiple ot decrements one resource bound

deprecate th&hread.kill routine present in early versions{fom the packet.
More recently, a follow-on to PLAN called SNAP [9]

2pPLAN programs terminate as long as the services called also terminathas been proposed, which is an assembly-like language for

B. PLAN's Security Properties

packet programming. SNAP programs meet the linear resource
usage property with a small constant of proportionality. For
example, SNAP instructions can allocate at nstords per
instruction. We have developed a compiler to compile PLAN
programs into SNAP programs, which essentially imposes the
restrictions we have described above [28]. Indeed, the security
architecture that we propose here will work just as well with
SNAP or with any other packet language that prevents the
attacks that we have described above.

However, while we feel that language-based support for
achieving resource bounds is a promising approach, more work
is needed to better understand the tradeoff between resource

trustworthiness decreases with complexity, since the
likelihood of both implementation and user error is
higher.

It should be possible to implement enforcement
mechanisms without relying on the existence of a
widely-available infrastructure. That is, each node
should be able tanake decisions locallybased on
its own policy and/or credentials that a user program
might present.

Security mechanisms mustaleto support increas-
ing numbers of different applications, users, admin-
istrative entities, and their trust relations. Note that

the previous requirement for decentralization should

improve scalability.
As we have described it, the safety of a packet program is | P fth Y . b b |
predicated on the safety of the services it calls. If a service ‘Jj\q]_genera, many of these requirements can be met by employ-

lows a program to, for example, perform unbounded iteratiofd & trust management systef8]. In a trust management

then denial-of-service attacks can be more easily launched. tl%?ttem’ ea_chl usef, qurlnglpal, tlr?' a?3|gtmled SIOThe Ieyel .Of |
this reason, it is critical that a service management system,f)lés (or privilege). Based on this trust level, the principa

in place. We discuss our approach, among others, of using tﬁ; ermitted to perform certain actions, and may potentially

management to manage namespaces in the following secti ‘egate t_hose actions to _other_ principals. The n_ovelty of the
approach is that trust relationships are managed independently

of the particular actions that an application might perform.
i) _Instead, the relationships between principals and the actions
Because of their general-purpose nature, service routingsy may perform are specified in a separate policy, expressed
may perform actions which, if exploited, could be used i@ 3 gpecial policy language. On each action that requires
mount an attack. A radical solution to this problem would bgihorization, the program can invoke the trust management
to preventany service routine from being installed that couldyystem to determine if the action is authorized for the principal
potentially harm the node in the ways described in Section |l question. If so, the program can invoke the corresponding
A. However, this solution would rule out many useful ServiCqction, perhaps with some additional parameters provided by
routines. Instead, we wish to allow the inclusion of potentially,q tryst management system in response to the query.
harqul service routines—for example, netwprk managemgntTypica| trust management systems provide means for up-
operations—that should only be made available to certaping |ocal policies, for distributing policies across the net-
trustedusers. work, and for using cryptographically-sealed credentials to
assert trust relationships. In particular, cryptography is used
A. Trust Management to authenticate the principal associated with a message before

Given our loose goal of allowing only trusted programs tée local policy is checked for that principal.
use potentially unsafe services, it follows we must define aApplying a trust management system to PLANet is straight-
policy that relates trusted programs to unsafe service routirfegwvard. Each PLANet node uses a policy manager from the
and a means to enforce this policy. We can expand on tfigst management system to manage its local policy. When a

observation to arrive at the following requirements for outinning PLAN program wishes to invoke a protected service
setting: routine, the principal associated with the packet is authen-
« Security policies: tic?tedt,) anhd thelloperation is I(;hg(;]ked agafin.slt thhe appropriate
— Policies should bemodifiable as needed, by the policy. y the policy manager. .e't er step falls, the operat!o.n
proper administrative entities, while the system ils denied. The interesting questions are how to choose policies
oerating. This is particular] ' important for activeﬁn'at admit useful services to the widest number of principals,
ngtworkg as both Eew userg ang new services tar}d how to ensure scalability and good performance through
' qge choice of enforcement mechanisms. We consider the

zcgflt(ijn?g governed by the security policy will appea(:Euestion of policy and mechanism for authorization below;

_ Policy abstractions should flexibleso as to address details about our particular implementation of authentication

o .and authorization are presented in Section V.
current as well as future application needs. Again,

this requirement derives from the inherent dynami-
cism of an active network, both in terms of its userB. Policy

and services. To start, we must consider what kind of policies we would
« Enforcement mechanisms: like to express. As mentioned, we essentially want to encode
— To minimize the size of ourtrusted computing our policy as a mapping between principals and services.
base enforcement mechanisms should be simple @onceptually, each principal has associated with it a list of
understand and employ [29]. That is, in generakervices that it can access, i.e., a per-principal access control

security and flexibility in unauthorized packets.

IV. SERVICE SECURITY VIA TRUSTMANAGEMENT

list (ACL). Furthermore, we want to refine this mapping taise it most effectively. In particular, we must decide when
specify not onlywhethera service routine may be invoked, butauthentication and authorization will take place, so as to
how it may be used. For example,saft stateservice which maximize flexibility and performance.

allows packets to store state on routers temporarily mightThere is a space of possible decisions, bounded roughly by
apportion different amounts of space to different principalghe following two approaches:

We call such per-principal differences in service uspgkcy-
based parameterizatiorin general, because different services
will have different usage policies, we permit services to define
service-specific policies based on generic service parameters;
we present more detail on policy-based parameterization in
Section VI. Finally, we would like to manage delegation
policies with regard to these mappings. For example, we might
specify that the services in setmay be accessed not only by
principal p, but also by those principals authorized jay

Encoded naively, a per-principal ACL would not scale as the
number of services and principals grows large. To improve
scalability, we change our specification of the ACL in two
ways. First, we assume a set of core services on the node. The
ACL then indicates what services, above the core services, are
available to certain principals. We also find it convenient to
indicate which services should Iseibtractedfrom the default
environment for a particular principal; this will be motivated in
Section VII-A. Second, rather than map individual principals
to lists of services, we define sets of principals and sets of
services, and indicate mappings between them. This idea is
similar to the use of group permissions in the Unix filesystem:
rather than store a list of user id’s with each i-node, a single
group id is stored instead, which indirectly refers to a set of
user id’s.

By using a suitably expressive trust management infrastruc-
ture, we should be able to encode this set-based policy, and
then rely on the trust management infrastructure to provide
delegation, admit the possibility of updating the policy, and
to administer it in a distributed, decentralized manner. We
describe the trust management system we use in our imple-
mentation, the Query Certificate Manager (QCM), and the way
that we formulate our policies in Section VI.

Beyond this service-based policy, we might like to specify
more general resource usage constraints, such as bounding
CPU and memory use. While we do not consider suchWe employ the middle ground of these two approaches,
constraints in this paper, they have been considered in watking two mechanisms. First, before it wishes to access a
we have done elsewhere. In particular, we have found tH¥ivileged service, a packet authenticates itself with the node.
resource-based policies can be achieved with assistance fidnthis time, the policy is checked, and those services that
lower-level system software, as in the SQoSH [30] arme paCket is authorized (Unauthorized) to invoke are added to
RCANE [31] systems, which share a software base used (gy/btracted from) the packet's current service symbol table
implement many PLAN services. SQoSH uses trust mafihich at the outset of execution contains just the core
agement techniques to control a virtual-clock based barfgrvices). From then on, if a packet attempts to invoke a
width allocation system, and RCANE uses trust manageméﬁirViCE for which it is not authorized, that service will not be in
techniques to control a more general resource multiplexitfe Symbol table and thus access will be denied. Since PLAN
scheme. The scheme was implemented both by changedstgtrongly typed and its interpreter looks up services on an as-
language runtimes (unnecessary with appropriate use of ®§eded basis, programs are incapable of invoking code outside
scheme) and by use of a node operating system, Nemesis [8#]this updated table. We call this approawmespace-based
to provide resource guarantees. security

Second, we allow those services which may require policy-
based parameterization to query the policy manager as neces-
sary during their execution. For example, the soft state service

While the policy manager will handle the issues relatinmentioned above would query the local policy on each attempt
to policy and trust management, we must still decide how to store new soft state, thereby determining whether the current

1) Perform policy checks at each service-routine invoca-
tion. Each time a service routine is called from a PLAN
program, a check is made to see if the ‘current principal’
is allowed to access the service. If this is the first such
check, then the principal must be authenticated. If either
the authentication or authorization check fails, the action
fails and an exception is raised. In effect, this is a
variation of the Unix system-call mechanism.

The benefit of this approach is its flexibility. In particu-
lar, policies can take advantage of dynamic information,
such as the values of arguments to the service functions.
The drawback is thatll service calls are subject to

a runtime checkat each invocation This is because
the set of services subject to policy, and the policies
themselves, might change over time. Therefore, service
routines in general need a ‘hook’ for checking the most
recent policy. We can mitigate some of this cost by
limiting the routines that might be subject to policy.
This might be applicable to the set of standard, core
services, or to services that do not require policy-based
parameterization.

2) Perform all checks once-and-for-all, before the packet
executes.That is, all service calls in the packet are
authorized before the packet is allowed to execute. The
advantage of this approach is that once authorized, the
packet can run without dynamic checks. On the other
hand, there are two drawbacks. First, policies based
on information that is not known at the time of the
early check are precluded, reducing flexibility. Second,
the static check must consider all possible execution
paths, even ones that may not be executed. As a result,
one static check could be more costly than a series of
dynamic ones.

C. Mechanism

principal was allowed to allocate additional storage. result of this function is verifiable by anyone knowing the

There are a number of advantages to this approach. Firsirresponding public key. A valid signature assures the verifier
only those packets that use privileged (non-core) services mtigit, modulo bad key management practices on the part of the
pay for authentication and authorization; unauthenticated pigner or some break-through in forgery, the signed object was
grams may run without any performance penalty. This mimiésdeed signed by the signer’s private key and that it has not
the model of the Internet, which allows normal packets to floween modified since that time.
without authentication, while specialized packets, like router Public key certificates (e.g., X.509 [39]) are statements
control protocol messages and network management messagesle by a principal (as identified by a public key) about
need to be authenticated. Second, privileged services that cauypther principal (also identified by a public key). Public key
appear in the policy as access/deny (i.e., they are not subjecatedtificates are cryptographically signed, such that anyone can
policy-based parameterization), do not require a per-invocatieerify their integrity, i.e., the fact that they have not been
check. Finally, services whose usage depends on dynammodified since the signature was created. They are typically
information (i.e., the arguments of the invocation, or somgsed to bind a public key to some form of identity, such as
other system state) can specify their own policies and invoke IP address, a DNS name, an email address, etc.
the policy manager as needed.

As we have described them, policies only apply to PLAM. Authenticating Chunks
service routine calls, not calls between service routines. How-As described in Section Ill-A, a chunk encapsulates some
ever, this functionality can be added, as we demonstratedRnAN code, and can be executed remotely ushiRemote
work on a related system [33] built on top of ALIEN [34]. Hereor locally using eval . We have added a service called
we used Objective Caml [16] as our service language, aadthEval which takes as arguments a chunk, a digital
extended its support for namespace-based security (referreditmature, and a public key. Here, the signature is the result
asmodule thinningoy Rouaix [35]) to support our policies. of signing the binary representation of the provided chunk

In the next two sections, we describe the mechanisms u{e%ng the private key that pairs with the provided public

by PLAN programs for authentication and authorization. €Y. AthEvaI venfles the _S|gnature, and .'f SU.CCGS.SfUI’ the
chunk is evaluated; otherwise, an exception is raised. The

V. IMPLEMENTING AUTHENTICATION authenticated principal is associated with its chunk during

. : .evaluation. B r PLAN interpreter evaluat h
Before a PLAN program may invoke a trusted service, ltes auatio ecause ou erpreter evajuates eac

associated principal must be determined; this is the rocesspa{:ket in its own thread, this can be done by associating the
red p P o ' € proc Pmcipal with that thread’s identifier. Services can determine
authentication. Authentication in open networks is typicall

done in a public-key setting by verifying a digital signature in e ‘current principal,’ perhaps to query a service-specific

the context of some communication (e.g., a packet). In PLAIQOIICy’ by checking this mapping. Because a callers thread

one obvious link between communication and authenticatiloorhentlfler cannot be forged, and because the authentication

is the chunk. Before we describe chunk authentication sgrvice is itself a separate service, this provides a safe way
. s . - . on. WS track a principal without worry that some malicious service
give an overview of the basic principles behind public k

. . il change the associated principal after the authentication

cryptography and digital signatures. phase.

There are two advantages to this approach. One is that a
_ _ _ o principal signs exactly the piece of code it wants to execute,

A cryptographic algorithm is “symmetric” if the same keyang may only have extra privilege while executing that piece of
is used to encrypt and decrypt (e.g., DES [36]). Public keypge. Second, only those programs that require authorization
systems use two different keys: a private k&, ivate, aMd myst pay the extra time and space overheads.
a public key, Kpupiic, where D Bk (M)) = M. But the approach has three problems. The first is that
That is, a message is encrypted by principal’s public key a@ge authentication performed heredse-way authentication
then decrypted by its private key. Examples of public keyhile the node authenticates the principal, the principal never
cryptographic systems are RSA [37] and DSA [38]. authenticates the node. This could be a problem if a program

Public key cryptographic systems have a significant ag diverted from its intended destination and invoked on a
vantage over symmetric systems in that two principals C@fifferent node. The second problem is that there is nothing
exchange a message, or verify the validity of a digital objeqjuarding against replay attacks. Finally, public key operations
provided they have acquired the peer’s public key in somge notoriously slow. We address these problems by using an
trusted manner, without need to engage in some real-tigggitional authentication protocol developed as part of work
exchange. In contrast to symmetric key systems, where e SANE (Secure Active Network Environment) [31], [40].

principals must exchange keys in a confidential manner, publige priefly describe SANE next, and describe how its protocol
keys do not need to be confidential. is implemented in PLANet.

Digital signatures use a public key system to bind an object
to a public/private key pair. To sign the object, the signel. SANE
computes a function of the object and the privateké&he

A. Public Key Cryptography and Authentication

private (

A key goal of SANE is to enable a sphere of trust among
SUsually a “summary” of the object is signed, computed through ¥&rious nodes and/or applications across a distributed, poten-
cryptographic one-way hash function. tially untrusted infrastructure. To achieve this, SANE defines

a novel cryptographic authentication protocol, which allows ainitiator responder
principal and a node to authenticate each other and generate a
shared secreaind an identifier for that secret, namé&Pl” .

Once the protocol is completed, parties can use the shared

secret to authenticate via HMAC-SHAL1 [41] digital signatures, IDitiator Diffie~Hellman pupije value

in a way similar to that used in the IPsec [42] protocols. \
To prevent replay, each principal associates a monotonically ' blic value
increasing counter with the shared secret, also included in ResponderDifﬁe—Hellmanpll

every transmitted message. To deal with out-of-order delivery, N
we use a sliding-window scheme, again similar to the scheme B
used in IPsec. The additional state required is minimal: an Initiator RS A

. : . signature and certificate(s)
integer keeping track of the largest sequence number received, \

and a 64-bit mask showing which of the previous 64 packets ficate(s)
have been received (the window size is configurable; our Responder RSA signature and cet

choice of 64 as the default value was based on IPsec). We N
reflect the use of HMAC-SHA1 in PLAN by altering the
signature ofwuthEval to take a chunk and a tuple consisting

of the SPI, the counter, and the HMAC signature over all %f . .
. . . ig. 3. 4-message Station to Station key agreement protocol.
the previously mentioned items.

The SANE protocol is essentially a variation of the Station-initiator responder
to-Station protocol (StS) [43], which builds on top of the
Diffie-Hellman Key Agreement Protocol (DH) [44]; these
protocols permit two parties to establish a shared secret over
an untrusted communication medium. We describe these proto- Initiator Diffye-

_ \ =PIt Hellman public vajye
cols briefly below, and then describe the SANE authentication ’

protocol and how it is implemented in PLANet. blic value
I o . iffie—Hellman public
The DH algorithm is based on the difficulty of calculating Responder DHE™ ' 4 certificate(s)

jgnatur
discrete logarithms in a finite field. Each participant agrees to AW
two primes,g and p, such thatg is primitive mod p. These
values do not need to be protected in order to ensure the Initiator RSA signature and certifi
strength of the system, and therefore can be public values. ﬂ
Each participant then generates a secret large random integer.
Bob generates: as his large random integer and computes
X = ¢® mod p. He then sends(to Alice. Alice generates
y as her large random integer and computes- ¢¥ mod p. Fig. 4. 3-message Station to Station key agreement protocol.
She then send¥” to Bob. Bob and Alice can now each
compute a shared secrét, by computingk = Y* mod p
andk = X¥ mod p, respectively. The valueX, Y, g, andp D. The SANE Authentication Protocol in PLANet
can all be made public without loss of security.

The SANE authentication protocol is a variation of the

Unfortunately, the Diffie-Hellman algorithm is susceptiblStS protocol. Here we describe the protocol in terms of
to a man-in-the-middle attack. The attack can be defeatdd, implementation in PLANet, assuming that an application
however, by combining Diffie-Hellman with a public keywishes to mutually authenticate with an active node. Analysis
algorithm such as DSA or RSA as proposed in the Stati@fd further details can be found in the SANE papers [31],
to Station Protocol. [40], and the PLAN documentation [47].

1) To start, the user application requests authentication
with a remote PLAN node. The application sends a
PLAN program to the node with which it wants to
authenticate. This program invokes the PLAN service
DHmessageOnewith two arguments: aertificate and

a signature of that certificate using the user’s pub-
lic/private key pair. In the current implementation, we
use DSA [38] keys for authentication. All certificates
used during the exchange are PLAN tufledich begin

In its simplest form, shown in Figure 3, StS consists of a
Diffie-Hellman exchange, followed by a public key signature
authentication step, typically using the RSA algorithm in
conjunction with some public-key certificate scheme such as
X.509 [39]. In most implementations, the second message is
used to piggy-back the responder’s authentication information,
resulting in a 3-message protocol, shown in Figure 4. Other
forms of authentication may be used instead of public key
signatures (e.g., Kerberos [45] tickets, or preshared secrets),
but these are typically applicable in more constrained environ-4A tuple is simply a aggregate datastructure, iketact in C. A tuple
ments. The short version of the protocol has been proven to, ¥ '

o) - & contains something of tydat and something of typéioat would
the most efficient [46] in terms of messages and computatidiave typeint x float

2)

3)

4)

with the following four fields: Each principal in the exchange now has a secret known only

« the signer’s public key to the other principal to be used for signing future commu-
« a random number (aookid nications. In our implementation, the secret is stored in two
. the time at which certificate is valid tables; one table indexed by the peer’s address (which includes
« the time at which certificate expires other information about the protocol), and another indexed by

The latter three of the above fields are are essentiaﬁypl' The former table may be used by the application when it

: nts to send a message to the peer, the latter table is used to
used to prevent replay attacks. Note that the duration I%f‘)k up the SPI found in a signed chunk so that the signature

time fields implies the level of synchronization between "
the two nodes’ clocks. The remaining fields of the firgt2" be ver|f|eq. . . _
certificate are: Nc_)te .that this aqthenncatlon exchange is not limited to an
) application contacting a node—nodes may contact other nodes
« the sender'sxchange id and applications may contact other applications. The latter
« the receivers address is in common practice in the Internet today, and the former
» the sender’s address may be used, for example, to establish trust relations between
The exchange id is generated at the sender, and is us€éhinistrative domains.
to identify this particular protocol exchange. At the
completion of the protocol it will be used to establish
the SPL described later. For a node, the address is
represented as a PLAMost while an application’s As our policy manager, we have chosen to use the Query
address is of typéost x port. Certificate Manager (QCM) [11], which provides comprehen-
When the node receives the message, it verifies thige security credential location and retrieval services for set-
signature on the certificate with the certificate signerisased policies. While in this paper we are making use of QCM,
key. It then makes sure the certificate is active and hasr architecture is designed so that other policy managers can
not expired, and that the receiver’'s address is the currdr@ used instead. In particular, we have used the KeyNote [48]
node. trust-management system in related work [33]. We begin by
If the current node wishes to negotiate with the senddriefly describing QCM, and then explain how we encode our
it creates a bit of state to keep track of the exchanggecurity policies as QCM policies.
It stores the sender's exchange id, calculates its own
exchange id, and additionally stores the sender’s address
and public key. It also calculates its local portion ofA" CM
the shared secret and the “public” value of this secret. According to the QCM website

The response certificate includes both exchange id’s, A Query Certificate Manager (QCM) is a server used
the public value, the application’s public key, and both for the authenticated distribution of sensitive infor-
addresses. mation over an insecure network. A QCM server
Since the response message is being sent to an appli- acts like a secure, distributed database: it queries
cation, rather than a node, it is packaged as a tuple, remote QCM servers to answer local queries about
labeled by a string “DHmessageTwo,” to be delivered to gjstributed data, and ensures the authenticity of the
the application. This tuple also contains the certificate y5t5 by cryptographic means. Moreover, QCM can
and its signature. acceptdigitally-signed certificatesssued by remote
The application verifies the signature, looks up the servers. When such certificates are submitted along
exchange id to find the information stored about this \yith the local query, queries to the remote servers
exchange, and verifies that it is all correct. It then 5.6 short-circuited. The management of queries and
calculates its secret and corresponding public value, then .grtificates is completely automatic and transparent
combines it with the value in the message to produce g the user. Applications such as directory services,
the shared secret. The SPI identifying the secret is then public key distribution, and distributed access con-
calculated based on the two exchange id's. This SPl | Jists are directly programmable in QCM, and
is used to identify the secret in later messages which QCM has a formal semantics and correctness guar-
have been signed using the secret. The application’s gptees.

public vel1lue. IS mcluded N a message back to .the QCM manages data organized in sets, which can be built
node which is essentially a mirror of the message just

i . : . : up from constants, like strings, integers, and keys, and from
received. As described earlier, this third message |§1 . .
. ._other sets, using set union. For example, a QCM server could
actually a PLAN program that invokes the PLAN serviceg, .. . , : .
.) . define the sePKDthat associates a user’s name with his or

DHmessageThree with two arguments: the certificate : i

e) . . . h{er public key as follows:
containing the described information, and a signature o0
that certificate using the user’s public/private key pair. PKD = { ("Alice", Kalice),
The node receives the final message and repeats the ac- ("Bob", Kbob) }
tions taken by the application for the previous message.
No response is sent; the protocol is complete. Shttp:/Avww.cis.upenn.edu/~gcm/

VI. IMPLEMENTING AUTHORIZATION

Sets can be queried by by using set comprehensions. Borlmplementing Service Policies in QCM
example, the following query resolvédiceKeys to the set

) .) o We use QCM sets to define both namespace-based secu-
that contains all of the keys associated with AliceRKD

rity policies and per-service parameterizations. Using QCM’s
AliceKeys = { k | ("Alice”, k) e PKD }. location-specific definitions and certificates should allow such
policies to scale as the number of users, services, and nodes
Simple set membership can be performed creating a singlefarthe network grows.
set if and only if membership conditions hold, as in Namespace control policiesFollowing our general policy
requirements discussed in Section IV-B, our QCM namespace

{"yes" | Kalice € AliceKeys . control policy specifies an ACL in terms of the services to be
This query will resolve to the singleton set containliygs" added to or subtracted from the default service-environment
if the variable AliceKeys contains the given key; it will (i.e., the core services) by associating certiainkenandthin
resolve to the empty set otherwise. sets of services with a principal or set of principals; the former

QCM set definitions are location-specific. That is, localefines services that should be added to the service symbol
namespaces are made global by prepending them with lable and the latter defines services that should be subtracted.
cation/owner of the namespack$x is the global name of Once a principal has been authenticated, QCM is queried and
the local namex in K's namespace, and is pronouncel{s* the symbol table is modified as directed; the modified symbol
x.” Here, K refers to the public key of a principal that holddable is used for the duration of the authenticated chunk’s
data at its home server. Global names can be referredet@luation. As an optimization, we cache the modified table for
from any location. For example, Alice may define HaKD future reference, thus avoiding repeated invocations of QCM
by additionally incorporating Carl'®KD which is defined by and reconstructions of the table as long as the policy has not
his remote QCM server: changed.

The following is an example QCM ACL that considers two

PKD = { ("Alice", Kalice), principals,p; and py:

("Bob", Kbob) } union Kcarl$PKD
_ i) pl = <pl's public key> ;
Part of the novelty of QCM is that querying a set with pl svcs = {"print" };

remotely-defined components can automatically result in a

queries being sent to remote sites. For example, if the au-,o - <p2’s public key>
thorization service ork alice makes a membership test on set
PKD QCM will automatically queryK carl if necessary. How-

p2_svcs = {"thisHost" };

ever, QCM is optimized to reduce communication overhead .| = {

by being conservative: some queries can be resolved by using (pl, pl_svcs, o),

partial, local information only. For example, the membership (p2, union (p2_svcs, pl_sves), m
test for Alice’s key, above, would not require a remote query 8 - -

to Carl’s site.

QCM also supports the use oértificates which are signed !n addition to identifying the keys qf; andp., we define two
assertions about set relationships, and can be used to a®§i,p1-svcs and p2_sves , which specify the respective
remote queries. For example, the following illustrates a cdficken sets of those principals in the ACL. The ACL itself
tificate that asserts th&$PKD contains at least the pair ofiS defined by the variablacl , which is a set of three-tuples.

Alice with her public key (and is signed H). The first tuple indicatep;’s environment should be thickened
_ following authentication byl _svcs , while the second says
K says (Alice, Kalice) € PKD. that p,’s environment should be thickened by bath_svcs

Such a certificate could be provided before making a que ,dpz,:lvc;s {hlntb_otrt]h(_:ases, th?hth'? stetsl are eTp;tyt,hSpfr:: ffied
and would potentially prevent messages from being sent 9 {}'. ote that In this c:_:lse,. € first element of fhe three-
remote sites. Servers may wish to operate in a mode in whi%t?le. is an individual principal; more generally, it can be a set
no remote queries are sent automatically, but instead relevd prllnCIpslls. q L qditi i
certificates must be provided up front. While more onerous for Policy-based Parameterizationln addition to specifying

the user/application, this may prevent denial-of-service attadk@mespace-based pollt_:les, we can specify per-service policies
on the certificate retrieval system. to be used by the services themselves, allowing policy-based

The version of QCM that we use is implemented as aservi%iwce parameterization. Such policies are specified as a set

in PLAN, and makes use of PLAN packets to perform it entified by the_ service’s name, whose elements are two-
communications. These packets query the QCM service les that contain:

remote nodes on behalf of the QCM service of the queryingl) @ principal or set of principals (as in the ACL)

node. Interestingly, the QCM service can itself be privileged 2) @ labeled record of length 1, with the label corresponding
(and thus subject to policy) as long as there are no cycles in the 10 & service-dependent parameter name (where multiple
policy specification. Certificates may be passed as additional ~Parameters per service are reflected as multiple records).
arguments toauthEval , or may be obtained during node-As an example, consider the PLAfdsident state package
node authentication. which provides user-defined soft state. The resident state pol-

icy specifies how much state particular principals are allowed

to keep. For example: /\j
def = <default user's key> ; >
resident = { (def, <amount=100>),
(pl, <amount=1000>) i (

This policy indicates that unauthenticated users (which are :

automatically given thedef key) are allowed to have at

most 100 words of information stored on the node at any

given time® while principal p; may store up to 1000 words Trusted Network

of information. This policy is enforced in the resident state

implementation itself by calling QCM on each store attempkig. 5. A trusted network behind a firewall.
Scaling Policies: An interesting question is how this in-

Untrusted Network

frastructure should be used to deploy services and updatérewall = <firewall's key>
policies over a large administrative domain. In our prototypeguest = <guest's key>
implementation, new service routines can be installed usingacl = {

the service routinénstallServices , which dynamically

loads some provided code into the router. This service should ({ guest 1}, {},

obviously be privileged, requiring authorization to use. One firewall$guest_thinned_services)
benefit of the PLANet architecture is that interesting protocols ...

or mechanisms (such as soft state, unreliable packet delivery

with fragmentation/reassembly, etc.) can be encoded using a
few general services, with the majority of the logic beingig. 6. Host QCM Program

coded as PLAN [1]. As such, we expect that services will

be added relatively infrequently, which implies that security

policies will not change often (since the number of privilegedut all active packets (which could be the case when under a
users for a given domain is likely to be relatively static)denial-of-service attack) we need an alternate way of stopping
Given this, one way to update the QCM policy for each nodbose packets which may be potentially harmful.

would be to allow local policies to refer to a single global Our approach is that rather than filter packets at the firewall,
policy that resides on another node in the local administrativee associate with themthinnedservice environment in which
domain. Thus, when this node’s policy changes, those changay potentially harmful services are removed. The packets
are reflected in all of the policies that refer to it. For more finegnay then be evaluated inside the trusted network using only
grained changes, we can augment local policy with certificatéf®se services. While this may seem to contradict our premise,

provided by authenticated programs. stated in Section II-B, that the default environment should
consist only of ‘safe’ services, in the context of a trusted
VIl. APPLICATIONS intranet we would expect that the default privilege allowed

As a proof-of-concept of our security architecture, we haJQ local packets exceeds that of foreign packets. Furthermore,
designed and implemented awtive firewallusing PLANet we would not want to impose the overhead of authentication
" and authorization on local packets in the general case.

as well as aractive virtual private networklin this section, hin th X { Torei K » I
we describe both applications and present some performancd® thin the environment of foreign packets, our firewa
measurements. associates them with guestidentity that has the appropriate
policy. To do this, the firewalF’ wraps the packet’s chunk
,)) as follows:
A. A Simple Active Firewall
In today’s Internet, firewalls are used to prevent the entry of fun wrapper(c, sign) =

potentially harmful packets arriving from an outside, untrusted ~ (26"0RB(); authEval(c,sign))

network. This is visualized in Figure 5. When packets can beThis wrapper first exhausts the packet’'s resource bound by
active, this simple approach can be too limiting. calling the servicezeroRB , thus preventing it from sending
Firewalls typically filter certain types of packets, for exany additional packets. It then evaluates the packet’s clunk

ample TCP connection requests on certain port numbersing the guest identity, as indicated by the signature, for the
Usually such packets are easily identified by their protocglration of the evaluation. This means thatcifattempts to
headers. In PLANet, and indeed in any active-packet systegall any services that have been thinned, the call will fail.
there is no quick way to determine a packet's functionality This scheme implies that the firewall signs each packet,
without delving into its contents, which would be a significanising the guest's identity, and provides the signature to
performance bottleneck. Therefore, unless we wish to filtguthEval . In order to make this process as fast as possible,

5 _ . . the firewall would authenticate with hosts and B ahead of
Note that because all unauthenticated principals sharel¢hekey, this

means that those principals can do little damage to the node, but can dgﬁoe using the guest key-)])
service to other unauthenticated principals. However, because the guest environment will provide less

packet sent signed verified received

s

Trusted Network 1 Trusted Network I1

Untrusted Network

Fig. 7. A VPN consisting of two trusted networks connected by a secure tunnel.

privilege than the default environment, we should be abl2, and then finally delivered to its ultimate destination in
to avoid the cryptographic cost: any authenticating principaktwork Il
whose environment is thinned and not thickened can be ‘takerWe can implement this idea in PLANet as follows. The
at its word’ [29]. We could extend our framework to allowVPN would be set up by having nodésl and P2 mutually
authEval to take a public key rather than a signatureauthenticate, resulting in a shared secret. Say that nbde
accepting the identity of the key if and only if the principabends a packet to node. As it exits network | the firewall
whose key it is has at most a thin set in the node policy (as#sl intercepts, encapsulates, signs, and forwards the packet
the case for the guest). In section VII-C we present results fir the other network. In particular, P1 first extracts the
the more naive case (which approximates the performancerepresentation of the packet's chunk (callciy and creates
the VPN we describe next), and can derive the performanaetunneling chunKfwd|(c, D), where D is the original
for the more optimized case. destination address within the remote network, tindl refers
How we choose to specify the guest’s thinned environmettt the following PLAN code added to the packet:
may be accompllshed in a number of ways. The_z simplest Wfﬁ/n fwd(c:chunk desthost) =
would be specify the thinned environment statically, at ea OnRemote(c,dest,getRB(), defaultRoute)
host A and B. However, a more uniform and manageable ' 9 '
approach would be that the guest identity is known localljjext, it signs the tunneling chunk using the secret it shares
but its environment is defined at the firewall. The salient pagiith P2, and replaces the packet’s original chunkvith the
of our host QCM program is shown in Figure 6. chunk JauthEval|(|fwd|(c, D),sign) where sign
Thethin set is defined by the variabipiestthinnedservices is the newly created signature. Finally, it alters the destination
at principalfirewall. Notice that thethickenset is empty. To of the packet to be”2 rather theD, and sends it onward.
short-circuit remote queries, the firewall provides certificates When the packet arrives at the peer firewat?, it will
during node-node authentication that indicate the contentsggfrform theauthEval . This will grant the packet the full
its guestthinnedservicesvariable. Should the firewall policy privileges of the remote network, with which it sends the
be updated after initial authentication, the firewall would pustriginal chunkc to the originally intended destinatiom.
certificates to the end host to reflect this change. SinceP2 is acting as a firewall described above, had the packet
not authenticated in this way it would have had its privileges
reduced upon entering the remote network. This illustrates
nicely how our authentication and authorization framework
A virtual private network (VPN) is essentially two orcan form the common ground of the dual notions of firewall
more trusted networks connected by secure “tunnels” acr@ssd VPN.
untrusted links. These tunnels are made secure by encryption,
such that when a packet leaves one trusted network and enter
the tunnel it is encrypted, and then is decrypted upon exiti
the tunnel and reentering a trusted network. In the InternetWe analyze the performance of our active firewall by
IPSec [42] may be used to implement VPNs. comparing a filtered and non-filtered ping. In both cases, the
This idea is depicted in Figure 7. Here we have two trustéaitiating host lies in the trusted network and is pinging a
networks, consisting of node$, B and P1 for network I, and node in the untrusted network. We do not present performance
C, D, and P2 for network I, connected by a secure tunnel
across an untrusted network. A packet originatingétwork “Normally, a VPN would encrypt, rather than sign, outgoing packets. This
. . . . can be done as well in our framework given an encryption service that to
| destined fometwork Il is encrypted at its firewalP1, sent o4 ires authorization before it may be used. However, we elide this detail to
across the untrusted network, decrypted at the peer firewakp the presentation simple.

B. An Active Virtual Private Network

S .
Performance Analysis

No payload Maximum payload

measurements for our VPN apphca’uon because its results are packet size| overhead|| payload | overhead
essentially the same as t'he f!reyvall. o ping reply 30B nfa 1420 B nfa
The PLAN code for ping is illustrated in Figure 2. Our +firewall 181 B 126% 1319 B 6.8%

analysis examines the additional cost to elapsed time and

packet siz& For our experimental setup, we daisy—chaiﬁig- 9. Ping reply packet overhead with and without the firewall. lllustrates
connect three machines with 100 Mbit Ethernet, configurifs 2341ona o o encapsulaton and sianing of oreign paces Nete tha
the middle machine as the active firewall. Each machine isc&e is slightly smaller.

300 MHz Pentium Il with 250 MB of memory running Linux

2.0.30. PLANEet runs directly on top of Ethernet.

Time Overhead:As described in the previous section, theinmarshal PLAN programsagerly and in order to verify
addition of the firewall affects the packet processing tim@ PLAN value (that is, the original packet's chunk) using
on the router and on the host initiating the “ping.” While authEval , that value must first be marshalled into a binary
router would normally just forward any packet it receivedprmat. These two points combine to mean that we unmarshal
the firewall has to additionally sign and encapsulate packéle encapsulated chunk when the packet arrives, only to
destined for the trusted network. On the initiating host, normed-marshal it when performing the signature verification. A
interpretation of the “reply” packet is further burdened by themarter implementation would unmarshal chufdaly, thus
need to decapsulate, verify the firewall's signature, and thavoiding this extra re-marshalling cost and thereby equalizing
the environment. signing and verification time.

Figure 8 illustrates the elapsed time of ping with and without There is room for further improvement. The cost of the cryp-
the firewall. The left figure is the end-to-end time, in whicliographic operations (for cases when they are actually needed)
the black bar is the unmodified ping and the white bar is tlmuld be reduced through parallelism (to improve throughput)
overhead imposed by the firewall. The right figure similarland special-purpose hardware (to improve both throughput and
illustrates salient component costs for the end host and théency). Furthermore, the cost of PLAN interpretation is fairly
firewall with the additional overhead. For the end host, tHagh; a smarter interpreter would improve both the cost of
time consists of evaluating ping’s “reply” packet, while fothe basic ping as well as the encapsulated version. In fact,
the firewall, this is the cost of forwarding the packet. Theve have recently been developing a compiler from PLAN to
portion of the overhead which may be attributed to signindpe low-level packet language SNAP, resulting in significantly
(at the firewall) and verifying (at the end host) is singled@mproved performance [9], [28].
out. In both figures, times are given for 0-byte payloads andSpace OverheadThe firewall also imposes a space cost due
maximally-sized payloads. Notice that the overhead addedttothe extra code and signature that is attached to the incoming
the component costs, which are the white and gray bars in {eckets. Table 9 illustrates the basic space overheads, with and
figure on the right, add up to the difference in elapsed timwithout the firewall.
for the overall cost, which are the white bars in the figure on The no-payload reply packet is 80 bytes (consisting of code
the left. and fixed fields), while the encapsulated version is 181 bytes,

The base ping times for 0-byte and maximal payloads &fi@ an overhead of 126%. Of the 101 bytes of overhead, 12
2.13 and 3.06 ms, respectively; the firewall adds 37% and 32%tes are due to the signature. Since the overhead is fixed, its
of respective overhead to these times (raising them to 2.91 angpact is reduced with packet size. Looking at the maximally-
4.03 ms). By examining the component costs, we can see thiaied packet, we see that this 101 bytes only adds 6.8%
of this overhead, betwed'3 and1/2 is attributable to signing of overhead above the 5.3% already imposed by the ping
and verification, based on the packet size. For the firewgbkogram.
the remaining overhead is due to encapsulation costs (whichA particular concern is that by adding code to the packet as
requires extra marshalling and copying), while for the end passes through the firewall we might exceed the link layer
host it is due to decapsulation and the additional interpretatiTU and be forced to fragment the packet. In the pathological
cost of the wrapper code. The time to thin the environme(though probably not uncommon) case, each packet received
at the end host is negligible because we cache the thinrgdthe firewall will be just smaller than the MTU and thus
environment. If we eliminate the cryptographic operations, have to be fragmented after addition of the wrapper code. This
the means described earlier, we reduce the end-to-end pprgblem also appears in the IPsec context, where it remains
times to 2.58 and 3.41 ms for 0-byte and maximal payloadpen to further research. One advantage that we have over
respectively. This reduces the firewall-induced overhead i@ is that in PLANet we may easily send PLAN programs
20% and 11%. Note that the cryptographic operations cannotcustomize the host processing (i.e., as a more expressive
be removed in the case of the VPN. ICMP). It would be worth examining how to best express in

Notice that the graph depicts verification (which in th@LAN a mechanism similar to “Path MTU Discovery” [49].
figure is the cryptographic component cost for the host) asother possible approach would be to compress the incoming
twice as expensive as signing (which is the cryptographiacket, adding a wrapper to perform the decompression upon
cost for the firewall). This is due to two related points: warrival at the end-host.

s _ _ A concern about the approach of PLANet in general is the
The reader may note that the numbers reported here are slightly different f . h de in th ket T . hi
than those reported in [1]; this is due to changes made to the PLANRP@CE COSt Of carrying the code In the packet. To mitigate this

implementation. overhead, we have considered ways in which the participants

[1 +Overhead
B +Crypto
l Ping

4
’g 5 []+Firewall (¢ |
b B Ping
£
=2 044
b=
5]
7]
=
= 1 0.2
=
0 0.0

overall

firewall host

Fig. 8. Ping elapsed time with and without the firewall. The left bar of each pair is with a 0-byte payload, and the right bar is for maximally-sized (1500

byte) packets.

in a protocol may cache code rather than always transmitting
it with the packet. One approach is to add language-level
remote-referencesvhich may be thought of as pointers to
remote objects. Since all PLAN values (including chunks) are
immutable the contents of a remote reference may be safely
cached without the need for a coherence protocol. In the case
of our firewall, the wrapper function code could reside at the
firewall, while being cached at the various hosts in the trusted
network, thus reducing the in-packet space costs. The issue of
code caching is discussed in more detail in [8].

VIIl. RELATED WORK

Securing active networks [50] has demanded three major
research thrusts:

« First is the use of programming environments to offer
safety and security guarantees, for example the careful
design of PLAN and SNAP for safety, the use of module-
thinning in ALIEN, and the capability-like namespace
isolation scheme ANTS achieves with its MD5 hashes
of active packets.

« Second is the extension of the local guarantees achievable
within a programming environment to the collection of
nodes comprising a network. While PLAN or SNAP,
as examples of domain-specific languages, provide such
guarantees irrespective of location, they cannot make such
guarantees when remote services are invoked. Crypto-
graphic techniques can extend local safety properties by
providing capability-like authorizations for services, as
was done in extending ALIEN’s protection to remote
systems in SANE, and similarly in SANTS [51].

The SANE [40] architecture is part of the SwitchWare
Project [5] at the University of Pennsylvania. SANE
provides the ability to securely bootstrap [52] an active
node, and authentication and naming services for code
that is loaded. The main differences between this work
and SANE are that{l) we can depend on a provably

implementing security abstractions. SANE was developed
in conjunction with the ALIEN architecture [34], which
(like us) employs namespace-based security and strong
typing. Taken together, these techniques prevent active
code from calling functions or accessing data even in
a shared address space. Similar approaches have been
taken in [20], [53], [54]. Other language-based protection
schemes can be found in [20]-[24].

SANTS, which uses an authorization scheme similar to
ours, further considers how to handle changes made to
the contents of cryptographically signed packets as they
traverse the network. However, as Alexander showed in
his Caml-based architecture [31], the performance penalty
of frequent cryptographic operations can be substantial.
Third is support for multithreaded operation of active
networking systems in ways that provide resource pro-
tection. This work has been centered around the lowest
levels of the DARPA active network architecture, the
so-called “Node Operating System” [55], examples of
which include RCANE [56], JanOS [57], AMP [55] and
Scout [58]. These systems manage resources which may
be used by a safe programming environment in service
invocations, including management of resources used
concurrently by multiple programming environments.

For example, the extensions of SANE described in the
paper by Alexander, et al. [31] to manage soft real-
time streams showed that a SANE-based front-end could
provide access control for services and resources with
associated time bounds. This was implemented with a
low level scheduler in the supporting operating system,
and would enable, for example, supporting “quality of
service”-like features such as priorities and construc-
tion of differentiated-service network architectures. A
particularly interesting coupling with the work reported
here would be bandwidth control at the active firewall
authorized by credentials.

safe language (PLAN) for those packets that do notOur use ofauthEval resembles Java stack inspection
require special privileges, an@) we have scalably built (JSI) [59], [60]. In our case, code is afforded the privilege
a means for controlling service usage via trust mawf the principal that signs it for the duration that it runs. JSI
agement. Furthermore, programming constructs availabfines this idea by examining the call stack and giving the
in PLAN (e.g., chunks) considerably ease the task obde the privilege of the least privileged principal found on

the stack, except when more trusted code explicitly widemsquire authentication. The second advantage, which follows

the privilege of its callers by invokingnablePrivilege . from the first, is that security analysis, perhaps including
It would be interesting to apply the same approach to nestealidation and verification, can be focused on a small set of
authEval calls to provide the same sort of security. service routines rather than all possible active programs. That

The SPIN [20] Project investigated the construction dfaid, it is an important avenue of future work to find ways
extensible operating system kernels, with the idea that tyge-automatically certify services as safe, so that they do not
safe Modula-3 code could be loaded into an operating systemed to be protected by a trust-based policy. Recent work by
for reasons of performance or access to resources. SPIMsore [64] characterizes what constitutes a safe service in
dynamic binding infrastructure [61] provides mechanisms witight of the model discussed in Section IlI-C. Proof-Carrying
which one could implement our approach to service secGode [65], [66] is one way to certify safety in low-level code,
rity. In particular, loaded modules can be linked against so we would hope its techniques could ensure safety as Moore
restricted interface, and calls to sensitive functions can Hefines it. A related certification technique uses dependent
interposed with “guards,” which could perform policy-basetypes to prove that services consume a bounded amount of
parameterization. Grimm and Bershad [62] focus on separatiime and/or space [67].
of policy and enforcement, and control abstractions crossingWhile our system uses both programming environment-
protection domains with redirections of procedure or methdmhsed safety and cryptography-based techniques to support
invocations. SPIN'’s extensibility is targeted at a workstatiomse of services in networks (and is compatible with any
environment rather than the network service enhancem&udeOS approach), the novel architectural contribution is
environment of PLAN, and is thus less concerned with scahe combination of enforcement mechanisms to allow policy-
able, distributed policiésthan Secure PLAN. SPIN and othemwriters to balance flexibility with performance. In particular,
approaches to language-based security, like the J-Kernel [28] support both namespace-based security to add to or sub-
and KaffeOS [27], are quite concerned with resource control whct from a packet's default service namespace, and policy-
untrusted code. The resource-limited nature of PLAN allowsased parameterization to allow services to formulate their
us to avoid the thorny issues that arise here. own per-principal usage policies. Namespace-based security

Perhaps the most closely related architecture, albeit oren be enforced cheaply at authentication-time, while policy-
instantiated with traditional operating systems mechanisrhased parameterization requires per-invocation checks. We
such as tagged objects (where the tags are associated Wwilie sought to enable scalability by carefully encoding the
permissions) is the “Sub-Operating System” (SubOS) apamespace-based policy, and by using a decentralized trust
proach of loannidis, et al. [63]. In that system, there is finenanagement system [3].
grained access control of arriving code under control of aThe active firewall and active VPN are novel applications
non-removable identifier attached to objects (such as code aagulting from our approach. The firewall uses PLAN packets’
data) that arrive over a network. Three key distinctions in oactiveness to protect a trusted environment from untrusted
system, including the active firewall, relative to SubOS étg: computations. We have demonstrated that our architecture
the active firewall actively rewrites code to reflect restrictiorsddresses possible threats while still preserving the flexibility
on it, rather than attaching tags which must be further resolvadd usability of the system, bgctively modifying the packet
against a privilege sef2) the rewrites are performed for anybehavior, under control of a trust management policy, rather
and all trusted hosts, ensuring that an improperly configuréthn simply making a permit/deny decision as in a traditional
element cannot mistakenly execute active code considefedwall architecture. Our experimental implementation has
dangerous; and3) privilege can be increasedr decreased demonstrated such an approach can have acceptable perfor-
in our system, unlike the SubOS, where privilege is alwaysance.
decreased relative to the executing user, the main goal beingur applications also make a novel use of active networking

the control of locally executed active content. technology. The system exploits the ability of PLAN to
manipulate “chunks” to build a far more flexible security
IX. CONCLUSIONS gateway for network services. In particular, the combination

The Secure PLAN architecture couples limited but safdf trust management policy and namespace security allows
active packets with general-purpose, but potentially unsaitremely fine-grained control of permitted operations for
service routines. The architecture has two major advantagénote users. One might view the active firewall as providing
First, packets that do not require the computational cost apelectable continuum of access to services rather than merely
authentication and authorization do not pay it. This is becausiéple actions such gsass , drop or log . It is thus in the
all potentially unsafe computation is relegated to the servié®irit of active networking: flexibility and security, with high
level, which can be governed by trust-management techniquigtformance.

Our experience is that the majority of active packet programs,

from diagnostics such aping to best-effort data delivery, ACKNOWLEDGMENTS

require no potentially unsafe services, and therefore should no¥ve would like to thank Scott Nettles, Jonathan Moore, and
Trevor Jim for helpful discussions concerning this work, and

9In fact, our results include almost all of the future work suggested ithe anonymous referees for providing useful feedback. We
the Grimm and Bershad paper, who foresaw the need for policy specification

languages, distributed authentication, and high performance for access corWQIL"d glso like to thank Trevor Jim for providing the PLAN-
operations. based implementation of QCM.

This work was done while all authors were at the Unive[z0]
sity of Pennsylvania, supported by DARPA under Contract
#N66001-96-C-852, NSF under grant #ANI 98-13875, with
additional support from the Intel Corporation. A shorter veiz1]
sion of this paper was published in the International Working
Conference on Active Networks [68], and an extended version
of that paper was published in the DARPA Active Networkg2]
Conference and Exposition [69].

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

(12]

(23]

[14]

[15]

[16]

(17]

(18]

[29]

(23]

REFERENCES

[24]
M. Hicks, J. T. Moore, D. S. Alexander, C. A. Gunter, and S. Nettles,
“PLANet: An active internetwork,” inProceedings of the Eighteenth
IEEE Computer and Communication Society INFOCOM Conferenci5]
IEEE, 1999, pp. 1124-1133.
M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles, “PLAN:
A packet language for active networks,” Proceedings of the Third
ACM SIGPLAN International Conference on Functional Programming26]
Languages ACM, 1998, pp. 86-93.
M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust manage-
ment,” in Proceedings of the 17th Symposium on Security and Privac
IEEE Computer Society Press, Los Alamitos, 1996, pp. 164-173. [27]
D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and
G. J. Minden, “A survey of active network researctEEE Communi-
cations Magazingpp. 80-86, January 1997.
D. S. Alexander, W. A. Arbaugh, M. Hicks, P. Kakkar, A. D. Keromytis,[28]
J. T. Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith, “The
SwitchWare active network architecturelEEE Network Magazine,
special issue on Active and Programmable Networkd. 12, no. 3,
pp. 29-36, 1998.
D. J. Wetherall, J. Guttag, and D. L. Tennenhouse, “ANTS: A toolkit fok29l
building and dynamically deploying network protocols,”Rnmoceedings
of the IEEE Conference on Open Architectures and Network Prograr&;
ming (OPENARCH) |EEE Computer Society Press, Los Alamitos, 0l
April 1998.
D. Wetherall, “Active network vision and reality: lessons from 213:L
capsule-based system,” ivth Symp. on Operating Systems Principle]
(SOSP’99) Kiawah Island, SC: ACM, December 1999, pp. 64-79.
M. Hicks, J. T. Moore, D. Wetherall, and S. Nettles, “Experiences with
capsule-based active networking,” ftoceedings of the DARPA Active (32]
Networks Conference and Exposition (DANCE)EEE, May 2002.
J. T. Moore, M. Hicks, and S. Nettles, “Practical programmable packets,”
in Proceedings of the Twentieth IEEE Computer and Communication
Society INFOCOM Conference IEEE, April 2001, pp. 41-50.
E. L. Nygren, “The design and implementation of a high-performan
active network node,” Master’s thesis, Massachusetts Institute of Te
nology, February 1998.
C. A. Gunter and T. Jim, “Policy-directed certificate retriev8ldftware
- Practice and Experiengevol. 30, no. 15, pp. 1609-1640, 2000.
J. loannidis and S. M. Bellovin, “Implementing Pushback: Router—Basetg4]
Defense Against DDoS Attacks,” iRroceedings of the Network and
Distributed System Security Symposium (NDE8pruary 2002.
A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure overla%5]
services,” inProceedings of the ACM SIGCOMM Conferenéeigust
2002, pp. 61-72.
S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical Network
Support for IP Traceback,” irProceedings of the ACM SIGCOMM [36]
ConferenceAugust 2000, pp. 295-306.
D. Dean, M. Franklin, and A. Stubblefield, “An Algebraic Approach t[37]
IP Traceback,” inProceedings of the Network and Dsitributed System
Security Symposium (NDS$ebruary 2001, pp. 3-12.
X. Leroy, The Objective Caml System, Release 3I85titut National
de Recherche en Informatique et Automatique (INRIA), 2002, availabgg]
at http://caml.inria.fr.
R. Milner, M. Tofte, R. Harper, and D. MacQueefhe Definition of [40]
Standard ML (Revised) Cambridge, Massachusetts: The MIT Press,
1997.
J. Gosling, B. Joy, and G. Steel&€he Java Language Specification
Addison Wesley, Reading, 1996. [41]
T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang,
“Cyclone: A safe dialect of C,” irProceedings of the USENIX Annual [42]
Technical ConferengeMonterey, California, June 2002, pp. 275-288.

3]

B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker,
S. Eggers, and C. Chambers, “Extensibility, safety and performance
in the SPIN operating system,” iRroceedings of 15th Symposium on
Operating Systems Principles (SOSBecember 1995, pp. 267-284.

J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska, “Sharing
and protection in a single-address-space operating systemXCiM
Transactions on Computer Systems (TQG®). 12, no. 4, November
1994, pp. 271-307.

C. Hawblitzel, C. Chang, and G. Czajkowski, “Implementing Multiple
Protection Domains in Java,” ifProceedings of the 1998 USENIX
Annual Technical Conferencdune 1998, pp. 259-270.

J. Y. Levy, J. K. Ousterhout, and B. B. Welch, “The Safe-Tcl security
model,” in Proceedings of the 1998 USENIX Annual Technical Confer-
ence June 1998, pp. 271-282.

J. Moore, “Mobile Code Security Techniques,” University of
Pennsylvania, Technical Report MS-CIS-98-28, May 1998. [Online].
Available: “url-http://www.cis.upenn.edu/ jonm/papers/cis700.ps”

B. Schwartz, W. Zhou, A. W. Jackson, W. T. Strayer, D. Rockwell, and
C. Partridge, “Smart packets for active networks,” Rnoceedings of
the IEEE Conference on Open Architectures and Network Programming
(OPENARCH) 1999, pp. 90-97.

M. Hicks, “PLAN system security,” Department of Computer
and Information Science, University of Pennsylvania, Technical
Report MS-CIS-98-25, April 1998. [Online]. Available: “url-http:
Ilwww.cis.upenn.edu/ switchware/papers/plan’ security.ps”

G. Back, W. C. Hsieh, and J. Lepreau, “Processes in KaffeOS: Isolation,
resource management, and sharing in JavaProceedings of the 4th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI). San Diego, CA: USENIX, Oct. 2000.

M. Hicks, J. T. Moore, and S. Nettles, “Compiling PLAN to SNAP,” in
Proceedings of the Third International Working Conference on Active
Networks ser. Lecture Notes in Computer Science, |. W. Marshall,
S. Nettles, and N. Wakamiya, Eds., vol. 2207. Springer-Verlag, October
2001, pp. 134-151.

J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systemspProceedings of the IEEB/ol. 63, no. 9, pp. 1278—
1308, 1975.

D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, S. Muir, and
J. M. Smith, “Secure quality of service handling (SQoSHEEE
Communicationsvol. 38, no. 4, pp. 106-112, April 2000.

D. S. Alexander, P. B. Menage, A. D. Keromytis, W. A. Arbaugh,
K. G. Anagnostakis, and J. M. Smith, “The Price of Safety in an
Active Network,” Journal of Communications (JCN), special issue on
programmable switches and routex®l. 3, no. 1, pp. 4-18, March 2001.

I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden, “The design and implementation of an
operating system to support distributed multimedia applicatidEEE
Journal on Selected Areas in Communications (JSAG) 14, no. 7,

pp. 1280-1297, September 1996.

K. G. Anagnostakis, M. W. Hicks, S. loannidis, A. D. Keromytis,
and J. M. Smith, “Scalable resource control in active networks,” in
Proceedings of the Second International Working Conference on Active
Networks ser. Lecture Notes in Computer Science, H. Yashuda, Ed.,
vol. 1942. Springer-Verlag, October 2000, pp. 343-358.

D. S. Alexander, “ALIEN: A generalized computing model of active
networks,” Ph.D. dissertation, University of Pennsylvania, September
1998.

F. Rouaix, “A Web navigator with applets in Caml,” Rroceedings of the

5th International World Wide Web Conference, in Computer Networks
and Telecommunications Networkjngl. 28, no. 7-11. Elsevier, May
1996, pp. 1365-1371.

“Data Encryption Standard,” U.S. Department of Commerce, Tech. Rep.
FIPS-46, January 1977.

R. LaboratoriesPKCS #1: RSA Encryption Standangersion 1.5 ed.,
1993, november.

] “Digital signature standard,” U.S. Department of Commerce, Tech. Rep.

FIPS-186, May 1994.

CCITT, X.509: The Directory Authentication Framewoikiternational
Telecommunications Union, Geneva, 1989.

D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M. Smith,
“A secure active network environment architecture: Realization in
SwitchWare,” IEEE Network Magazine, special issue on Active and
Programmable Networksol. 12, no. 3, pp. 37-45, 1998.

H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-hashing for
message authentication,” IETF, Tech. Rep. RFC 2104, February 1997.
S. Kent and R. Atkinson, “Security architecture for the internet protocol,”
IETF, Tech. Rep. RFC 2401, Nov. 1998.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

(63]

(64]

[65]

(66]

W. Diffie, P. van Oorschot, and M. Wiener, “Authentication and autherf67] K. Crary and S. Weirich, “Resource bound certification,"Spmposium

ticated key exchangesPesigns, Codes and Cryptographyol. 2, pp. on Principles of Programming Languagez000, pp. 184-198.

107-125, 1992. [68] M. Hicks and A. D. Keromytis, “A secure PLAN,” ifProceedings of

W. Diffie and M. Hellman, “New Directions in CryptographyEEE the First International Workshop on Active Netwarksr. Lecture Notes
Transactions on Information Thegryol. IT-22, no. 6, pp. 644-654, in Computer Science, S. Covaci, Ed., vol. 1653. Springer-Verlag, June
Nov 1976. 1999, pp. 307-314.

S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer, “Kerberof9] M. Hicks, A. D. Keromytis, and J. M. Smith, “A secure PLAN (extended
Authentication and Authorization System,” Project Athena Technical version),” in Proceedings, DARPA Active Networks Conference and

Plan, Section E.2.1, December 1987. Exposition |IEEE Computer Society Press, May 2002, pp. 224-237.
L. Gong, “Efficient Network Authentication Protocols: Lower Boundg70] J. Vitek and C. Jensergecure Internet Programming: Security Issues
and Optimal ImplementationsDistributed Computingvol. 9, no. 3, pp. for Mobile and Distributed Objectsser. Lecture Notes in Computer

131-145, 1995. Science. New York, NY, USA: Springer-Verlag Inc., June 1999, vol.
M. W. Hicks, “PLAN security guide,” 2001, part of PLAN 3.2 doc- 1603.

umentation. Available at http://www.cis.upenn.edu/"switchware/PLAN/
docs-ocaml/security.ps.

M. Blaze, J. Feigenbaum, J. loannidis, and A. Keromytis, “The role
of trust management in distributed systems securitySéture Internet
Programming ser. Lecture Notes in Computer Science. New York, NY,
USA: Springer-Verlag Inc., June 1999, vol. 1603.

J. Mogul and S. Deering, “Path MTU Discovery,” IETF, Tech. Rep. RFC
1191, November 1990.

“Security architecture for active nets,” June 1998, draft available at httg!
Il ittc. ukans.edu/ansecure/0079.html. t

ichael Hicks is an assistant professor in the Computer Science Department
the University of Maryland, College Park. His research bridges the areas

S. Murphy, E. Lewis, R. Watson, and R. Yee, “Strong security fo?f “systems” and programming languages, in that he frequently appli_es or
active networks,” inProceedings of the IEEE Conference on opergjevelops language-based technology to solve systems problems, particularly

Architectures and Network ProgrammindEEE, April 2001, pp. 63-70. " networking and distributed systems. .
W. AI\ A?baugh A g Keron?ytis IS.QJ. Farb%rl and pr. smith. He received his Ph.D. in Computer Science from the University of Penn-

“Automated Recovery in a Secure Bootstrap ProcessPrateedings of sylvania. For his Ph.D. dissertation, he designed and implemented a general,
Network and Distributed System Security Symposium (ND&8grnet Ia_nguagg-based approach for dynamically upgradlng_ running software. This
Society, March 1998, pp. 155-167. dissertation won the 2002 ACM SIGPLAN Doctoral Dissertation Award, and
X. Leroy and F. Rouaix, “Security properties of typed appletsSéture is an outgrowth the work on programmable netvx_/orks described here._ Hl_s
Internet Programmingser. Lecture Notes in Computer Science. Ne recent work explores both Ianguage-be}sed security and software quality in
York, NY, USA: Springer-Verlag Inc., June 1999, vol. 1603. ow-level and concurrent programs. He is a member of ACM and |IEEE.

T. von Eicken, “J-Kernel a capability based operating system for Java,” in

Secure Internet Programminger. Lecture Notes in Computer Science.

New York, NY, USA: Springer-Verlag Inc., June 1999, vol. 1603.

L. Peterson, Y. Gottlieb, M. Hibler, P. Tullman, J. Lepreau, S. Schwab,

H. Dandekar, A. Purtell, and J. Hartman, “An OS interface for active

routers,”|IEEE Journal on Selected Areas in Communications (JSAC)

vol. 19, no. 3, pp. 473-487, March 2001.

P. Menage, “RCANE: A resource controlled framework for activeAngelos D. Keromytis is an Assistant Professor in the Computer Science
network services,” inProceedings of the First International WorkshopDepartment at Columbia University in the City of New York. His research

on Active Networksser. Lecture Notes in Computer Science, S. Covacinterests lie in the area of network and operating system security. In his
Ed., vol. 1653. Springer-Verlag, June 1999. not-so-copious spare time, he contributes code to the OpenBSD open-source
P. Tullmann, M. Hibler, and J. Lepreau, “Janos: a Java-oriented OS foperating system.

active network nodesJEEE Journal on Selected Areas in Communica- He received his Ph.D. in Computer Science from the University of
tions (JSAC)vol. 19, no. 3, March 2001. Pennsylvania. His thesis research focused on trust management and access
A. B. Montz, D. Mosberger, S. W. O'Malley, L. L. Peterson, T. A.control for large-scale infrastructures. His current research revolves around
Proebsting, and J. H. Hartman, “Scout: A communications-orientesfficient network security mechanisms and cryptographic protocol design.
operating system,” Department of Computer Science, University @ither recent work involves mechanisms for countering denial of service
Arizona, Tech. Rep., June 1994. attacks and network viruses. He is a member of ACM, IEEE, and IACR.

C. Fournet and A. Gordon, “Stack inspection: Theory and variants,”

in Proceedings of the ACM Symposium on Principles of Programming

Languages (POPL)January 2002.

D. S. Wallach and E. W. Felten, “Understanding Java stack inspection,”

in Proceedings of the IEEE Symposium on Security and Prijvislay

1998, pp. 52-63.

P. Pardyak and B. N. Bershad, “Dynamic binding for an extensible

system,” in Proceedings of the USENIX Symposium on Operatin
Systems Design and Implementation (OSD996, pp. 201-212.

R. Grimm and B. N. Bershad, “Providing Policy-Neutral and Transpare
Access Control in Extensible Systems,"Secure Internet Programming
ser. Lecture Notes in Computer Science. New York, NY, US
Springer-Verlag Inc., June 1999, vol. 1603, pp. 317-338.

S. loannidis, S. M. Bellovin, and J. M. Smith, “Sub-Operating System
A New Approach to Application Security,” ifProceedings, 10th ACM
SIGOPS European Workshofeptember 2002.

J. T. Moore, “Practical active packets,” Ph.D. dissertation, University

Sonathan M. Smith is the Olga and Alberico Pompa Professor of Engineering
and Applied Science at the University of Pennsylvania, and a Professor in
Benn's CIS Department. His research is centered on advanced communication
and computer networking systems. Jonathan was previously at Bell Telephone
At aboratories and Bellcore, where he focused on UNIX internals, tools and
distributed computing technology, and was a member of a technology transfer
Yeam for computer security.

He received his Ph.D. in Computer Science from Columbia University.

t Penn, he has worked on advanced communications systems such as
' igabit networks, on which he has written extensively and has several U.S.
Pennsylvania, “September .2002' . . patents. His current research interest is programmable network infrastructures:
G. C. Necula, *Proof-carrying code_, |F]roceed|_ng_s of the 24th Annua_l “Protocol Boosters” provide a methodology for using such infrastructures and
ACM SIGPLAN-SIGACT Symposium on Principles of Programmingischware” is an idealized programmable infrastructure. He is a member

Languages ACM Press, NeY)’ York, January 199.7' Pp. ;06_119' .of ACM and Sigma Xi, a Fellow of IEEE, and has consulted extensively for
G. C. Necula and P. Lee, “Safe kernel extensions without run't'mﬁdustry and government

checking,” in Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDUYSENIX, 1996, pp. 229—
243.

