Triaging Checklists: a Substitute for a PhD in Static Analysis

Khoo Yit Phang

Jeffrey S. Foster

Michael Hicks Vibha Sazawal

University of Maryland, College Park

{khooyp,jfoster,mwh,vibha}®@cs.umd.edu

Abstract

Static analysis tools have achieved great success in recent
years in automating the process of detecting defects in soft-
ware. However, these sophisticated tools have yet to gain
widespread adoption, since many of these tools remain too
difficult to understand and use. In previous work, we discov-
ered that even with an effective code visualization tool, users
still found it hard to determine if warnings reported by these
tools were true errors or false warnings. The fundamental
problem users face is to understand enough of the underlying
algorithm to determine if a warning is caused by imprecision
in the algorithm, something that even experts with PhDs may
takes months to achieve. In our current work, we propose
to use triaging checklists to provide users with systematic
guidance to identify false warnings by taking into account
specific sources of imprecision in the particular tool. Addi-
tionally, we plan to provide checklist assistants, which is a
library of simple analyses designed to aid users in answering
checklist questions.

1. Introduction

In recent years, the research and industrial communities have
made great strides in developing sophisticated defect de-
tection tools based on static analysis. Such tools analyze
program source code with respect to some explicit or im-
plicit specification, and produce reports of potential errors
in the program. Static analysis tools show great promise in
automating defect detection. New analysis techniques and
tools are now regularly reported in the research literature as
having found bugs in significant open-source software [En-
gler et al. 2000, Shankar et al. 2001, Foster et al. 2002, En-
gler and Ashcraft 2003, Hovemeyer and Pugh 2004, Ayewah
et al. 2007, Naik et al. 2006]. Microsoft routinely uses tools
to find bugs in production software [Das 2006, CSE] and
other large software houses, such as Google [Ayewah et al.

Copyright is held by the author/owner(s).

PLATEAU °09 Workshop at Onward! 26 October 2009. Orlando, Florida, USA.
ACM .

2007, Ruthruff et al. 2008] and EBay [Jaspan et al. 2007],
are beginning to follow suit.

Despite these successes, most static analysis tools remain
limited in formal adoption, particularly tools that use sophis-
ticated algorithms [Ayewah and Pugh 2008, Ayewah et al.
2008]. In our opinion, one of the key reasons for this is that
the design of today’s tools fails to appreciate that the human
user is an essential component of the defect detection pro-
cess. A tool can output a list of possible errors, but a user
determines if a listed warning is in fact an error and, if so,
how to fix it. In fact, we consider a tool to be effective if
it can successfully collaborate with the user to locate actual
errors and fix them. To do so, we believe that tools must be
able to convey their results to the user efficiently and with
sufficient information for the user to correctly and quickly
arrive at a conclusion.

In our previous work (Section 2), we developed a code
visualization tool specifically designed to efficiently explain
the often long and complicated errors reported by static anal-
ysis tools. While this reduces the users’ effort to understand
error reports, we discovered that users face a more funda-
mental difficulty in understanding how false warnings may
arise from specific sources of imprecision in static analysis
algorithms. Training is an impractical solution to this prob-
lem; even static analysis experts such as ourselves find that it
can often take months of studying a particular static analysis
tool to truly appreciate and internalize all the intricacies in
the underlying algorithm.

Instead, we believe that we can provide systematic guid-
ance to the user in the form of triaging checklists (Section 3).
Checklists are very practical devices to guide users in triag-
ing, since users simply follow the instructions on the check-
list to answer each question and to determine the conclu-
sions. Checklists can also be very specific, since they can
be designed by tool developers to point out known sources
of imprecision in their tools and to instruct users how to
look for them. To be most effective, we want checklists to
be customized to individual warnings such that users will
only need to answer exactly the minimum number of ques-
tions to triage each warning. In this paper, we describe our
ongoing efforts to explore how sources of imprecision may
be traced through various static analysis algorithms, and how

Path 2 of 2

ﬂ int main(int argc, char **argv)

~ {
‘.ﬁ ((ret = pthread create(&hthread, NUI

g ¢ }

y 11 ({retlog = read_log(&h)) I!= -1)

o “‘ resume _get(&h);

a :J void resume_get(struct hist_data *h)

< IS {

B : i = 0; i < nthreads; i++) {
q.' pthread create(&(wthread(i).
2+l void * http_get(void *arg) {
A= pthread mutex lock(&bwritten mute;
2 I pthread mutex_unlock(&bwritten_muf
. L (td->offset < foffset) {
o B pthread mutex lock(&bwrit{
. z pthread mutex unlock(&bwr:
: X updateProgressBar(bwritter
g o *Misc.c - updateProgressBar()

void updateProgressBar(float cur, float
{
prev = ndot;
}
}

Dov:f;;E:

(td->offset == td->foffset) {

mblsand minkasw loamlesthide

Figure 1: Path Projection (top) and a close-up which shows
(1) function call inlining, (2) code folding, and (3) multiple
keyword searches.

to construct clear, easy-to-understand checklists with this in-
formation.

2. Previous Work: Visualizing Program
Paths with Path Projection

In previous work, we developed Path Projection, a general
user interface toolkit for visualizing and navigating program
paths [Khoo et al. 2008a]. Program paths are lists of program
statements, and are used by many static analysis tools to re-
port potential errors. For example, CQual [Greenfieldboyce
and Foster 2004] and MrSpidey [Flanagan et al. 1996] re-
port paths corresponding to data flow; BLAST [Beyer et al.
2004] and SDV [Ball and Rajamani 2002] provide coun-
terexample traces; Code Sonar [GrammaTech, Inc. 2007]
provides a failing path with pre- and post-conditions; and
Fortify SCA [Fortify Software Inc. 2007] provides control
flow paths that could induce a failure.

However, manually tracing program paths to understand
a warning is a tedious task: the user has to jump between
different functions in different files and sift through many
lines of source code, while trying to work out how relevant

statements along the path may or may not lead to the error.
Most source code editors are inefficient for this task as they
are designed to view one section of a file at a time, whereas
a program path may span multiple functions across several
files. Many editors provide hyperlinks for users to quickly
navigate between different sections of the path, but even with
hyperlinks, there is still a significant cognitive burden on the
user to remember fragments of code for each path section, or
alternatively, to manually arrange multiple editor windows
to see all of the path at once.

With these issues in mind, we designed Path Projection
explicitly for visualizing program paths in a way that helps
users see the entire path at once. Path Projection uses two
main techniques—function call inlining and code folding—
to “project” the source code onto the error path. An ex-
ample is shown in Figure 1. In the shown path, main calls
resume_get, and the body of resume_get is inlined directly
below the call site (1). Then resume_get calls http_get (via
pthread_create), so the latter’s body is inlined, and so on.
Inlining ensures the code is visually arranged in path order,
which removes the need to jump around the program to trace
a path. Code folding is used to hide away irrelevant code, in-
dicated by discontinuous line numbers, so that the user is ini-
tially shown as much of the path as will fit in one screen (2).
We show only lines that are implicated in the error report,
and the function names or conditional guards of enclosing
lexical blocks (including matching braces). The highlighted
keywords pthread_create, pthread_mutex_lock, etc. would
normally be folded, but are here revealed through multiple
keyword searches (3).

We evaluated Path Projection’s utility with a controlled
experiment in which users triaged reports produced by Lock-
smith [Pratikakis et al. 2006], a static data race detection
tool for C. Locksmith reports data races by listing the call
stacks that access the shared variable for each conflicting
thread, so, we use Path Projection to visualize the call stacks
side-by-side. We measured users’ completion time and ac-
curacy in triaging Locksmith reports, comparing Path Pro-
jection to a “standard” viewer that we designed to include
the textual error report along with commonly used IDE fea-
tures. We found that Path Projection improved the time it
takes to triage a bug by roughly one minute, an 18% im-
provement, and that accuracy remained the same. Moreover,
participants reported they preferred Path Projection over the
standard viewer. Users spent little time looking at the error
report in the Path Projection interface, which suggests that
Path Projection succeeds in making paths easy to see and
understand in the source code view.

3. Current Work: Checklists for Triaging
Static Analysis
We find from our experiments that, although a good visual-

ization such as Path Projection reduces the effort to triage
the result of static analysis tools, many users still find the

For threads leading to dereferences in Paths ¢ and j:

Are they parent-child (or child-parent), or child-
child?
(O Parent-child /) Child-child

Parent-child (or child-parent) threads. Y N
Does the parent’s dereference occur after the child O O
is spawned?

Before its dereference, does the parent wait (via (O O
pthread_join) for the child?
If no, there is likely a race. Are there reasons to O O
show otherwise?
Explain:
Child-child threads. Y N
Are the children mutually exclusive (e, onlyone (O O
can be spawned by their common parent/ancestor)?
If no, there is likely a race. Are there reasons to O O

show otherwise?
Explain:

Figure 2: Checklist for triaging Locksmith reports

triaging task to be very difficult. To triage a reported error,
the user has to know enough about the analysis performed—
in particular, its sources of imprecision—to determine if
the error is a false positive. For example, a static analysis
may be path insensitive, meaning it assumes that all condi-
tional branches could be taken both ways. Thus the tool may
falsely report errors on unrealizable paths. As another exam-
ple, a static analysis tool may be flow insensitive, meaning it
does not pay attention to statement ordering. Thus the tool
may decide that some source data might reach a target loca-
tion even if an intermediate assignment statement kills the
flow of data, making this impossible at run time.

In our experience, reasoning about imprecision to detect
false positives is out of reach for most users. We found
that even with extensive tutorials, participants had trouble
triaging the results from static analysis tools [Khoo et al.
2008b]. Their triaging procedures were usually ad hoc and
inconsistent, often neglecting some sources of imprecision
(and thus sometimes wrongly concluding a report to be a
true bug) or assuming non-existent sources of imprecision
(and therefore wasting time verifying conditions certain to
hold).

3.1 Triaging checklists

We believe we can greatly improve the effectiveness of static
analysis tools by guiding users through the triage process
with checklists. A triaging checklist enumerates a series of
questions that the user has to answer in order to triage a par-
ticular error. In our Path Projection study, we developed a
partial checklist to help users triage error reports from Lock-
smith. One common source of false positives from Lock-

smith is its path insensitivity, so this checklist focuses on
verifying the realizability of paths implicated in a data race.

A section of the checklist is shown in Figure 2. This sec-
tion is shown when Locksmith reports that two threads, ¢ and
7, access a shared variable without holding a common lock,
which would lead to a data race. The user has to examine the
call stacks of the conflicting threads in the Locksmith report
to determine if the variables may be accessed simultaneously
from threads 7 and j.

The user first has to decide whether threads ¢ and j are
in a parent-child or other (child-child) relationship. If the
user selects parent-child, the user then needs to determine if
the dereference in the parent occurs after the child thread is
created (otherwise there is no race) and if there are no block-
ing thread joins preventing the parent from dereferencing the
shared variable until the child has joined (Locksmith ignores
calls to pthread_join). The child-child case is analogous—
the user must check whether the two children are mutually
exclusive (e.g., spawned in disjoint branches of an if state-
ment), which would preclude a race. For both parent-child
and child-child races there is a catch-all checklist question
for other reasons that could preclude the race, e.g., due to
branching logic along the given path.

In our final Path Projection study (described in Section 2),
we provided our users with the same checklists for both user
interface conditions. Prior to that study, we ran a pilot study
without checklists, and found that users took much longer to
complete the given tasks. Although the two studies are not
strictly comparable, we observed that users triaged error re-
ports roughly 40% (or four minutes) faster with checklists
than without them, and their conclusions were more reli-
able. A key reason for improved accuracy is that checklists
make clear exactly what users need to look for, so they can
be systematic and not miss important indicators. The rea-
son for improved efficiency is that the checklist enumerates
exactly what must be done, and no more. For example, the
Locksmith checklist has no mention of verifying whether a
lock listed as held is actually held—in this case Locksmith’s
algorithm is perfectly precise, so its conclusions are trust-
worthy. But in our earlier pilot study, many users would get
distracted examining when locks were or were not held.

We think there is much promise in checklists, so we plan
to study their use more clearly and systematically. First, we
are working to generalize the use of checklists to other tools
and other types of imprecision in static analysis. For ex-
ample, Locksmith is also imprecise because it uses a flow-
insensitive alias analysis, which means that while paths to
dereferences in different threads may be simultaneously re-
alizable, the dereferences may actually be to different mem-
ory locations (and thus not a race), contrary to what the alias
analysis thinks.

Second, we would like to build static analyses that effi-
ciently track sources of imprecision, and use this information
to construct checklists that are specific to each reported error.

For example, for the statement if (x) p = g, we know p
and q are aliases only if x is non-zero, but a path-insensitive
alias analysis would conservatively ignore the conditional
and simply assume, unconditionally, that p and q are aliases.
If this assumption is used to generate an error report, the re-
port will be a false positive if x is always zero. Thus, the
analysis should keep track of when it takes this imprecise
step. If the assumption leads to an error, a checklist item can
be constructed to ask the user to check whether x may in-
deed be non-zero. This basic idea is similar to client-driven
pointer analysis [Guyer and Lin 2003], which attempts to se-
lectively remedy the imprecision of its pointer analysis based
on feedback from subsequent client static analyses. While
useful, automated remedies are not always possible, nor can
they always be identified cheaply or reliably. Checklists take
advantage of the human’s expertise and computational abil-
ity to verify well-defined problems that may have no satis-
factory automated solution.

Finally, we plan to measure the efficacy of checklists and
checklist assistants through controlled user studies for bug
triage, of the flavor of the one used to evaluate Locksmith’s
existing checklist [Khoo et al. 2008b]. As we gain further in-
sight and experience in developing checklists, we will move
to automate the generation of tool-specific checklists as well,
drawing on the basic theory of abstract interpretation (which
expresses the ways in which an analysis domain is conserva-
tive) [Cousot and Cousot 1977]. We will also consider means
to allow users to construct their own checklists that can take
advantage of accumulated analysis information.

3.2 ChecKlist assistants

We are also investigating the use of checklist assistants,
which are simple analyses to help answer specific questions
in triaging checklists. Unlike the core analyses of tools, these
simple analyses need not be sound; they will simply point
the user in the right direction, ultimately relying on his/her
judgment. For example, our Path Projection interface con-
tains a rudimentary assistant in the form of a multi-keyword
search that highlights and reveals matching text even if they
had been hidden by code folding. Consider the Locksmith
checklist again: the user is asked in one case to check if a
parent joins a child thread before an access to a common
shared variable; if so, there is no race, since at that point the
child thread has exited. To assist in this task, the user may
enter “ pthread_join ” into the multi-keyword search to high-
light all matching occurrences of that text in the displayed
path. The user can then visually scan for a matching occur-
rence of pthread_join between the accesses in the parent
and child threads. If there is a such occurrence, the user can
quickly determine that there is no race. A more sophisticated
assistant may recursively search all functions called between
the parent and child threads for occurrences of pthread_join,
further simplifying the user’s effort to answer the checklist.
Rather than “baking in” these sorts of analyses into a
given tool, we are looking into providing a generic library of

checklist assistants that can be reused across different types
of static analysis. These may be developed in the style of
ASTLog (later, PREFast) [Crew 1997], for simple syntac-
tic queries, or a more general data flow analysis framework
parameterizable by the lattice, transfer functions, and so on
[Chambers et al. 1996, Hall et al. 1993, Duesterwald et al.
1997, Dwyer and Clarke 1996]. Ideally, these checklist as-
sistants should have access to the internal results of the tools’
core analyses (e.g., the control flow graph, points-to graph,
etc.); however, we are also exploring the possibility of work-
ing with just the information available from the tools’ error
reports, to make checklist assistants applicable to any tool.
We also imagine allowing users to indicate that a heuristic
analysis be used automatically, once it becomes sufficiently
trusted.

4. Related Work

Checklists have attained widespread adoption in a variety
of fields [Hales and Pronovost 2006], including emergency
room triage [Berman et al. 1989], aviation [Degani and
Wiener 1990], and ergonomics [Brodie and Wells 1997].
In software engineering, checklists play an important role in
software inspection tasks. Anderson et al. [2003] demon-
strate how CodeSurfer can be used to answer questions
in NASA’s Code Inspection Checklist. Ayewah and Pugh
[2009] developed a checklist for Findbugs to help users rate
the severity of reported warnings. The successful adoption
of checklists in many fields gives us confidence that we can
greatly improve the usability of static analysis tools by giv-
ing users checklists.

Several tools exist to query code facts, such as Ciao [Chen
et al. 1995], JQuery [Janzen and Volder 2003], and Semmle-
Code [Semmle Limited]. Lencevicius et al. [2003] propose
using querying for interactive debugging, and Ko and My-
ers [2008] built a debugger called Whyline that allows pro-
grammers to ask “why” and “why not” questions about a
program trace. Partigle lets users express relational queries
over program traces [Goldsmith et al. 2005]. In contrast to
these approaches, our checklist assistants are specifically in-
tended to tackle imprecision in static analysis tools. Mar-
tin et al. [2005] propose PQL (Program Query Language),
a simple language for writing static analyses that imple-
mented via compilation to datalog programs that work with
bddbddb [Whaley and Lam 2004]. We may be able to use
ideas from PQL in developing our checklist assistants, but
we hope to provide a more flexible system that employs a
range of static analysis techniques rather than one approach.

5. Conclusion

In this paper, we propose to use triaging checklists as one
key tool to make static analysis tools easier to use. While a
good visualization is useful to explain a warning efficiently,
a good triaging checklist provides users with clear and com-
plete instructions to decide if a warning is truly an error or

false warning. We are investigating how checklists can be
applied to a variety of static analyses, as well as how to trace
sources of imprecision in static analysis to construct check-
lists that are highly tool- and error-specific. Additionally, we
are also exploring checklist assistants, which are lightweight
analyses designed to help users answer checklist questions.

References

Paul Anderson, Thomas Reps, Tim Teitelbaum, and Mark Zarins.
Tool support for fine-grained software inspection. IEEE Soft-
ware, 20(4):42-50, July/August 2003.

Nat Ayewah, Hovemeyer David, J.D. Morgenthaler, J. Penix, and
William Pugh. Using static analysis to find bugs. IEEE Software,
25(5):22-29, September 2008.

Nathaniel Ayewah and William Pugh. A report on a survey and
study of static analysis users. In DEFECTS '08: Proceedings of
the 2008 workshop on Defects in large software systems, pages
1-5, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-
051-7. doi: http://doi.acm.org/10.1145/1390817.1390819.

Nathaniel Ayewah and William Pugh. Using checklists to
review static analysis warnings. In DEFECTS ’09: Pro-
ceedings of the 2nd International Workshop on Defects
in Large Software Systems, pages 11-15, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-654-0. doi:
http://doi.acm.org/10.1145/1555860.1555864.

Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John
Penix, and YuQian Zhou. Evaluating static analysis defect warn-
ings on production software. In Proceedings of the 7th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for soft-
ware tools and engineering, pages 1-8, 2007.

Thomas Ball and Sriram K. Rajamani. The SLAM Project: De-
bugging System Software via Static Analysis. In Proceedings of
the 29th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 1-3, Portland, Oregon,
January 2002.

D. A. Berman, S. T. Coleridge, and T. A. McMurry. Computerized
algorithm-directed triage in the emergency department. Annals
of Emergency Medicine, 18(2), February 1989.

Dirk Beyer, Adam J. Chlipala, Thomas A. Henzinger, Ranjit Jhala,
and Rupak Majumdar. The Blast query language for software
verification. In Roberto Giacobazzi, editor, Static Analysis,
11th International Symposium, volume 3148 of Lecture Notes
in Computer Science, pages 2—18, Verona, Italy, August 2004.
Springer-Verlag.

David Brodie and Richard Wells. An evaluation of the utility of
three ergonomics checklists for predicting health outcomes in
a car manufacturing environment. In Proc. of the 29th Annual
Conference of the Human Factors Association of Canada, 1997.

Craig Chambers, Jeffrey Dean, and David Grove. Frameworks for
Intra- and Interprocedural Dataflow Analysis. Technical Report
96-11-02, Department of Computer Science and Engineering,
University of Washington, November 1996.

Yih-Farn R. Chen, Glenn S. Fowler, Eleftherios Koutsofios, and
Ryan S. Wallach. Ciao: A graphical navigator for software
and document repositories. In Proceedings of the International
Conference on Software Maintenance, pages 66—75, 1995.

Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Uni-
fied Lattice Model for Static Analysis of Programs by Construc-
tion or Approximation of Fixpoints. In Proceedings of the 4th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238-252, 1977.

Roger F. Crew. ASTLOG: A Language for Examining Abstract
Syntax Trees. In Proceedings of the Conference on Domain-
Specific Languages, Santa Barbara, California, October 1997.

CSE. Microsoft center for software excellence.
http://wuw.microsoft.com/windows/cse/default.mspx.

Manuvir Das. Formal specifications on industrial-strength code:
From myth to reality. In Proceedings of the 18th International
Conference on Computer Aided Verification, page 1, August
2006.

Asaf Degani and Earl L. Wiener. Human factors of flight-deck
checklists: The normal checklist, 1990. NASA Contractor Re-
port 177549.

Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. A Prac-
tical Framework for Demand-Driven Interprocedural Data Flow
Analysis. ACM Transactions on Programming Languages and
Systems, 19(6):992—-1030, November 1997.

Matthew B. Dwyer and Lori A. Clarke. A Flexible Architecture
for Building Data Flow Analyzers. In Proceedings of the 18th
International Conference on Software Engineering, pages 554—
564, Berlin, Germany, March 1996.

Dawson Engler and Ken Ashcraft. RacerX: effective, static detec-
tion of race conditions and deadlocks. In Proceedings of the
19th ACM Symposium on Operating Systems Principles, pages
237-252, Bolton Landing, New York, October 2003.

Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem.
Checking System Rules Using System-Specific, Programmer-
Written Compiler Extensions. In Fourth symposium on Operat-
ing System Design and Implementation, San Diego, California,
October 2000.

Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi,
Stephanie Weirich, and Matthias Felleisen. Catching Bugs in
the Web of Program Invariants. In Proceedings of the 1996
ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 23-32, Philadelphia, Pennsylvania,
May 1996.

Fortify Software Inc. Fortify Source Code Analysis, 2007.
http://wuw.fortifysoftware.com/products/sca/.

Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-Sensitive
Type Qualifiers. In Proceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation, pages 1-12, Berlin, Germany, June 2002.

Simon F. Goldsmith, Robert O’Callahan, and Alex Aiken.
Relational queries over program traces. In OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN con-
ference on Object oriented programming, systems, lan-
guages, and applications, pages 385-402, New York,
NY, USA, 2005. ACM. ISBN 1-59593-031-0. doi:
http://doi.acm.org/10.1145/1094811.1094841.

GrammaTech, Inc. CodeSonar, 2007.

http://www.grammatech.com/products/codesonar/overview.html.

David Greenfieldboyce and Jeffrey S. Foster. Visualizing Type
Qualifier Inference with Eclipse. In Workshop on Eclipse Tech-
nology eXchange, Vancouver, British Columbia, Canada, Octo-
ber 2004.

Samuel Z. Guyer and Calvin Lin. Client-Driven Pointer Analysis.
In Radhia Cousot, editor, Static Analysis, 10th International
Symposium, volume 2694 of Lecture Notes in Computer Science,
pages 214-236, San Diego, CA, USA, June 2003. Springer-
Verlag.

B. M. Hales and P. J. Pronovost. The checklist — a tool for error
management and performance improvement. Journal of Critical
Care, 21(3), 2006.

Mary Hall, John M. Mellor-Crummey, Alan Carle, and René
Rodriguez. FIAT: A Framework for Interprocedural Analysis
and Transformation. In Proceedings of the 6th Annual Work-
shop on Parallel Languages and Compilers, August 1993.

David Hovemeyer and William Pugh. Finding bugs is easy. In
John M. Vlissides and Douglas C. Schmidt, editors, OOPSLA
Companion, pages 132-136. ACM, 2004.

Doug Janzen and Kris De Volder. Navigating and querying code
without getting lost. In AOSD ’03: Proceedings of the 2nd inter-
national conference on Aspect-oriented software development,
pages 178-187, New York, NY, USA, 2003. ACM. ISBN I1-
58113-660-9. doi: http://doi.acm.org/10.1145/643603.643622.

Ciera Christopher Jaspan, I-Chin Chen, and Anoop Sharma. Under-
standing the Value of Program Analysis Tools. In OOPSLA’07
Practitioner Reports, 2007.

Yit Phang Khoo, Jeffrey S. Foster, Michael Hicks, and Vibha Saza-
wal. Path projection for user-centered static analysis tools. In
Proceedings of the ACM Workshop on Program Analysis for
Software Tools and Engineering (PASTE), November 2008a.

Yit Phang Khoo, Jeffrey S. Foster, Michael Hicks, and Vibha Saza-
wal. Path Projection for User-Centered Static Analysis Tools.
Technical Report CS-TR-4919, Department of Computer Sci-
ence, University of Maryland, College Park, August 2008b.

Andrew J. Ko and Brad A. Myers. Debugging reinvented: ask-
ing and answering why and why not questions about pro-
gram behavior. In ICSE ’08: Proceedings of the 30th interna-
tional conference on Software engineering, pages 301-310, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-079-1. doi:
http://doi.acm.org/10.1145/1368088.1368130.

Raimondas Lencevicius, Urs Holzle, and Ambuj K. Singh. Dy-
namic query-based debugging of object-oriented programs. Au-
tomated Software Engg., 10(1):39-74, 2003. ISSN 0928-8910.
doi: http://dx.doi.org/10.1023/A:1021816917888.

Michael Martin, Benjamin Livshits, and Monica S. Lam. Find-
ing application errors and security flaws using pql: a program
query language. In OOPSLA ’05: Proceedings of the 20th an-
nual ACM SIGPLAN conference on Object oriented program-
ming, systems, languages, and applications, pages 365-383,
New York, NY, USA, 2005. ACM. ISBN 1-59593-031-0. doi:
http://doi.acm.org/10.1145/1094811.1094840.

Mayur Naik, Alex Aiken, and John Whaley. Effective static race
detection for java. In ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, pages 308-319,
2006.

Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. Lock-
smith: Context-Sensitive Correlation Analysis for Race Detec-
tion. In PLDI ’06, pages 320-331, 2006.

Joseph R. Ruthruff, John Penix, J. David Morgenthaler, Sebastian
Elbaum, and Gregg Rothermel. Predicting accurate and action-
able static analysis warnings. In International Conference on
Software Engineering, 2008. To appear.

Semmle Limited.
http://semmle.com.

Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wag-
ner. Detecting Format String Vulnerabilities with Type Quali-
fiers. In Proceedings of the 10th Usenix Security Symposium,
Washington, D.C., August 2001.

John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In Pro-
ceedings of the 2004 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 131-144,
Washington, D.C., June 2004.

Semmle — Query Technologies.

