
Combining Provenance and Security Policies
in a Web-based Document Management System

Brian J. Corcoran Nikhil Swamy Michael Hicks

{bjc, nswamy, mwh}@cs.umd.edu

1. Introduction
Provenance and security are intimately related. Cheney et al. [3]
show that the dependencies underlying provenance information
also underly information flow security policies. Provenance infor-
mation can also play a role in history-based access control poli-
cies [1]. Many real applications have the need to combine a variety
of security policies with provenance tracking. For instance, an on-
line stock trading website might restrict access to certain premium
features it offers using an access control policy, while at the same
time using an information flow policy to ensure that a user’s sensi-
tive trading information is not leaked to other users. Similarly, the
application might need to track the provenance of transaction infor-
mation to support an annual financial audit while also using prove-
nance to attest to the reliability of stock analyses that it presents to
its users.

We have been exploring the interaction between provenance and
security policies while developing a document management system
we call the Collaborative Planning Application (CPA). The CPA
is written in SELINKS, our language for supporting user-defined,
label-based security policies [7]. SELINKS is an extension of the
Links web-programming language [4] with means to express label-
based security policies. Labels are associated with the data they
protect by using dependent types which, along with some syntac-
tic restrictions, suffice to ensure that user-defined policies enjoy
complete mediation and cannot be circumvented [6]. Our interest
in provenance and security policies is thus part of a broader ex-
ploration of how security policies can be encoded, composed, and
reasoned about within SELINKS. In this paper, we describe the ar-
chitecture of the CPA and its approach to label-based provenance
and security policies (Section 2) and we sketch directions for fur-
ther exploration on the interaction between the two (Section 3).

2. Current Status: Provenance in the CPA
The goal of the CPA is to help users organize information, poten-
tially at a variety of security levels, in the style of a blog/wiki a
la Intellipedia [5]. Documents in the wiki are composed of blocks,
which can range from an entire page to a single word, and a la-
bel can be associated with any block. Labels have the general
form seen in Fig. 1 (using Links’ notation for declaring a recur-
sive type). Labels consists of access control labels (Acl), which
consist of lists of groups of users with read access and write ac-
cess, and provenance labels (Prov) which are comprised of a list
of ProvAction labels that have affected the labeled data. We al-
low labels to be combined through the use of a Composite label;
this permits the composition of policies. Labels can be modified
(given sufficient privilege), e.g., to change the security policy. Care
must be taken to ensure that labels associated with different poli-
cies do not interact badly. For instance, provenance information can
itself be sensitive and may need to be protected with its own se-

typename Label = mu label .
[| Composite: [label]
| Acl: (read: [Group], write: [Group])
| Prov: [ProvAction]
|];

Figure 1. The type of a document’s labels.

curity policy. We invite the reader to experiment with the CPA at
http://macdonald.cs.umd.edu:8002/.

Data provenance is a natural fit to the CPA. As with most wiki
software, we are concerned with keeping a log of how, when, and
by whom pages are edited. To implement data provenance, we wrap
every “public” function that modifies the state of the wiki so that
it will correctly create or update the appropriate label. Provenance
policies consider creating, modifying, deleting, restoring, and rela-
beling blocks. ProvAction labels, defined in Fig. 2, associate this
operation type with assorted provenance data. We store the user-
name and IP address of the current user, the modification date and
time, and the original source of the data (e.g., a URL or another
block). We imagine provenance information being used to audit
data, or to assign blame for information leaks. Provenance infor-
mation can itself be protected from tampering; e.g., cover-ups of
information leaks can be avoided by preventing permanent deletion
of provenance meta-data.

Fig. 3 shows a snippet of code that is ensured to mediate all
operations that modify a page. As such, we think of this snippet as
our policy for propagating provenance labels that track document
modification events (i.e., the Modify operation) and we annotate
the function with the policy qualifier. The argument cred is a
credential representing the identity of the user currently logged in;
doc is the document that is to be modified; path represents a path
in the document tree from the root to the node that is to be replaced
by block. The function constructs a provenance label recording the
Modify action by the user and it adds this label to the set of labels
associated with the block.

The higher-order function applyWriteToBlock takes as an ar-
gument a function that will modify part of the document, applying
this function only if the Acl labels on the document allow. The
replace function expects to receive the old label and old block
from the specified path. In this case, we are entirely replacing the

typename ProvOp =
[|Create|Relabel|Modify|Copy|Delete|Restore|];
typename ProvAction = (

oper : ProvOp, user : String,
date : String, time : String,
ipaddr : String, source : String

);

Figure 2. The type of provenance actions.

fun replaceBlockProv(cred, page, path, block)
policy {

fun replace (li, _) {
var lProv = mkProvLabel(Modify, cred);
var l = joinLabels(li, lProv);
labelBlock(l, block)

}
applyWriteToBlock(cred, replace, path, page)

}

Figure 3. A policy that tracks Modify actions.

block, so replace ignores the value the second argument and re-
places it with with the new block block, after updating the associ-
ated labels.

The code for applyWriteToBlock is given in Fig. 4. It first
calls getBlock to retrieve a specific block and label from a page.
This pair (l, oldBlk l) is given the type of a dependent pair
in which the first component is a label that labels the block in
the second component. The CPA doesn’t require all blocks to be
labeled. However, an unlabeled block in the document tree must
inherit the access control label of its closest labeled parent. The
function getBlock traverses the tree as necessary to locate both the
requested block and its associated label, returning a default label
if none is found. Once we have the old block, the applyWrite
function applies the function f to convert it to the new block. The
new block is then saved to the database using dbreplaceBlock
and the updated page is returned.

Access control and provenance policies interact in other situ-
ations as well. For example, when the access control labels of a
particular page are modified using the CPA interface, this must be
done through the corresponding relabelBlock policy. In addition
to modifying the labels, this policy adds a provenance label of type
Relabel, recording the standard meta-data as well as the details of
the new access control label. This ensures that all relabeling actions
are logged, and that it is possible to view the complete security his-
tory of a document, not just the current set of access controls.

The CPA permits copying a block from one page to another,
based on Buneman et al’s tracking of copy/paste operations in cu-
rated databases [2]. The copy/paste policy ensures that the prove-
nance information associated with the original document will be
available at the destination. Since the data is copied, it allows
derivative pages that have increased or decreased levels of access
control. This could allow users with read-only access to “fork off”
their own branch to edit, or allow a group to copy a version such
that the original authors cannot see it (e.g., to use in a classified
report). Due to the provenance system, all the prior history of the
forked document remains available.

3. Directions for Research
We are currently exploring several extensions to this basic model.

The combination of access control with provenance in the CPA
is a very simple instance of policy composition. While both policies
are enforced in the program, the labels of one policy do not influ-
ence the decisions made by the other policy. We are currently im-
plementing a history-based access control policy in the CPA where
the provenance of a document influences the access control policy
that applies to that document. We are also implementing a model
for protecting the provenance labels themselves (rather than the
data) with access control policies. For example, we could restrict
viewing provenance labels to users in an auditors group.

While SELINKS permits arbitrary forms of policy composition,
reasoning about non-trivial compositions is difficult. We are con-
sidering a variety of information flow analysis techniques to ensure

fun applyWriteToBlock(cred, f, path, page) policy {
var (l, oldBlk_l) = getBlock(cred, page, path);
var newBlk_l = applyWrite(cred, f, l, oldBlk_l);
dbreplaceBlock(cred, oldBlk_l, newBlk_l)

}

Figure 4. A policy that controls write-access.

that policies do no interact badly. Ultimately, we hope to partially
automate reasoning about the correctness of policy encodings.

We have not yet implemented support for arbitrary queries over
the provenance data; we expect such queries will better illustrate
interactions between provenance and other policies. For example,
if users search for all files they have modified, they will not find
any documents where their access has been removed since the
modification. Arbitrary querying is a prerequisite to any kind of
provenance-based access control mentioned above.

The provenance labels in the CPA only track events on docu-
ments and direct data flows to and from other documents. More
generally, data can also be influenced by indirect dependences on
other data—i.e. implicit flows. We have shown how such policies
can be encoded in SELINKS. However, programming while track-
ing (and perhaps restricting) implicit flows can be tricky. To ease
this burden, we are investigating an approach based on program
rewriting that, given a policy specification, automatically trans-
forms a program to insert the appropriate label manipulations.

Finally, since Links is a multi-tier language, we are keen on
combining traditional techniques of provenance tracking through
database operations with our language-based approach. Our cur-
rent approach to storing provenance labels is fairly inefficient, as
all labels are stored as marshaled data structures. One possible en-
hancement is using a provenance-enhanced database to perform all
queries, thus storing the provenance information as meta-data at the
database level, and converting it to provenance labels when the data
is accessed at the language level.

References
[1] M. Abadi and C. Fournet. Access control based on execution history.

In NDSS, 2003.

[2] P. Buneman, A. P. Chapman, and J. Cheney. Provenance management
in curated databases. In SIGMOD, Chicago, Illinois, USA, 2006.

[3] J. Cheney, A. Ahmed, and U. Acar. Provenance as dependency analysis,
2007.

[4] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web
programming without tiers. http://groups.inf.ed.ac.uk/
links/papers/links-esop06.pdf, 2006.

[5] All news, all about intellipedia! http://www.esenai.com/blog/
intellipedia/.

[6] N. Swamy and M. Hicks. Fable: A language for enforcing user-defined
security policies (extended version). University of Maryland, Technical
Report, CS-TR-4876; http://www.cs.umd.edu/projects/PL/
fable/tr.pdf.

[7] N. Swamy, M. Hicks, and S. Tsang. Verified enforcement of security
policies for cross-domain information flows. In Proceedings of the
2007 Military Communications Conference (MILCOM), Oct. 2007. To
appear.

