
Rubah: Efficient, General-purpose Dynamic Software Updating for Java

Luı́s Pina∗

INESC-ID / Instituto Superior Técnico
Lisbon, Portugal

Michael Hicks
University of Maryland

College Park, USA

Abstract
This paper presents Rubah, a new dynamic software up-
dating (DSU) system for Java programs that works on
stock JVMs. Rubah supports a large range of program
changes (e.g., changes to the class hierarchy and up-
dates to running methods), does not restrict important
programming idioms (e.g., reflection), and, as shown by
performance experiments using an updatable version of
the H2 database management system, imposes low over-
head on normal execution.

1 Introduction

Dynamic software updating (DSU) frameworks are used
to update programs while they run. Of particular inter-
est to us are DSU frameworks that support nearly arbi-
trary program changes: in addition to changes to method
code (as commonly supported by Java and .NET VMs)
we would like to add and remove methods and fields,
change their types, and even change a class’s superclass
and implemented interfaces. Such support is needed to
facilitate dynamic updates corresponding to full releases,
rather than simple (e.g., security) patches.

In the past, such highly flexible DSU services have
been implemented in two ways: as a bytecode-to-
bytecode transformation, or via an enhanced JVM.
The appeal of the former approach is that it is JVM-
independent, and so DSU services are not restricted to a
particular platform. Most existing transformations work
by introducing one or more proxy objects per applica-
tion object whereby a dynamic update redirects a proxy
to point to the new object version [9, 10]. This approach
has several significant drawbacks. First, it can break ap-
plication semantics and therefore restricts certain useful
programming idioms; e.g., uses of reflection could re-
veal the presence of proxy objects and are thus forbid-

∗This work was performed while this author was visiting the Uni-
versity of Maryland.

den. Second, and perhaps more importantly, proxy ob-
jects can add significant overhead to normal execution,
e.g., up to 50%. This overhead is too high for practi-
cal use. The alternative of using a specialized VM, like
the JVolve VM [11], can avoid such performance over-
heads and semantic restrictions (though Jvolve in partic-
ular does not support some dynamic updates, e.g., class
hierarchy alterations). But a specialized VM limits adop-
tion.

In this work-in-progress paper we present Rubah, a
new transformation-based DSU framework for Java. Our
goal in building Rubah is to retain the portability ben-
efits of transformation-based techniques while avoiding
their high overhead and semantic restrictions. We have
done this by avoiding the use of proxy classes altogether:
when a new dynamic update becomes available, we dy-
namically load the new versions of added or changed
classes, and then perform what amounts to a full garbage
collection (GC) of the program to locate and update
all instances of affected classes. This approach is in-
spired by Jvolve, which employs a modified version of
the VM’s actual GC. To avoid changing the VM, Rubah
instead introduces an application-level GC-style traver-
sal implemented using reflection and some class-level
rewriting. Rubah also borrows ideas from the recent Kit-
sune DSU system for C programs [6] to support updates
to actively running methods (e.g., those running infinite
loops) by requiring the programmer to make some sim-
ple changes to use the Rubah API.

We have implemented Rubah and evaluated it on H2,
an SQL DBMS written in Java. So far we have imple-
mented two full updates to H2. Using the TPC-C bench-
mark from the DaCapo benchmark suite [1], we con-
firm that the benchmark completes correctly even when
H2 is updated midstream, and that Rubah adds about
8% overhead to normal execution, far less than prior
transformation-based approaches. On the other hand,
the pause that Rubah induces while the transformation
takes place is currently prohibitively high, on the order

1

v0.desc

v1.jar

Analyzer

v1.desc

UpdateClass.java skeleton.jar javac

UpdateClass.class

Updater

Figure 1: Preparing and installing an update using Rubah.
Square boxes represent artifacts: Compiled code (jar/class),
source code (java), or update descriptors (desc). Round boxes
represent tools: Rubah’s analyzer and updater, and the unmod-
ified Java compiler (javac).

of 10 seconds. This is due to the time it takes perform
HotSwap to introduce new code (about 2 seconds) and
to traverse the whole heap using regular Java code. Nev-
ertheless, our evaluation shows that Rubah is still faster
than the alternative approach of saving H2’s state, restart-
ing the database server, and reading the state in the new
version.

Implementing a DSU system as a specialized JVM or
as a bytecode transformation and runtime library has al-
ways been considered fundamental, with the former ben-
efiting flexibility and performance, and the latter bene-
fiting platform independence. Ultimately, based on what
we have learned so far, we believe the best answer might
be to make small, palatable changes to the JVM upon
which one can mostly implement DSU outside the JVM.
We view Rubah as bounding what is possible without
changing the JVM, and therefore highlighting what JVM
support is ultimately needed. Rubah supports extremely
flexible dynamic updates to Java programs imposing lit-
tle run-time overhead and requiring few code changes.
On the other hand, pause times are quite high, and run-
time overhead could be lower still. We are currently ex-
ploring minimal changes to the JVM and/or its program-
ming API that might be used to solve these problems.
Identifying exactly how much support is required from
the JVM is exciting future work.

In the remainder of the paper we present Rubah’s ap-
proach in detail, discuss our implementation, and present
our experience and performance evaluation using H2.
We conclude with plans and ideas for our continuing re-
search.

2 Rubah

Rubah implements whole program updates in the style
of a previously developed DSU system for C, called
Kitsune [6].1 An updatable program starts in Rubah’s
driver, a bit of stub code that calls into the application’s
main method. The program then executes normally until
an update becomes available. Rubah stops each thread
when it reaches the first update point following the up-
date becoming ready. Update points, implemented as
calls to the method Rubah.update, can be placed at
the head of long-running loops to ensure both safety and
availability [7].

Once all threads are stopped this way, Rubah per-
forms the data migration, which is a GC-style traver-
sal of the heap that updates those objects whose classes
have changed between versions. Next, Rubah performs
the control flow migration: It restarts each thread t un-
til t reaches the same update point in which t stopped.
We refer the reader to the Kitsune paper [6] for more il-
lustration of how this works; space constraints preclude
further elaboration here.

In Rubah, nearly every class can be changed in a
nearly arbitrary manner. The only non-updatable classes
include the Java runtime classes and libraries (e.g., Java
collections). Updatable classes can directly reference
non-updatable classes but not the reverse, due to is-
sues involving the bootstrap class path of a Java applica-
tion [8]. Of course, library classes do not directly refer-
ence application classes, so this restriction poses no prac-
tical difficulty.

In the remainder of this section we focus on the two
central novelties of Rubah: the update class, which spec-
ifies how updated objects are to be transformed, and
Rubah’s GC-style custom data migration.

The update class specifies how to migrate the program
state from version v0 to version v1.2 Figure 2 shows an
example of an update class. It has instance conversion
methods that take an existing instance o0 belonging to
version v0 and use it to initialize the equivalent new in-
stance o1 that shall replace o0. Update classes may also
have static conversion methods.

The arguments of the conversion method in Figure 2
are skeleton classes. As the name implies, they are a
skeleton of the classes defined in versions v0 and v1

with all fields and methods made public. Via the skele-
ton classes the programmer can refer to version v0 or v1
unambiguously and still use the regular Java compiler to

1Kitsune is the Japanese word for fox, a shape shifter. Rubah is the
Indonesian word for fox; natives of the island of Java speak Indonesian.

2Throughout the remainder of this paper, we shall consider that up-
dates take an application from version v0 to version v1 for the sake of
clarity.

2

1 class UpdateClass {

2 void convert(

3 v0.org.h2.store.PageStore o0,

4 v1.org.h2.store.PageStore o1) {

5 o1.readCount = 0L;

6 o1.writeCount = 0L;

7 o1.writeCountBase = o0.writeCount;

8 }

9 }

Figure 2: Example of an update class with a single instance
conversion method. Field writeCount in version v0 was re-
named to writeCountBase. Besides, version v1 introduced
two fields, readCount and writeCount, to keep how many
bytes were read/written since the store was opened. The an-
alyzer tool generates all code except for line 6, which the
programmer added, and line 7, which originally contained
o1.writeCountBase = 0L.

compile the update class.
Rubah generates the source code for most of the up-

date class. As shown in Figure 1, the programmer uses
Rubah’s analyzer tool to generate a stub update class,
along with the code that is loaded as part of dynamic
update. The analyzer tool takes as input the version-
v1 compiled code and the version descriptor generated
for version v0. The version descriptor contains meta-
data about a given version, such as a list of all updatable
classes. Then, the analyzer tool generates the update
descriptor for version v1 along with the initial update
class. The analyzer tool compares versions v0 and v1

and matches fields by owner class name, field name, and
field type. It generates conversion methods for all classes
with unmatched/changed fields and puts a default initial-
ization of those fields inside each generated method. The
programmer customizes the stub update class to migrate
each unmatched/changed field according to version v0’s
state. Once this is done, the operator provides the update
class and the prepared v1 code to the updater tool, which
initiates the dynamic update process.

Summing up all the effort required to update an ap-
plication using Rubah, the developer has to: (1) Spec-
ify update points, (2) write the control flow migration in
each new version, and (3) specify the program state mi-
gration in the update class. Even though Rubah does not
provide any tools for the programmer to assess the cor-
rectness of any the required manual interventions, it is
our experience that tasks 1 and 2 can be easily verified
during the development of the new version because an
error introduced in this tasks typically terminates the pro-
gram abruptly during the update process, even for trivial
updates easy to simulate during development. Besides,
both our previous experience with Kitsune [6] and the
experimental evaluation we describe in Section 3 sug-
gest that the effort required for task 2 takes place mostly

1 Rubah.traverse(Object o0) {

2 if (converted[o0]) return;

3 Class c0 = o0.getClass ();

4 Class c1 = Rubah.mapClass(c0);

5 Object o1 = Unsafe.allocate(c1);

6 converted[o0] = o1;

7 Rubah.copyUnchanged(o0 , o1);

8 Rubah.convert(o0 , o1);

9 o1.traverse ();

10 }

Figure 3: Migration algorithm (simplified). For all loaded
classes Rubah injects $traverse methods, which call method
Rubah.traverse for each field. Line 8 calls the appropriate
convert method specified in the update class.

in the first version. Maintaining this code in subsequent
updates is usually trivial and requires little effort, if any.

We decided not to automate task 1 because previ-
ous work [7] shows that the only approach that results
in 100% safe updates is manual specification of update
points. As for task 3, Rubah automates it as much as
possible to avoid programmer error. Nevertheless, pre-
vious work [5] explores how to verify the correctness of
state migration; we leave that as future work.

Implementing data migration The updater signals
the update to the application, whose driver uses a cus-
tom class loader to rewrite all loaded classes. When in-
stalling an update, the driver generates a new Java class
for each changed class in the running application. This
way, Rubah supports unrestricted modifications to up-
datable classes without requiring special support from
the JVM. To avoid name collisions, Rubah renames each
version of each updatable class. Rubah also replaces re-
flection calls by equivalent Rubah API calls that take the
name mangling process into account. 3

Rubah can traverse all program state without requir-
ing special support from the JVM. To do so, it adds
a method named $traverse to all classes, even non-
updatable classes. This method, in turn, calls Rubah’s
API on all reference type fields of each object. There-
fore, Rubah just needs to call the $traverse methods
on root references (stopped threads and static fields of
loaded classes) to find and migrate all updatable objects
that the program keeps. Rubah has a tool to add the
$traverse method to all the classes defined in the boot-
strap jar, which is shipped with the JVM and contains all
JDK classes. Then, the updatable program can be loaded
as long as the JVM uses the processed jar as its bootstrap
class path.

3Native methods in general, and reflection calls via native methods
in particular, are not handled.

3

Rubah does not migrate local variables. However our
experience from Rubah and Kitsune is that relevant state
is always accessible from root references. As for external
resources, such as open connections or files, Rubah pro-
vides API for the programmer to keep them open during
the update process. It is up to the developer to migrate
the control flow to avoid re-opening existing resources
while updating. When evaluating Rubah, we used this
mechanism to keep open connections established with an
unmodified H2 client while an update takes place.

Figure 3 shows a simplified version of the migration
algorithm. Rubah starts by checking if a given instance
has been converted already. If not, it creates an instance
o1 of the updated class without running any construc-
tor, registers o0 as migrated to o1, copies all unchanged
fields, runs the conversion method present in the update
class, and finally traverses o1. At this point, Rubah
has already replaced all references made by the update
class to the skeleton types by references to the real types.
Rubah runs this algorithm sequentially and provides no
guarantee about the order in which it traverses the heap.
When Rubah migrates all instances, it uses HotSwap [3]
to update the code on classes that the update modifies but
that do not require migration.

Rubah calls instance conversion methods in a similar
way to how Java calls constructors [4]. Let us consider
the case in which classes A and B are updatable, class B
extends A, class N is non-updatable, and class A extends
N. In this case, to convert instances of class B, Rubah:
(1) copies all fields inherited from class N, (2) copies all
unchanged fields from class A, (3) calls A’s conversion
method to migrate A’s updated fields, (4) copies all un-
changed fields from class B, and (5) calls B’s conversion
method to migrate B’s updated fields.

For the migration algorithm to work, each field with
an updatable type must be able to refer to multiple class
versions, i.e., class c0 or c1. As there is no subtyping
relationship between the two classes, Rubah erases all
updatable types from fields and method signatures, re-
placing updatable types by java.lang.Object and in-
serting casts to the right type on the code that uses those
fields or methods.

When migrating the program state, Rubah must ensure
that the identity of each new object o1 is the same as the
identity of the migrated object o0, even though o1 may
even belong to a different class. In Java, object identity is
related with three concepts: (1) The equals method, (2)
the == operator, and (3) the hashCode method. The heap
traversal that Rubah performs deals with concepts 1 and
2 because it replaces all references to o0 by a reference
to a respective o1. For the hash code, Rubah adds a field
named $hashCode to updatable classes, injects code at
the beginning of contructors to initialize this field, and
overrides the hashCode method (when not present) to

Version LOC Update Class
1.2.121 36882 / 428 - 267 / 9 -
1.2.122 37182 / 428 - +0 / +0 106 / 12 - 45 / +2
1.2.123 37084 / 428 - +0 / +0 40 / 4 - 30 / +0

Figure 4: Programmer effort to support Rubah. The columns
have the format 1/2-3/4. For column LOC, 1 and 2 are the total
lines of code of the H2 version, excluding comments and blank
lines, and the total number of files; 3 and 4 are the number of
modified lines and files to support Rubah. For column Update
Class, 1 and 2 are the number of lines of code and conversion
methods generated automatically; 3 and 4 are the number of
lines and methods that the programmer needs to change.

return the value of this field. When migrating the pro-
gram state, Rubah copies the value of this field from o0

to o1.

3 Evaluation

This section presents the details and results of the ex-
perimental evaluation that we conducted on Rubah. To
evaluate Rubah, we quantify how much the programmer
needs to rewrite the original program, how much over-
head Rubah adds in steady state execution after the byte-
code transformation, and how long is the program paused
for Rubah to complete a dynamic update.

To evaluate Rubah we used H2, an SQL DBMS writ-
ten in Java. We adapted the TPC-C benchmark used by
the DaCapo benchmark suite [1] to connect to a server
H2 process, instead of using H2 embedded in the bench-
mark process itself, so that we can update the server dy-
namically while an unmodified client keeps running. Be-
sides profiling H2’s performance, the TPC-C benchmark
also checks the H2 database for semantic errors. This
way, TPC-C confirms that Rubah transforms H2’s byte-
code and migrates its state correctly.

Programmer Effort. We used Rubah to update H2
from v1.2.121 to v1.2.122 and then to v1.2.123. The
patches are available at http://web.ist.utl.pt/

luis.pina/hotswup13. Figure 4 shows the changes
we made to support DSU with Rubah. All required
changes are made to version 1.2.121, and these are
limited to just a few lines of a few files. We added
two conversion methods to update v1.2.122 (beyond
those generated automatically): One method converts a
field that changed semantics (the values of integer con-
stants changed) and another method forces H2 to reload
changed property files before the update finishes.

Performance. We measured TPC-C throughput on
each scenario over 11 benchmark runs, each one consists

4

http://web.ist.utl.pt/luis.pina/hotswup13
http://web.ist.utl.pt/luis.pina/hotswup13

TTC (ms) Heap (KB)

Original 102174±1655 692733±183720
Rubah 110443±1519 800643±192561

TTU (ms) Heap (KB)

v0v0 52319±664 1089291±402314
121 to 122 10190±714 804539±197813
122 to 123 10978±1066 787484±186687

121 to 122 122 to 123
Export (ms) 3154.72±331.87 3214.18±235.82
Import (ms) 8249.72±220.45 8275.72±311.89
Total (ms) 13037.72±626.68 13431.27±621.49

Figure 5: Experimental evaluation of Rubah. This table re-
ports the average of the measured values and the standard de-
viation. The TTC column reports the time it takes to complete
a single iteration; TTU reports the time it takes to perform an
update; Heap reports the heap used throughout each iteration.
The export/import/total rows measure the time the old version
takes to dump the database contents to an SQL file, the time the
new version takes to import that SQL file, and the overall time
since the dump starts to the import finishes including restarting
the H2 server, respectively.

of 10 benchmark iterations, each one executing 32,000
transactions. We restarted the server and client processes
between benchmark runs. To benchmark Rubah’s mem-
ory usage, we separately take measurements by sending
signal SIGQUIT every second to the server JVM, which
causes it to dump overall heap usage.

All benchmarks ran on an Intel Core i5 750 proces-
sor (4 cores) with 12GB RAM, running a 64-bit Ubuntu
GNU/Linux 12.10 with Oracle JVM version 1.6.0 41
(Runtime Environment build 1.6.0 41-b02, HotSpot 64-
bit Server VM build 20.14-b01). The JVM maximum
heap size is 3GB on the server and 1GB on the client.

Figure 5 reports the results. We can see that Rubah
introduces about 8% overhead on the original applica-
tion performance. As for memory overhead, we can see
an increase of about 15% in the amount of used heap.
The high standard deviation in the times is due to the
JVM trying to reduce time spent in GC rather than re-
duce the used memory, given that the used heap size is
much smaller than the maximum heap size.

The middle part of Figure 5 reports the time and heap
needed to perform the update. Row v0v0 measures the
cost of updating v0 to itself, “converting” every single
instance. Real updates take less time because fewer ob-
jects must be transformed (though the entire heap is still
traversed). The slow update times derive from the traver-
sal making many normal method invocations per object;
we are investigating means to optimize the traversal.

Without Rubah, the typical update scenario for H2

would be to export the database contents to disk, stop the
server running in the old version, start the server in the
new version, and import the database contents. We need
to export/import the database state because this particular
benchmark uses in-memory tables.

Given Rubah’s slow update times, we performed an
experiment to measure how long this update scenario
would take. This experiment runs the benchmark once
to populate the database with some data. Then, it export-
s/imports the database state, restarting the H2 server in
between. The bottom part of Figure 5 reports the results
measured over 11 executions of this experiment. Rubah
is able to perform the update about 20% faster.

Even though 20% is just a small improvement, Rubah
is a much better approach because it stops the applica-
tion in a safe state and keeps all connections alive during
the update process. Using Rubah, we did not change the
clients in any way to survive the update process. With-
out Rubah, either the update process would disconnect
all clients or the clients would require custom modifica-
tions to survive the update process (e.g. attempting to
reconnect). Nevertheless, the Rubah pause time is still
quite high, and ongoing work aims to address it.

4 Related Work

As mentioned in Section 2, Rubah employs the same ap-
proach to whole program updates as Kitsune [6], a DSU
system for C; in particular, both systems employ the con-
cepts of control and data migration, and update points.
The main difference is that Rubah implements data mi-
gration via code inserted during bytecode transforma-
tion, and specifies updates via its update class. Kitsune’s
data migration algorithm is more brittle because of C’s
lack of type safety. Kitsune uses a domain-specific lan-
guage to specify state conversions; Rubah’s update class
is a more compact, and natural, representation for con-
versions in the Java context.

Rubah’s update class bears some similarity to PJama’s
bulk conversion [2] routines. However, these routines
works on offline updates of persistent object stores,
rather than on-line updates to running Java programs.
PJama also does not use skeleton classes to refer to
old/new state unambiguously.

There have been several prior systems that support
DSU for Java without requiring VM support. JRebel [13]
allows unrestricted changes to the structure of a class
(add/remove fields/methods) but not to the class posi-
tion in the hierarchy, which Rubah supports. JRebel also
does not support any program state migration mechanism
besides the default Java initialization to added fields.
DUSC [9] and DUSTM [10] work by inserting proxies
as an indirection to every object, and paying the respec-
tive steady-state performance penalty, which can be as

5

high as 50% for a similar H2 benchmark.
The JVM itself is a natural place to support DSU. The

Oracle JVM supports dynamic updates to method bod-
ies in existing classes [3], for the purposes of enabling
“stop-edit-continue” development. (JRebel also targets
this domain.) Full-featured DSU is supported by the
JVolve [11] and DCE VMs [12], though even these do
not support some changes to the class hierarchy, which
Rubah does. With DSU services are located inside the
JVM itself, these systems can take advantage of internal
mechanisms, such as the garbage collection and JIT com-
piling, to implement efficient support for DSU. How-
ever, this approach is inherently non-portable. The goal
of building Rubah was to show that similarly powerful
mechanisms can be built outside the VM while impos-
ing comparable performance and development costs. As
stated in the introduction, a hybrid approach may ulti-
mately be the best answer.

5 Conclusion

This paper has presented our work to date on Rubah, a
dynamic software updating system for Java that works
on stock VMs. Rubah’s applies whole-program up-
dates to running programs, employing a novel means of
specifying state changes (the update class) and a novel
application-level, GC-style traversal to find and trans-
form updated instances. Rubah’s imposes relatively low
overhead on normal execution, but more work is needed
to reduce update pause times. Nevertheless, our ex-
perimental evaluation shows that Rubah’s update times
are faster than the typical technique of saving the state,
restarting the application in the new version, and import-
ing the saved state.

Future Work The most pressing problem of Rubah is
the high update pause time. We are planning to explore
lazy algorithms for transforming the state, to both amor-
tize the cost of data migration and improve the update
pause time. In the case that we are not able to do so,
we are planning on identifying the minimum support that
we require from the JVM for implementing low update
pause times.

We also are working on expanding our experimental
evaluation to more applications. Another possible way
to expand Rubah would be researching tools that verify
the correctness of update classes.

Acknowledgments. This work was partially supported
by national funds through FCT - Fundação para a
Ciência e a Tecnologia - under projects PTDC/EIA-
EIA/108240/2008 and PEst-OE/EEI/LA0021/2011, and
by NSF grant CCF-0910530.

References
[1] BLACKBURN, S. M., GARNER, R., HOFFMANN, C., KHANG,

A. M., MCKINLEY, K. S., BENTZUR, R., DIWAN, A.,
FEINBERG, D., FRAMPTON, D., GUYER, S. Z., HIRZEL,
M., HOSKING, A., JUMP, M., LEE, H., MOSS, J. E. B.,
PHANSALKAR, A., STEFANOVIĆ, D., VANDRUNEN, T., VON
DINCKLAGE, D., AND WIEDERMANN, B. The DaCapo bench-
marks: Java benchmarking development and analysis. In Pro-
ceedings of the 21st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applica-
tions (New York, NY, USA, 2006), OOPSLA ’06, ACM, pp. 169–
190.

[2] DIMITRIEV, M., AND ATKINSON, M. P. Evolutionary data con-
version in the PJama persistent language. In Proceedings of the
Workshop on Object-Oriented Technology (London, UK, 1999),
Springer-Verlag, pp. 25–36.

[3] DMITRIEV, M. Towards flexible and safe technology for runtime
evolution of Java language applications. In In Proceedings of
the Workshop on Engineering Complex Object-Oriented Systems
for Evolution, in association with OOPSLA 2001 International
Conference (2001).

[4] GOSLING, J., JOY, B., STEELE, G., AND BRACHA, G.
Java(TM) Language Specification, The (3rd Edition) (Java
(Addison-Wesley)). Addison-Wesley Professional, 2005.

[5] HAYDEN, C. M., MAGILL, S., HICKS, M., FOSTER, N., AND
FOSTER, J. S. Specifying and verifying the correctness of dy-
namic software updates. In Proceedings of the International Con-
ference on Verified Software: Theories, Tools, and Experiments
(VSTTE) (Jan. 2012), pp. 278–293.

[6] HAYDEN, C. M., SMITH, E. K., DENCHEV, M., HICKS, M.,
AND FOSTER, J. S. Kitsune: efficient, general-purpose dynamic
software updating for c. In Proceedings of the ACM international
conference on Object oriented programming systems languages
and applications (New York, NY, USA, 2012), OOPSLA ’12,
ACM, pp. 249–264.

[7] HAYDEN, C. M., SMITH, E. K., HARDISTY, E. A., HICKS, M.,
AND FOSTER, J. S. Evaluating dynamic software update safety
using efficient systematic testing. IEEE Transactions on Software
Engineering 38, 6 (Dec. 2012), 1340–1354. Accepted September
2011.

[8] LIANG, S., AND BRACHA, G. Dynamic class loading in the
Java(TM) virtual machine. In In Proc. 13th ACM Conference on
Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA’98), volume 33, number 10 of ACM SIGPLAN
Notices (1998), ACM Press, pp. 36–44.

[9] ORSO, A., RAO, A., AND HARROLD, M. A technique for dy-
namic updating of java software. In Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM’02) (Wash-
ington, DC, USA, 2002), IEEE Computer Society, pp. 649–.

[10] PINA, L., AND CACHOPO, J. DuSTM - dynamic software
upgrades using software transactional memory. Tech. Rep.
32/2011, INESC-ID Lisboa, June 2011. Available at http:

//www.inesc-id.pt/ficheiros/publicacoes/7298.pdf.
[11] SUBRAMANIAN, S., HICKS, M., AND MCKINLEY, K. S. Dy-

namic software updates: a VM-centric approach. In Proceedings
of the 2009 ACM SIGPLAN conference on Programming lan-
guage design and implementation (New York, NY, USA, 2009),
PLDI ’09, ACM, pp. 1–12.

[12] WÜRTHINGER, T., WIMMER, C., AND STADLER, L. Dynamic
code evolution for Java. In Proceedings of the 8th International
Conference on the Principles and Practice of Programming in
Java (New York, NY, USA, 2010), PPPJ ’10, ACM, pp. 10–19.

[13] ZEROTURNAROUND. JavaRebel. http://www.

zeroturnaround.com/jrebel/.

6

http://www.inesc-id.pt/ficheiros/publicacoes/7298.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/7298.pdf
http://www.zeroturnaround.com/jrebel/
http://www.zeroturnaround.com/jrebel/

	Introduction
	Rubah
	Evaluation
	Related Work
	Conclusion

