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Abstract

This paper presents RX, a new security-typed program-
ming language with features intended to make the man-
agement of information-flow policies more practical. Se-
curity labels in RX, in contrast to prior approaches, are
defined in terms of owned roles, as found in the RT role-
based trust-management framework. Role-based security
policies allow flexible delegation, and our language RX
provides constructs through which programs can robustly
update policies and react to policy updates dynamically.
Our dynamic semantics use statically verified transactions
to eliminate illegal information flows across updates, which
we call transitive flows. Because policy updates can be ob-
served through dynamic queries, policy updates can poten-
tially reveal sensitive information. As such, RX considers
policy statements themselves to be potentially confidential
information and subject to information-flow metapolicies.

1 Introduction
Security-typed programming languages extend standard

types with labels to specify security policies on the allow-
able uses of typed data. Such labels are typically ordered
by a lattice that expresses multi-level security policies for
properties like confidentiality. For example, labels may de-
note principals like Bob and Alice, and if, according to the
security lattice, Alice v Bob holds, then any data labeled
Alice can be viewed by Bob. Compile-time type-checking
ensures that the policies expressed by labels mentioned in
types are enforced, and thus one can prove, in advance of
program execution, that a program adheres to a particular
information-flow policy.

Most existing security-typed languages assume that a
program’s security policy does not change once the pro-
gram begins its execution. This is an unrealistic assumption
for long-running programs. For operating systems, network
servers, and database systems, the privileges of principals
are likely to change. New principals may enter the system,
while existing principals may leave or change duties.

On the other hand, it would be unwise to simply allow

the policy to change at arbitrary program points. For exam-
ple, if the program is unaware of a revocation in the security
lattice it could allow a principal to view data illegally. More
subtly, a combination of policy changes could violate sep-
aration of duty, inadvertently allowing flows permitted by
neither the old nor the new policy. We call this channel of
information leaks across updates a transitive flow.

This paper presents a new security-typed language RX
that permits security policies to change during program ex-
ecution. RX has two distinguishing features. First, labels
in RX are defined in terms of roles as found in the role-
based access control languages of the RT framework [12].
A role names a set of principals, and role ordering in the
security lattice is defined by subset. Second, RX programs
are permitted to dynamically update the current role defi-
nitions; policy queries executed at runtime allow the pro-
gram to observe the evolution of policy. Programmers can
use database-style transactions to denote code that must use
a single consistent policy, preventing unintended transitive
flows. Policy updates that would violate this consistency
cause the program to roll back to a consistent state.

Once we allow policies to change within a program, poli-
cies themselves can become channels that carry sensitive
information. To prevent these channels from leaking in-
formation to unauthorized principals, RX uses metapolicies
that define which principals can view a particular role, and
which principals trust a role’s definition. To our knowl-
edge, RX is the first programming language to formalize
metapolicies to forbid illegal flows via policy updates. The
inherent administrative model of the RT policy languages
suggests natural choices for these metapolicies. For exam-
ple, in the RT framework, a role has a designated owner
that is responsible for administering the role’s contents.
Thus, only when the program is acting in a way trusted by
that owner may the role be changed.

The RT policy language has useful features that ease the
administration of policy in use by a security-typed program.
RT supports fine-grained delegation which can limit the
impact of policy changes on information flows. Also, us-
ing named roles as labels provides a useful indirection: the
contents of a role may change when the name of the role



does not. This may reduce the need for data to be relabeled
to effect a policy change. As far as we know, RX is the first
programming language to employ a role-based specification
language for defining security policies.

The rest of this paper is structured as follows. Section 3
presents RXcore, the mostly-standard core of RX for which
security labels are defined as RT roles. Section 3 presents
the full RX language, which extends the RXcore label model
to support the added features of policy queries, policy up-
dates, and transactions. Section 4 states security theorems
that hold for RX. The paper concludes with a discussion of
related work in Section 5 and future directions in Section 6.

2 A Role-based Security-Typed Language
We begin by motivating the use of roles as labels in a lan-

guage that supports policy updates. We follow this with a
presentation of the core features of RT0, the simplest mem-
ber of the RT family of role-based policy languages. Fi-
nally, we present RXcore, an imperative security-typed lan-
guage for which security labels are defined as roles.

2.1 Existing Label Models
Most existing security-typed languages use the lattice

model of information flow [24] in which an information flow
policy Π is defined by a lattice (L,v), where ` ∈ L is a la-
bel (or security level), and labels are ordered by the relation
v. This kind of label model allows a program to define la-
bels like L and H , which mean “low” and “high” security,
respectively, and a policy Π = {L v H }, which indicates
that L is less restrictive than H . Generally speaking, labels
can either be atomic—L and H in this example—or the join
`1 t `2 of labels `1 and `2; here t is induced by the v rela-
tion.

The language Jif [14] supports the more sophisticated
labels of the decentralized label model (DLM). DLM la-
bels are defined in terms of principals, and have three parts:
an owner, a reader set (those principals allowed to read the
value), and an integrity set (those principals who trust the
value). Jif policies Π define delegation relationships be-
tween principals: for instance, if according to Π, principal
P1 delegates to P2, then P2 may “act for” P1. The ordering
on labels is induced by this acts-for relation among princi-
pals. For example, any data labeled solely by owner P1 may
be read or written by P2 (as well as any principals which
may act for P2).

2.2 Motivations for Roles
The problem with these label models is that they of-

fer no administrative support for changes to policy. This
is not surprising because existing languages were not de-
signed with policy changes in mind. If policy updates are
to be supported, a reasonable administrative model should
be able to provide answers to the following questions. (1)
Who is allowed to make changes to the security policy? (2)

What parts of the policy are permitted to change? (3) How
should those changes be reflected in the running program?
(4) When are such changes permitted to take place?

Rather than develop an administrative model for existing
label models, we looked instead to the body of work on
formal policy languages for which administrative models
already exist. Role-based policy languages [17, 2, 6, 12]
suggest a natural label model. In particular, a role, which
is a name that represents a set of principals, can be treated
as a label, and the ordering between labels can be defined
in terms of subset on the contents of roles according to the
policy. Indeed, in the simple example above, the two atomic
labels L and H are essentially being treated as roles.

We chose to use RT0 as the core of the label model for
RX. RT0 is the simplest member of the role-based policy
language framework RT [12]. Using RT roles as labels has
a number of attractive administrative features:

1. Ownership: An RT role is defined as having an owner
responsible for the role’s definition; a given principal
can own many roles. Only a role’s owner is allowed to
change the definition of that role.

2. Membership and Delegation: An RT policy permits
delegation at the granularity of roles, in which one role
may be defined in part by the contents of another role.
This provides better control than the DLM, which only
permits delegation between principals. To see the dis-
tinction, say that in Jif we define a special principal
Manager that represents the role of Manager in a com-
pany. To express that Alice is a member of this role, a
DLM policy Π would include the statement Manager
v Alice; i.e., whatever a Manager can view, Alice
can view as well. Assuming an administrative model
that would allow Alice to delegate to whomever she
wishes, Alice can state that Alice v Bob, with the ef-
fect of making Bob a manager since Manager vAlice
v Bob. By contrast, role membership and role delega-
tion in RT are separate concepts. Roles have an owner,
and membership is strictly under the owner’s control:
the owner can either include a principal in a role di-
rectly, or delegate (part of) the definition of a role to
another role. Membership does not imply delegation.

3. Indirection: Defining labels as roles provides a useful
level of indirection because the membership of a role
may change while the label on data stays the same.
That is, a security policy of some data can be modified
without requiring the data to be relabeled.

These points taken together answer the first three of the
four questions posed previously. The question (4) of when
policy changes are allowed to occur depends on what the
program is doing when a proposed update is available; we
consider this question in the next section.



For the remainder of this section, we first present the
RT0 policy language that forms the core of our label model.
Then we present the syntax and typing rules of the RXcore,
the core of our full language RX, which uses RT0 roles for
security labels.

2.3 RT0: A Role-based Policy Language
RT0 is the simplest member of the RT framework of

role-based policy languages [12]; it is summarized in Fig-
ure 1. A role ρ in RT0 has the form P.r, where princi-
pal P is the role’s owner and r is the role’s name. We
often write A, B, etc. as sample principals P . We use
the function owner(ρ) to extract the owner of ρ (so that
owner(P.r) = P ).

Policy statements s have two forms1 P.r ←
{P1, . . . , Pn} and P1.r1 ← P2.r2. The first form indicates
simple membership, that principals Pi are members of role
P.r. The second form is a simple role delegation statement,
which indicates that all members of the role P2.r2 are also
members of P1.r1. We use the function roledef (s) to de-
note the role ρ defined by the policy statement s: for exam-
ple, roledef (A.r ← {B}) is A.r.

The semantics of a role ρ is a set of principals and is de-
termined according to a policy Π by the function [[·]]Π. Intu-
itively, [[ρ]]Π includes all elements of X where ρ← X ∈ Π,
along with all elements of [[ρ′]]Π where ρ ← ρ′ ∈ Π. It is
defined formally below.

[[ρ]]Π = SΠ(ρ, Π)
SΠ0(ρ, ∅) = ∅
SΠ0(ρ, {ρ← X} ∪Π) = X ∪ SΠ0(ρ, Π)
SΠ0(ρ, {ρ← ρ′} ∪Π) = [[ρ′]]Π0\{ρ←ρ′} ∪ SΠ0(ρ, Π)
SΠ0(ρ, {s} ∪Π) = SΠ0(ρ, Π) if roledef (s) 6= ρ

An example of an RT0 policy Π is given in Figure 1,
which models the privacy of a patient’s health care docu-
ments. The example defines roles owned by three princi-
pals: Pat , a patient; Clinic, a specialized medical treat-
ment center where Pat is currently a patient; and DrPhil ,
a doctor not affiliated with the clinic. The policy state-
ments define several roles that capture the affiliations just
mentioned. Pat .doctors is defined via two statements. The
first says that DrSue (a family doctor) is Pat’s doctor. The
second statement is a delegation to Clinic.staff, indicating
that Pat’s doctors also include the practitioners that work
at the clinic, which according to the policy in Figure 1,
is currently just the two principals DrAlice and DrBob.
Pat .insurers includes all insurance companies with which
Pat has a policy—this is the single company BCBS defined
through simple membership. Clinic.insuranceCos is the set

1RT0 also includes intersection and linking inclusion. These state-
ments are supported by our label model, but we elide them here for sim-
plicity.

principal P
principal sets X ::= {P1, . . . , Pn}
role ρ ::= P.r
policy stmt s ::= ρ← X | ρ1 ← ρ2

policy Π ::= {s1, . . . , sn}

Pat .doctors ← {DrSue}
Pat .doctors ← Clinic.staff
Pat .insurers ← {BCBS}
Pat .healthRecords ← Pat .doctors
Clinic.staff ← {DrAlice ,DrBob}
Clinic.insuranceCos ← {BCBS , Aetna}
DrPhil .self ← {DrPhil}

Figure 1. Syntax of RT0 and a sample policy.

of insurance companies accepted by the clinic. Finally, the
last definition owned by DrPhil includes only himself.

The semantics of the role Pat .doctors and of
Pat .insurers according to this sample policy are:

[[Pat .doctors]]Π = {DrAlice,DrBob,DrSue}
[[Pat .insurers]]Π = {BCBS}

2.4 The RXcore Programming Language
RXcore is a simple imperative language with security la-

bels. Its syntax is shown at the top of Figure 2. Labels `
in RXcore are either atomic labels L or the join of two la-
bels according to the lattice ordering. An atomic label is
merely a role ρ. Labels are ordered according to the judg-
ment Π ` `1 v `2, where Π is an RT0 policy as described
above. For atomic labels, this ordering is according to the
semantics of roles as sets:

Π ` ρ1 v ρ2 ⇐⇒ [[ρ2]]Π ⊆ [[ρ1]]Π

Note that the label ordering relation (v) is the reverse
of the subset relation (⊆) over role membership. That is, a
role that has a larger set of members is a lower security level
than a role with fewer members, since strictly more princi-
pals can read data labeled by it. Extending this ordering to
compound labels is straightforward by interpreting the join
operator as set intersection.

RXcore contains a single base type (bool) subscripted
with a security level (We add another base type when ex-
tending RXcore to RX.). There are two typing judgments for
RXcore, shown at the bottom of Figure 2. Expression typ-
ings Ω ` E : τ state that in context Ω the expression E
has type τ . Statement typings Ω ` S state that statement
S is well formed with respect to the context Ω. The con-
text Ω has three elements: the environment Γ, the program
counter label pc and the policy context Q. Here Γ is a map
from variables to types, and pc is simply a label ` that is
used to bound the effect of writing to memory, to prevent
indirect information flows [19]. We discuss Q below. In the



atomic labels L ::= ρ
compound labels ` ::= L | ` t `
types t ::= bool
security types τ ::= t`

policy context Q ::= Π
typing context Ω ::= (Γ, pc, Q)
expressions E ::= true | false | x | E1 ⊕ E2

statements S ::= skip | x := E | S1; S2

| while (E) S | if (E) S1 S2

Ω ` true : bool` Ω ` false : bool` Ω ` x : Ω.Γ(x)

Ω ` E1 : bool`1 Ω ` E2 : bool`2
Ω ` E1 ⊕ E2 : bool`1t`2

Ω ` S1 Ω ` S2

Ω ` S1; S2

Ω ` skip
Ω ` E : bool` Ω[pc = Ω.pc t `] ` S

Ω ` while (E) S

Ω ` E : bool` Ω[pc = Ω.pc t `] ` Si i ∈ {1, 2}
Ω ` if (E) S1 S2

Ω.Γ(x) = t` Ω ` E : t` Ω.Q ` Ω.pc v `

Ω ` x := E

Ω ` E : bool`′ Ω.Q ` `′ v `

Ω ` E : bool`

Figure 2. RXcore syntax and typing.

typing rules we project the elements of the Ω tuple via the
dot notation; for example, Ω.pc is the pc component of Ω.
We write Ω[pc = pc′] to represent the context that is identi-
cal to Ω except the pc component is replaced with the value
pc′ (and similarly for other components of a context).

As in other security-typed languages, type checking in
RXcore is equivalent to security checking: if program S type
checks, when executed it will not leak information in vio-
lation of its policy. The policy context Q is a compile-time
approximation of the actual policy Π at run time with which
S will be executed. In RXcore and most security-typed lan-
guages, Q and Π are synonymous. That is, in these lan-
guages, it is assumed that the policy to be applied to the
entire execution of S is known when S is compiled. We
distinguish between policy context Q and policy Π now in
anticipation of the full RX in Section 3, for which policies Π
will evolve over time. Other than this difference, the typing
rules in Figure 2 are standard [24].

To illustrate how the typing judgments of RX0 prevent il-
legal information flows, consider typing the following pro-
gram in an environment where x is a high-security location
and y a low-security location.

if (x) (y := true) (y := false)

In this program, although the contents of x are not directly
assigned to y, the value stored in x is successfully copied
into y. This is because the branches of the if-statement carry

information about the contents of the high-security location
x. To prevent such flows, the rule for if-statements checks
each branch in a context where the effect lower-bound pc
is strengthened to be no less than the security level of x.
When typing the branches, the last premise of the rule for
assignment requires the label of y to be no less than the ef-
fect lower-bound. In our example, since y is a low-security
location, this premise is not satisfied and the program fails
to type-check.

3 RX: Adding Policy Updates to RXcore

This section presents the remaining features of the full
language RX, which include (1) policy queries by which
programs can examine the current policy during execution,
and (2) policy updates, by which programs can add or delete
statements from the current policy. The type system ensures
none of these operations will leak confidential information,
as proven in the next section. In addition, because policy
updates are a potentially dangerous operation—increasing
the membership of a role effectively declassifies informa-
tion [9]—RX adapts the integrity constraints from previ-
ous work on robust declassification [26, 15]. Intuitively,
the owner of a role ρ must trust the integrity of the deci-
sion to update policy statements that define ρ. Interestingly,
changes to policy become a potential conduit for illegal in-
formation flow. As such, we use metapolicies [10] for pro-
tecting the confidentiality and integrity of roles.

3.1 RX Syntax
The syntax of RX is shown in Figure 3. It differs from

RXcore in several ways. Atomic labels, L, now include ab-
stract operators CΠ(ρ) and IΠ(ρ) to represent metapolicies
that define the confidentiality and integrity of roles. Like
roles themselves, metapolicies are interpreted as sets of
principals. Full labels, `, are now joins of pairs consisting
of a confidentiality component and an integrity component,
which restricts where policy updates may occur.

Policy queries, q, are used in the statement if (q) S1 S2

to branch to S1 or S2 depending on whether the query L1 v
L2 holds according to the current dynamic policy Π. Policy
contexts Q used for type checking the program now consist
of a set of queries {q1, . . . , qn} that represent the knowledge
gained about the run time policy through policy queries.

Expressions E are augmented to include collections ∆
of policy mutation statements δs. The type language is ex-
tended to include the type pol` which stands for the type
of policy mutation statements at security level `, where ` is
defined by a metapolicy. The statement update E is used
to change the current policy by adding or deleting a collec-
tion of policy statements {s1, . . . , sn} where each si results
from the evaluation of E to ∆ = δ1s1, . . . , δnsn.

Finally, the statement transQ S creates a transaction
with policy context Q. Policy updates in S that violate pol-



atomic labels L ::= ρ | CΠ(ρ) | IΠ(ρ)
compound labels ` ::= (LC , LI) | ` t `
types t ::= . . . | pol
queries q ::= L1 v L2

policy context Q ::= {q1, . . . , qn}
update δ ::= add | del
updates ∆ ::= δs | δs, ∆
expressions E ::= . . . | ∆
statements S ::= . . . | if (q) S1 S2

| update E | transQ S

Figure 3. RX syntax, based on RXcore.

icy assumptions stated in Q cause all memory effects of the
S to be rolled back. This ensures that modifications to mem-
ory by S are consistent with respect to a single policy.

We first introduce the intuitive idea behind these new
constructs by example. We then present the formal dy-
namic and static semantics. We conclude with a discussion
of metapolicies.

3.2 Motivating Examples
Example 1. A fragment of a program that might be used to
create the sample health care policy in Figure 1:

if(patAcceptsTreatment)

if(Clinic.insuranceCos v Pat.insurers)
update(add(Pat.doctors ← Clinic.staff))

In the example, the variable patAcceptsTreatment in-
dicates that Pat has agreed to be treated at the Clinic. As a
result, the program will update Pat’s policy to include the
Clinic’s staff in her authorized list of doctors, but only after
ensuring that the Clinic accepts payment from her insur-
ance provider.2

The policy update statement executes only if the runtime
policy Π satisfies the label ordering relation that appears in
the second if-statement. Thus it is safe to assume this label
ordering when type-checking the update statement since it
will always be true when the statement executes. The policy
context Q is used to accumulate the result of label ordering
queries that appear in enclosing scopes and is used to stati-
cally prove label orderings.

This program has a number of potential information
leaks. Suppose that patAcceptsTreatment is private to
only Pat and staff at the Clinic, but that the contents
of Pat .doctors is public. Then an adversary could learn
the secret value of patAcceptsTreatment by observing
Pat .doctors. This leak occurs because policy is essentially
another kind of data, which suggests we must protect it in

2This example is a bit artificial: in practice, one would also need to
check that Pat .insurers is not empty (i.e. she has some insurance); such
a check could easily be added. Also, this check fails if Pat .insurers con-
tains some principal not in Clinic.insuranceCos. Handling the condition
correctly would require intersection roles that we have omitted for simplic-
ity in this paper.

the same way as we protect variables. There is a similar
dependency between the contents of Clinic.insuranceCos
and Pat .insurers and the contents of Pat .doctors. The
change to the latter may indirectly reveal information to
an adversary about the former (i.e., that the members of
Pat .insurers are included in Clinic.insuranceCos). To ad-
dress both cases, we define the metapolicy label of role
ρ to be lab(ρ), and use this label to protect policy infor-
mation. Protecting policy information involves both confi-
dentiality and integrity concerns. In particular, the depen-
dency between the variable patAcceptsTreatment and
the update to role Pat .doctors implies that the contents of
patAcceptsTreatment should be trusted by Pat ; other-
wise, a malicious adversary could modify this variable and
affect an unauthorized change to Pat’s policy. Therefore,
RX labels have the form (LC , LI), where LC describes the
confidentiality level and LI describes the integrity level. As
a result, we must define both confidentiality and integrity
of roles as well, with lab(ρ) = (CΠ(ρ), IΠ(ρ)). Here the
metapolicies CΠ(ρ) and IΠ(ρ) may depend on the owner of
the role ρ and delegation information in the policy Π. Sec-
tion 3.5 will discuss possible choices of metapolicy.

Example 2. A program that leaks information
across updates to the policy in Figure 1, motivating
RX’s transactional semantics. Assume Γ as below:

clinicRec : bool(Clinic.staff,Clinic.staff),
patSymptoms : bool(Pat.healthRecords,Pat.healthRecords),
philRec : bool(DrPhil.self,DrPhil.self)

S1: if(Pat.healthRecords v Clinic.staff)
clinicRec := patSymptoms;

S2: if(leaveClinic)

update(del(Pat.doctors ← Clinic.staff));
S3: update(add(Clinic.staff ← {DrPhil}));
S4: if(Clinic.staff v DrPhil.self)

philRec := clinicRec

Here, patSymptoms contains data confidential to mem-
bers of the role Pat .healthRecords. Line S1 copies this data
into the Clinic records, which is permitted by the policy in
Figure 1. If the patient decides to leave the clinic, repre-
sented by the variable leaveClinic in line S2, the pol-
icy is updated to remove the Clinic.staff from Pat .doctors.
Subsequently, DrPhil joins the clinic and is therefore added
as part of Clinic.staff. If this policy update succeeds, then
the program can copy data from the clinicRec variable
into philRec, which can be labeled by role DrPhil .self.
Consequently, DrPhil is able to view the patSymptoms
even though this information flow is permitted by neither
the original nor the new policy. This is an example of a
unintended transitive flow.

The unintended flow is caused because the label order-
ing relation (Pat .healthRecords v Clinic.staff) needed to
justify the flow of information in the assignment of S1 was



E .Ψ = · Ψ′ = (E .M, transQ S)

E , transQ S −→ E [Ψ = Ψ′], transQ S
(E-TR1)

E .Ψ 6= · E , S −→ E ′, S′

E , transQ S −→ E ′, transQ S′
(E-TR2)

E .Ψ 6= ·
E , transQ skip −→ E [Ψ = .], skip

(E-TR3)
E .Ψ 6= · E , S  E ′, S′

E , transQ S −→ E ′, S′
(E-TR4)

E , S1  E ′, S
E , S1; S2  E ′, S

(R-SEQ)

Π′ = E .Π ∪ {s | add s ∈ ∆} \ {s | del s ∈ ∆}
E .Ψ = (M ′, transQ S) ∀q ∈ Q.(Π ` q)⇔ (Π′ ` q)

E , update ∆ −→ E [Π = Π′], skip
(E-UP1)

E , E −→ E , E′

E , update E −→ E , update E′
(E-UP2)

Π′ = E .Π ∪ {s | add s ∈ ∆} \ {s | del s ∈ ∆}
E .Ψ = (M ′, transQ S) ∃q ∈ Q.(Π ` q) 6⇔ (Π′ ` q)

E , update ∆ E [M = M ′][Π = Π′], transQ S
(R-UP)

E .Π ` q ⇒ j = 1 E .Π 6` q ⇒ j = 2

E , if (q) S1 S2 −→ E , Sj

(E-IFQ)

Figure 4. RX execution (E , S −→ E ′, S′) and rollback (E , S  E ′, S′).

violated by the update to policy. This problem of uninten-
tional flows motivates the support of a non-standard transac-
tional model [18, 25] to our language RX. The semantics of
a transaction transQ S is such that if, during the execution
of S, a policy update violates a label ordering relation nec-
essary to show the absence of unintentional flows, then the
memory of the program is reverted to the state it was prior
to the start of the transaction. Execution of the statement
S then resumes using the updated policy. The subscript Q
contains all the necessary label ordering relations.

Rolling back transactions, however, introduces yet an-
other channel of information leaks. To see why, sup-
pose that we enclose the program of Example 2 within a
transaction. Since the policy update statement in S2 vi-
olates the policy invariant that appears in S1, the trans-
action is rolled back, undoing the assignment to location
clinicRec. Any principal P who can view the contents
of clinicRec can therefore observe whether or not the
transaction has been rolled back. If the confidentiality of
leaveClinic is greater than clinicRec, then, by observ-
ing the rollback, the principal P will have gained informa-
tion about leaveClinic. The static semantics of RX guar-
antees that no information leaks of this kind occur.

Our choice of transaction semantics is motivated by our
belief that policy updates must take effect immediately.
This behavior is particularly critical in the case of updates
that revoke privileges. With this in mind, we have defined
the semantics of transaction rollback to be such that the pol-
icy is updated immediately, and only the state of memory
rolled back. Note that policy updates that occur in a trans-
action are treated like I/O operations in traditional transac-
tion systems [18, 8]—only writes to memory are undone
by a rollback, policy updates are left intact. Rolling back
both the state of policy and memory is not feasible since
this would guarantee non-termination through infinite roll-
back. As with traditional transaction systems, we could use
compensations to allow programmers to undo some updates
if necessary. Another consequence of not rolling back pol-

icy updates is that it is possible for badly written programs
to enter livelock—for instance, a transaction that performs
mutually incompatible policy updates can cause the roll-
back mechanism to enter an infinite loop.

In situations where it is not essential for the update to
take effect immediately, it might be desirable to choose a
roll-forward semantics in which policy updates that violated
consistency were delayed until the transaction completed
execution. We explored such a semantics in a previous pa-
per [9]. One of the contributions of this paper is showing
that transactions can be rolled back in a secure manner.

3.3 RX Dynamic Semantics
The dynamic semantics of RX is defined by the execu-

tion relation E , S −→ E ′, S′ where E is the current execu-
tion configuration and S is the current program statement.
The execution takes a small step, resulting in a new config-
uration E ′ and a new statement S′ to be executed next. The
syntax for configurations is:

exec. configuration E ::= (Π,M,Ψ)
dynamic snapshot Ψ ::= · | (M,S)

An execution configuration consists of a policy Π; a mem-
ory store M mapping variables to values; and a possibly
empty dynamic snapshot Ψ of memory M and program
statement S used to implement transactional rollback.3

The rules, shown in Figure 4, define two relations:
E , S −→ E ′, S′ for normal execution, and E , S  E ′, S′

for rollback. The rules for standard constructs (assignment,
addition, sequences etc.) are not shown.

The rules (E-TR1), (E-TR2), (E-TR3) and (E-TR4) are
for the execution of transaction statement transQ S. (E-
TR1) takes a new snapshot Ψ′ of the current memory store
M and the current statement transQ S in the execution
context E , only if the current snapshot is empty. (E-TR2) is

3As discussed in Section 3.4, we support only non-nested transactions,
for simplicity. So, no stack of snapshots is needed.



lab(L1 v L2) = lab(L1) t lab(L2) lab(CΠ(ρ)) = lab(IΠ(ρ)) = lab(ρ) = (CΠ(ρ), IΠ(ρ))

Q ` CΠ(ρ) v ρ Q ` IΠ(ρ) v ρ Q ` ` v `
Q ` `1 v ` Q ` ` v `2

Q ` `1 v `2

L1 v L2 ∈ Q

Q ` L1 v L2

Q ` LC1 v LC2 Q ` LI1 v LI2

Q ` (LC1 , LI1) v (LC2 , LI2)

Q ` (LC , LI) v ` Q ` `′ v `

Q ` (LC , LI) t `′ v `

Q ` ` v (LC , LI) Q ` ` v `′

Q ` ` v (LC , LI) t `′

` = lab(roledef (s))

Ω ` δs : pol`
(T-POL1)

Ω ` δs : pol`
Ω ` ∆ : pol`′

Ω ` δs, ∆ : pol`t`′
(T-POL2)

pc′=pc t lab(q) q ∈ Φ.Q
Γ; pc′; Q ∪ {q}; Φ ` S1 Γ; pc′; Q; Φ ` S2

Γ; pc; Q; Φ ` if (q) S1 S2

(T-IFQ)

Γ; pc; ∅; (pc, Q′) ` S

Γ; pc; ∅; · ` transQ′ S
(T-TR)

Γ; pc; Q; · ` ∆ : pol` Q ` pc v ` Q ` pc v pc′ Q ` (tq∈Q′ lab(q)) v pc′

Γ; pc; Q; (pc′, Q′) ` update ∆
(T-UP)

Figure 5. RX metapolicy labels (lab(·)), label ordering (Q ` `1 v `2) and typing (Ω ` E : τ, Ω ` S).

a congruence rule for evaluation within a transaction and
(E-TR3) discards the snapshot when a transaction com-
pletes. (E-TR4) and (R-SEQ) use the rollback relation
E , S  E ′, S′ triggered by failed updates to abort a trans-
action.

(E-UP1) takes the current policy E .Π and computes the
new policy Π′ by adding or deleting policy statements ac-
cording to ∆s, which is the result of evaluating each E that
appears in ∆ according to the rule (E-UP2). We omit the
standard definition of the execution relation for expressions
E , E −→ E , E′. However, the new policy Π′ must be con-
sistent with the query set Q which annotates the enclosing
transaction statement transQ S (stored in the snapshot Ψ).
Formally, the policy consistency condition is:

∀q ∈ Q. (Π ` q)⇔ (Π′ ` q)

This consistency condition says that the satisfiability of ev-
ery query q in the policy context Q is the same for the old
policy and for the new policy. This condition is sufficient
to guarantee that every information flow witnessed during
the execution of the transaction under the old policy is also
consistent with the new policy. If the consistency condi-
tion fails, (R-UP) is triggered instead, rolling back using
(R-SEQ) to discard the second statement of any sequence
statement S1;S2, and completing the abort using (E-TR4).

Finally, (E-IFQ) for the policy query statement chooses
the appropriate branch to take according to the judgment
E .Π ` q; that is, whether or not the query q holds in the
current policy Π. This judgment is defined as follows (note
the contravariance):

Π ` L1 v L2 ⇔ [[L2]]Π ⊆ [[L1]]Π

Example 3. A program that rolls back when executed under
the policy {A.r ← B.r,B.r ← {B}}:

trans{A.rvB.r}
if(A.r v B.r) {

update(del(A.r ← B.r)); S }

Execution of this program begins with the (E-TR1) rule
which takes a snapshot of the memory and program and
records it in Ψ. Notice that the subscript Q = {A.r v B.r}
on the transaction statement is a set that includes the
lone policy query that occurs in the body of the trans-
action. (E-TR2) now applies and with the program tak-
ing a small step using (E-IFQ). Since the role A.r dele-
gates to B.r, the policy entails the query q and the then-
branch of the statement is taken. We now have a sequence
of statements with the first being an update statement
update(del(A.r ← B.r)), all enclosed in a transac-
tion statement from the first line.

In attempting to apply the (E-TR2) rule again, the first
statement in sequence must take a step under the normal
execution relation −→ (according to the standard rule for
evaluating sequences, which is omitted here). In this case
the policy consistency condition is violated by the update
since, under the new policy ({B.r ← {B}}), the policy
query (A.r v B.r) is not satisfied, unlike under the old
policy. Therefore, the first statement of the sequence can
only take a step under the rollback relation . Then, we use
(E-TR4) with (R-SEQ) preceded by (R-UP) in the premise.
The conclusion of (R-SEQ) serves to discard the statement
S that succeeds the update statement. The result is that the
program and memory is reverted to its original state and the
policy is now {B.r ← {B}}.

3.4 RX Static Semantics
The static semantics of RX is defined by the typing rela-

tions Ω ` E : τ and Ω ` S in Figure 5, just like the typing
relation for RXcore in Figure 2. However, the typing con-
text Ω now contains a static snapshot Φ for type checking
transactions:

typing context Ω ::= (Γ; pc; Q; Φ)
static snapshot Φ ::= · | (pc, Q)

Hence, we also write the typing judgment as Γ; pc; Q; Φ `
S. The type binding for variables in Γ and the program



counter pc are standard, and the policy context is already
defined Figure 3. The snapshot Φ is used to approximate
the assumptions of a transaction (explained below).

Metapolicy labels The first row of Figure 5 defines the
auxiliary function lab(·) to compute the metapolicy label
of policy queries q. The function lab(·) uses the metapol-
icy CΠ(·) and IΠ(·) to construct a label for a role. The
assertion lab(CΠ(ρ)) = lab(IΠ(ρ)) = lab(ρ) is the meta-
metapolicy. It states that the metapolicies CΠ(ρ) and IΠ(ρ)
only carry information about ρ. A metapolicy label for
queries L1 v L2 is the join of all the metapolicy labels
for roles contained in L1 and L2.

Label ordering Figure 5 (the second and third rows) spec-
ifies the label ordering relation Q ` `1 v `2. In the second
row of Figure 5, the first two rules impose conditions on the
metapolicy. The first rule states that all members of a role
ρ are permitted observe the definition of ρ; the second rule
states that all members of a role ρ trust the definition of ρ.
We discuss these conditions in more detail in Section 3.5.
The remaining three rules on this row are straightforward:
the left and the middle rules say that the relation is reflexive
and transitive, and the rightmost rule makes use of the pol-
icy context Q when the labels L1 and L2 are atomic. In the
third row of Figure 5, the left rule handles the compound la-
bel (LC , LI), and the middle and the right rules handle the
join label ` t `′.

Typing policy mutation statements The rule (T-POL1) as-
signs a policy mutation statement δs the type pol` where `
is the metapolicy associated with the role defined by the s.
For a collection of policy mutation expressions ∆ (T-POL2)
states that the label in the type of ∆ is the join of the labels
assigned to each policy mutator that appears in ∆. For in-
stance, if ∆ = add A.r ← X, del B.r ← Y then the type
of ∆ is pol(CΠ(A.r),IΠ(A.r))t(CΠ(B.r),IΠ(B.r)).

Typing policy queries The rule (T-IFQ) type checks policy
query statement if (q) S1 S2. The rule has three impor-
tant aspects. First, notice that we check the true-branch S1

using an augmented policy context Q ∪ {q}. Second, both
branches are checked using an elevated program counter la-
bel pc′, which is defined as the join of the current pc la-
bel and the label of the query q according to the label set
function lab(q). This reflects the information gained by
querying the policy, and is used to prevent leaks about a pol-
icy through assignments to variables. Finally, the premise
q ∈ Φ.Q is used to ensure transaction consistency, which
we will explain when we consider the typing rule for trans-
actions below.

Typing transactions The snapshot Φ is used to ensure that
every policy query q that appears in the body S of a transac-
tion transQ′ S also appears in Q′. This is ensured by the
(T-TR) rule, whose body S is checked in a Φ snapshot that

mentions Q′, and the (T-IFQ) rule, whose premise q ∈ Φ.Q
ensures that every policy query is accounted for. The (T-
TR) rule also includes the current program counter label pc
in Φ. Doing this guarantees that the memory effects that
occur when a transaction is rolled back do not leak infor-
mation. We explain how this works when considering the
(T-UP) rule below.

Supporting nested transactions (assuming inner transac-
tions can roll back without causing outer ones to rollback
too) would require a flow-sensitive static analysis. Such
an approach would also increase the precision of the static
semantics and permit more updates. To simplify the dy-
namic semantics and typing rules, (T-TR) must occur in an
empty policy context, thus preventing nested transactions.
Ultimately, we want to extend RX with procedures, which
will increase the need for nested transactions; i.e., to allow
transaction-containing procedures to compose.

Also notice that these rules effectively prevent policy
queries from occurring outside a transaction. This is to pre-
vent aberrant behavior in which an update occurring within
a transaction has a conflict with non-transactional query
outside the transaction; in this case, rolling back would not
solve the problem, and the program would resume execu-
tion under the new policy while still not satisfying the non-
transactional query.

Typing policy updates The (T-UP) rule defines the con-
ditions under which policy may be safely modified. Re-
call that the metapolicy label of a role ρ is (CΠ(ρ), IΠ(ρ)),
where the metapolicy CΠ(ρ) is the set of principals who
are permitted to view the members of ρ, and the metapol-
icy IΠ(ρ) is the set of principals that trust ρ’s definition.
As motivated by the discussion of Example 1, we must be
careful to only allow a program to update the definition of
a role ρ when doing so is trusted by those in IΠ(ρ); this is
a condition similar to robust declassification [26]. More-
over, according to the metapolicy, the change in a role def-
inition ρ reveals information about the context to principals
in CΠ(ρ). The first two premises of (T-UP) (in a manner
analogous to the rule for assignments in Figure 2) ensures
that members of CΠ(ρ) are permitted to gain information
about the context. In particular, the pc must be no more
confidential and no less trustworthy than the confidentiality
and integrity levels of the role, thus ensuring that the role
is not improperly updated, and that its update does not leak
information. Note that to ensure that the owner of a role
is permitted to modify its definition, any metapolicy IΠ(ρ)
must include the owner of the role.

Example 4. An instantiation of the typing rule (T-UP) for
policy updates in Figure 5. We abbreviate role names to
save space. Suppose we enclose Example 1 as statement
S in a transaction transQ′ S. Hence we wish to prove



Γ; pc; Q; · ` transQ′ S with

Γ = patAcceptsTreatment : bool(CΠ(Pat.drs),IΠ(Pat.drs))

pc = (CΠ(Pat .drs), IΠ(Pat .drs))

The variable patAcceptsTreatment determines
whether Pat’s role Pat .drs should be updated. The label
on its type, (CΠ(Pat .drs), IΠ(Pat .drs)), indicates that
information flows from this variable to the definition of
the role Pat .drs. The pc at the start of the transaction will
be added to the snapshot Φ by (T-TR). The instance of
(T-UP) that checks the update statement appears within
a derivation that includes (T-IFQ). (T-IFQ) checks the
then-branch of the policy query statement by augmenting
the policy context Q to include {Clinic.ins v Pat .ins},
while the program counter is strengthened to pc′ to reflect
the security level of the query. The instantiation of the
(T-UP) rule in the derivation is as follows:

Q ∪ {Clinic.ins v Pat .ins} ` pc′ v lab(Pat .drs)
Q ∪ {Clinic.ins v Pat .ins} ` pc′ v pc

Q ∪ {Clinic.ins v Pat .ins} ` lab(Q′) v pc

Γ; pc′; Q ∪ {Clinic.ins v Pat .ins}; (pc, Q′) `
update add(Pat .drs← Clinic.staff)

where

pc′ = pc t (CΠ(Clinic.ins), IΠ(Clinic.ins))
t (CΠ(Pat .ins), IΠ(Pat .ins))

lab(Pat .drs) = (CΠ(Pat .drs), IΠ(Pat .drs))

If Q were ∅, it would not be sufficient to prove the first
premise according to the label ordering rules in Figure 5.
This is because {Clinic.ins v Pat .ins} alone has nothing
to say about the relationship between the metapolicies of
the various roles. It would be sufficient to choose

Q = { CΠ(Clinic.ins) v CΠ(Pat .drs),
CΠ(Pat .ins) v CΠ(Pat .drs),
IΠ(Clinic.ins) v IΠ(Pat .drs),
IΠ(Pat .ins) v IΠ(Pat .drs) }

Such a context Q could be established by preceding the
code S in Example 1 with policy queries testing these as-
sertions within the transaction. Rather than expect the pro-
grammer to write these, they could be straightforwardly
inferred. To type-check these queries (and the one al-
ready in S) would require choosing the transaction’s Q′ ⊇
Q ∪ {Clinic.ins v Pat .ins}.

The decision of whether or not an update causes a roll-
back depends on the policy consistency condition (∀q ∈
Q. Π ` q = Π′ ` q) appearing in the operational rules
(E-UP1) and (R-UP) in Figure 4. We want to avoid leak-
ing information about the queries through low-security data
and low-security policy. The first case is handled by the
third premise of the (T-UP) rule. It ensures that all memory
effects in a transaction are bounded below by the pc label

of the current context. As explained earlier (Section 3.1)
for Example 2, this guarantees that the change to memory
caused by the rollback of a transaction is observable only by
principals who are also permitted to view the effects of the
context in which the update occurs. In our example typing
above, Q clearly satisfies this condition because it asserts
that each component of the pc label is higher than each of
the components in pc′ that do not already include pc.

The second case of a leak via policy is handled by the
last premise (Q ` lab(Q′) v pc′) of (T-UP), which re-
quires that all the queries mentioned in Q′ are at a lower
security level than the program counter label at the start
of the transaction. This ensures that the effects to mem-
ory that occur as a result of rollback are at a higher se-
curity level than all the policy queries. Therefore, the
principals that can observe the effects to memory as a re-
sult of rollback are also sufficiently privileged to view the
definitions of roles mentioned in Q′. So, policy infor-
mation is not leaked into memory via rollback. In our
example typing, this third premise is clearly satisfied be-
cause lab(Q′) = (CΠ(DrBob.ins), IΠ(DrBob.ins)) t
(CΠ(Pat .ins), IΠ(Pat .ins)).

3.5 Requirements of a Metapolicy
RX uses metapolicies CΠ(ρ) and IΠ(ρ) to protect the

confidentiality and integrity, respectively, of a role ρ. Be-
cause metapolicies are labels, they must be interpreted as
sets of principals; i.e. [[CΠ(ρ)]] = {P1, . . . , Pn} for some
principals Pi, and similarly for IΠ(ρ). Here we discuss pos-
sible interpretations of CΠ(ρ) and IΠ(ρ). We define suffi-
cient conditions for metapolicy interpretations that enables
proving noninterference.

A simple interpretation for role confidentiality is
[[CΠ(ρ)]] = ⊥. Here, ⊥ denotes the set of all principals,
so that under this metapolicy every principal can know the
contents of all roles. While simple, this metapolicy requires
policy update decisions to be independent of secret data, as
shown in Example 1, which may be too limiting.

An attempt to permit updates to occur in contexts depen-
dent on secret data would have to define [[CΠ(ρ)]] to be more
restrictive that ⊥. An anonymity policy might, for instance,
allow a principal to learn of its own membership but not
that of others [7]. That is, not all members of ρ can com-
pute the interpretation [[ρ]]Π. However, such a metapolicy is
overly restrictive in that many simple programs will fail to
type-check, as illustrated by the following example.

Example 5. Consider checking the following program in a
context Γ = x : bool(B.r,B.r), y : bool(A.r,A.r):

if(A.r v B .r) x := y

Since the query carries information about the roles A.r
and B.r, (T-IFQ) checks the then-branch in a context with



pc = (CΠ(A.r), IΠ(A.r))t (CΠ(B.r), IΠ(B.r)) and Q =
{A.r v B.r}. To justify the flow of information from y to x
the rule for assignments requires A.r v B.r, the evidence
for which is provided by Q. The mutation of location x
that results from this assignment is observable by all mem-
bers of B .r. Therefore the rule for assignments must also
show pc v (B.r,B.r), so that information about the query
is not leaked to unauthorized principals. If the metapol-
icy is such that [[CΠ(B.r)]] doesn’t include [[B.r]]Π, then
pc v (B.r,B.r) cannot be satisfied and the program fails
to type-check.

Intuitively, by observing the write to location x, all mem-
bers of B .r gain information about [[B .r]]Π. To be able
to write programs in which information flows across se-
curity levels (from low-security to high-security), we must
ensure that the policy conditions that are necessary to jus-
tify the flow of information into a particular memory loca-
tion are not more confidential than the contents of that loca-
tion. This requirement is expressed formally in Figure 5 as
Q ` CΠ(ρ) v ρ. A similar argument explains the need for
Q ` IΠ(ρ) v ρ.

Though intuitive, allowing CΠ(ρ) to include only the
members (and the owner of ρ) is not sufficient. A pol-
icy that includes delegations permits information to flow
between roles that are related by delegation. These flows
could possibly reveal secret information. To see why, con-
sider the example from Figure 1. In the example, the def-
inition of the role Pat .doctors is given by a membership
statement including DrSue and a delegation to Clinic.staff;
the interpretation of the role is given by [[Pat .doctors]]Π =
{DrAlice,DrBob,DrSue}. Under a choice of metapolicy
where [[CΠ(ρ)]] includes only the members of ρ and the
role’s owner, we permit DrSue to view the interpretation of
Pat .doctors although she is not permitted to view the inter-
pretation of Clinic.staff. However, any change in the defini-
tion of Clinic.staff (say, if DrAlice is removed) is reflected
in the interpretation of Pat .doctors. Hence, even though
DrSue is not a member of Clinic.staff, she can observe the
effect of changes to that role. Realizing that the definition of
Pat .doctors depends on the definition of Clinic.staff makes
it clear that it is not reasonable to treat the policy state-
ments defining Clinic.staff as being more confidential than
the those defining Pat .doctors. We formally state this con-
straint on the confidentiality metapolicy below (A similar
constraint must hold for the integrity metapolicy IΠ(ρ).).

∀Π.∀ρ, ρ′.(∃s.roledef (s) = ρ′ ∧ [[ρ]]Π 6= [[ρ]]Π∪{s})⇒
[[CΠ(ρ)]] ⊆ [[CΠ(ρ′)]]

Informally, this constraint reads: “if the interpretation of
the role ρ depends on the definition of ρ′, then the metapol-
icy for ρ must be at least as restrictive as the metapolicy for

ρ′.” Intuitively, ρ depends on ρ′ if ρ delegates transitively
to ρ′. Note that an interpretation that satisfies this condition
must also be robust under policy updates. A simple way to
ensure this is to allow the semantics of role confidentiality
to change with the update, which is the approach we adopt
here. While simple, this permits members of one role to
view another role by delegating to it. To prevent this we
could require that for an update to add a delegation state-
ment A.r ← B.r the integrity of the pc must be trusted by
both IΠ(A.r) and IΠ(B.r). We leave exploration of this
issue to future work.

We don’t extend the subtyping relation v given in Fig-
ure 2 to pol` types. The following example illustrates what
might go wrong if we allowed covariant subtyping for pol`
as we do for bool`.

Example 6. Assume the existence of a covariant subtyping
rule for pol` and consider the program below checked in a
context with Γ = x : pol(CΠ(B.r),IΠ(B.r)).

trans{CΠ(A.r)vCΠ(B.r),IΠ(A.r)vIΠ(B.r)}
if(CΠ(A.r) v CΠ(B .r))

if(IΠ(A.r) v IΠ(B .r))
x := add A.r ← C;

trans {}
update(del A.r ← B.r);
update(x)

The type of the policy statement in the assignment is
pol(CΠ(A.r),IΠ(A.r)). The policy queries provide the nec-
essary evidence for the covariant subtyping judgment for
pol` to permit the assignment to x. A separate transaction
deletes the delegation A.r ← B.r from the policy. Since the
interpretation of the metapolicies CΠ(·) and IΠ(·) depend in
general on the the state of the policy Π and in particular the
delegations between roles in Π, the deletion of a delegation
in the second transaction can violate the assumptions of the
first transaction. This has the effect of destroying the ev-
idence for subtyping necessary to check the assignment to
x. The final update statement updates the role A.r. Even
though at runtime the effect of this update is observable by
all members of CΠ(A.r), the type of x indicates that the
update is observable only by members of B .r.

Treating pol` as invariant is one way of ensuring up-
dates that use first-class policy statements do not leak infor-
mation even in the the presence of non-monotonic updates
to policy. An alternative might be to permit subtyping for
pol` while imposing constraints on how policy is allowed to
evolve. We leave examining this alternative to future work.

A further condition on metapolicies CΠ(ρ) and IΠ(ρ) is
induced by our definition in Figure 5 of meta-metapolicy
through lab(CΠ(ρ)) = lab(IΠ(ρ)) = lab(ρ). The metapol-
icy CΠ(·) is a function that maps a role to a set of principals.
The interpretation of this function might depend on its in-
put ρ, and possibly on the definition of some other roles



{ρ1, . . . , ρn} that appear in the policy Π. In such a case,
since CΠ(ρ) carries information about ρ and ρ1, . . . , ρn,
the label of CΠ(ρ) should be (tiCΠ(ρi)) t CΠ(ρ). Thus,
for our definition of lab(CΠ(ρ)) = lab(ρ) to be sound, the
metapolicy must also satisfy the following condition.

∀Π.∀ρ, ρ′.(∃s.roledef (s) = ρ′ ∧ [[CΠ(ρ)]] 6= [[CΠ∪{s}(ρ)]])⇒
[[CΠ(ρ)]] ⊆ [[CΠ(ρ′)]]

An identical condition must also hold true for IΠ(ρ). For
a more complete treatment of metapolicy including possibly
explicit higher-order metapolicies, see our technical report
[21].

4 Noninterference
This section proves a noninterference property for RX.

Informally speaking, we show that if an RX program S
is well-formed according to the static semantics, then the
effects of executing that program visible to a low-security
observer are independent of the high-security parts of the
configuration elements M and Π (memory and policy) with
which the program executes. Updates to policy intention-
ally alter the security behavior of the program, possibly re-
vealing previously secret information [9]. Therefore, rather
than providing an end-to-end security guarantee with re-
spect to a single policy, we prove that information flows
observable by a principal at a given point in time during the
program’s execution are consistent with the policy at that
time. Since our formulation of policy and data integrity is
conceptually identical to our formulation of confidentiality,
this property of noninterference also yields a preservation
property for the integrity of policy and data. We do not con-
sider timing or termination channels.

The statement of noninterference relies on the notion of
a well-formed configuration. We write Ω |= E to mean that
the execution context is consistent with the static assump-
tions made while type-checking the program.

Definition 7. A configuration E = (Π,M,Ψ) is well-
formed with respect to a context Ω, denoted Ω |= E , if and
only if all of the following are true:

dom(M) ⊆ dom(Ω.Γ) (1)
∀q ∈ Ω.Q . Π ` q (2)
if Ψ = (M ′, S′) then

Ω ` S′ (3.1)
dom(M ′) = dom(M) (3.2)
∀x.M(x) 6= M ′(x)⇒ Π ` Ω.pc v Ω.Γ(x) (3.3)

The clauses in the definition above are mostly straight-
forward. Clause (2) connects the static approximation Q
used during type checking to the runtime policy Π. The
following lemma ensures that this connection is sound.

Lemma 8 (Static Label Ordering Soundness). For all con-
texts Ω and programs S, if the derivation of Ω ` S contains
a sub-derivation Ω′ ` S′, then the following holds true for
all policies Π:

(∀q ∈ Ω′.Q.Π ` q)⇒ (∀`1, `2.Ω′.Q ` `1 v `2 ⇒ Π ` `1 v `2)

Clause (3.3) states that all effects on memory exhibited
during a transaction are bounded above the pc lower-bound
used to statically check the transaction.

We prove noninterference by relating execution traces
of well-formed configurations, restricted to an attacker’s
level of observation. An execution of a configuration
(E0, S0) (where E0 = (Π,M,Ψ)) is written 〈E0, S0〉
and denotes a (possibly infinite) sequence of configura-
tions E0, . . . , En, . . . and programs S0, . . . , Sn, . . . such that
(Ei, Si) −→ (Ei+1, Si+1). The sequence of config-
urations E0, . . . , En, . . . is called the trace and is written
Tr(〈E0, S0〉). We write α to denote a (possibly empty) trace
and E , α to denote the concatenation of a single configura-
tion and a trace.

We define the attacker’s observation level as a set of
roles R. We assume the existence of a type environment
Γ. The restriction of a trace α to observation level R is
written α |R, and is defined in Figure 6. As long as the
policy remains unchanged, a restricted trace consists of a
restriction to each configuration element of the trace (the
“otherwise” clause of the Trace definition of the figure). In
doing so, we restrict the view of memory according to the
policy Π and the Ω.Γ used to type check the initial pro-
gram. Here lab(Γ(x)) refers to the security label associated
with the contents of the location x. We restrict the policy
according to the metapolicy CΠ(ρ), which must satisfy the
condition described in Section 3.5. However, if a policy
update results in a declassification with respect to the ob-
server’s roles R then the trace is truncated (the first clause
of the Trace definition of the figure). This truncation is
justified since declassifications due to policy update are in-
tentional releases of information. For a formal definition
of the predicate declassify(·, ·, ·) refer to the full version of
our paper [21]. Note that declassifications to observers at
an unrelated observation level do not cause the trace to be
truncated. Similarly, a policy update that causes a reduction
in the privilege of an observer at level R (a revocation) does
not require the trace to be truncated.

We make no attempt to restrict the observability of a
program configuration while the program executes within
a transaction. This makes it reasonable to exclude the snap-
shot Ψ when defining the observability of a configuration.
However, for our statement of non-interference, it is use-
ful to identify configurations while taking into account the
transaction context, so we define (Π,M,Ψ) |ψR = (Π |R
,M|R,Π,Ψ|R,Π).

The definition of trace observability implies that compu-
tation steps are only observable if they have an effect on an



Role :
Obs(R, Π) = {ρ | ∃ρ′ ∈ R. Π ` CΠ(ρ) v ρ′}

Policy :
Π|R = Π‖Obs(R,Π)

∅‖R = ∅ ({s} ∪Π′)‖R =


{s} ∪ (Π′‖R) roledef (s) ∈ R
Π′‖R otherwise

Memory :
M|R,Π = {(x, M(x)) | ∃ρ ∈ R. Π ` lab(Γ(x)) v ρ}

Transaction snapshot :
·|R,Π = . (M, S)|R,Π = (M|R,Π, S)

Configuration :
(Π, M, Ψ)|R = (Π|R, M|R,Π, ·)

Trace :

(E1, E2, α)|R =


E1|R if declassify(R, E2.Π, E1.Π)
E1|R, (E2, α)|R otherwise

Figure 6. Trace observability.

observable part of memory or policy. This entails that we
identify traces only up to stuttering.4 We write α

.= β if α
and β are equivalent up to stuttering.

Theorem 9 (Noninterference). Suppose that for an RX pro-
gram S and a pair of configurations E0 and E1, there exists
a context Ω such that Ω ` S, Ω |= E0 and Ω |= E1. Then,
for any set of roles R, whenever both 〈E0, S〉 and 〈E1, S〉
terminate, we have

E0 |ψR = E1 |ψR ⇒ Tr(〈E0, S〉) |R
.= Tr(〈E1, S〉) |R

The proof (in our technical report [21]) uses Pottier and
Simonet’s proof technique [16] which extends the language
to represent pairs of executions that differ only in the high-
security parts of their configurations. Because we may trun-
cate traces for which there is a declassification visible at
level R, to obtain an end-to-end security guarantee we can
apply noninterference piecewise to each non-declassifying
sub-trace. Thus we can claim that (1) the execution is non-
interferring until the policy is updated; (2) the act of up-
dating the policy itself does not leak information; and (3)
after the policy has been updated all subsequent flows are
consistent with the new policy.

5 Related Work
There is a large body of work on policy specification lan-

guages, including owned policies [4] and role-based lan-
guages like Cassandra [2], RBAC [17], SPKI [6]. RX poli-
cies are based on those from RT framework by Li, Mitchell

4Sequence α1 is equivalent up to stuttering to α2 if α′1 = α′2, where
α′i is obtained from αi by removing all consecutively repeated elements
from αi. For example, the sequence aabbbc is equivalent up to stuttering
to abbccc since the result of removing consecutively repeated elements
from each sequence is abc.

and Winsborough [12], which is similar to SPKI/SDSI [11].
The RX transaction semantics is inspired by software trans-
actional memory [20].

There has been much prior work on language-based en-
forcement of information-flow policies [19]. The majority
of that research has assumed that the security lattice and
other policy components are known at compile-time and re-
main fixed for the duration of the program execution.

In some information flow languages the policy remains
fixed but may be discovered at run time by using dynamic
queries. Banerjee and Naumann [1] permit information-
flow policies to be mixed with stack-inspection style dy-
namic access control checks. The Jif programming lan-
guage [14] supports dynamic queries of the security lattice
and includes features for using both dynamic principals and
dynamic labels [22, 27, 23]. Jif 2.0 also allows delegations
between principals to change at run time, but does not pre-
vent information leaks through policy updates.

The predecessor [9] of this paper showed that unre-
stricted updates to the security lattice could violate sound-
ness in languages supporting dynamic policy queries, and
proposed delaying updates until soundness could be en-
sured, as determined by a run-time examination of the pro-
gram. RX builds on this work by reasoning about fine-
grained policy updates within a program (in our prior work
they were out-of-band), by using roles and metapolicies to
form an administrative model (the term metapolicy is due
to Hosmer [10]) and by introducing transactions to ensure
policy consistency.

There has been recent interest in studying temporal poli-
cies which are permitted to change in predefined ways dur-
ing execution. Recent work on flow locks by Broberg
and Sands [3] can encode many recently-proposed tem-
poral policies, including declassification policies [5], and
lexically-scoped flow policies [13]. RX is designed to sup-
port unrestricted changes to policy during execution. Since
RX supports first-class policy mutation statements the con-
tent of an update statement is not fully known statically. The
intent is to support even more general models of policy up-
date statements by following techniques of dynamic labels
and run-time principals.

When policy updates cause declassifications our non-
interference guarantee is similar to the noninterference
until conditions property provided by Chong and My-
ers [5]. Both our definitions of noninterference consider
only declassification-free subtraces of the execution. Our
noninterference guarantee however permits certain classes
of declassifications to occur without necessitating a trun-
cation of the trace. Our approach to obtain an end-to-end
security guarantee by piecing together non-declassifying
subtraces yields a property similar to the nondisclosure
property proposed by Almeida Matos and Boudol [13].
Their approach of using a labeled transition semantics has



the benefit of making explicit the concatenation of non-
declassifying subtraces. However, their attacker model does
not consider the state of policy to be a channel of informa-
tion.

6 Conclusions
This paper has presented RX, a security-typed language

that supports dynamic updates to role-based information-
flow policies. The main contributions of this work are:
(1) The novel use of role-based policies to provide a nat-
ural administrative model for managing policies in long-
running programs. (2) A language design that allows pro-
grammatic addition and deletion of the policy statements
that define roles along with a transaction mechanism that
ensures that policies are applied consistently. (3) The novel
use of metapolicies for preventing illegal flows of informa-
tion through changes to policy. (4) A static type system and
accompanying proof that the type system enforces a form
of noninterference.

It is for large distributed systems characterized by mu-
tual distrust that the need for a principled approach to secu-
rity is most pressing. To become a relevant technology for
this kind of setting, security-typed languages must be able
to cope with highly dynamic environments in which policy
evolution is the norm rather than the exception. Although
we have not studied the issue here, we expect that the trans-
actional approach will scale better to systems with concur-
rent threads, each of which might try to update the global
information-flow policy. The transactional model is also
likely to be useful when policy updates are asynchronous,
or in a distributed environment. The techniques presented
in this paper provide some of the groundwork for achieving
our long-term objective of designing a language that can
provide strong guarantees of security for complex, realistic
applications.
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