
VERIFIED ENFORCEMENT OF SECURITY POLICIES FOR
CROSS-DOMAIN INFORMATION FLOWS

Nikhil Swamy Michael Hicks
University of Maryland, College Park

{nswamy, mwh}@cs.umd.edu

Simon Tsang
Telcordia Technologies

stsang@telcordia.com

Abstract

We describe work in progress that uses program
analysis to show that security-critical programs, such
as cross-domain guards, correctly enforce cross-
domain security policies. We are enhancing exist-
ing techniques from the field of Security-oriented Pro-
gramming Languages to construct a new language
for the construction of secure networked applications,
SELINKS. In order to specify and enforce expressive
and fine-grained policies, we advocate dynamically
associating security labels with sensitive entities. Pro-
grams written in SELINKS are statically guaranteed
to correctly manipulate an entity’s security labels and
to ensure that the appropriate policy checks mediate
all operations that are performed on the entity. We dis-
cuss the design of our main case study : a web-based
Collaborative Planning Application that will permit
a collection of users, with varying security require-
ments and clearances, to access sensitive data sources
and collaboratively create documents based on these
sources.

1 INTRODUCTION

Cross-domain security problems arise frequently in
common military operations. For instance, every time
there is a mission need to share information with coali-
tion partners at varying levels of trust (e.g. U.K.,
Canada or non-NATO countries); with US Govern-

This document is prepared through collaborative participation in
the Communications and Networks Consortium sponsored by the
U. S. Army Research Laboratory under the Collaborative Tech-
nology Alliance Program, Cooperative Agreement DAAD19-01-
2-0011. The U. S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation thereon.

Figure 1. A multi-domain military network.

ment entities (e.g. FBI, IRS); with deployed troops;
or, say, with academic institutions, care must be taken
to ensure that shared information is cleared at the ap-
propriate classification level. In general, difficulties
arise whenever the parties sharing information oper-
ate on different classification levels and further may
be on different networks that are cleared at different
classification levels. The problem is further compli-
cated when considering messages with varying levels
of data sensitivity.

Figure 1 illustrates a hypothetical, but typical, sce-
nario in which enclaves of entities with varying clear-
ance levels and responsibilities collaborate in a net-
worked environment to achieve a common mission ob-
jective. Each network domain connects to the others
via a cross-domain guard entity (CDG) at the edge of
each domain — for instance, the armored vehicles at
the edge of domains B and C. From a security per-
spective, the CDG is the element tasked with deciding
whether or not packets routed between domains are to
be transmitted. Information collected by soldiers in
Network Domain B (packet Z) is communicated via
the CDG to members of a coalition force in Network
Domain C, and may be filtered by the CDG if it con-

1 of 7



Figure 2. Overview of the CPA.

tains inappropriately sensitive information.
The current approach to dealing with this problem is

centered around the data content of the packet. That is,
policies at the CDG are defined in terms of filters that
scan packets for particular data patterns (e.g. troop lo-
cation information) and block packets that match the
patterns. Our position is that content-based filtering of
packets, while flexible, is ad hoc; difficult to reason
about formally; and can both be overly conservative in
filtering critical data that needs to be shared, and unex-
pectedly permissive in allowing sensitive data to pass
through. In this paper, we propose a framework for
maintaining and tracking labels on sensitive informa-
tion objects in a manner that permits the construction
of networked, collaborative applications that are prov-
ably compliant with a range of formal, yet practical,
security goals.

The remainder of this paper is structured as follows.
In Section 2 we describe the functionality and secu-
rity goals of a web-based application that integrates
with the network of Figure 1. In Section 3 we present
a short review of existing techniques for the verified
enforcement of policies specified using object label-
ing. In Section 4 we discuss a model for security la-
bels. In Section 5 we describe some of the features
of a new programming language we are building that
allows cross-domain information flows to be secured.
Section 6 concludes with a discussion of the current
status of our project and future directions.

2 A COLLABORATIVE PLANNING AP-
PLICATION

We are building a web-based collaborative plan-
ning application (CPA) as a test bed in which to ex-
periment with a variety of security policies and en-
forcement mechanisms. This CPA is designed to al-
low back-office analysts, field commanders and in-

telligence agents to collaboratively create documents.
These documents could be situation reports, intelli-
gence estimates, or independent assessments by prin-
cipals at a combat site, each backed up by data gath-
ered from an array of sources, such as video sensors or
troop location information. Together, principals with
different skill sets and responsibilities collaborate to
construct actionable intelligence items for consump-
tion by decision makers.

Figure 2 illustrates, at a high-level, the structure of
the CPA. The application is hosted by a web server
shown toward the right of the figure. We expect the
application to be integrated into the scenario from
Figure 1 — as with all other cross-domain commu-
nication, requests to the CPA domain are dispatched
through a CDG element. The figure shows several do-
mains of sensor arrays that stream data to a collection
of sensor databases via the CDG. The data in the sen-
sor DBs are labeled with security labels. The form
and content of these labels are discussed in detail in
subsequent sections, but, for now, one might think of
these as provenance labels — i.e. labels that identify
the source of the data.

The basic architecture of the CPA is typical of
multi-tiered web applications, found both in the mil-
itary and in the public sector. The three tiers in this
application consist of a client tier (at the top left) con-
sisting of dynamic HTML running in a client’s web
browser; the web server; and server-side databases (the
disks at the right). There are three main security crit-
ical tasks that the CPA will perform in order to allow
users of various security levels to collaboratively au-
thor reports.
Accurate tracking of labels on data sources. In or-
der to author reports, users can issue queries via the
CPA to the sensor DBs to extract curated data from the
raw sensor data [2]. For two main reasons, it is im-
portant for the curated data to accurately reflect the se-
curity policies and provenance information of the raw
data from which it is derived. First, accurately tracking
data sources increases the credibility of the resulting
report and permits auditing of a report should errors
be discovered. Second, if the security policies of the
raw data is not correctly associated with the curated
data, then adversaries can easily mount attacks on the
data sources by analysis of the curated data.
Tagging documents with dynamic policies. Se-

2 of 7



curity labels need not always originate from outside
the CPA. Authors may introduce labels by associating
them with various parts of a document. These labels
can be used to indicate a security policy, the docu-
ment’s provenance as well as semantic tags such as
document keywords that will assist other users with
search. We will support a very fine-grained document
structure in which even individual characters in a doc-
ument can potentially be labeled. Importantly, security
policies are decentralized in that principals can spec-
ify labels independently of other principals. Similar
to labels on data sources, document labels will also be
tracked through all functions of the application — e.g.
database queries that extract fragments of documents
will have to accurately reflect the labels of fragments
in the query results.

Complete mediation of policy authorization checks.
The CPA must ensure that all sensitive operations on
labeled objects are mediated by policy checks that are
consistent with the intended meaning of the label. For
instance, if the label on a datum is an MLS label, the
CPA must make sure that the datum never flows to lo-
cation with a lower MLS label.

We face four main technical challenges in con-
structing the CPA. First, we must design a language of
labels that is sufficiently expressive to model a variety
of common security policies. Second, we must be able
to precisely track label flows through a variety of pro-
gram operations in multiple tiers of an application (e.g.
through database queries). Next, we must ensure that
policy authorization checks that take place in the vari-
ous tiers of the application are all mutually consistent
(e.g. policy checks that occur in DB stored procedures
have to have the same semantics as checks that occur
in the web application). Finally, we must ensure that
when labeled objects are communicated across the net-
work or are persisted to the database that the relation-
ship between object and label is correctly represented
by the receiver of the object or in the database.

In the remainder of the paper, we discuss how we
intend to perform each of the three main security crit-
ical tasks and address the four challenges of the CPA.
We begin, however, with a short tutorial on SOPLs.
For a more complete treatment, refer to Sabelfeld and
Myers’ excellent survey paper [5].

3 A PRIMER ON SOPLs
Security-oriented programming languages (SOPLs)

utilize automated static and dynamic program analy-
ses to prove that programs enjoy certain security prop-
erties. Typically, the main goal is to permit an appli-
cation to manipulate objects having varying multilevel
security information flow policies, while proving that
the data and control flow of the application respects
these policies by not permitting information about an
object at a given security level flow to a context at an-
other incompatible security level.

A SOPL makes policies about the confidentiality
and integrity of data manifest in the program so they
can be mechanically checked. Typically, these policies
are expressed as labels on the types in the program.
During the process of type checking, the compiler ver-
ifies that the labeled program does not violate the pol-
icy described by these types. Various models for se-
curity labels have been proposed in the literature. To
illustrate the basic features of an SOPL we present a
very simple label model here. In subsequent sections
we propose more complex label models that are better
suited to practical SOPLs for use in a dynamic, dis-
tributed environment.

In the simple model, labels are a pair (LC,LI),
where LC stands for the confidentiality component and
LI stands for the integrity component of label. Each
component can be thought of as the name of a prin-
cipal in the system. The security policy of a program
consists of the label annotations that appear on types
as well as a policy describing an acts-for hierarchy
among principals. For instance, if the acts-for hierar-
chy specifies that Alice≤ Bob (meaning that Bob acts
for Alice), then Bob is permitted to observe all data
that Alice is permitted to observe, and dually, Alice
trusts the integrity of all data that Bob trusts. In this
case, it is permissible for data with a label annotation
(Alice,Bob) to flow to a location labeled (Bob,Alice).
In this manner, the acts-for relation ≤ on principals
can be extended naturally to a lattice ordering relation
v on labels (LC,LI), where data with label lower in
the lattice is permitted to flow to locations higher in
the lattice.

The goal of a SOPL is to ensure that a strong se-
curity property holds for all well-formed programs.
Traditionally, this property has been noninterference,
which means that values whose labels are higher in the

3 of 7



lattice are independent of computations that produce
values observable by principals whose privilege-level
is lower in the lattice. To enforce this property, a secu-
rity type system permits the programmer to add secu-
rity label annotations on types. The compiler tracks in-
formation flows through the program, and rejects pro-
grams that violate the security policy described by the
type annotations and the label lattice.

For example, the following program declares an in-
teger variable a readable only by Alice (and those prin-
cipals that act for her) and trusted only by Bob (and the
principals the he acts for), while the contents of the
variable b is readable by Bob and trusted by Alice.

1 int{Alice, Bob} a;
2 Point{Bob, Alice} b;
3 a = b.getXCoord();
4 if (b.getXCoord() > 0)
5 a = 0;

Assuming the acts-for ordering Alice ≤ Bob the
compiler rejects line 3 above as potentially insecure:
getting the x coordinate of the Point object reveals data
to Alice that should only be observable by Bob and
corrupts the contents of a (trusted by Bob) with data
that is only trusted by Alice. It is also necessary to
track implicit information flows that arise due to the
control structure of the program. Thus, the compiler
rejects lines 4–5 as being potentially insecure because
the contents of a reveal partial information about b’s x
coordinate and also corrupts the contents of a since the
assignment to a depends on a value (b’s x coordinate)
that is not trusted by Bob.

Research over the last several years has scaled these
basic ideas to many common language constructs, in-
cluding method invocation, exceptions, constructor in-
vocation, loop guards, and conditionals. However,
there is relatively little work exploring practical mod-
els of information-flow security in distributed pro-
grams, such as the CPA.

4 A MODEL FOR SECURITY LABELS
Most existing security-typed languages use the lat-

tice model of information flow [8] in which an informa-
tion flow policy Π is defined by a lattice (L ,v), where
` ∈L is a label (or security level), and labels are or-
dered by the relationv. While this simple label model
is sufficient in a formal setting, in practice more ex-
pressive labels are required for several reasons. First,

the lattice of labels may need to be changed during
a long-running program’s execution. Second, while
MLS information flow labels are useful in enforcing
noninterference-like properties, other security policies
such as downgrading, access control and data prove-
nance tracking also need to be supported. In such
cases, no natural lattice ordering on labels exists. In
this section, we discuss a label model that supports dy-
namic policies, and can be enriched to support more
than just information-flow policies.

4.1 DYNAMIC MLS LABELS
If policy updates are to be supported, a reasonable

administrative model should be able to provide an-
swers to the following questions. (1) Who is allowed
to make changes to the security policy? (2) What parts
of the policy are permitted to change? (3) How should
those changes be reflected in the running program?

Rather than develop an administrative model for ex-
isting label models, we looked instead to the body of
work on formal policy languages for which adminis-
trative models already exist. Role-based policy lan-
guages suggest a natural label model. In particular, a
role, which is a name that represents a set of principals,
can be treated as a label, and the ordering between la-
bels can be defined in terms of subset on the contents
of roles according to the policy. The language RT0 pro-
vides a particularly convenient source of labels. RT0 is
the simplest member of the role-based policy language
framework RT [4]. The following features of RT0 roles
provides answers to each three questions posed previ-
ously.

Ownership. An RT role is defined as having an
owner responsible for the role’s definition; a given
principal can own many roles. Only a role’s owner
is allowed to change the definition of that role.

Membership and Delegation. An RT policy permits
delegation at the granularity of roles, in which one role
may be defined in part by the contents of another role.
This provides better control than the standard lattice
model, which only permits delegation between princi-
pals. The result is that in the standard model, princi-
pals either delegate all their privileges to another prin-
cipal or none. By contrast, role membership and role
delegation in RT are separate concepts. Roles have an
owner, and membership is strictly under the owner’s
control: the owner can either include a principal in a

4 of 7



role directly, or delegate (part of) the definition of a
role to another role. Membership does not imply dele-
gation.
Indirection. Defining labels as roles provides a useful
level of indirection because the membership of a role
may change while the label on data stays the same.
That is, a security policy of some data can be modified
without requiring the data to be relabeled.
Role ordering. Roles can conveniently be arranged
on a lattice using the subset relation, since they can
be interpreted as sets of principals. Alternatively, it is
also possible to use the logical structure of the policy
to define a partial order on roles. While the tradeoffs
between the choices are beyond the scope of this paper,
we note that both choices admit the specification of
multi-level information flow policies.

We have formalized the use of roles as security
labels in an SOPL that supports dynamic policy up-
dates [6].

4.2 OTHER FORMS OF LABELS
MLS information flow policies allow strong

noninterference-like security properties to be ex-
pressed, but such a security goal is not always nec-
essary or appropriate. One relaxation of noninterfer-
ence that has been studied extensively is downgrading
or declassification. This is of particular relevance to
the cross-domain setting and policies for downgrading
is the focus of another paper at this conference [7]. In
this section, we briefly sketch the form of labels that
can be used to express access control policies and data
provenance policies.
Access control labels. While MLS policies are data-
centric (i.e., they control data flow) access control poli-
cies can be used more naturally to control actions as
well as data. However, access control typically does
not place constraints on the modes of usage of a sen-
sitive object once access has been granted. For in-
stance, under an access control policy, once a principal
is granted access to a file, then she is free to copy con-
tents of the file to another file governed by a weaker
policy. This weakness of access control distinguishes
itself from MLS security and makes it a viable security
policy where MLS security is too strong. We will de-
rive a model for access control labels in a manner that
integrates with an information flow policy following a
technique proposed recently by Abadi [1]. The core of

this approach is to use a specialized SOPL to specify
an access control policy. The result is that it is possi-
ble to formally prove that a principal’s access control
policy cannot be tampered with by other unauthorized
principals.

Provenance labels. Tracking data provenance in
curated databases has been the subject of recent
study [2]. Here, a set of labels is associated with each
subterm of an expression e that is computed as a func-
tion of a labeled data set. For instance, e might be a
term that computes statistical information from an ar-
ray of sensor data by running an SQL query over the
database. Each entry in the database is tagged with
the identity of the sensor that produced the value. The
labels on the subterms of e then reflect which sensor
readings contributed to the computation of each sub-
term. It is possible to prove a noninterference-like the-
orem based on the dependences between the labeled
term and the data sources. One could also derive other
security policies from the provenance labels, stating,
for instance, that only data from an authorized set of
sources may participate in a particular computation.

5 SECURE PROGRAMMING IN SELINKS

The multi-tier structure of the CPA, as well as the
coordination between its multiple component appli-
cations presents several challenges for controlling the
flow of sensitive data. The research we are conducting
aims to provide a coherent treatment of flows across
the entire application by scaling up the basic ideas of
security-oriented programming languages. By using
these techniques, we will have effectively constructed
a lightweight, static proof of end-to-end security.

We are extending the LINKS [3] web programming
language with support for enforcing fine-grained, se-
curity policies specified using object labeling. LINKS

is novel in that it permits writing a single, multi-
threaded program that is automatically split into client,
server, and database components, and translated to
Javascript, LINKS, and SQL, respectively. The main
advantage of using LINKS is that one can analyze a
single program, before it is split into and compiled
to its multi-lingual component parts. This makes the
analysis task much simpler (and more trustworthy).
Though space precludes a complete discussion, we at-
tempt to provide the reader with a feel for LINKS pro-
gramming by discussing a small example program. We

5 of 7



1 sig getPage : (Label::MLS as cred, Int)→ [Page{cred}]
2 fun getPage(cred, pageid) server {
3 var pages = table "pages" with (
4 pglabel : Label::MLS,
5 pageid : Int{pglabel},
6 title : String{pglabel},
7 wikibody : String{pglabel}
8 ) from database "test";
9 for (var p←pages)

10 where ((p.pglabel vcred) ∧
11 (p.pageid == pageid))
12 [p]
13 }
14 fun showWikiPage(cred, pageid) client {
15 formatDisplay(getPage(cred, pageid))
16 }

Figure 3. Dynamic MLS labels in SELINKS.

call our extension of LINKS, Security Enhanced Links,
or SELINKS.

Figure 3 shows a small program with an empha-
sis on server-database interactions. A LINKS program
consists of a series of function definitions followed by
some initialization code to start the application. Each
function is labeled with either client or server an-
notation to indicate where it is supposed to run. Func-
tion calls may traverse the client/server gap, and the
compiler automatically translates such calls into syn-
chronous remote procedure calls (RPCs) — in the ex-
ample, showWikiPage is a client function that makes a
remote call to the server to fetch the page contents and
then draws it to the screen.

Interactions with a database are primitive opera-
tions in LINKS. Any server function may connect to
a database to perform queries and updates. The advan-
tage here as shown in the function getPage, is that the
database’s data model is made evident in the LINKS

program. This means that one can translate LINKS

values to database rows and back again without the
unwieldy usage of quoted SQL strings (as found in
Java and JDBC) and and unsafe coercion functions
that translate database result set types to types in the
application language. In LINKS, database queries are
expressed as list comprehensions. The example query
selects all rows from the table pages where the page
identifier is as requested. The function also performs
some additional security operations which we discuss
next.

At line 1, the signature of the function getPage de-

scribes its security behavior using a limited form of
dependent typing. The function expects two formal pa-
rameters, the first of type Label and the second an Int.
The Label type is an addition in SELINKS and stands
for the type of label values; in this case, the kind of the
Label is MLS, stating that this function only deals with
MLS security (rather than access control, downgrad-
ing etc.). The function returns a list of Page elements,
where each Page is at a security level not higher than
the level specified by the cred parameter.

At line 4 in the body of the function, the database
schema is updated to reflect the storage of Label values
in the database, where previously only a user identifier
was stored. Each field in each row of the "pages" table
is at a security level determined by the Label stored in
the same row. At line 9, we define an expression that
selects documents from the table, but we must be care-
ful to ensure that in line 10 the correct authorization
check is performed in the where clause. In this case,
we check in line 10 that the privilege level specified in
cred is no less than the pglabel field of the row. Since
we only select rows that satisfy this conditions, we can
safely use subsumption to treat each selected record as
being protected at level cred, which is the requirement
stated in the type signature. Note that if the kind of
the label was not MLS then some other form of autho-
rization check would have to be performed at line 10.
Notice that unlike the example from Section 3, the ac-
tual value of a security label is known only at runtime.

Ensuring complete mediation of the security policy
requires three steps. First,a static analysis of SELINKS

programs to ensure that all authorization checks, such
as the label ordering check on line 11 of Figure 3,
are present. Second, complete mediation requires that
object-label relationships represented in the type lan-
guage of the SELINKS program (e.g Page{cred}) be
consistent with the label-data relationship as main-
tained in the database. In the example in Figure 3,
the mapping between the database’s view of objects
and labels and the application’s view is particularly
straightforward — the object and the label are stored
as a tuple in the database and in the application. How-
ever, much more complex relationship are possible,
and necessary, for practical programs. When persist-
ing or querying labeled data to/from the database, we
must ensure that the object-label relationships are pre-
served. Finally, we must ensure that all policy checks

6 of 7



Figure 4. Managing a user’s roles.

that occur with SQL queries that run at the database are
consistent with the corresponding policy checks that
occur within the SELINKS program.

6 CONCLUSIONS

We conclude by showing two screenshots from an
prototype of the CPA that is under development. Fig-
ure 4 shows the interface that allows a user to manage
his role labels. The top of the window shows the name
of the role (in this case, the Auditors role belonging
to the user Nix). The application provides a GUI to
allow the user to add new users to the role, or to re-
move existing users from the role. Other operations
such as delegating role management will also be sup-
ported. Figure 5 shows the interface that allows a user
to view existing labels on a document and to possibly
add new labels to the document. The contents of the
page is structured into a tree-like structure of tables,
with nested tables showing the labels associated with
each labeled fragment of the document. A mouse over
the label loads the set of labels in the pane toward the
left of the frame. Designing an intuitive UI that is well-
suited to a security critical application is also a major
challenge in this project and is an area which we have
only just begun to explore.

Throughout this paper, we have attempted to give
a flavor of our approach to address each of the key
tasks and challenges of the CPA identified in Section 2.
In review, we are enhancing techniques proposed by
Buneman et al. [2] in order to accurately track prove-
nance labels on data sources; we are using roles de-
rived from the RT0 language as dynamic labels to tag
documents; and we have illustrated by example how
the type system in SELINKS ensures complete medi-
ation of policy authorization checks. Our challenges

Figure 5. Viewing labeled documents.

remain to integrate multiple models of security poli-
cies into a single label model. We address some key
issues in the design of cross-domain security policies
in an accompanying paper [7]. Finally, we address the
problems of label consistency, tracking and enforce-
ment across the multiple tiers of an application by per-
forming a cross-tier analysis of SELINKS programs.

References
[1] M. Abadi. Access control in a core calculus of depen-

dency. In ICFP, 2006.

[2] P. Buneman, A. Chapman, and J. Cheney. Provenance
management in curated databases. In SIGMOD, 2006.

[3] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. http:
//groups.inf.ed.ac.uk/links, 2006.

[4] N. Li, J. C. Mitchell, and W. H. Winsborough. Design
of a Role-Based Trust-Management Framework. In Se-
curity and Privacy, 2002.

[5] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications, 21(1), 2003.

[6] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic. Man-
aging policy updates in security-typed languages. In
CSFW, 2006.

[7] S. Tsang, M. Hicks, and N. Swamy. Cross-domain in-
formation flow policy languages, properties and analy-
sis. In Submission to MILCOM ’07, 2007.

[8] D. Volpano, G. Smith, and C. Irvine. A sound type
system for secure flow analysis. JCS, 4(3), 1996.

The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government.

7 of 7


