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ABSTRACT

This paper presents SELINKS, a programming language fo-
cused on building secure multi-tier web applications. SE-
LINKS provides a uniform programming model, in the style
of LINQ and Ruby on Rails, with language syntax for ac-
cessing objects residing either in the database or at the
server. Object-level security policies are expressed as fully-
customizable, first-class labels which may themselves be sub-
ject to security policies. Access to labeled data is mediated
via trusted, user-provided policy enforcement functions.

SELINKS has two novel features that ensure security poli-
cies are enforced correctly and efficiently. First, SELINKS
implements a type system called Fable that allows a pro-
tected object’s type to refer to its protecting label. The
type system can check that labeled data is never accessed di-
rectly by the program without first consulting the appropri-
ate policy enforcement function. Second, SELINKS compiles
policy enforcement code to database-resident user-defined
functions that can be called directly during query process-
ing. Database-side checking avoids transferring data to the
server needlessly, while still allowing policies to be expressed
in a customizable and portable manner.

Our experience with two sizable web applications, a model
health-care database and a secure wiki with fine-grained se-
curity policies, indicates that cross-tier policy enforcement
in SELINKS is flexible, relatively easy to use, and, when
compared to a single-tier approach, improves throughput by
nearly an order of magnitude. SELINKS is freely available.

Categories and Subject Descriptors D.2.4 [Software
Engineering]: Software/Program Verification; C.2.4 [Dis-
tributed Systems]: Client/server; H.2.0 [Database Manage-
ment]: General

General Terms Security, Languages, Performance
Keywords database programming, security enforcement,
web applications, type systems, compilers
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1. INTRODUCTION

The rise of the web has coincided with the rise of multi-
tier applications. These applications consist, at the least,
of three tiers: a database for storing persistent data (e.g.,
inventories, purchase records), a server for handling the ap-
plication logic (e.g., transaction processing, search, making
recommendations), and a client-side web browser for the
user interface, which displays results and collects informa-
tion. Traditionally, each tier is written in its own language
or framework; e.g., SQL for query processing on the data-
base, PHP or Java for the server logic, and JavaScript and
HTML for the client. These different programming language
and tier models create an impedance mismatch that compli-
cates programming multi-tier applications.

Many frameworks have been developed to mitigate the
impedance mismatch and provide a more uniform program-
ming model. For example, the LINKS [10] programming
language can be used to write a single program that the
compiler splits to run at the database, server, and client
tiers, seamlessly introducing remote procedure calls and ob-
ject representation mappings as needed. Similar support
is provided by other languages or frameworks, including
Microsoft’s Volta [38], the Google Web Toolkit [16], and
Hop [17] (unifying the client-server view), and LINQ [20,
19], Java EE (formerly, J2EE) [18], and Ruby on Rails [30]
(unifying the server-database view).

Our focus in this paper is to explore how to reliably build
multi-tier web applications that handle private or sensitive
data. The uniform server-database programming model pro-
vided by web application frameworks is already a good start.
One can naturally enforce security policies directly in terms
of application objects, rather than lower-level representa-
tions of such objects in the database. Moreover, the appli-
cation can use its own notions of authority, identity, policy,
etc. rather than rely on particular, potentially non-portable
(and sometimes inefficient) mechanisms native to a particu-
lar DBMS.

On the other hand, there are two key disadvantages to
what amounts to a server-side enforcement strategy. First, it
can lead to poor performance. For example, when processing
a query on a table that contains sensitive data, the server-
side enforcement strategy requires all potentially-relevant
results to be transferred from the database to the server so
that the server can perform the security check (and thus
further filter the results). Compared to performing access
checks on the DBMS itself, this approach can lead to much
higher query latencies and greater network contention if only
a small fraction of the transferred objects turn out to be



securely accessible. Second, as applications become larger
and more complicated, programmers are more likely to make
security-relevant coding mistakes, such as missing an access
control check on a seldom-taken path. If several applica-
tions must access the same back-end database, these security
checks must be repeated in each application, which increases
both the programming burden and the chances for mistakes.

This paper presents Security-enhanced LINKS (or SE-
LINKs), an extended version of the LINKS multi-tier pro-
gramming language with novel support for fine-grained secu-
rity policy enforcement. SELINKS retains the security ben-
efits of the uniform model of multi-tier programming while
eliminating its drawbacks. Programmers define security-
relevant metadata (termed labels) using algebraic and struc-
tured types, and define enforcement policy functions that
the application calls explicitly to mediate access to labeled
data. While this basic strategy can be implemented in any
server-database-uniform model (e.g., LINQ or J2EE), SE-
LINKS includes two novel features that prevent coding errors
and improve performance.

To ensure that calls to enforcement functions are never
left out or performed incorrectly, SELINKS implements a
novel type system called FABLE [37]. The FABLE declara-
tion o : Int{l} ascribes object o a labeled type Int{l}, which
indicates in this case that o is an integer protected by I, a
security label. Values of labeled type are opaque to the main
program; e.g., while Int values can be added, printed, etc.
there are no native operations on Int{l} values. To use a
labeled object, the main program is thus forced to pass it
to an enforcement policy function of the appropriate type.
For example, we could pass our labeled integer to the policy
function access_int(l: Lab, data:Int{l}, user: Cred), whose first
argument is a label, whose second argument is an integer
labeled by that label, and whose third argument is a user
credential. The access_int function will return the second ar-
gument as a normal Int so long as user is granted access to it,
according to |. By making the types of enforcement policy
functions suitably specific, we can essentially ensure com-
plete mediation: a labeled datum must be passed through
a particular policy function that performs the appropriate
policy check before that datum can ever be used.

To ensure good performance, when calls to enforcement
functions occur in database queries, the SELINKS compiler
translates the calls to user-defined functions (UDFs) acces-
sible during query processing. For example, we have im-
plemented a simple web-based application called SESPINE,
inspired by The Spine [24], which provides access to a pa-
tient’s medical records. Each record, stored as a database
row, has a corresponding label that encodes an access control
list (ACL); the appropriate enforcement policy function is
automatically compiled to a UDF and invoked during query
processing.

Our approach is far more efficient than server-side enforce-
ment but retains its flexibility—calls to enforcement policy
functions may also occur on the server. For example, in
SEWIKI, a security-oriented blog/wiki that we have built
using SELINKS, server-side mechanisms make policy enforce-
ment both more convenient and efficient. SEWIKI represents
documents using a tree-shaped data structure. Enforcing
an access control policy on these documents often requires
tree traversals from parent to child and child to parent. We
use the higher-level abstractions provided in the server tier
to reliably implement optimized access control checking on

these trees, reducing the number of traversals necessary to
enforce the desired security semantics. Implementing a sim-
ilar optimization in the database would be both tedious and
potentially inefficient. (More details on this in Section 4.)
Additionally, SELINKS gives programmers the flexibility to
choose security labels that match the needs of their applica-
tions and apply them to objects at an arbitrary granularity.
For example, in addition to enforcing access controls, we use
labels in SEWIKI to track fine-grained provenance informa-
tion [5] and rely on server-side enforcement to update labels
to account for data flows through normal computations that
occur at the server.

SELINKS was designed so that security-checking code can
be modular and reusable—experts build libraries of security
policies and label formats, and these can be used by differ-
ent applications. As a case in point, we use the same access
control library for both SEWIKI and SESPINE. SELINKS’
approach is similar in spirit to microkernel-style library op-
erating systems [14] where common services are linked as
libraries rather than implemented in separate components.
Indeed, different applications can access the same back-end
database by using the same security libraries—database-side
enforcement in both applications will invoke the same UDFs.

As a final benefit, the general approach of policy enforce-
ment in SELINKS is relatively portable since our cross-tier
compilation strategy relies only on user-defined functions, a
feature found in essentially all major DBMSs. On the other
hand, specialized facilities available in different DBMSs can
be used by the compiler to improve performance without
affecting the application. For example, we exploit Post-
greSQL’s support for rich user-defined types and found that
they can provide improved performance. For DBMSs that
do not provide such a facility, simpler solutions (with some
degradation in performance) are possible.

In summary, the main contribution of this paper is a
demonstration of how the uniform data model present in
languages like LINQ, LINKS, and others can be extended
with security policy enforcement that is reliable, modular,
portable, and efficient. As evidence of these claims, we
present an implementation of our approach in the LINKS
programming language, which we call SELINKS, and demon-
strate, through application experience, that SELINKS is ex-
pressive and, through experimental measurements, that it
achieves good performance. SELINKS is freely available at
http://www.cs.umd.edu/projects/PL/selinks.

2. OVERVIEW

We begin by describing LINKS [10], the programming lan-
guage on which SELINKS is based. Next we describe our two
main contributions: the integration of FABLE into LINKS
to ensure that security policies are reliably enforced, and
compiling policy enforcement functions to database-resident
user-defined functions for improving performance. Finally,
we discuss how through the use of SELINKS’ type system
programmers can flexibly enforce custom security policies
at an arbitrary granularity while using our cross-tier code
generation tools to optimize the performance of their appli-
cations.

2.1 Links

Modern web applications are often designed using a three-
tier architecture. The part of the application related to the
user interface runs in a client’s web browser. The bulk of the



application logic typically runs at a web server. The server,
in turn, interacts with a relational database that serves as a
high-efficiency persistent store.

Programming such an application can be challenging for
a number of reasons. First, the programmer typically must
be proficient in a number of different languages—for ex-
ample, client code may be written as JavaScript; server
code in a language like Java, C#, or PHP; and data-access
code in SQL. Furthermore, the interfaces between the tiers
are cumbersome—the data submitted by the client tier (via
AJAX [15], or from an HTML form) is not always in a
form most suitable for processing at the server, and like-
wise server-side objects must be mapped to and from rela-
tions or other database-side representations. These factors
constitute an impedance mismatch in web programming.

LINKS aims to reduce this impedance mismatch by mak-
ing it easier to synchronize the interaction between the tiers
of a web application. The programmer writes a single LINKS
program in which client-server communication is via normal
function calls, and server queries to the database are ex-
pressed as list comprehensions, in the style of LINQ [20] or
Kleisli [39]. The LINKS compiler compiles client-side func-
tions to JavaScript to run in the browser and implements
calls from client to server using AJAX. List comprehensions
are compiled to SQL expressions that will run on the da-
tabase. Thus programs are expressed at a fairly high-level
while the low-level details are handled by the compiler.

2.2 Reliable enforcement of security policies

SELINKS extends LINKS with support for enforcing cus-
tom security policies. To illustrate how one expresses a se-
curity policy in SELINKS, we sketch some aspects of the
implementation of SESPINE, our model medical-record man-
agement system. SESPINE allows patients, health-care pro-
fessionals, and insurance providers to create, edit and view
records related to a patient’s case. There are two key secu-
rity goals in SESPINE: (1) confidentiality: a record may con-
tain sensitive information that should only be viewed by au-
thorized principals; (2) integrity: records should be modified
only by authorized personnel, and all modifications should
be properly logged for later audit.

In order to allow an engineer to verify that a security pol-
icy is correctly implemented, SELINKS implements a type
system called FABLE. In FABLE, and consequently in SE-
LINKS, implementing a security policy proceeds in three
steps. First, we define the form of security labels which
are used to denote policies for the application’s security-
sensitive objects. A security label | is associated with the
object o it protects by giving o a type that mentioned |, e.g.,
t{I}. Second, we define the enforcement policy functions
that implement the security semantics of these labels. Fi-
nally, we construct the application so that security-sensitive
operations on objects of type tl are always prefaced with
calls to the enforcement policy code. A key property of Fa-
BLE is that type-correctness guarantees complete mediation:
no sensitive data can be accessed or manipulated without
first consulting the appropriate enforcement policy function.
We elaborate on the three steps involved in implementing a
FABLE-style security policy in the context of SESPINE.

Security labels. SESPINE security labels specify a group-
based access control policy, with separate access restrictions
for readers and writers of a record. Such labels are defined
by the type Acl, an algebraic datatype (a.k.a. variant type)

typical of functional languages (e.g., ML and Haskell):

typename Group = Principal(String) | Insurance | Admin
typename Acl = (read: List( Group), write: List( Group))

Aclis a record type with two fields, read and write, that con-
tain lists of groups authorized to read and modify a record,
respectively. The Group variant type defines our various no-
tions of group. Among others, the Group type includes the
singleton group Principal(x) containing only a single user x;
Insurance, the group of users that work for an insurance com-
pany; and, Admin, the group that includes only the system
administrators.

Given this label model, the (simplified) schema for our
record database can be written as follows:

var table_handle = table "patientrecs" with
(recid : Int,
lab : Acl,
text : String{lab}) from database "medDB";

The table above contains three columns. The first column
is the primary key. The second column stores the row’s
security label, having type Acl. The third column’s data
has labeled type String{lab}, which states that it contains
data (of type String) that is protected by the security label
stored in the lab field of the table. This is a kind of dependent
type [3] which, as we discuss later, allows the type system to
ensure that this data is not accessed prior to checking the
policy.

Enforcement Policy. The next step is to define what la-
bels mean, in terms of what actions they permit or deny.
The application writer does this by writing special functions,
collectively called the enforcement policy. For SESPINE, we
implement an authorization check in the following policy
function:

sig access: (cred:Cred, lab: Acl, data:a{lab}) — Maybe(a)
fun access(cred, lab, data) policy {
if (member(cred, lab.read)) { Just(unlabel(data)) }
else { Nothing }

A function declaration in SELINKS can optionally be pref-
aced by a sig declaration, which specifies a type signature for
the function. The sig declaration above shows access to be
a function of three arguments. The first argument cred is a
user credential of type Cred; the second argument lab is a se-
curity label of type Acl; the final argument data is given the
type aflab}, which indicates that it is protected by the label
lab (the second argument), and can only be accessed after
the suitable access control check has been performed. The
signature also indicates that the value returned by access is
of type Maybe(a). The LINKS type Maybe(t) is a variant type
consisting either of the value Nothing, or the value Just(x)
where x has type t. The type of data and the return type
indicate that the access function is polymorphic in the type
of data—the type a can be instantiated with any type ¢, and
thus access can be called with any labeled type. For exam-
ple, we could pass in a value of type String{lab} for data, in
which case access would return a Maybe(String); if we passed
in a Int{lab}, it would return a Maybe(Int), etc. Note that
access is marked with the policy qualifier to indicate that it
is a part of the enforcement policy.

In the body of the function, we check whether the user’s
credential is a member of lab’s read access control list (using



the standard member function, not shown). If it is, the user
has read privileges on this document, so the policy func-
tion uses a special unlabel operator to coerce the type of
x from String{lab} to String, making it accessible once re-
turned from the function. Note that in LINKS, by default,
all data is immutable, so coercing the type of x to String in
access is not granting write access. The only mutable state
in an application is in the database, and update operations
on tables are mediated separately.

The SELINKS type system ensures that the unlabel op-
erator (and a corresponding relabel operator) is only ever
used in code that has been granted a special privilege by
being marked with the policy keyword. This allows us to
prove that the unprivileged application code always treats
labeled types abstractly. For example, consider data with a
labeled type like String{lab}. While a String can be printed,
searched, etc., a String{lab} cannot; its values can never be
inspected directly by application code. Therefore, to access
the contents of labeled data, application code must call an
enforcement policy function, passing in the appropriate la-
bels, credentials and application state. Depending on the
values passed in, the policy function can choose to either
grant (e.g., unlabel) or deny access to the data. If appli-
cation code directly calls unlabel or attempts to directly
access a labeled type, the program is rejected by the type
checker at compile time. Note that the privileged unlabel
and relabel operators are only used to type check programs
and have no operational significance; they are erased during
code generation.

The SELINKS type system allows us to conveniently par-
tition the code that must be trusted to perform security
enforcement from the rest of the program. In practice, we
have found the enforcement policy fragment of program to
be relatively small—on the order of a 100-200 lines in our
experience, compared to thousands of lines for the rest of the
application. The enforcement policy can be subject to fur-
ther manual inspection or even formal verification to ensure
that it correctly implements the desired security semantics.
We have shown that with relatively simple enforcement pol-
icy functions one can express a variety of security policies,
including access control, information flow, provenance, and
(with some extensions) automaton-based policies. These im-
plementations are simple enough to admit formally verified
proofs of correctness [37, 36].

Including policy checks in queries. The final step is
to preface security-sensitive operations on data with calls
to enforcement policy functions, whether these operations
occur in server-side code, or in data access code. Here is
a function that performs text search on the records in the
database.

1. fun getSearchResults(cred, keyword) server {

2. for (var row < table_handle)

where (var txtOpt = access_str(cred, row.lab, row.text);
switch(txtOpt) {
case Just(data) — data ~ /.x{keyword}.x/
case Nothing — false

by

[row]

© 00N oW

}

Note that not all SELINKS functions need to be given
explicit type signatures using sig declarations. Where the
types in a function’s interface do not contain any label de-

pendences, the SELINKS type checker gracefully degrades to
use LINKS’ underlying type inference algorithm. In this case,
our type checker infers that the type of getSearchResults is
(Cred, String) — List(Row), where Row is the type of a row
in in the patientrecs table.

The getSearchResults function runs at the server (as indi-
cated by the server annotation on the first line), and takes as
arguments the user’s credential cred and the search phrase
keyword. The body of the function is a single list comprehen-
sion that selects data from the patientrecs table. In partic-
ular, the comprehension evaluates to a list (syntax [row]) in-
cluding each row in the table (for(var row «— table_handle))
for which the where-clause is true. The where-clause is not
permitted to examine the contents of row.text directly be-
cause it has a labeled type String{row.lab}. Therefore, at
line 3, we call the access_str policy function, passing in the
user’s credential, the security label, and the protected text
data. If the user is authorized to access the labeled text
field of the row, then access_str reveals the data and returns
it (having Maybe(String) type). Lines 4-7 check the form
of txtOpt. If the user has been granted access (the first
case), then we check if the revealed data matches the regu-
lar expression. If the user is not granted access, the keyword
search fails and the row is not included.

2.3 Efficient, cross-tier enforcement

LINKS compiles list comprehensions to SQL queries. Un-
fortunately, for queries like getSearchResults that contain a
call to a LINKS function, the compiler brings all of the rel-
evant table rows into the server (essentially via the query
SELECT * FROM patientrecs) so that each can be passed to
a call to the local function. This is one of the main draw-
backs of server-side enforcement of policies, which is typical
of frameworks that use a uniform database-server model: en-
forcing a custom policy may require moving large amounts
of data to the server to perform the security check. In the
case of LINQ, queries that include calls to C# methods (like
in our getSearchResults example) simply throw exceptions
when they are evaluated, since these method calls cannot be
translated to SQL.

The second contribution of SELINKS is to avoid this prob-
lem by compiling enforcement policy functions that appear
in queries (like access) to user-defined functions (UDFs) that
reside in the database. Queries running at the database can
call UDFs during query processing, thus avoiding the need
to bring all the data to the server. Most major DBMSs pro-
vide user-defined function languages, so while our implemen-
tation currently uses PostgreSQL, it should be adaptable to
other settings.

We implement this approach with three extensions to the
LINKs compiler!. First, we extend it to support storing com-
plex LINKS values (most notably, security labels like those of
type Acl) in the database. Prior to this modification, LINKS
only supported storing base types (e.g., integers, floating
point numbers, strings, etc.) in database tables. Second, we
extend the LINKS code generator so that enforcement pol-
icy functions can be compiled to UDFs and stored in the
database. Finally, we extend the LINKS query compiler to
include calls to UDF versions of enforcement policy func-
tions in generated SQL.

Figure 1 illustrates these three elements. The figure de-
picts the server running the SELINKS program on the left,

LOur extensions are to rev.995 of LINKs-0.4 from May 2007.



app.links

getSearchResults(cred,kw) {
for (var <- ...)

where (...access_str(...)) _‘L

}\/

Server

{ read: [Admin; Insurance],
write: [Admin}

query —— |

policy.links
typename Group = ... . user-defined functions
access_str(cred,lab,x) { —— pOliCy

compilation

L ®

=~ ~|~ [Hab: text: recid:

query proc. engine

OLe:

CREATE OR REPLACE
FUNCTION access_str ...

DBMS

Figure 1: Cross-tier Policy Enforcement in SELINKS

and the DBMS, processing our example query, on the right.

Storing complex SELINKS data in the DBMS. The
DBMS contains the patientrecs table that stores SESPINE
records. The lab column stores Acl values, which have com-
plex SELINKS type (labeled (1) in the figure). The other
two columns store the record text and a document index.
Our LINKS compiler extension uses common DBMS support
for native values, in particular employing PostgreSQL sup-
port for user-defined types (UDT). We extended the LINKS
compiler to construct a UDT for each complex LINKS type
possibly referenced or stored in a UDF or table [28]. The en-
gineer initially populates the table using the expected repre-
sentation, and SELINKS automatically translates the server-
side representation of values to PostgreSQL UDTs whenever
these values pass into the DBMS tier. We discuss the details
of our UDT representation and other alternatives we con-
sidered (in particular, serialized strings and indexed records
following an object-relational (OR) mapping) in Section 3.1.

Compiling policy code to UDFs. So that enforcement
policy functions can be called during query processing, they
are compiled to database-resident UDFs. For our example,
enforcement policy functions like access_str are defined in the
file policy.links, and as shown in the figure (labeled (2)), the
developer directs these functions to be compiled to UDFs.
SELINKS extends the LINKS compiler with a code genera-
tor for PL/pgSQL, a C-like procedural language similar to
UDF languages available for other DBMSs. The generated
code uses the UDTs defined above to access complex types.
For example, LINKS operations for extracting components
of a variant type by pattern matching are translated into
the corresponding operations for projecting out fields from
PostgreSQL UDTs implemented as C structs. Section 3.2
describes the compilation process.

Compiling LINKS queries to refer to UDFs. Once en-
forcement policy functions are resident at the DBMS, they
can be invoked directly during query processing. The figure
illustrates that the list comprehension in app.links can be
compiled to SQL that directly invokes the compiled access_str

function now resident at the DBMS, where any LINKS values
of complex type are converted automatically when the UDF
is invoked. Section 3.3 shows the precise form of the SQL
queries produced by our compiler.

Note that the policy code in policy.links also resides on
the server and the application app.links can, when enforcing
policies on server objects, simply call the server version of
the policy. We discuss an example that relies on this code
replication feature in Section 4.2.

2.4 Discussion

By selecting an appropriate language of security labels and
applying them to program objects at an arbitrary granular-
ity, SELINKS programmers can design security mechanisms
that closely match the needs of their applications. The type
system and compilation strategy ensure that policies are uni-
formly and reliably enforced, whether the enforcement oc-
curs at the database or at the server. In this section, we
briefly discuss the expressiveness of SELINKS’ security en-
forcement mechanisms and compare it to typical label-based
row-level security protections provided by DBMSs like Ora-
cle 10g [26] and IBM’s DB2 [6].

Customizable label models. By allowing arbitrary data
values to be used as security labels, SELINKS policies can be
highly specialized to an application. For example, SESPINE’s
label model includes specific roles relevant to the medical
setting, and maintains separate read and write privileges.
SEWIKI, our blog/wiki application discussed in Section 4,
extends SESPINE’s label model to track provenance infor-
mation. In contrast, a built-in labeled security mechanism
such as Oracle Label Security (OLS) [26] only provides a
single multi-level security model in which labels are integers
arranged in a total order. DB2’s row-level security mecha-
nisms [6] offer a more flexible label model; however, unlike
in SELINKS, these labels must always be arranged in a lat-
tice. In both these cases, the specialized label models, im-
plemented natively in the DBMS, provide optimized support
for applications that fit the paradigm of lattice-based multi-
level security (e.g., US military applications). However, the



native label models do not obviously meet the needs of other
applications.

On the other hand, one advantage of SELINKS’ relatively
high level of abstraction is that it can employ the native la-
bel models of existing DBMSs, if the programmer so chooses.
For example, we have begun experimenting with interfacing
with OLS from SELINKS [2]. OLS’ built-in label values can
be represented as integers in SELINKS and labeling relation-
ships can be reflected on database objects using SELINKS’
type language. This approach can be used to augment the
native DBMS protections offered by OLS with features like
information flow tracking throughout a web application, e.g.,
through various server and client operations.

Policies of varying granularity. SELINKS policies can
be applied at an arbitrary granularity. For example, in
SESPINE, we choose to label each text field in each row
of the patientrecs table with its own security label, i.e.,
we use row-level controls. In SEWIKI, we use a hierarchi-
cal tree-shaped data model in which labels apply to entire
sub-trees, corresponding to several rows in table. It would
also be straightforward to apply a security label at a much
coarser granularity, e.g., a label could be used to protect an
entire table.

Although the application designer is free to choose a gran-
ularity to match her application, finer-grained policies are
more expensive to enforce. For example, in the function
getSearchResults of Section 2.2, a policy check must inspect
the label of each row in the table. This behavior is not
peculiar to SELINKS—a native implementation of row-level
security like OLS must likewise perform an access check on
each row. For a coarser policy such as table-level controls,
a single check of a table’s label would suffice for each query.

The combination of a custom label model and policies ap-
plied at a programmer-chosen granularity, matched with the
use of enforcement policy functions to mediate all security
sensitive operations allows for a very broad range of policy
styles to be expressed and enforced in SELINKS. A detailed
formal analysis of the expressiveness of SELINKS’ policy en-
forcement model can be found in Swamy’s thesis [36].

3. IMPLEMENTATION OF SELINKS

In this section, we present the details of our implemen-
tation of cross-tier policy enforcement; details of the FA-
BLE extensions to the LINKS type system are discussed else-
where [36]. We begin by presenting our approach to storing
SELINKS values in a DBMS, used most notably to encode
security labels. Then, we show how we compile SELINKS
enforcement policy functions to user-defined functions. Fi-
nally, we present the compilation of SELINKS queries to SQL
queries that can refer to compiled UDF's.

3.1 Representing SELinks values with UDT's

The standard LINKS implementation only permits scalar
values to be stored in the database. In SELINKS, we use
PostgreSQL’s support for user-defined types (UDTSs) to im-
plement a direct in-memory representation of structured SE-
LiNks values in the database. This greatly improves effi-
ciency when compared to the simpler (and more portable)
approach of simply serializing SELINKS values to the DBMS
as strings. The flexibility of PostgreSQL UDTs also allows
us to mimic the server representation of values within the
database and makes it easy to compile SELINKS functions

Variant variant_init(text, Value);
Value variant_arg(Variant);
bool variant_matches(Variant, Variant);

List list_nil();

List list_cons(Value, List);
Value list_hd(List);

List list_t1l(List);

Record record_initi1(text, Value);
Record record_init2(text, Value, text, Value);
Value record_proj(Record, text);

Value variant_as_value(Variant);
Value list_as_value(List);
Value record_as_value(Record);

Variant value_as_variant(Value);
List value_as_list(Value);
Record value_as_record(Value);

text value_as_string(Value);
Value string_as_value(text);

Figure 2: PgSQL/C API for SELINkS UDTs (partial)

to UDF's. Another option would be to store SELINKS values
in the DBMS using an object-relational mapping; we discuss
this option in Section 3.4.

UDTs in PostgreSQL are created by writing a shared li-
brary in C and dynamically linking it with the database.
PostgreSQL requires this library to implement three fea-
tures: an in-memory representation of the type, conversion
routines to and from a textual representation (allowing the
type to be used in standard SQL queries), and functions for
examining UDT values.

Our in-memory representation for SELINKS values is based
on a UDT called Value. This type is a tagged union that rep-
resents one of several flavors of SELINKS structured type and
base SQL types like int and text. A fragment of the API
exposed by our UDT library is shown in Figure 2. Our API
contains functions for constructing and destructing the two
main kinds of SELINKS structured values—variants (type
Variant) and records (type Record)—along with specialized
functions for lists (type List).

For an illustration, consider variant types. SELINKS val-
ues of variant type are represented as a Variant UDT, and
are constructed using the function variant_init. For ex-
ample, the SELINKS value Principal(‘‘Alice”), an instance of
the Group variant type defined in Section 2.2, is constructed
via the C function call:

variant_init("Principal",string_as_value("Alice"))

Here, the first argument is the variant constructor repre-
sented as a string; the second argument is a Value that
stands for the argument of the constructor. In this case,
we pass in the string argument ’’Alice’’ as the second ar-
gument, coercing it to a value using string_as_value. In
general, our API includes functions like string_as_value,
variant_as_value, etc. that promote values of specific types
to the generic Value type. Dually, we also allow Values



CREATE FUNCTION
access(cred text, lab Record, data anyelement)
RETURNS Variant AS $$
BEGIN
IF member (cred,record_proj(lab, "read")) THEN
RETURN variant_init(’Just’, data);
ELSE
RETURN variant_init(’Nothing’, null);
END IF;
END;
. $$ LANGUAGE ’plpgsql’

s S A R R e e

—_ =

Figure 3: Generated PL/pgSQL code for access

to be downcast to more specific types using the functions
value_as_string, value_as_variant, etc.

The API includes destructors for extracting the contents
of each UDT. For variants, the function variant_arg projects
out the argument of a variant. Pattern matching is compiled
using the function variant_matches which tests if a variant
matches a pattern specified as another variant value. For
example, the following SQL select statement includes a call
to our pattern matching function; this query evaluates to
the result true:

SELECT variant_matches("Principal(’Alice’)",
"Principal(_)")

PostgreSQL can implicitly parse a textual representation
of a value to its an in-memory UDT representation. To use
this facility, we define parsers for each of our UDTs. For
example, instead of calling variant_init explicitly, Post-
greSQL uses our parsers to automatically translate the string
value "Principal(’Alice’)" to the appropriate Variant
structure.

Finally, Figure 2 also shows the API for manipulating lists
and records. The 1list_nil and list_cons functions are the
usual constructors, while 1ist_hd and 1list_t1 decompose a
list. The record constructors record_initl, record_init2,
etc., take a specified number of field name/Value pairs, while
record_proj projects out the named field.

3.2 Compiling SELinks programs to UDFs

We have implemented a new code generator for SELINKS
that compiles SELINKS functions to PL/pgSQL code, the
most widely used of PostgreSQL’s various UDF languages.
PL/pgSQL has has a C-like syntax and is fairly close to
Oracle’s PL/SQL. It would be straightforward to write code
generators for other UDF languages, to support additional
DBMSs (e.g., T-SQL for SQL-Server).

Code generation follows standard compilation techniques,
which we illustrate by example. Figure 3 shows the (slightly
simplified) code generated for the access enforcement pol-
icy function given in Section 2.2. A function definition in
PL/pgSQL begins with a declaration of the function’s name
and the names and types of its arguments. Thus, lines 1-2 of
Figure 3 defines a UDF called access that takes three argu-
ments. The first argument cred is a textual representation
of a user’s credential and has the built-in text type. The
second argument, lab, is a Record type that represents the
Acl type (see Section 2.2). The final argument data stands
for protected data of any type. The anyelement type allows
us to translate usage of polymorphic types in SELINKS to

1. SELECT recid, lab, text FROM

2. (SELECT

3 P.recid AS recid,

4 P.1lab AS lab,

5. P.text AS text,

6 access(’Alice’, P.1lab, P.text) AS tmp1l,

7. FROM patientrecs ASP) AST

8. WHERE

9. CASE
10. WHEN ((variant_matches(T.tmpl, ’Just((_))?)))
11. THEN (value_as_string(variant_arg(T.tmpl))
12. LIKE ’%keyword%’)
13. WHEN (true)
14. THEN false
15. END

Figure 4: SQL query generated for getSearchResults

PL/pgSQL, rather than requiring access functions special-
ized to a particular type. At line 3, we define the return
type of access to be a Variant, since in this case we return
a Maybe type.

In the body of the function, lines 5-9, we check if the user’s
credential cred is mentioned in the lab.read field for the Acl
type. We project from lab using the record_proj at line 5,
and then test list membership. The member function is itself
a UDF compiled from SELINKS. We omit its definition. If
this authorization check succeeds, at line 6 we return a value
corresponding to the SELINKS value Just(x) by using the
variant_init constructor. Notice that the unlabel operator
that appears in SELINKS is erased from the compiled code—
as described in Section 2.2, it has no run-time significance.
If the check fails, at line 8 we return the nullary variant
construct Nothing.

Our code generator currently can translate source pro-
grams that are in a fragment of SELINKS that corresponds
essentially to a first-order functional language, with recur-
sion, variants and pattern matching, and records. Notably,
we do not generate code for programs that use higher-order
functions, query comprehensions, or LINKS’ multi-threaded
message passing constructs. In practice, we only compile en-
forcement policy functions to UDFs. Since these functions
are part of trusted security infrastructure, they are, by de-
sign, inherently simple and, in the cases we considered, can
be expressed in the limited fragment of SELINKS that our
compiler can handle.

Rather than compile SELINKS code to PL/pgSQL, we
could have developed a module that could run SELINKS
code directly at the DBMS as a PostgreSQL custom pro-
cedural language. Modules for running Python and Perl
code at the DBMS have been developed previously. Our
current approach has the advantages of performance and
portability. In particular, our generated PL/pgSQL code is
further optimized by the PostgreSQL optimizing compiler,
and PL/pgSQL is similar enough to others DBMS UDF lan-
guages (Oracle’s PL/SQL or SQL Server’s T-SQL) that re-
targeting our code generator would be straightforward.

3.3 Invoking UDFs in queries

The final element of our cross-tier enforcement mechanism
is to compile SELINKS queries expressed as list comprehen-



sions to SQL queries that include calls to the appropriate en-
forcement policy UDFs. Prior to our extensions, the LINKS
compiler was only capable of handling relatively simple que-
ries. For instance, queries like our keyword search with func-
tion calls and case-analysis constructs were not supported.
Our added support draws on the existing query compiler in
Links compiler [13], which, in turn, draws on Kleisli [39], for
compiling comprehensions to SQL.

Figure 4 shows the SQL generated by our compiler for
the keyword search query in the body of getSearchResults
function of Section 2.2. This query uses a sub-query to in-
voke the access policy UDF and filters the result based on
the value returned by the authorization check. Consider the
sub-query on lines 2—7. Lines 36 select the relevant columns
from the patientrecs table; line 7 calls the policy function
access, passing in as arguments the user credential; the
document label field P.1ab, a complex SELINKS value that
represents the Acl datatype; and the protected text P.data,
respectively. The result of the authorization check is named
tmpl in the sub-query.

The compilation of the where-clause in the main query ap-
pears on lines 9-15. Recall from the SELINKS query compre-
hension (shown in Section 2.2) that the where-clause needs
to first test if the authorization check revealed the contents
of the protected string; if so, it checks whether the revealed
string contains the keyword. Since the authorization check
returns a variant type, we have to destruct it using the pat-
tern matching operation variant_matches provided by our
UDT API. If this pattern match succeeds, we project out
the contents data using the function variant_arg, followed
by a downcast, to see if it contains the keyword using SQL’s
LIKE operator. If either condition fails, the where-clause is
false. Line 1 of the query selects and returns the relevant
columns (i.e., excluding the T.tmp1 field).

3.4 Discussion: Query optimizations

PostgreSQL’s UDT support is both easy to use, very flexi-
ble and provides good performance for UDF's because struc-
tured values can be manipulated using a compact in-memory
representation, rather than using cumbersome textual rep-
resentations. While UDTs are optimized for use in UDFs,
when structured values need to be inspected directly in SQL
queries, a UDT-based representation can be quite inefficient.
Since the structure of a UDT value is, in general, opaque
to the query planner, standard optimizations necessary for
good performance are foiled. In this section, we discuss
shortcomings of our current implementation and present di-
rections for future work on optimizing the representation of
structured values that may help alleviate these concerns.

Generating indices on UDT columns. For large tables,
query performance depends crucially on well-chosen indices.
For example, a common query on the patientrecs table in
SESPINE is to retrieve all records to which a given principal,
say Alice, has access. A simple implementation of this query
in SELINKS might be of the form

for (var row «— table_handle)
where (member aliceCred row.lab.read)
[row]

In our current implementation, a query of this form requires
a full table scan since we represent row.lab using an opaque
UDT that cannot easily be indexed.

PostgreSQL, however, does include a feature that can be

used to generate limited forms of indices on UDTs. By pro-
viding an API that defines an equality predicate, an ordering
relationship, and a hashing function for UDTs, PostgreSQL
can be directed to index a table based on a column that
stores a UDT. For our applications, this simple facility may
be sufficient to improve performance substantially. Recall
that we generally use UDTs to only store security labels in
the database. These labels can often be arranged in lat-
tices [12, 22] that can be used to form the basis of a partial
order that underlies an index.

We are currently investigating the possibility of automat-
ically generating indices for columns that store security la-
bels. We envisage that the programmer will provide SE-
LINKS implementations of functions that define the partial
order on labels. For example, for the Acl type of Section 2.2,
the programmer can implement functions that define the
partial order based on a subset relationship of the user-lists
stored in the read and write fields of a pair of Acl values. By
compiling these functions and loading them into the DBMS,
we hope to generate suitable indices for UDTs. With this fa-
cility, many common queries on structured data values (e.g.,
testing security label inclusion for lattice-based labels) can
be performed without a full table scan.

Relational mapping for SELINKS values. Generating in-
dices for UDTSs can provide good performance when queries
only use specialized operations that are consistent with the
partial order used by the index. More generally, queries may
contain arbitrary operations on structured SELINKS values,
e.g., a query on the patientrecs table may search for all
records in which the set of writers is greater than the set of
readers. An index based on a partial order over Acl labels
does not help with such a query.

To address this problem, we have implemented an auto-
matic relational mapping [1] for SELINKS values so that a
complex value is represented in multiple rows of a table us-
ing only native SQL types. In essence we “flatten” the com-
ponents of a structured types (records and variants) into
multiple rows in a table and express relationships between
these components using foreign key constraints, e.g., by hav-
ing children of a node “point” to their parent. This mapping
can be used in lieu of the UDT-based mapping by via a
compiler flag.

In addition to exposing the structure of a complex SE-
LINKS value to query optimizers and table indices, a rela-
tional mapping has the advantage of improving the portabil-
ity of SELINKS to DBMSs that do not support UDTs. How-
ever, the downside of relying exclusively on this approach
is that when compiled UDFs dynamically allocate tempo-
rary data, this data must be stored as rows in temporary
tables. Unfortunately, updates to tables during query pro-
cessing can inhibit optimizations and managing temporary
data is cumbersome. In many DBMSs, table handles are
not first-class values, preventing parametrization of UDFs
based on a temporary table ID. In the worst case, properly
managing temporary table data reduces to implementing a
kind of garbage collection.

Undoubtedly, lifting these limitations requires consider-
able additional work. However, we have found that using a
combination of the existing mechanisms in SELINKS works
acceptably well. For example, we manually implement map-
pings for some application objects that require direct ac-
cess in the database (like the representation of records in
SESPINE and structured documents in SEWIKI, discussed



in greater detail Section 4), and use the UDT-based map-
ping (without indices) for security labels. For objects that
do not require allocating temporary data in UDFs, or are
never accessed by UDFs, the automatic relational mapping
could be applied, though we leave it to future work to al-
low both the UDT and relational encodings to be applied to
different data in the same application.

4. APPLICATION EXPERIENCE

We have developed two sizable applications with SELINKS,
SEWIKI and SESPINE. SEWIKI is a blog/wiki inspired by
Intellipedia [32] and SKIWEB [4], applications designed to
promote secure sharing of sensitive information among U.S.
intelligence agencies and the Dept. of Defense, respectively.
SESPINE is an application inspired by The Spine [24], an
on-line medical health record management system used by
the National Health Service in the United Kingdom. The
basics of SESPINE were described in Section 2.2, so we de-
vote most of this section to discussing SEWIKI, with a few
additional details about SESPINE at the end. Demos of both
applications can be found on the SELINKS web site.

4.1 Overview of SEWiki

SEWIKI enforces fine-grained confidentiality and integrity
policies on tree-structured documents. SEWIKI’s approach
is fairly general: its policies and enforcement strategy should
be applicable to a variety of information systems, such as on-
line medical information systems, e-voting applications, and
on-line stores.

Fine-grained secure sharing. SEWIKI aims to maximize
the sharing of critical information across a broad commu-
nity without compromising its security. To do this, SEWIKI
enforces security policies on document fragments, allowing
certain sections of a document to be accessible to some prin-
cipals but not others. For example, the source of sensitive
information may be considered to be high-security, visible
to only a few, but the information itself may be made more
broadly available.

Information integrity assurance. More liberal and rapid
information sharing increases the risk of harm. To mitigate
that harm, SEWIKI aims to ensure the integrity of informa-
tion, and also to track its history, from the original sources
through various revisions. This provenance information can
be used to assess the trustworthiness of data in a document
and can also be used to conduct an audit when information
is leaked or degraded.

Our implementation of SEWIKI consists of approximately
3500 lines of SELINKS code. It enforces a combined group-
based access control and provenance tracking policy. Poli-
cies are expressed as security labels having type DocLabel, a
record type shown below with two fields, acl and prov which
represent the access control and provenance policies, respec-
tively:

typename DocLabel = (acl: Acl, prov: Prov)

(The Acl type definition was shown in Section 2.2; the def-
inition of Prov is shown below, in Section 4.3.) We now
discuss each aspect of SEWIKI’s policy in more detail.

4.2 Access control on structured documents

SEWIKI documents are defined as trees, where each node
represents a security-relevant section of a document at an ar-

bitrary granularity—a paragraph, a sentence, or even a sin-
gle word. A local security label is associated with each node
in the tree, with a hierarchical interpretation: the access
control list included in a given node acts as a bound on the
access of the node’s descendants. This model is consistent
with typical multi-level security (MLS) document markup.
For example, if one section S of a document is originally
marked as accessible to the Secret group, but later the en-
tire document is deemed to be TopSecret (a group contain-
ing strictly fewer principals than Secret), then S now ef-
fectively has TopSecret labeling. On the other hand, if an
entire document was marked Secret and later downgraded
to Unclassified, portions of the document specifically labeled
TopSecret would still require explicit declassification for pub-
lic access.

Server-side representation. When manipulating docu-
ments at the server, documents are represented using the
datatype shown below:

typename Doc = (local_lab: DocLabel,
exact_lab: DocLabel,
text: String{exact_lab},
children: List( Doc){exact_lab})

The type Doc is a SELINKS record with four fields that rep-
resents documents as n-ary trees. The text field contains the
text associated with the current node (possibly empty), and
the children field contains the (possibly empty) list of the
node’s children, themselves Doc records. (Note that there
is additional information in Doc record not shown to assist
with formatting.)

The more interesting fields are local_lab and exact_lab.
The former is a label associated with the current node in
the document tree, which defines the bound on the access
control lists of the node’s children. To make our implemen-
tation efficient, we additionally store an ezact label in field
exact_lab. This field is a DocLabel in which the acl field
contains intersection of the acl field of the nodes local_lab
with the exact_lab field of the node’s parent. Effectively, the
exact_lab field at a given node memo-izes the local labels
of all the nodes on the path from that node to the root of
the document tree. Thus, to determine whether access to
a given node is to be granted, the code needs only to con-
sult the exact label, and make no further reference to other
labels of other nodes.

To indicate that the text field contains sensitive data, we
give it a labeled type String{exact_lab}. Note specifically
that the type of text is not String{local_lab} since this would
fail to ensure that a parent node’s access restrictions were
properly applied to its children. For the same reason, the
children field is given the type List(Doc){exact_lab} rather
than List(Doc){local_lab}. Furthermore, notice that giving
children the type List(Doc{exact_lab}) is inadequate since
this type indicates that the list of children can be traversed
by code acting on the behalf on any principal. By giving
the children field the type List(Doc){exact_lab}, we ensure
that even the structure of the document tree (and not just
its contents) is accessible only to authorized principals.

The use of exact_lab simplifies access control checks to a
given tree node, but updates to local labels will impose a
non-constant overhead. In particular, if a principal wishes
to change the local label on a node, the exact labels of the
node’s descendants must be updated accordingly. Since pol-
icy updates are relatively rare compared to document ac-



cesses, our implementation is optimized towards providing
fast access to documents while updates are relatively slower.

Only a principal with the appropriate write-privilege is
permitted to update a node (whether it be the node’s con-
tents or the node’s label). In a document tree of type Doc{l},
every node in the tree is protected by a label—the root node
is protected by | and every node’s children are protected by
labels too. If the contents of one of the nodes is to be modi-
fied, the appropriate enforcement policy function must first
be called to grant access to that node. If the update causes
a change to a node’s local label, then the policy function
takes care of recursively propagating the update to the ex-
act labels of the node’s children.

Database-side representation. We use a custom encod-
ing of documents when storing them in the database, which
exposes some of their structure to make queries more effi-
cient. The basic schema of the table that we use to store
documents is shown below and is a standard relational map-
ping for hierarchical data [1].

var doc_table = table ‘‘documents’ with
(docid : Int, exact_lab : DocLabel,
text: String{exact_lab}, local_lab: DocLabel,
parent: Int, sibling: Int

) from database ‘“docDB”’;

The primary key for the doc_table rows is docid. The fields
exact_lab, text, and local_lab serve the same purpose as the
fields having the same name and type in the Doc record
type. The parent and sibling fields serve to encode Doc’s
children field: parent is a foreign key to the docid of the node’s
parent and sibling is a foreign key to the node’s sibling in the
parent’s conceptual list of children. This encoding is

Mapping between server and DB representations.
When a user navigates to a particular page, we retrieve the
entire document from the docDB database and convert it to
a Doc tree, so long as the root node of the document is
accessible to the requesting principal. This happens via a
series of queries that acquire document nodes breadth-first,
selecting all children of the nodes loaded in the previous it-
eration. The code that performs this retrieval is trusted to
reconstitute the document properly—it must, for example,
ensure that a document node n that is represented as a row
in the database with a foreign key relationship to a parent
row p, is in fact placed in the children list of the node corre-
sponding to p. In other words, the server code that fetches
and persists a Doc value from/to the DBMS must perform a
faithful object-relational mapping for tree data. We are cur-
rently exploring the use of SELINKS’ type system to verify
that this object-relational mapping is correctly performed.

Rather than load the entire document into memory, one
optimization would be to perform security checking on the
database, and only load those portions of the document vis-
ible to the current principal. In particular, when submitting
a query to retrieve all children of a node with ID n, we can
include a call to the access control function that filters out
children to whom the requesting principal does not have ac-
cess (according to their exact labels). If significant portions
of a document are inaccessible, this approach can reduce
load-times and reduce network traffic.

While earlier versions of SEWIKI did implement this be-
havior, one drawback of doing so is that changes made to the
in-memory document must be synchronized with the data-
base version, which requires some additional bookkeeping.

For example, if the user were to update the local label of
a node, the exact labels of all children of the node must
be updated, even those children to which the user does not
have access. By keeping the entire document in memory,
this update is more easily performed.

A key conclusion to be drawn from this discussion is that
SELINKS type system and compilation strategy ensure that
security policies are uniformly and reliably enforced, wher-
ever that enforcement may take place. This allows the pro-
grammer to choose the strategy that best meets an appli-
cation’s needs without worry about its impact on security
enforcement.

4.3 Data provenance tracking

SEWIKI maintains a precise revision history of a docu-
ment in the labels of each document node—this is a form of
data provenance tracking [5] that can be used to establish a
document’s integrity (i.e., level of trust). This part of labels,
having type Prov, is defined as follows:

typename Op = Create | Edit | Del | Restore | Copy | Relab
typename Prov = List(oper: Op, user:String, time:String)

A provenance label of a document node consists of a list
of operations performed on that node together with the
identity of the user that authorized that operation and a
time stamp. Tracked operations are of type Op and include
document creation, modification, deletion and restoration
(documents are never completely deleted in SEWIKI), copy-
pasting from other documents, and document relabeling.
For the last, authorized users are presented with an interface
to alter the access control labels that protect a document.

This provenance model exploits SELINKS’ support for cus-
tom label formats. It is hard to conceive of encoding such a
complex label format using native database support for row-
level security. Finally, this policy does not directly attempt
to protect the provenance data itself from insecure usage.
We have shown elsewhere that protecting provenance data
is an important concern and is achievable in SELINKS with-
out too much difficulty [37, 11].

Using security labels to represent provenance informa-
tion provides two important benefits. First, since labeled
data cannot be manipulated directly, we can ensure that all
provenance-relevant operations are intercepted by enforce-
ment policy code. This code can then perform the requested
operation and update the provenance metadata on the re-
sults as necessary. Second, by expressing the relationship be-
tween data and its provenance in the types, we ensure that
application code does not either confuse itself, or, worse,
confuse the enforcement policy, by mistakenly associating
the provenance of one datum with another.

4.4 Access control and provenance in SESpine

SESPINE, originally introduced in Section 2.2, is a medi-
cal record management application, allowing physicians, pa-
tients, specialists, and administrators to create, modify, and
share medical records. It consists of over 1000 lines of code
specific to this program, sharing about 300 lines of policy
code with SEWIKI.

When a user logs into the system, he or she must select
a role from a list of appropriate roles. For example, a doc-
tor who is both a physician and a patient must select one
role or the other to begin with. We use an access control
policy (shared with SEWIKI) to enforce role boundaries; ad-
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Figure 5: Keyword search, 100k rows

ministrators add patients to the system, view billing fields,
etc., but cannot view patients’ medical data; physicians can
create and modify patients’ medical data, while patients are
allowed see their own medical data, but not to edit it.

A secondary privacy policy controls individual users’ ac-
cess to fields. For example, a patient may not wish to allow
all physicians to read his or her medical record, so the pa-
tient can modify his/her privacy policy to explicitly permit
or deny access to certain physicians.

We implement a provenance policy (again shared with the
SEWIKI) used to log all modifications to records within the
system. This can be used to track which doctors made cer-
tain changes to a record, or to show by whom and when an
address was modified.

We currently investigating other policies, inspired by real-
world health-care policy scenarios [25]; these include a sig-
nature policy where a medical record created by a physician
can only be view by other physicians once the author has
signed off on its validity. We are also investigating a meta-
policy where, in an emergency situation, a physician can
be granted access to an otherwise restricted medical record,
with the caveat that extra logging is performed (in the form
of additional provenance information).

S.  PERFORMANCE EXPERIMENTS

We conducted a simple experiment to understand the per-
formance benefits of compiling application-level policies to
UDF's that run at the database, rather than the server. We
also examined how much of an impact the location of the da-
tabase (local host or networked) makes on server-side versus
database-side enforcement. Our results show that executing
SELINKS policy enforcement code at the database greatly re-
duces the total running time compared to running the same
code at the server (almost a 10x speed increase).

5.1 Configuration

Our experimental configuration is shown in Table 1. We
ran two different setups: a single-server mode (local data-
base) where the server and database reside on the same ma-
chine (machine A), and a networked version where the server
runs on machine B and the database remains on machine A.

For our test, we used the getSearchResults query presented
in Figure 4, which checks if a user has access to a record
and, if so, returns the record if it contains a particular key-
word. We generated a table of 100,000 randomly generated

Machine A Machine B

CPU: Intel Quad Core Xeon
2.66 GHz 2.0 GHz
RAM: 4.0 GB 2.0 GB
HDD: 7,200 RPM SATA 7,200 RPM EIDE
Network: 100 Mbit/s Ethernet
OS: Red Hat Enterprise Linux AS 4
Linux kernel 2.6.9

DBMS: PostgreSQL 8.2.1 N/A

Table 1: Test platform summary

records, each comprised of 5-200 words selected from a stan-
dard corpus. Each record has a 5% probability of containing
our keyword, and each record is labeled by a random access
control label represented in the DB using the UDT mappings
of Section 3.1. These randomly chosen labels grant access
approximately 10% of the time. Thus, the query returns ap-
proximately 500 of the 100,000 records. We examined two
different policy enforcement scenarios: running the policy
enforcement code on the server (by disabling UDF compila-
tion), and running the enforcement code as a compiled UDF
on the database. As a baseline, we also provide a compari-
son against a configuration that ignored the security checks
altogether. All running times are the mean of five runs.

5.2 Experimental results

The results of our experiment are summarized in Figure 5
which illustrate the time required to run the query using a
local (a) and remote (b) networked database, respectively.
The horizontal axis illustrates the policy enforcement loca-
tion used (Server, Database, or None).

Both graphs show that there is a significant performance
benefit to executing SELINKS policy code on the database
rather than the server. For the local-database example we
see a 5.5 X improvement; for the the networked-database, the
improvement is 9.5X. A comparison against the baseline
shows that the cost of enforcing a security policy is also
significant (though the comparison is somewhat artificial,
since trading security for performance is not a viable option).

Although we show a large speed increase of the database-
side policy implementation over the server-side, it is impor-
tant to note that the current incarnation of SELINKS is an
interpreted language with few optimizations; there are un-
doubtedly more ways to optimize the server portion directly.



However, the speed difference between the server enforce-
ment for local and networked databases shows a substantial
overhead that is likely to be independent of any server-side
improvements. Furthermore, as discussed in Section 3.4,
many aspects of the SELINKS’ data layout and code gener-
ator can be optimized, to further improve the performance
of programs that enforce their policies at the database.

6. RELATED WORK

SELINKS is an extension of Links [10], a programming lan-
guage similar to LINQ [20], Hop [17], Volta [38], GWT [16],
Ruby on Rails [30] and others in that it provides a uni-
form model for programming each tier of a multi-tier web
application. SELINKS extends this model with novel secu-
rity mechanisms that enable efficient enforcement with high
assurance. Some uniform model frameworks (such as Java
EE [18]) also provide abstractions for expressing security
policies on application objects, though with rather different
mechanisms. While these abstractions are flexible and rela-
tively easy to use, thanks in part to the lack of impedance
mismatch, compared to SELINKS they provide less assur-
ance and more overhead. SELINKS’ type-based verification
assures security checks are performed correctly, and its cross-
tier compilation mechanism allows these checks to be run
entirely within the database, avoiding the transfer of po-
tentially large amounts of data from the DBMS to perform
the checks at the server. Our performance measurements
corroborate the findings of Miiller et al. [21] who report im-
provements in performance by orders of magnitude when
application-level data management is consolidated within
the DBMS, particularly when the DBMS and server are on
separate networks.

An alternative to expressing and enforcing security poli-
cies at the level of application-level objects is to express
policies in terms of database-level objects, using DBMS-
provided facilities. Mechanisms for this purpose differ de-
pending on the DBMS. For example, PostgreSQL [29], SQL-
Server [35], and MySQL [23] all provide security controls
that apply at the level of tables, columns, or stored pro-
cedures. Oracle 10g [26] and IBM DB2 [6] provide native
support for schemas in which each row includes a security
label that protects access to that row, where labels are in
the style of lattice-based multi-level security classifications.
A common approach to row-level security in other DBMSs
is to define a parametrized view [33] of a table that is based
on user-specific criteria [31]. This view essentially filters out
the rows to which the current user is denied access [27].

The benefits of using DBMS-resident facilities are twofold:
(1) application code does not need to be trusted to perform
the security checks correctly since these are handled by the
DBMS, and (2) DBMS-side checking can be more efficient
than server-side checking. The main drawback is a lack of
flexibility: DBMS mechanisms may not match the needs of
an application. As discussed in Section 2.4 Oracle 10g and
IBM DB2 provide a built-in notion of lattice-ordered labels
for implementing row-level security. While useful, this na-
tive support is not sufficient to implement the label model for
an application like SEWIKI. By contrast, security policies
in SELINKS are specified for application-level objects (which
can be at the table, row, or even cell level, when viewed from
the database’s perspective) using essentially arbitrary en-
codings of labels. Moreover, SELINKS’ type system helps re-
gain assurance of correct enforcement, while compilation of

enforcement policy functions to UDF's can result in DBMS-
side enforcement with its attendant performance benefits.
Indeed, SELINKS’ approach to compiling authorization code
to UDFs that filter query results is similar in spirit to using
views, but in a manner that is easier to use, since there is
no impedance mismatch, and more reliable, since the type
checker will ensure enforcement policy functions are called
when necessary.

Type-based assurance of correct security policy enforce-
ment in SELINKS resembles the checking provided by lan-
guages like Jif [8] and FlowCaml [34]. However, neither of
these languages provides integrated support with a database,
creating an impedance mismatch, and both languages focus
exclusively on enforcing information flow policies, whereas
SELINKS can support the enforcement of these and other
styles of policy. Swift [7] and SIF [9] are two frameworks that
have been built using Jif to address various aspects of se-
curity when constructing multi-tier web applications. How-
ever, both languages essentially ignore the database tier (SIF
focuses on servlet interactions and Swift considers client-
server interactions).

Rizvi et al. [33] also address the problem of checking that
queries contain the appropriate authorization check. Their
approach requires an administrator to specify a security view
to filter the contents of a table. Application code can then
issue arbitrary queries on the behalf of users against the un-
filtered table. Their system runs the query only after check-
ing that the query can be run against the filtered view of
the table. Unlike our approach, their security enforcement
mechanism is transparent—unauthorized users are unaware
that their queries are actually being run against a filtered
table. However, transparency is not always desirable. When
particularly complex policies are in effect, it is often impor-
tant to explain why authorization checks fail both for diag-
nosis and so that users can attempt to revise their requests
with the appropriate credentials to gain access. Further-
more, rather then refusing to run queries at runtime, queries
in SELINKS are checked statically to ensure that they con-
tain the appropriate checks, promoting early detection of
programming errors.

7. CONCLUSIONS

This paper has presented SELINKS, a programming lan-
guage focused on building secure multi-tier web applications.
SELINKS provides a unified view of security enforcement for
programs that span the server-database divide. Through
the use of a novel type system, SELINKS ensures that se-
curity policies are correctly enforced, ensuring that no au-
thorization check is missed or called incorrectly. To support
this unified model of security enforcement while retaining
good performance, SELINKS compiles policy enforcement
code to database-resident user-defined functions, which can
be called directly during query processing. Database-side,
as opposed to server-side, enforcement avoids the overhead
of needlessly transferring inaccessible data to the server.
Our experiences with two sizable web applications, a model
health-care database and a secure wiki with fine-grained se-
curity policies, indicate that SELINKS is flexible, relatively
easy to use, and, when compared to a single-tier approach,
improves throughput by nearly an order of magnitude.
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