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ABSTRACT
A proxy object is a surrogate or placeholder that controls
access to another target object. Proxies can be used to sup-
port distributed programming, lazy or parallel evaluation,
access control, and other simple forms of behavioral reflec-
tion. However, wrapper proxies (like futures or suspensions
for yet-to-be-computed results) can require significant code
changes to be used in statically-typed languages, while prox-
ies more generally can inadvertently violate assumptions of
transparency, resulting in subtle bugs.

To solve these problems, we have designed and imple-
mented a simple framework for proxy programming that
employs a static analysis based on qualifier inference, but
with additional novelties. Code for using wrapper proxies
is automatically introduced via a classfile-to-classfile trans-
formation, and potential violations of transparency are sig-
naled to the programmer. We have formalized our analysis
and proven it sound. Our framework has a variety of appli-
cations, including support for asynchronous method calls re-
turning futures. Experimental results demonstrate the bene-
fits of our framework: programmers are relieved of managing
and/or checking proxy usage, analysis times are reasonably
fast, overheads introduced by added dynamic checks are neg-
ligible, and performance improvements can be significant.
For example, changing two lines in a simple RMI-based peer-
to-peer application and then using our framework resulted
in a large performance gain.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Frameworks,Concurrent programming struc-
tures,Control structures; D.2.3 [Software Engineering]:
Coding Tools and Techniques—Object-oriented Programming

General Terms
Languages, Experimentation, Reliability, Theory
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1. INTRODUCTION
A proxy object is a surrogate or placeholder that con-

trols access to another object. One example of a proxy is
a future, popularized in MultiLisp [23]. In MultiLisp, the
syntax (future e) designates that expression e should be
evaluated concurrently. A future for it is returned, and some
time later the program claims the future, possibly blocking
until the result of evaluating e is available. For example, in
the following code, the two lists x and y are sorted in paral-
lel, the former in a new thread, and the latter in the parent
thread:

(merge (future (mergesort x)) (mergesort y))

The results of both mergesort computations are passed to
the merge routine; the first argument will be a future while
the second argument will be a sorted list.

In MultiLisp, claims are performed transparently by the
interpreter. In our example, this allows the programmer to
write merge as if it takes two sorted lists as arguments, and
the interpreter will perform claims as necessary. In general,
the programmer simply inserts future annotations in the
program and the runtime transparently takes care of the
rest.1 This makes the use of futures simple and lightweight.

A future is an example of a wrapper proxy in that it wraps
the actual result; whenever the actual result is needed, the
future must be unwrapped to retrieve it. Other examples
of wrapper proxies include suspensions, which are wrappers
for lazy computations, and capabilities, which are wrappers
for controlled resources.

We would like to support wrapper proxies in Java with
the same kind of transparency afforded by MultiLisp. To
add futures, we would provide asynchronous method calls
to return a future for a non-void result. Existing proposals
to do this [28, 24, 35] fall short of our goal because they
make futures manifest to the programmer. For example,
Java 1.5’s util.concurrent library [24] defines a future with
the following Java interface:

public interface Future<V > {
V get();
V get(long timeout, TimeUnit unit);
...

}

Introducing util.concurrent futures into a Java program
thus imposes two programming tasks. First, whenever a
Future<V > value could be passed to a function, the func-
tion’s type must be changed. In our example, we would have
1There is the possible need for added synchronization due
to side-effects in futurized computations.



to change the type of merge to take a Future<List> as its
first argument (or Object if merge could also be called with
normal List objects).

Second, all futures must be claimed manually by call-
ing get. For example, the merge function would claim the
Future<List> to store its values in the merged list. We
might also claim a future o to avoid revealing its identity,
e.g., in the expression o==o′. Not doing so could lead to sub-
tle bugs which we call transparency violations. For example,
when o is the future wrapping o′, then o==o′ would be false,
which could result in unexpected behavior, such as storing a
future and its value in the same container. Changing types
and adding claims can require considerable programming ef-
fort, whether to add futures or to later remove them.

To solve these problems, we have developed a framework
for proxy programming. At the core of the framework is a
static analysis that tracks how a proxy might flow through
the program, coupled with a transformation to implement
proxy manipulations at runtime. To customize the frame-
work, a programmer specifies the syntactic points where a
proxy is introduced (e.g., by specifying a method call is asyn-
chronous), and the expression forms that require a claim
(e.g., when a proxy is an argument to ==). The programmer
also provides the code that implements the claim. We have
used our framework for a variety of applications:

• We have implemented support for transparent futures.
The programmer indicates when a method call should
be asynchronous, and specifies a thread manager for
handling the call. Thread managers include global
thread pools, per-object thread pools, and others. Pro-
grammers can also influence where futures are claimed.
In essence, the framework drastically simplifies pro-
gramming with Futures in util.concurrent, which is
timely given the recent release of Java 1.5.

• We have implemented support for transparent suspen-
sions. The programmer annotates when a method call
should be performed lazily, and the call is delayed until
its suspension is claimed.

• We have implemented an analysis to discover possible
transparency violations due to the introduction of in-
terface proxies in large programs. An interface proxy
shares an interface with its target object, as specified
by the proxy design pattern [18]. As with wrapper
proxies, incorrect usage of these proxies could result
in transparency violations.

Our static analysis is based on qualifier inference [15], but
improves on it in two ways. First, we support dynamic co-
ercions, needed to claim futures and other wrapper proxies.
Second, we use a simple form of flow-sensitivity to avoid
claiming the same expression more than once. While our
framework was developed for proxy programming, these ad-
vances apply to qualifier systems in general. As described
in Section 3.8, they enable a number of new or improved
applications, including tracking security-sensitive data in a
program [37], and supporting stack allocation and non-null
types [13].

1.1 Contributions
This paper describes the design, theory, implementation,

and evaluation of a framework for proxy programming. We
make the following contributions:

• We formalize the problem of transparent proxy pro-
gramming as one of qualifier inference, extending ex-
isting algorithms to support dynamic coercions and a
form of flow-sensitivity. We have formalized our anal-
ysis as an extension of Featherweight Java (FJ) [21],
and proven it sound (Section 3). We are the first to
consider qualifier inference in an object-oriented set-
ting, and our approach enables new or improved ap-
plications of qualifier systems (Section 3.8).

• We present the design and implementation of three
applications of our framework (described above): pro-
gramming with transparent futures and suspensions
(Section 4), and discovering transparency violations
(Section 5.4).

• We evaluate the framework’s performance on our three
applications (Section 5). Analysis times are compara-
ble to those of similar static analyses, and overheads
due to inserted claims are negligible. Section 5.3 de-
scribes how we profitably used futures and suspen-
sions together in an RMI-based peer-to-peer applica-
tion: changing two lines resulted in a large perfor-
mance gain. Section 5.4 describes how our transpar-
ency analysis discovered a number of potential trans-
parency violations arising from the introduction of in-
terface proxies in large programs.

2. OVERVIEW
In this section, we present an overview of our framework,

including the API seen by the user, and the basic flavor of
our static analysis.

2.1 User API
As inputs, our framework takes application and library

classfiles to analyze, and a proxy policy and implementation
specification (a pspec and ispec, respectively). As outputs,
the framework produces modified application and library
classfiles which form the new application. The pspec and
ispec allow the user to customize the framework to support
different kinds of proxies. In particular, the pspec defines
syntactic patterns in the program that indicate where prox-
ies should be introduced and coerced, while the ispec indi-
cates how proxy introduction and coercion are implemented
at runtime.

The framework itself consists of two parts: a static anal-
ysis (which uses the pspec) and a program transformation
(which uses the ispec). The static analysis discovers where
proxies are introduced in the program and then tracks their
flow. The analysis observes when a proxy could flow to
a location requiring a non-proxy, thus requiring a coercion
to convert the proxy to a non-proxy. Based on the results
of static analysis, the program transformation generates a
modified program. In particular, the code at each proxy in-
troduction site is modified to actually create the proxy at
runtime, and code is inserted at each coercion site to imple-
ment the proxy-to-non-proxy coercion.

As an example, consider how we implement asynchronous
method calls in Java using this API (more details are in
Section 4). The proxy pspec and ispec are as follows:

Policy Spec Proxies are introduced by method calls marked
by the user as being asynchronous. All expressions
that are identity-revealing, e.g., dynamic downcasts or



subexpressions of instanceof, must operate on non-
proxies (thus necessitating a possible coercion). More-
over, any concrete usage of an object, such as invoca-
tions of its methods or extractions of its fields, requires
that it be a non-proxy.

Implementation Spec Calls marked as asynchronous are
replaced by code that (1) executes the original call
in a separate thread, and (2) returns a Future as a
placeholder for the eventual result. Coercing a possible
future requires checking that it is indeed a Future (the
analysis may have been imprecise), and if so, calling
its get method to extract the underlying object. This
may entail waiting until the result is available.

Lazy method calls are supported similarly, and other appli-
cations are described in Section 3.8 and 5.4. Further imple-
mentation details are presented in Section 4.1.

Our goal is for the framework to be used during normal
software development: the programmer develops the anno-
tated files, and the framework generates the final bytecode.
Alternatively, the framework could be used to add needed
features to a Java program; the annotated files would simply
direct the transformation, and development would proceed
with the modified files. This would allow programmers to
manually optimize the compiled code, but would eliminate
the benefits of the lighter-weight, specification-based use of
proxies during development.

We now turn to an overview of our analysis.

2.2 Proxies as Qualifiers
Conceptually, whether or not a particular program vari-

able refers to a proxy is independent of that variable’s type.
As such, we can think about proxies using type qualifiers,
which refine the meaning of a particular type. A qualified
type is written Q τ , where Q is a qualifier and τ is a type.
A familiar use of a type qualifier is final: a variable with this
qualifier must be immutable, whatever the variable’s actual
type may be. Proxies can be annotated in the same way.
A variable with qualifier nonproxy is definitely not a proxy,
while one with qualifier proxy may or may not be a proxy.
Qualified types admit a natural subtyping relationship. In
particular, nonproxy τ ≤ proxy τ . That is, a τ object that
is definitely not a proxy can be used where a τ that may or
may not be a proxy is expected.

The problem solved by our framework is akin to qualifier
inference [15]. When using qualifier inference, the program-
mer annotates expressions that introduce values with a par-
ticular qualified type. The inference algorithm determines
how these values flow through the program to ensure they
are used correctly. Existing qualifier inference systems are
not sufficient to model wrapper proxies like futures because
they treat qualifiers as having no runtime effect. Creating a
future requires spawning a thread and creating a placeholder
for its result. Moreover, using a wrapper proxy in a context
expecting a nonproxy should not signal an error, but rather
should induce a runtime claim to acquire the underlying
result.

Our analysis augments qualifier inference to support coer-
cions. In particular, our formal target language (Section 3)
includes an expression form coerce e, whose type is the
same as that of e but has qualifier nonproxy. During qualifier
inference, expression forms in the user’s pspec drive where
coercions are inserted. At runtime, the coercions are imple-

mented following the user’s ispec. For example, for a possible
wrapper proxy e, a dynamic coercion is inserted to convert
e.m() to be (coerce e).m(). At runtime, this coercion is
implemented by checking whether e is indeed a proxy, and
if so extracting its underlying object to call method m. As
an optimization, if e is a local variable x, then x is treated
flow-sensitively by the analysis: the type of x following a
coercion will have qualifier nonproxy. To justify this flow-
sensitivity, code for a coercion logically assigns the coerced
value back to source variable x.

We can easily generalize our support for flow-sensitive co-
ercions to apply it to traditional qualifier systems. This
leads to new or improved applications, as described in Sec-
tion 3.8.

3. FORMAL DEVELOPMENT
This section describes our analysis formally and proves it

sound. We model the analysis as an extension to Feather-
weight Java (FJ) [21], a purely-functional object calculus.
We define an implicitly-typed calculus, which we call FJ i

Q,
and an explicitly-typed calculus, called FJQ. Source pro-
grams are written in FJ i

Q, and these are translated into pro-
grams in FJQ, making manifest operations for manipulating
proxies. This translation occurs in two stages, inference and
transformation, formalized as follows:

• The judgment Γ `i e : T ; Γ′ defines proxy inference
for an expression e in the language FJ i

Q. A deriva-
tion induces two sets of subtyping constraints F and
C. The F constraints capture how proxies flow through
the program, and the C constraints indicate where co-
ercions could be inserted. The judgment states that,
assuming the generated constraints have a solution,
expression e has type T in context Γ. Flow-sensitivity
is modeled with output context Γ′, which has the same
domain as Γ, but for which some variables may have
nonproxy qualifiers rather than proxy qualifiers, as a re-
sult of evaluating expression e.Constraints are solved
using standard techniques.

• The judgment T [[e]] ⇒ e defines the transformation
of the original implicitly-typed FJ i

Q program into an
explicitly-typed program in the language FJQ. The
T [[·]] function uses the solutions to the constraints to
add coercions where needed, and to fill in needed qual-
ifier and type annotations. The resulting FJQ ex-
pression e can be typechecked in an explicitly-typed
system, described by the judgment Γ ` e : T ; Γ′.
We can show that our system is sound : those FJ i

Q

programs for which inference is successful will always
type-check, which in turn implies that they will not “go
wrong” during execution. We establish this result by
defining an operational semantics for FJQ and prov-
ing standard type soundness and inference soundness
theorems.

We present the syntax of the implicitly-typed language
FJ i

Q, define the process of inference and transformation de-
scribed above, and conclude with the relevant soundness the-
orems. Additional details can be found in the Appendix.

3.1 Syntax
The syntax of the implicitly-typed calculus FJ i

Q is shown
in Figure 1. Expressions e consist of a “raw” expression



Terms:
CL ::= class C extends C { T̄ f̄ ; K M̄ }
K ::= C(T̄ f̄) { super(f̄); this.f̄ = f̄ ; }
M ::= T m(T̄ x̄) { return e; }
E ::= x | e.f | e.m(ē) | new C(ē) | (C)e

| let x = e in e | makeproxy e
| if e = e then e else e

e ::= E l

Types:
C, D, E class names

Q ::= proxy | nonproxy | κ
ϕ ::= {C1, . . . Cn} | α
N ::= ϕC

S, T, U ::= Q N

Figure 1: Syntax of FJ i
Q

E and a unique label l, used to designate where coercions
should be inserted following inference. There is no explicit
coercion expression; these are only present in the target lan-
guage FJQ.

As in FJ , programs consist of a class table CT , which
maps class names to class definitions CL. Each class defini-
tion defines a list of fields T̄ f̄ , a constructor K, and a list
of methods M̄ . Constructors K merely assign their argu-
ments to fields, either directly or by invoking the superclass
constructor. Method bodies consist of a single expression e.
We write x̄ as shorthand for x1, . . . , xn (similarly for C̄,f̄ ,
etc.) and write M̄ for M1 . . . Mn (no commas). We ab-
breviate operations on pairs of sequences similarly, writing
T̄ f̄ for T1 f1, . . . , Tn fn, where n is the length of T̄ and
f̄ . Sequences of field declarations, parameter names, and
method declarations are assumed to contain no duplicate
names. Note that this is not syntactically different than
any other variable, but we typeset it in bold for emphasis,
and similarly for Object.

Most expressions e are as in FJ , including field access
e.f , method invocation e.m(ē), object creation new C(ē),
and cast (C)e. We also have support for local variables
(lets) and if then else expressions to illustrate effects of
flow sensitivity, described below. Programmers use the ex-
pression makeproxy e to designate or create a proxy. Our
formalism treats proxies generically, ignoring how particu-
lar proxies might be implemented. In particular, the opera-
tional semantics merely “tags” the result of evaluating e as
being a possible proxy.

Types T consist of a qualifier Q and a set type N . Set
types are a set ϕ of class names {C1, . . . , Cn} coupled with
a upper bound C which must be a supertype of all the Ci.
Set types are a technical device to allow inference to be more
precise; we do not expect programmers to use them directly.
In essence, the set type’s upper bound is what one would
write in a normal Java program, and the set provides a more
precise refinement (which will be determined by inference).
For example, say we have defined classes A, B, and C, where
B and C are subclasses of A. If some variable x could be
assigned objects of either class B or C, in a normal Java
program we would give x type A. In FJ i

Q, we can give x

type {B, C}A, indicating that x will only ever be assigned
objects of classes B and/or C, but not objects of type A.

SubRef
C ≤ C

SubTrans
C ≤ D D ≤ E

C ≤ E

SubDef
CT (C) = class C extends D { . . . ; . . . }

C ≤ D

SubN

{C1, . . . Cn} ⊆ {D1, . . . Dn}
C0 ≤ D0 Di ≤ D0 Ci ≤ C0 for all i > 0

{C1, . . . Cn}C0 ≤ {D1, . . . Dn}D0

SubQConst
nonproxy ≤ proxy

SubTyp
Q ≤ Q′ N ≤ N ′

Q N ≤ Q′ N ′

Figure 2: FJQ and FJ i
Q: Subtyping

Note that checked casts refer to class names C, rather than
types T—no qualifier is necessary because it is assumed to
be nonproxy, and no set type is necessary as the inference
system will infer it.

Proxy inference takes a normal Java program and infers
the necessary qualifiers, set-types, and coercions. We model
this in FJ i

Q by extending qualifiers Q with variables κ, and
sets of class names ϕ with variables α. These stand for as-
yet-unknown qualifiers and sets of class names, which will be
solved for during inference. In the simplest case, we could
automatically decorate a normal Java program with fresh
variables before performing inference. For example, a Java
variable declaration C x would be rewritten to be κ αC x,
for fresh κ and α. In fact, the inference rules require explicit
types to have this form. In our implementation, we allow
users to decorate Java types with qualifiers manually, to
implement coercion policies. For example, if a user wished
to ensure that no proxies are stored in the Set class, she
could decorate all relevant Set methods to require that input
arguments have qualifier nonproxy.

As with FJ , FJ i
Q does not support mutation (although

the flow-sensitivity of coercions updates local variables’ types
implicitly): all objects are purely functional. This avoids
unnecessary complication in the formalism, though our im-
plementation handles the full Java language. Further dis-
cussion can be found in Section 3.7.

3.2 Subtyping
Rules for subtyping are shown in Figure 2. These are

FJ ’s subtyping rules extended to consider set types N and
qualified types T . The (SubN) rule indicates that a set type
N is a subtype of M if N ’s bound is a subtype of M ’s, and
if N ’s set is a subset of M ’s. We include a well-formedness
condition here for convenience, stating that all of the types
in N ’s set must be subtypes of N ’s bound. Subtyping be-
tween qualified types using the (SubTyp) rule is natural.
For example, if B and C are subclasses of A, given that
nonproxy ≤ proxy then nonproxy {B}B ≤ proxy {B, C}A.
That is, an object that is definitely not a proxy of class B
can be used where a possible proxy of either class B or C,
both subtypes of A, is expected.



Fields-Object
fields(Object) = ·

Fields-C

CT (C) = class C extends D { T̄ f̄ ; K M̄ }
fields(D) = Ū ḡ

fields(C) = Ū ḡ, T̄ f̄

Fields-N
fields(C) = T̄ f̄

fields(ϕC) = T̄ f̄

MType-C

CT (C) = class C extends D { T̄ f̄ ; K M̄ }
U m(T̄ x̄) { return e; } ∈ M̄

mtype(m, C) = T̄ → U

MType-CSub

CT (C) = class C extends D { T̄ f̄ ; K M̄ }
m not defined in M̄

mtype(m, C) = mtype(m, D)

MType-N
mtype(m, Ci) = T̄i → Ui for all i

mtype(m, {C1, . . . Cn}C0 ) = T̄1 → U1, . . . T̄n → Un

MBody-C

CT (C) = class C extends D { T̄ f̄ ; K M̄ }
U m(T̄ x̄) { return e; } ∈ M̄

mbody(m, C) = (x̄, e)

MBody-CSub

CT (C) = class C extends D { T̄ f̄ ; K M̄ }
m not defined in M̄

mbody(m, C) = mbody(m, D)

Override

mtype(m, D) = (κ1 ϕD1
1 , . . . , κn ϕDn

n ) → κ0 ϕD0
0

T̄ → U = (κn+2 ϕC1
n+2, . . . , κ2n+1 ϕCn

2n+1) → κn+1 ϕC0
n+1

C̄ = D̄ C0 = D0

override(m, D, T̄ → U)

Call

for each Ci ≤ C where mtype(m, Ci) = T̄i → Qi ϕD
i

Ci ∈ ϕ ⇒ (S̄ ≤ T̄i & Qi ϕD
i ≤ κ αD)

κ, α fresh

call(m, ϕC , S̄) = κ αC

Figure 3: FJQ and FJ i
Q: Auxiliary Definitions

3.3 Inference
Inference is expressed as the judgment `i CL for class

definitions, `i M for method definitions, and Γ `i e : T ; Γ′

for expressions. The rules are in Figures 4 and 5. The judg-
ment Γ `i e : T ; Γ′ indicates that in context Γ, expression e
has type T and output context Γ′.

The rules specify that a nonproxy is required by appealing
to the coercion judgment Γ `c e : T ; Γ′ (notice the sub-
script c on `c rather than i). For example, the (I-Field)
rule, which checks an expression (e.fi)

l, indicates that the
receiver e must be a nonproxy by including the requirement
Γ `c e : nonproxy N ; Γ′ in the premise. In our implementa-
tion, those expressions that require nonproxy are determined
by the user’s pspec. For simplicity, the rules presented in Fig-
ure 4 are specialized for the case of wrapper proxies. In this
case, a nonproxy type implies that operations must occur on
the underlying object, rather than on a wrapper proxy.

The coercion judgment is used to note the labels of ex-
pressions that may need an inserted coercion. It has two
forms. The (I-CoerceExp) rule creates an implication con-
straint that if the qualifier of the given expression e is not

I-Var
Γ[x 7→ T ] `i xl : T ; Γ[x 7→ T ]

I-Let

Γ `i e1 : T ; Γ1

Γ1[x 7→ T ] `i e2 : T ′; Γ′[x 7→ T ′′]

Γ `i (let x = e1 in e2)l : T ′; Γ′

I-If

Γ `c e1 : nonproxy N1; Γ1

Γ1 `c e2 : nonproxy N2; Γ2

Γ2 `i e3 : Q3 ϕC
3 ; Γ3 Γ3 `i e4 : Q4 ϕD

4 ; Γ4

T ′ = κ αE Q3 ϕC
3 ≤ T ′ Q4 ϕD

4 ≤ T ′

E = lub(C, D) Γ′ = merge(Γ3, Γ4)

Γ `i (if e1 = e2 then e3 else e4)l : T ′; Γ′

I-Field
Γ `c e : nonproxy N ; Γ′ fields(N) = T̄ f̄

Γ `i (e.fi)
l : Ti; Γ

′

I-Invoke

Γ `c e0 : nonproxy ϕC ; Γ′ Γ′ `i ē : S̄; Γ′′

call(m, ϕC , S̄) = κ αC

Γ `i (e0.m(ē))l : κ αC ; Γ′′

I-New
fields({C}C) = T̄ f̄ Γ `i ē : S̄; Γ′ S̄ ≤ T̄

Γ `i (new C(ē))l : nonproxy {C}C ; Γ′

I-Cast

Γ `c e : nonproxy ϕD; Γ′

α = subtypes(C) ∩ ϕ α fresh

Γ `i ((C)e)l : nonproxy αC ; Γ′

I-MakeProxy
Γ `c e : nonproxy N ; Γ′

Γ `i (makeproxy e)l : proxy N ; Γ′

I-CoerceExp

Γ `i El0 : Q N ; Γ′ E 6= x l fresh
proxy ≤ Q ⇒ l ∈ L

Γ `c El : nonproxy N ; Γ′

I-CoerceVar

Γ `i xl0 : Q N ; Γ l fresh
Γ = Γ′[x 7→ Q N ]
proxy ≤ Q ⇒ l ∈ L

Γ `c xl : nonproxy N ; Γ′[x 7→ nonproxy N ]

Figure 4: FJ i
Q: Inference for Expressions

I-Method

x̄ : T̄ , this : nonproxy {C}C `i e : U ; Γ′ U ≤ S
CT (C) = class C extends D { . . . ; . . . }

override(m, D, T̄ → S)

S = κ αC T̄ = κ1 αC1
1 , . . . κn αCn

n

κ, κi, α, αi fresh

`i S m(T̄ x̄) { return e; }

I-Class

K = C(T̄ ḡ, S̄ f̄) { super(ḡ); this.f̄ = f̄ ; }
fields(D) = T̄ ḡ T̄ = κ1 αC1

1 , . . . κn αCn
n

S̄ = κ′
1 α′C1

1 , . . . κ′
n α′Cn

n κi, κ
′
i, αi, α

′
i fresh

`i M̄

`i class C extends D { T̄ f̄ ; K M̄ }

Figure 5: FJ i
Q: Inference for Classes and Methods

nonproxy, then a fresh label l for e is included in a set L.
(The fact that this label is fresh simplifies the proof, but is
not otherwise important.) This set is used during the trans-



formation to determine where coercions must be inserted.
The output type of this judgment always has a nonproxy
qualifier; this will be justified by inserting coercions during
transformation. The (I-CoerceVar) rule is similar, except
that the variable x in the input context is re-bound in the
output context to its coerced type. This flow-sensitive treat-
ment allows the continuation avoid coercing a variable that
has already been coerced.

Most inference rules thread the output context of one
subexpression to the input context of another. When typing
Γ ` ē : T̄ ; Γ′, the output context Γi from typing expression
ei is used as the input context when typing ei+1.

Here are highlights of the other interesting rules:

• In the (I-Let) rule, the output context Γ1 of the bind-
ing expression e1 is extended with the binding x 7→ T
when used as the input context of the body e2. When
typechecking of the body is completed, the x binding
is removed from output context Γ′.

• In the (I-If) rule, the output context is a merging of
the output context of each of the branches of the if. In
particular, the function merge(Γ1, Γ2) is the context Γ′

such that for each x in dom(Γ1)∩ dom(Γ2), Γ′(x) = T
where Γ1(x) ≤ T and Γ2(x) ≤ T . The result type is
T ′, which is a supertype of the types of each of the
if branches, bounded by the least of upper bound of
their bounds.

• The (I-Invoke) rule creates subtyping constraints be-
tween the arguments S̄ and all methods that are pos-
sible receivers of the call using the auxiliary function
call(m, ϕC , S̄) (this and other auxiliary functions are
shown in Figure 3). This is done using implication
constraints: for all possible subtypes of C, only those
that appear in ϕ are constrained. This allows overrid-
ing methods to have arguments with different qualifiers
than the methods they are overriding, improving the
precision of the analysis. For example, the argument
o to class A’s method m might by a nonproxy, while
the argument to its subclass B’s overriding method
m could be a proxy. This is sound because all calling
contexts of m are considered.

• The (I-Cast) rule requires that the resulting set-type α
contains those names in e’s set-type ϕ, limited to those
that are also subtypes of the bound C. The predicate
subtypes(C) is the set of all subtypes of C defined in
the class table CT . There are three possible outcomes.
First, if C is a subtype of D, then ϕ may contain classes
B such that C ≤ B. These will be pruned from the
solution, since this is a downcast. Second, if C is a
supertype of D, then the intersection will be ϕ, since
all the class names in ϕ, which are bounded by D, are
also bounded by C. Finally, if neither situation holds,
which is to say that C and D are unrelated, then the
intersection will be empty, signaling that we have a
type error.

• The (I-MakeProxy) rule requires that e be a nonproxy
in makeproxy e. This prevents proxies of proxies.
While not technically necessary, it simplifies our im-
plementation of coercions. For example, for a wrapper
proxy, the underlying object can always be extracted
directly; otherwise a coercion would have to iterate
until it reached a non-wrapper.

F ∪ {Q ϕC ≤ Q′ ϕ′D} ≡
F ∪ {Q ≤ Q′} ∪ {ϕ ⊆ ϕ′}∪

{ϕ ⊆ subtypes(C)} ∪ {ϕ′ ⊆ subtypes(D)}∪
{C ≤ D}

F ∪ {{D} ⊆ α} ∪ {D ∈ αC ⇒ (S̄ ≤ T̄i & Qi ϕC
i ≤ κ αC)} ≡

F ∪ {{D} ⊆ α} ∪ {S̄ ≤ T̄i} ∪ {Qi ϕC
i ≤ κ αC}

F ∪ {α ⊆ (subtypes(C) ∩ ϕ)} ≡
F ∪ {α ⊆ subtypes(C)} ∪ {α ⊆ ϕ}

F ∪ {{D} ⊆ α} ∪ {α ⊆ ϕ} ≡
F ∪ {{D} ⊆ α} ∪ {α ⊆ ϕ} ∪ {{D} ⊆ ϕ}

F ∪ {{D} ⊆ ϕ} ∪ {(subtypes(C) ∩ ϕ) ⊆ α} ≡
F ∪ {{D} ⊆ ϕ} ∪ {(subtypes(C) ∩ ϕ) ⊆ α} ∪ {{D} ⊆ α}

if D ≤ C

Figure 6: Subtype Constraint Reduction

In the standard parlance, our inference system is monomor-
phic: it is field-insensitive and context-insensitive. Context-
and field-sensitivity could be supported by adding class and
method parameterization, as with Generic Java (GJ) [6].

3.4 Constraint Solving
Proxy inference generates constraints on the flow of prox-

ies of the following forms (listed with the rules that generate
them):

T ≤ U (I-If), (I-New)
α = subtypes(C) ∩ ϕ (I-Cast)
Ci ∈ ϕ ⇒ (S̄ ≤ T̄i & Qi ϕC

i ≤ κ αC) (I-Invoke)

Note that we represent the equality constraint from (I-Cast)
as two subset constraints. Constraints on where coercions
might be introduced have the form proxy ≤ Q ⇒ l ∈ L.
Call the set of flow constraints F , and the set of coercion
constraints C. We can solve these constraints as follows.

We can reduce F by continuously applying the rewrit-
ing rules shown in Figure 6. These reduce compound con-
straints into simpler ones following the subtyping rules, and
iteratively discharge the implication constraints when the
left-hand-side of the implication can be solved. When fin-
ished, all constraints will have the following forms: C ≤ D,
ϕ ⊆ ϕ′, and Q ≤ Q′. The first form are subtyping require-
ments determined by the program; if they do not hold then
the program would not be type-correct in FJ .

The remaining two forms can be solved by standard tech-
niques. In particular, the qualifier constraints in F form
an atomic subtyping constraint system. Given n such con-
straints, the fact that proxy and nonproxy form a finite lattice
allows us to solve them in O(n) time [36]. The set-type con-
straints in F are subset constraints, as occur in Andersen-
style points-to analysis. Given n such constraints, these can
be solved in at worst O(n3) time [2], though in practice it is
often faster.

A solution σ to constraints in F is a mapping from qual-
ifier variables κ to constants proxy and nonproxy, and set-
type variables α to sets of class names {C1, . . . Cn}. The
solution ensures that for each constraint Q1 ≤ Q2 ∈ F we
have σ(Q1) ≤ σ(Q2), and similarly for set-type constraints.
We write σ |= F if σ is a solution of F . We are interested
in a least solution to α for set-types, to reduce spurious



T [[class C extends D { T̄ f̄ ; K M̄ }]] ⇒ class C extends D { σ(T̄ ) f̄ ; T [[K]] T [[M̄ ]] }
T [[C(T̄ ḡ, S̄ f̄) { super(ḡ); this.f̄ = f̄ ; }]] ⇒ C(σ(T̄ ) ḡ, σ(S̄) f̄) { super(ḡ); this.f̄ = f̄ ; }
T [[S m(T̄ x̄) { return e; }]] ⇒ σ(S) m(σ(T̄ ) x̄) { return T [[e]]; }

T [[x]] ⇒ x
T [[let x = e1 in e2]] ⇒ let x = T [[e1]] in T [[e2]]
T [[e.fi]] ⇒ T [[e]].fi

T [[e.m(ē)]] ⇒ T [[e]].m(T [[ē]])
T [[new C(ē)]] ⇒ new C(T [[ē]])
T [[(N)e]] ⇒ (σ(N))T [[e]]
T [[if e1 = e2 then e3 else e4]] ⇒ if T [[e1]] = T [[e2]] then T [[e3]] else T [[e4]]
T [[makeproxy e]] ⇒ makeproxy T [[e]]

T [[El]] ⇒


coerce T [[E]] l ∈ L
T [[E]] otherwise

Figure 7: Transforming a FJ i
Q expression to a FJQ expression following inference

constraints on qualifiers, and favor proxy over nonproxy for
unconstrained qualifier variables so that we might delay in-
serting a coercion until absolutely necessary.

Given a solution σ to constraints F , we can solve the
coercion constraints C. In particular, we apply σ to the
left-hand-side of each implication in C, and then solve. The
result is a set L of all program labels that require a runtime
coercion to properly typecheck. We write σ, L |= C for the
set L and substitution σ that satisfies constraints C.

3.5 Transformation
We can now transform a FJ i

Q program to a FJQ pro-
gram, using L and σ resulting from inference. FJQ differs
from FJ i

Q only in the addition of expressions of the form
coerce e, and in the absence of all qualifier and set-type
variables (these are substituted out by their solutions). The
expression coerce e takes a possible proxy e, and coerces it
to a non-proxy at runtime. Like makeproxy e, our seman-
tics treats coercions generically, merely changing the tag on
e to be nonproxy.

The transformation is shown as the function T [[·]] in Fig-
ure 7, where L and σ are “global” to avoid clutter. This
function simply inserts coercions where directed by L, and
rewrites the types on method declaration parameters and
field declarations as directed by σ. To avoid clutter, it strips
off all labels l.

In the case that we are doing a completely static analysis,
e.g., to look for transparency violations, the fact that L is
non-empty would denote a possible violation, so the trans-
formation stage would signal an error, as directed by the
user.

3.6 Properties
We wish to prove that FJQ is sound with respect to an

operational semantics, and that a transformed FJ i
Q program

is sound with respect to the semantics of FJQ. For the first,
the proof follows the standard syntactic approach of using
progress and preservation lemmas. The second is done by
proving well-typedness of the transformed program given the
well-typedness of the source FJ i

Q program.
Well-typedness of FJQ programs is expressed as the judg-

ment ` CL for class definitions, ` M for method definitions
and Γ ` e : T ; Γ for expressions. The typing rules are in
Figure 9 in the Appendix. Typechecking FJQ is straight-
forward, and similar to inference on FJ i

Q.

The operational semantics of FJQ is set up as an abstract
machine. Programs consist of a store S and an expression
to evaluate e, and the transition relation → maps programs
(S, e) to programs (S′, e′). The store maps variables x (ei-
ther source program variables or fresh “addresses” allocated
during evaluation) to values. The complete transition rules
are presented in the Appendix (Figure 10). We also extend
FJQ typing to programs, to support the proof of preserva-
tion.

The progress and preservation lemmas for FJQ are as fol-
lows:

Lemma 3.1 (Progress). Given that ` (S, e) : T ; Γ′,
then either

• e is a variable x.
• (S, e) → (S′, e′) for some S′ and e′.
• (S, e) is stuck due to a failed dynamic downcast.

Lemma 3.2 (Preservation). Given that ` (S, e) : T ,
and that (S, e) → (S′, e′), then ` (S′, e′) : U such that U ≤
T .

Note that the type U of the program after it takes a step
may be a subtype of its original type T due to both coercions
(to downcast the proxy qualifier) and dynamic downcasts.

Using the above lemmas, the following theorem follows.

Theorem 3.3 (Type Soundness). Given ` e : T ; Γ′,
then either

• (∅, e) →∗ (S, x) for some S and x.
• (∅, e) →∗ (S, e′) for some S and e′, where (S, e′) is

stuck due to a failed dynamic downcast.
• (∅, e) executes forever.

Here, we define →∗ to mean the reflexive, transitive closure
of the transition relation →. Implicit in all of these state-
ments is the presence of the well-formed class table CT . As
is standard, the proofs of progress and preservation are by
induction on the typing and evaluation derivations, respec-
tively, and type soundness follows from them.

Finally, we can show that our proxy transformation from
FJ i

Q to FJQ is sound.

Theorem 3.4 (Inference Soundness). Given a sub-
stitution σ, label set L, and an inference derivation `i CT
which generates constraints F and C, if σ |= F and σ, L |= C,
then ` T [[CT ]]. Moreover, for each subderivation of `i CT
which contains subderivations of the form



1. `i CL

2. `i M

3. Γ `i E l : T ; Γ′, or
Γ `c E l : T ; Γ′

there is a corresponding subderivation of ` T [[CT ]] having
the form:

1. ` T [[CL]]

2. ` T [[M ]]

3. σ(Γ) ` T [[E l]] : σ(T ); σ(Γ′)

The proof is by induction on the inference derivation. All
proofs can be found in our companion technical report [34].

3.7 Discussion
Compared to past work in flow-sensitive type qualifiers,

flow-sensitivity in our system is significantly simpler. The
approach of Foster et al. [16] allows arbitrary memory lo-
cations to be treated flow-sensitively, which is complicated
by the combination of aliasing and mutation. In particular,
allowing the qualifier of a value to change flow-sensitively
requires proving that the value is not aliased (is “linear”).
In contrast, our approach only treats local variables flow-
sensitively, and since Java has no “address-of” operator &,
the contents of a local variable can only be accessed through
that variable. Thus, we get linearity “for free,” trading ex-
pressive power for simplicity. The caveat is that the im-
plementation of coerce x provided by the user must only
operate on the variable x, not on the object x refers to. For
wrapper proxies, this is what happens: x is overwritten to
point to the underlying object instead of the wrapper. If co-
ercions do not meet this criteria, then they are not treated
flow-sensitively.

It is because we are flow-sensitive only for local variables
that we opted not to model field and variable updates in
the FJQ. While adding updates would be straightforward
(it is modeled in MJ [5] and existing qualifier systems [15,
16], for example), it would not change the character of our
approach, adding only unnecessary complication.

In order to be able to support the full Java language, we
had to address the use of the JNI and reflection mechanisms.
We have assumed a conservative approach in this case, by
demanding that no proxy object ever flows in the JNI API or
in any reflection invocation. This approach inserts claims at
all places where a native method is called, and on the argu-
ments of java.lang.reflect.Method.invoke(...), ensur-
ing that no proxy Object will ever be passed to a reflection
or JNI invocation. In addition, a proxy object might be ac-
cessed via reflection, e.g., by reading the fields of another
object. Therefore, the analysis treats all objects obtained
that way as possible proxies.

3.8 Other Applications
While the formal presentation of our analysis is specific

to proxies, our added support for coercions can easily be
folded into more general qualifier systems, admitting new or
improved applications. Here we consider three possibilities.

Security-sensitive Data.Shankar et al. [37] describe an
application of type qualifiers in which untrusted data, e.g.,
arriving from a user login prompt or a network connection, is
given the qualifier tainted, while trusted data is given qual-
ifier untainted. Qualifier inference is used to ensure that
tainted data does not flow to functions requiring untainted
data. A similar analysis is supported in Perl programs, ex-
cept that checks for tainted data are performed dynamically.
This has the drawback of the potentially-significant added
runtime overhead of dynamic checks, but has the benefit
that it is precise, and will thus avoid the false alarms gener-
ated by the purely static approach.

We can use our framework to implement a blending of
these two approaches. In particular, the pspec would specify
which routines returned tainted data, and which expected
untainted data, while the ispec would implement coercions
as a check to determine whether the data came from an
untrusted source, e.g., by reading a required field from the
object. This approach blends the two prior approaches by
using static analysis to avoid many, but not all, runtime
checks.

Stack allocation.Java objects have dynamic, unrestricted
lifetimes, implemented using heap allocation and garbage
collection. While stack-allocating objects could improve per-
formance, avoiding dangling pointers would entail that no
stack-allocated object escape its defining scope. This could
happen if the object was assigned to a field or returned from
its defining function. One solution would be to copy a stack-
allocated object to the heap at the point it escapes its scope.
However, doing so might violate transparency if that ob-
ject’s identity had already been revealed, e.g., by using the
stack-allocated object as an argument to ==.

Our analysis can support transparent stack allocation us-
ing two qualifiers, heap and stack, where the latter annotates
an object that could be either heap- or stack-allocated, and
the former indicates an object that must be heap-allocated;
we thus have heap ≤ stack. Any operation that could re-
veal the identity of an object or cause it to escape (e.g., by
assigning it to a field of a heap object) would require the ob-
ject have qualifier heap. A coercion would check if an object
was on the stack (perhaps using a bit mask), and copy it to
the heap if necessary.

Not-null types.Another application is the use of null and
nonnull qualifiers to characterize objects that are possibly
null, or definitely not null, respectively [13]. This would
provide a simple way of specifying the standard null-check
elimination optimization as a qualifier system, and would
allow users to manually annotate fields or method arguments
as being nonnull, to avoid explicit null tests.

To implement this in our framework, the pspec would indi-
cate that all occurrences of the constant null have qualifier
null (including default initialization of fields), and that con-
crete object usages, e.g., to call a method, require that the
object qualifier be nonnull. The ispec would implement coer-
cions as null-checks (throwing an exception on failure), with
flow-sensitivity naturally eliminating redundant checks. Of
course, to be truly useful, we would require the coopera-
tion of the JVM to avoid checks proven redundant by our
framework.



4. ASYNCHRONOUS METHOD CALLS
Having described our proxy framework formally, we now

describe our implementation of asynchronous method invo-
cations in Java.

4.1 Framework Implementation
Our analysis is implemented as an extension to Soot [40]

(version 2.1.0), a framework for analyzing and transforming
Java classfiles. Soot provides a framework for implementing
flow-insensitive points-to analyses called SPARK [27]. We
extended SPARK to track proxies and generate set types
based on points-to information. SPARK’s constraint graph
representation uses a node (corresponding variously to a
qualifier variable κ or a set type variable α) for each lo-
cal variable and method parameter. We extended this to
be flow-sensitive by assigning multiple nodes to each vari-
able or method parameter, one per use. As an optimization,
we do so only for nodes that could possibly contain proxies,
as determined by a flow-insensitive analysis. This reduces
the total nodes to consider, since proxies are typically used
sparingly in the program (relative to the total number of
objects). For the applications presented in Section 5, this
optimization yields a 6% to 45% improvement in the cost of
the flow-sensitive analysis. Note that SPARK also supports
context-sensitivity, but we have not taken advantage of this
as of yet.

Programmers implement the pspec and ispec by providing
three classes and linking them into the analysis:

1. The AsyncGen class in the pspec defines syntactic pat-
terns that indicate where proxies are introduced. These
patterns must, of course, be legal Java syntax that
could have been compiled to bytecode.

2. The Policy class in the pspec defines coercions using a
visitor over the Jimple syntax tree that specifies which
expressions require non-proxies.

3. The ClaimTransformer class implements the ispec. It
defines how call sites that create proxies are trans-
formed, and how coercions are implemented. It may
direct that supporting classes be linked into the trans-
formed application.

Because Jimple represents typed bytecode, coercions that
assign back to the original variable must be well-typed. Thus
we give type Object to each Jimple variable x of type A that
could contain a proxy. Whenever x is coerced, we assign the
result to a newly-introduced variable y with type A, and
replace with y subsequent occurrences of x in the contin-
uation. This transformation is sound because proxies are
treated transparently, and because there is no way to alias
and mutate the storage of the original variable x.

4.2 Asynchronous Invocations
Programmers invoke methods asynchronously using the

syntax

r = Async.invoke(t,o.m(e1,e2,...));

According to the pspec, this syntax indicates that method
m should be invoked asynchronously and the result (if any)
returned to the caller will be a future. The method’s argu-
ments e1, e2, ..., en are still evaluated in the current thread.

The ispec defines the steps needed to implement an asyn-
chronous call. First, the program creates an anonymous
subclass of ProxyImpl that encapsulates the invocation of
method m. ProxyImpl has the following signature:

public class ProxyImpl implements Runnable, Wrapper {
public void run(); // executes the invocation
public Object get(); // acquires the result

}

The Wrapper interface simply defines a single get method,
which extracts the underlying object for which the wrapper
is a proxy.

public interface Wrapper { Object get(); }

Next, the ProxyImpl object is passed to a thread manager.
Thread managers implement the Java 1.5 Executor inter-
face:

public interface Executor {
void execute(Runnable command);

}

The thread manager will call the ProxyImpl’s run method
in a separate thread to achieve asynchrony. The run method
will execute the method invocation o.m(e1,e2,...) and store
the result in a private field, to be extracted by a call to
get. Finally, the ProxyImpl is returned to the caller of the
original method m in place of the result r.

If the analysis determines that a program variable x with
type A could contain a future, a coercion is required before
x can be used concretely. The ispec implements coercions
with the following code fragment:

(A)(x instanceof Wrapper ? ((Wrapper)o).get() : x)

That is, if x is a wrapper, then we must call get to extract
the result. The get method in turn will wait if the result is
not yet available.

Any implementation of Executor can be used as a thread
manager. We have used the Java 1.5 ThreadPoolExecutor,
which provides an extensible thread pool implementation,
as well as our own ThreadPerObjectExecutor, which emu-
lates active objects [26] by mapping each object receiving an
asynchronous method call to an executor.

Note that programmers can influence where claims occur
by performing “null” casts. That is, the expression (C)e
requires e’s qualifier to be nonproxy, so casting it to its known
type will have the effect of forcing a claim.

This design is both lightweight and flexible. Program-
mers can easily experiment with method asynchrony with-
out rewriting substantial amounts of code. In addition, pro-
grammers can experiment with a variety of threading poli-
cies by choosing different thread managers.

A simple extension supports lazy evaluation. To invoke
method m of object o lazily, the programmer uses the syn-
tax:

r = Lazy.invoke(o.m(e1,e2,...));

A ProxyImpl subclass is generated as above, but here the
run method is called by get (called when the wrapper is
claimed) if no final result yet exists.

4.3 Exceptions
If an asynchronous method call o.m() throws an exception

E, that exception is cached inside the future returned by m.
When the future is claimed, the exception E is re-thrown.2

This presents some challenges to the analysis.

2This differs from a Future in util.concurrent, whose get
method declares it could throw an ExecutionException,
encapsulating any exception thrown by the computa-
tion. As such, the programmer is required to handle
ExecutionException each time that a future is claimed.
Our implementation of claim essentially catches this excep-
tion, and then re-throws the exception it encapsulates.



The fact that claims could throw exceptions can be mod-
eled as a simple extension to FJQ. We first must extend
the language to model exceptions. We extend expressions
e to include the form try e catch E ⇒ e, where E is the
name of the exception being handled. Method declarations
are extended to include throws clauses. We also add a form
throw E for throwing an exception of type E (throw could
take arbitrary expressions of exception type, but this sim-
plifies the presentation). We extend the typing judgment
from Figure 9 to include the throw set T of exceptions E
that could be thrown by evaluating an expression.

The typing rule for try-blocks is:

Γ,` e1 : T1; Γ1; T1 Γ ` e2 : T2; Γ2; T2

T2 ≤ T T1 ≤ T Γ′ = merge(Γ1, Γ2)
T ′ = handles(E, T1) ∪ T2

Γ ` try e1 catch E ⇒ e2 : T ; Γ′; T ′

The function handles(E, T1) prunes those exceptions E′ ∈
T1 which are subtypes of E. The resulting throw set is this
pruned set and the set from the handler. This rule conserva-
tively assumes any flow-sensitive effects of e1 reflected in Γ1

will not be seen in e2. When checking a method consisting
of expression e, we make sure that e’s resulting throws set
is covered by the throws clauses the method declares.

Now we must reflect into a proxy’s type what exceptions
it might throw. To do this we expand the proxy qualifier into
a family of qualifiers, where each mentions an exception E
that could be thrown if the qualified value is coerced. These
form a lattice based on the subtyping relationship between
exceptions E. For example, we have proxyE ≤ proxyE2 if
E ≤ E2. For all E, we have proxy ≤ proxyE.

The rule for makeproxy e becomes

Γ ` e : nonproxy N ; Γ′; T E = lub(T )

Γ ` makeproxy e : proxyE N ; Γ′; ∅
That is, the exceptions that e could throw are reflected into
its qualifier. For this rule to be sound, we must modify the
operational semantics to capture any exception thrown when
evaluating e in the proxy, and then re-throw the exception
when doing the coercion. The typing rule for coerce reflects
that an exception could be thrown:

Γ ` e : Q N ; Γ′; T Q ≤ proxyE

Γ ` coerce e : nonproxy N ; Γ′; T ∪ {E}
In our implementation, we must extend the definition of the
Wrapper interface to define get methods that could throw
the various expressions E determined by the analysis, and
adjust ProxyImpl and claim code accordingly (which is easy
to do automatically).

Given this formulation, we ensure that proxy inference
deals with exceptions properly in a couple of ways. In the
simplest case, we ensure that in expression makeproxy e,
e never throws an exception. This is done by allowing the
programmer to provide a handler for possible exceptions
when creating the proxy. In particular, users can use an
Executor that handles exceptions in a user-specified way
inside spawned threads. This approach also requires that
the user specify a “default” value for the object returned by
a claim, since the swallowed exception will have prevented
the method from returning a value. In our experience, this
simple approach works fairly well in practice.

In the second case, we let inference determine where prox-
ies could flow, signaling an error only if an inserted coercion

could throw an exception not covered by the throws clause
for the method in which it occurs. For many applications we
have considered, unclaimed proxies do not flow outside the
scope of a reasonable exception handler. This is frequently
true for event-style server applications, which have an outer-
most exception handling block coupled with the event loop
to catch exceptions raised by event handlers. In the case that
a proxy does flow to an unexpected location, the user learns
exactly where the offending claim was inserted and can man-
ually alter the code to insert a handler. Alternatively, when
the user specifies a method call should be asynchronous, she
can provide a handler object whose handle method is called
with argument E when a claim would cause E to be thrown.
Any exceptions thrown by this handler (e.g., to delegate to
an outer-scope handler) are reflected in the type of the proxy.

Even when the surrounding context can handle an excep-
tion E thrown due to a claim, it could be incorrect to do
so. Some exceptions, like IOException, are thrown by many
methods, and the exception generated by the claim may vi-
olate some invariant expected by the programmer. Though
we have not yet done so, we should be able to ensure that
a proxy can only throw to handlers that were present in its
original context. To do this, rather than track the excep-
tions possibly thrown by an expression e, we could track
all of the handlers that would catch exceptions thrown by
e. These would create a similar partial order that would be
folded into the proxy qualifier. At the same time, the typing
judgment would keep track of the handler context, which
is the set of all handlers that an exception could possibly
throw to (including those in method callers). Typecheck-
ing a coercion would require that the handler context be a
subset of the handlers mentioned in the proxy.

Note that all of this discussion need only apply to checked
exceptions. As unchecked exceptions typically signal dis-
astrous (unrecoverable) situations, we can choose to ignore
them in the analysis.

4.4 Synchronization
Concurrent programs must balance safety and liveness, by

guarding against invariant violations and preventing dead-
lock. Our approach no worse and no better than standard
Java thread programming. When using asynchronous me-
thod calls, programmers must use ordering, synchroniza-
tion, immutability, and other techniques to ensure safety
and liveness—no automatic support is provided.

Ideally, ensuring a program is safe and live could be as
lightweight as introducing an asynchronous invocation. In
Lisp, this is trivial because programs are written in a mostly-
functional (if not purely-functional) style, which means that
added concurrency will not affect the program’s safety. We
contemplated approaches to inserting synchronization au-
tomatically [26, 7, 22, 17], but rejected this idea because
of its lack of generality and potentially negative impact on
performance. We discuss this issue more in Section 6.

Instead, we feel a more promising approach is to have
programmers specify synchronization requirements declara-
tively. Declarative specifications should change infrequently,
even as the programmer changes various method invocations
to be or not be asynchronous. Therefore, the proper syn-
chronization code could be generated from the specification
as changes are made. Work in aspect-oriented program-
ming [29, 25, 8] and language-level transactions [41, 19]
aim to realize this goal. By not making any assumptions



test tot (s) per-check (ns) % ovr
no claim 0.122 n/a n/a

redundant claim 0.1637 16.37 34%
necessary claim 0.335 33.5 175%

Table 1: Overhead of inserted claims, N = 107

about synchronization, we can readily incorporate good re-
sults from these projects.

5. EVALUATION
We evaluate our framework in terms of (1) programming

benefit (how does our framework simplify the programming
task), (2) analysis effectiveness (how does it impact the run-
time of the instrumented program), and (3) analysis perfor-
mance (how fast is the analysis). We present a number
of applications of both wrapper proxies and transparency
checking to give a sense of the costs and benefits of our ap-
proach. As use of the Java 1.5 concurrency libraries becomes
more widespread, we hope to adapt larger examples to use
our framework.

We ran our experiments on a 2 GHz AMD Athlon 2600+
with 1 GB of RAM, running Mandrake Linux 9.1 (kernel
version 2.4.21.)

5.1 Claim Overhead
Wrapper proxies can flow to potentially many parts of the

program, and because our static analysis must be conserva-
tive, classes may be instrumented with redundant claims.
To measure the performance overhead of necessary as well
as redundant claims, we constructed a simple microbench-
mark:

Object o,p = ...
for (int i = 0; i<N; i++) { p = o; p.m(); }

The method m simply increments a volatile counter. We var-
ied o to be either a normal object, an already-claimed wrap-
per proxy, or an unclaimed wrapper proxy (in this last case,
the copy from o to p ensures it will be claimed each time,
since o never gets claimed and thus will never be rewrit-
ten to be the wrapped object). The results are shown in
Table 1 for N = 107 (other values of N showed a similar
relationship).

Redundant claims consist of essentially three instructions
at runtime: an instanceof check, a cast, and an assign-
ment. Our measurements show this adds 34% to the loop
running time. Necessary claims require an additional syn-
chronized method call and assignment, and cost more. How-
ever, these are unlikely to appear frequently because the fu-
ture is overwritten after the underlying object is acquired,
inducing only redundant claims from then on. In actual
applications we expect the overhead of claims to be small
because (1) not all method calls require claims, and (2) me-
thod calls perform real work, dwarfing the cost of claims
relative to program running time.

5.2 Programming with Futures
A central benefit of our approach over a manual coding of

proxies is that it simplifies the programming process. To il-
lustrate this, we take an example from the util.concurrent
API documentation [24, 12] that describes how to convert a
“blocking service” into a non-blocking service using futures.
The blocking service implements the following interface:

interface BlockingService {
public Response serve (Request req)

throws ServiceException;
}

We first present how we would convert BlockingService

objects to be non-blocking using our approach, and then
present the manual approach proposed in the documentation
for util.concurrent.

Our Approach.Given BlockingService object bs, we make
calls to its serve method asynchronous by simply changing
existing method calls

bs.serve(request)

to be

Async.invoke(executor,bs.serve(request))

The analysis will infer where claims are required and insert
them directly into the bytecode of both applications and
library classes, based on user input. Assuming claims occur
where ServiceExceptions can be caught, we are finished.
Otherwise, we can modify invocations to include a wrapping
exception handler, or add handlers to claim locations, as
described in Section 4.3. We might also wish to insert “null
casts” to force claims early, for performance reasons.

Manual Approach.To use Java 1.5 Futures instead, we
would take the following steps [12]. First, we define a non-
blocking variant of the BlockingService interface whose
serve method returns a Future, and then build an adapter
class to wrap a BlockingService object, as shown in Fig-
ure 8. The serve method of NBSAdapter creates a task

to invoke the underlying BlockingService object’s serve

method, handling any exception locally. This task is exe-
cuted by the adapter’s Executor object after turning it into
a FutureTask, which implements Future. The future is then
returned to the caller.

Now we can make our original bs object non-blocking by
creating nbs = new NBSAdapter(bs). Existing calls

bs.serve(request)

are changed to be

nbs.serve(request)

At this point, we must adjust old client code to handle
the fact that nbs.serve returns a Future<Response> rather
than a Response. So that futures are claimed as late as
possible, we must follow how Response objects would have
flowed from calls to serve and sprinkle claims just before
a futurized Response object is used. This can be tricky if
Response objects were stored in containers that could be
accessed by many methods or threads throughout the pro-
gram. If a now-futurized Response object could flow into
library routines or third-party components, the program-
mer may be forced to claim the future early, which could
hurt performance.

Compared to one-line-per-invocation change imposed by
our framework, this is a fair amount of programming over-
head. Moreover, a similar overhead is required to undo the
change.

5.3 Asynchronous RMI
For an asynchronous method call to be worthwhile, the

added parallelism must overcome the added overheads, such
as thread creation time and synchronization, to realize a



interface NonBlockingService {
public Future<Response> serve (Request req);

}
class NBSAdapter implements NonBlockingService {

public NBSAdapter (BlockingService svc) {
this.blockingService = svc;
this.executor = Executor.newFixedThreadPool(3);

}
public Future<Response> serve (final Request req) {

Callable<Response> task = new Callable<Response>() {
public Response call () {

try {
return blockingService.serve(req);

}
catch (ServiceException e) {

e.printStackTrace();
// more exception handling

}
}

};
FutureTask<Response> ftask =

new FutureTask<Response>(task);
executor.execute(ftask);
return ftask;

}
private final BlockingService blockingService;
private final Executor executor;

}

Figure 8: A BlockingService adapter class

performance gain. Remote method calls are a natural candi-
date, because they must pay the cost of a network round-trip
time for each invocation. Indeed, asynchronous RPC was
the initial motivation for Liskov and Shrira’s promises [28],
and recent work has considered the idea for Java [35, 39].

To illustrate this benefit, we have applied our framework
to a RMI-based peer-to-peer service sharing application de-
veloped for a class at the University of Maryland3. Each
peer can perform text processing using a number of com-
posable services, which are simply references to objects im-
plementing a Service interface. If the application does not
have all of the services it wants, it can ask for them from the
network, and will receive remote references for each in mes-
sages from peers. These are stored with the local services in
a table.

The code to find a (potentially remote) service is roughly
as follows:

Service findService(LocalPeer self, String sName) {
Service s = self.getService(sName);
if (s != null) return s;
else {

self.forward(new FindServiceMessage(sName));
return getRemoteService(self, sName);

}
}

If the service is present in the local table, the method im-
mediately returns it. Otherwise, the forward method will
use RMI to send messages to the node’s peers, asking for
the service. The first thing we did was make this method
call asynchronous (though no future is returned)

The getRemoteService call will block (using wait) un-
til it observes that the desired service has been installed
in the table. This is problematic when the client appli-

3http://www.cs.umd.edu/class/fall2003/
cmsc433-0201/p5/p5.htm

Analysis Time classes
(s) analyzed w/ fut. transformed claims

FI 73 1324 27 2 7
FS 92 1324 9 2 2

SPARK 66 1320 n/a n/a n/a

Table 2: Analysis Performance on Async RMI

cation wishes to invoke findService n times to create a
composed service as each call must wait until the prior ser-
vice is found and the network will not be used to search
for services in parallel. To address this issue, we made
the call to getRemoteService lazy, changing it to be Lazy.

invoke(getRemoteService(self,sName)). As this syntax
introduces a wrapper proxy, the framework rewrites the
caller’s class to delay the invocation of the method until the
proxy is unwrapped. Thus, all n calls to getService will
proceed in parallel, and will only block when the service is
used concretely.

Analysis Performance.The analysis times for this bench-
mark are shown in Table 2. Here we show the results of
both our flow-sensitive analysis (FS), and a flow-insensitive
variant of it (FI). Times are in seconds, and we show the
total number of classes analyzed (which are largely library
classes), those into which futures could flow, and finally
those that were transformed. For those classes transformed,
we indicate how many coercions (claims) were inserted. The
results show the benefit of flow-sensitivity: fewer classes are
polluted with futures and fewer claims are required.

The flow-sensitive analysis takes more time to run than
the flow-insensitive version. Both process the same num-
ber of classes, but the flow-sensitive version generates more
constraints. Indeed, the flow-insensitive analysis is virtually
identical to the cost of just running the SPARK without
modification. The flow sensitive analysis uses the result of
a flow-insensitive analysis to limit the number of variables
that are analyzed flow-sensitively. In particular, only the
variables that have qualifier proxy are re-analyzed flow sen-
sitively. However, the time saved compared to running the
flow-sensitive analysis for the whole program is still signifi-
cant, even though we are running the analysis twice.

Runtime Performance.To assess the runtime benefit to
asynchronous remote invocations, we ran some simple ex-
periments on a two-node network connected by 100 Mbps
Ethernet. The application attempts to acquire n services,
for 1 ≤ n ≤ 10, all of which are non-local. We compare the
original application (Orig) to our changed version (Async).
In addition to normal RMI messaging, we ran a version that
inserts an 80 ms delay for each message send, to simulate a
wide area message. The results shown in Table 3 represent
the median of 11 runs, with all times in milliseconds (the
mean and median values were similar).

For the local area traffic, the added parallelism of asyn-
chronous RMI nets performance gains of up to 40%. For
the delayed case, the running time of the original applica-
tion tracks the number of services times the round trip delay,
while the Async version significantly amortizes this cost.

Of course, these results could have been achieved by rewrit-
ing the application by hand to capture the invocation, and



Version Services requested and used
1 2 3 4 5 6 7 8 9 10

Orig. 18 32 48 65 90 100 113 124 143 153
Async 17 26 34 42 50 57 62 78 83 84

Orig. + delay 101 203 304 406 507 607 707 811 916 1010
Async + delay 106 117 122 133 145 153 157 160 171 178

Table 3: Elapsed time (s) of Peer-to-Peer RMI application with varying workload

acquire it before applying the result. Our framework made
it significantly easier to do this: we only had to annotate two
method calls, and the framework did the rest automatically.

5.4 Transparency Checking
We have also used our framework to search for possible

transparency violations through the use of interface proxies.
Here, we consider a programmer that might like to specialize
an object implementing interface I, e.g., to count how often
a particular method is called. Following the proxy design
pattern, the programmer could use a dynamic proxy class [9]
to create a method-counting object that also implements I,
which forwards calls to the original object. Our framework
can ensure that the program will never distinguish between
the proxy and the underlying object by using an identity-
related operation, like ==, instanceof, etc. This is done
with the following policy and implementation specification:

Policy Calls to Proxy.newProxyInstance(...) introduce
proxies. All expressions that are identity-revealing
must operate on non-proxies, including synchronized,
==, and instanceof. Note that unlike futures and
other wrapper proxies, method calls do not require the
object be a non-proxy.

Implementation No code is needed to generate proxies
(that is already being done by the program) or to co-
erce them. Any requirement of a coercion implies a
possible transparency violation, which is signaled by
the analysis.

We ran our checker on two examples: an XML-based im-
plementation of SOAP over RMI that uses dynamic proxy
classes [38], and the Soot bytecode analysis framework [40]
(version 2.0.1).4 In the former case, the analysis tracks all
proxies created with Proxy.newProxyInstance. In the lat-
ter, we selected three different methods that return inter-
faces, and told the checker that calling these methods might
return proxies. This simulates a user wishing to proxy an
object returned by one of these methods, e.g., to perform
profiling, but ensuring that transparency will not be vio-
lated.

We ran the flow sensitive and a flow insensitive analysis to
detect possible errors. For the SOAP/RMI example, we ran
the checker over the code as is, and found no transparency
violations. Table 4 summarizes the results. Once again, the
flow-insensitive analysis had essentially the same running
time as SPARK points-to analysis (not shown), and the flow-
sensitive version added some overhead. Interestingly, the
flow-sensitive analysis adds no value in this case. It could
potentially reduce false positives due to spurious flows, but
does not do so.

4We analyze Soot 2.0.1 because analyzing 2.1.0 causes our
benchmark machine to swap.

Version Time # of classes Errors
(s) analyzed with proxies

FI 48 2189 3 0
FS 58 2189 3 0

SPARK 45 2189 n/a n/a

Table 4: Analysis Performance for SOAP/RMI

Example Time (s) # of classes Errors
FI FS analyzed with proxies

1 181 210 2092 16 0
2 174 209 2092 3 1
3 183 214 2092 12 9

SPARK 151 n/a 2092 n/a n/a

Table 5: Analysis Performance for 3 Soot Examples

The Soot examples for the three different methods are
shown in Table 5. The SPARK number is the average time
for all three examples, which had similar running times. We
looked at the reported violations, and verified that they were
genuine transparency violations that could lead to bugs.
Once again, it was interesting to see that flow-sensitivity
added no precision (only overhead!), and that the origi-
nal SPARK analysis times are relatively close to our flow-
insensitive analysis times.

6. RELATED WORK

Proxies. Gamma et al. [18] present many uses of the proxy
design pattern, including remote references, lazy evaluation,
and access control. Other uses5 include memoization, del-
egation, synchronization addition, generic event listeners,
and views for abstract data types. Java’s dynamic proxy
classes [9] permit the simple construction of interface prox-
ies, and have been used in a variety of applications [38, 4].

Static Analysis.Our analysis is a variant of qualifier in-
ference, which draws upon techniques developed in other
static analyses, including constraint-based analysis [1] and
points-to analysis [10]. Our approach extends Foster et al.’s
qualifier inference [15] with support for coercions that im-
plement checks at runtime, e.g., to claim a future. These
coercions are treated flow-sensitively. Foster et al. also de-
fine a flow-sensitive variant of their analysis [16], but their
approach allows heap locations, and not just variables, to
be treated flow-sensitively. This adds expressive power but
significant complication.

5See, for example http://blog.monstuff.com/archives/
000098.html.



Asynchronous Method Calls and Futures.The notion of
a future was popularized by Halstead in MultiLisp [23]. In a
dynamically-typed language like Lisp or Scheme, potentially
any value could be a future, necessitating a runtime check.
Flanagan and Felleisen [14] define a whole-program static
analysis for reducing eliminating some unnecessary checks;
our analysis conversely adds needed checks based on the
possible flow of futures.

Liskov and Shrira proposed promises [28], which are fu-
tures for statically-typed languages. A promise is a type
parameterized by the type of object it will ultimately com-
pute, like a Java 1.5 Future [24]. We found a number of
applications of futures to statically-typed, object-oriented
languages [31, 24, 20, 35, 11].

Mandala [30] is another framework that provides asyn-
chronous method invocation and futures for Java. Asyn-
chronous calls are implemented with reflection, using dy-
namic proxy classes, which is more modular than our ap-
proach. However, Mandala is less efficient and less trans-
parent. Identity-revealing operations like == could distin-
guish the proxied object. Dynamic proxies use reflection for
each method call, which is notoriously slow (more than an
order of magnitude slower than a normal method call on
our benchmark machine). To work around this overhead,
a Mandala programmer can treat the returned value of an
asynchronous call as an explicit FutureClient object (much
like a Java 1.5 Future) which must be manually claimed,
thus sacrificing the programming benefit of transparency.

A number of languages support active objects [26], such as
the SCOOP extension to Eiffel [7] and Io [22], which return
futures.Method calls are handled by a per-object thread, and
automatically synchronized based on programmer-supplied
method preconditions. While simple to use, programmers
are forced to use concurrency only on a per-object basis, as
opposed to per activity, which could severely limit perfor-
mance without potentially unnatural program restructur-
ings.In our approach, concurrency is handled per-method
by arbitrary Executor objects, but synchronization must be
handled by the programmer.

Polyphonic C# [3] adds concurrency abstractions to C#
based on the join calculus. Method declarations annotated
as async are always invoked asynchronously. These methods
must not return results, so there is no need for futures.

Asynchronous remote method invocation can be used to
batch remote calls and thus amortize the delay of round-
trip times. Promises were developed in this context. Raje
et al. [35] propose an approach in which the returned fu-
ture is made manifest to the programmer, adding to the
programming burden. Sysala and Janecek [39] require that
remote calls be provided a callback, to be invoked the result
is available. This simplifies exception handling but obscures
the control flow of the program, making debugging more
difficult. It also forces programmers to distinguish between
remote and local references, eliminating the transparency
afforded by RMI.

7. CONCLUSIONS
We have presented a simple and flexible framework for

transparent programming with proxies in Java. The frame-
work uses a sound static analysis to track the flow of proxies
throughout the program. The analysis is based on qualifier
inference [15], with two extensions: we permit the use of dy-
namic coercions to allow proxies to have runtime effect, and

use flow-sensitivity to avoid redundant coercions. We have
used our framework to implement a natural form of asyn-
chronous and lazy method invocation for Java, and to check
for possible transparency violations when using the proxy
design pattern. The framework is general enough to apply
to other interesting applications, including the tracking of
security-sensitive data, and supporting not-null types and
stack-allocated objects.

We are currently pursing two avenues of future work.
First, we are generalizing our framework to support arbi-
trary qualifiers, to support the other applications mentioned
above. In doing so, we plan to support more sophisticated
context-sensitive analysis. Second, we are exploring how
to make our analysis incremental, to avoid reanalyzing the
whole program each time a source file is changed. Rather,
we are developing a dependency-tracking system that would
allow for selective reanalysis of unchanged classes, possibly
in the background for better performance. We would hope
to generalize our approach to other static analyses.
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APPENDIX

A. PROXY CALCULUS FJQ

Here we include more details on the explicitly-typed calcu-
lus FJQ, introduced in Section 3, including its typing rules
and operational semantics.

A.1 Typing
The syntax of FJQ is the same as FJ i

Q (Figure 1), minus
qualifier and set type variables κ and α, plus expressions
coerce e. The typing rules are shown in Figure 9. We have
stripped labels from expressions for clarity, since they are
not used. The subtyping rules and auxiliary definitions are
the same as those in Figures 2 and 3.

The rules are basically straightforward analogues of the
inference rules. Note that there are two rules for typing
casts. The (Cast) rule types an upcast or a downcast, and
the (SCast) rule types a “stupid” cast. The last is a tech-
nical device borrowed from FJ to allow all possible casts to
be considered well-typed, which is necessary to prove type
soundness via the property of type preservation (theorems
are stated in Section 3.6). The Java compiler would reject
programs containing stupid casts.

A.2 Operational Semantics
The operational semantics of FJQ are set up as an ab-

stract machine. Programs consist of a store S and an ex-
pression to evaluate e, and the transition relation → maps
programs (S, e) to programs (S′, e′). We use a call-by-value
allocation-style semantics [33], in which all objects are al-
located and looked up in the store, rather than being sub-
stituted into the term. This allows us to model the flow-
sensitivity of coercions on variables. The store essentially
represents a hybrid of the stack and the heap. The com-
plete transition rules are presented in Figure 10.

Since this is a qualified system, the store maps variables
to qualified store values, which are store values h paired with
a qualifier Q. A store value is simply an object of the form
new C(ȳ), where the variables ȳ index other qualified store
values in S. Qualified store values are allocated by the fol-
lowing (TransAnnot) rule, which replaces a store value h
with a fresh variable x, and then maps that variable to h in
the store S:

(S,new C(ȳ)) → (S ] {x 7→ (nonproxy,new C(ȳ))}, x)

The other computation rules always operate on variables
indexing the store, and so must “look up” the correspond-
ing value for evaluation. For example, the (TransInvoke)
rule is between two variables x and y; it looks up x in the
store to discover a function, and then continues by evaluat-
ing the function’s body e, having updated the store to map
the function’s parameter z to the actual argument pointed
at by y.

S(x) = (nonproxy,new C(ȳ)) mbody(m, C) = (z̄, e)

(S, x.m(ȳ)) → (S ] {z̄ 7→ S(ȳ)}, e[this 7→ x])

Note that we encode freshness by not adding variables
to the domain of the store if they are already present; this
is illustrated by the use of ]. We can always enforce this
condition using alpha conversion.

All qualified store values that are used concretely must
have qualifier nonproxy, indicating that the actual value is
available. These conditions match those in the type rules.
Relaxing a requirement in the type rules (e.g., as would hap-
pen for interface proxies) would require relaxing it here.

The (TransCoerce) rule handles flow-sensitive coercions:

(S]{x 7→ (Q, h)}, coerce x) → (S]{x 7→ (nonproxy, h)}, x)

Here, when a variable x is coerced, we remap x in the output
store so that its qualifier is nonproxy. Therefore, subsequent
uses of x will not require coercions. This will have little ef-
fect unless x was a variable in the original program. Other-
wise it was a constant expression, which will never again be
reused. Note that the (TransCoerce) rule is well-defined for
all qualified store values, not just those with qualifier proxy;
this is critical because the subtyping rule nonproxy ≤ proxy
employed by the type system allows non-proxies to be used
wherever proxies are expected.

We extend the typing judgment to programs (S, e) as
shown in Figure 9. Here, the (CheckState) rule requires
that the store S can be characterized by a Γ sufficient to
typecheck e. Notice that the (CheckStore) rule only checks
values mapped to by variables in the domain of Γ, rather
than the domain of S. This allows Γ to refer only to vari-
ables in the transitive closure of the variables appearing in
e; any other indexes in the store are essentially garbage, and
could be removed. Also note that (CheckNewQ) returns the
exact (dynamic) type of objects that it finds. Because these
objects could be given “higher” type in the program e, we
allow T ≤ Γ(x) in the (CheckStore) rule.



Γ ` e : T ; Γ′

Var
Γ[x 7→ T ] ` x : T ; Γ[x 7→ T ]

Let

Γ ` e1 : T ; Γ1

Γ1[x 7→ T ] ` e2 : T ′; Γ′[x 7→ T ′′]

Γ ` let x = e1 in e2 : T ′; Γ′

If

Γ ` e1 : nonproxy N1; Γ1

Γ1 ` e2 : nonproxy N2; Γ2

Γ2 ` e3 : T3; Γ3 Γ3 ` e4 : T4; Γ4

T3 ≤ T T4 ≤ T Γ′ = merge(Γ3, Γ4)

Γ ` if e1 = e2 then e3 else e4 : T ; Γ′ Invoke

Γ ` e0 : nonproxy N ; Γ′ Γ′ ` ē : S̄; Γ′′

mtype(m, N) = T̄1 → U1, . . . T̄n → Un

S̄ ≤ T̄i Ui ≤ T for all i

Γ ` e0.m(ē) : T ; Γ′′

Field
Γ ` e : nonproxy N ; Γ′ fields(N) = T̄ f̄

Γ ` e.fi : Ti; Γ
′ New

fields({C}C) = T̄ f̄ Γ ` ē : S̄; Γ′ S̄ ≤ T̄

Γ ` new C(ē) : nonproxy {C}C ; Γ′

Cast

Γ ` e : nonproxy ϕD; Γ′

ϕ1 = subtypes(C) ∩ ϕ ϕ1 6= ∅
Γ ` (C)e : nonproxy ϕC

1 ; Γ′ SCast

Γ ` e : nonproxy ϕD; Γ′

ϕ1 = subtypes(C) ∩ ϕ ϕ1 = ∅
stupid warning

Γ ` (C)e : nonproxy subtypes(C)C ; Γ′

MakeProxy
Γ ` e : nonproxy N ; Γ′

Γ ` makeproxy e : proxy N ; Γ′ CoerceExp
Γ ` e : Q N ; Γ′ e 6= x

Γ ` coerce e : nonproxy N ; Γ′

CoerceVar
Γ ` x : Q N ; Γ Γ = Γ′[x 7→ Q N ]

Γ ` coerce x : nonproxy N ; Γ′[x 7→ nonproxy N ]

` M ` CL

Method

x̄ : T̄ , this : nonproxy {C}C ` e : U U ≤ S
CT (C) = class C extends D { . . . ; . . . }

override(m, D, T̄ → S)

` S m(T̄ x̄) { return e; }
Class

K = C(T̄ ḡ, S̄ f̄) { super(ḡ); this.f̄ = f̄ ; }
fields(D) = T̄ ḡ ` M̄

` class C extends D { T̄ f̄ ; K M̄ }

Γ ` (Q, h) : T ` S : Γ

CheckNewQ
fields({C}C) = T̄ f̄ Γ(x̄) = Ū Ū ≤ T̄

Γ ` (Q,new C(x̄)) : Q {C}C
CheckStore

Γ ` S(x) : T T ≤ Γ(x) all x ∈ dom(Γ)

` S : Γ

` (S, e) : T

CheckState
` S : Γ Γ ` e : T ; Γ′

` (S, e) : T

Figure 9: FJQ: Typing



(S, e) → (S′, e′)

Transitions:

TransAnnot
(S,new C(x̄)) → (S ] {x 7→ (nonproxy,new C(x̄))}, x)

TransInvoke
S(x) = (nonproxy,new C(ȳ)) mbody(m, C) = (z̄, e)

(S, x.m(ȳ)) → (S ] {z̄ 7→ S(ȳ)}, e[this 7→ x])

TransField
S(x) = (nonproxy,new C(x̄)) fields({C}C) = T̄ f̄

(S, x.fi) → (S, xi)

TransCast
S(x) = (nonproxy,new D(ȳ)) D ≤ C

(S, (C)x) → (S, x)

TransLet
(S, let x = y in e) → (S ] {x 7→ S(y)}, e)

TransIfTrue
(S, if x = x then e1 else e2) → (S, e1)

TransIfFalse
x 6= y

(S, if x = y then e1 else e2) → (S, e2)

TransProxy
S(x) = (nonproxy, h)

(S,makeproxy x) → (S ] {y 7→ (proxy, h)}, y)

TransCoerce
(S ] {x 7→ (Q, h)}, coerce x) → (S ] {x 7→ (nonproxy, h)}, x)

Congruence rules:

C-CongruenceE
(S, e) → (S′, e′)

(S, e.m(ȳ)) → (S′, e′.m(ȳ))
(S, e.fi) → (S′, e′.fi)

(S, (N)e) → (S′, (N)e′)
(S, let x = e in e2) → (S′, let x = e′ in e2)

(S, if e = e1 then e2 else e3) → (S′, if e′ = e1 then e2 else e3)
(S, if x = e then e1 else e2) → (S′, if x = e′ then e1 else e2)

(S,makeproxy e) → (S′,makeproxy e′)
(S, coerce e) → (S′, coerce e′)

C-CongruenceBarE
(S, ē) → (S′, ē′)

(S,new C(ē)) → (S′,new C(ē′))
(S, x.m(ē)) → (S′, x.m(ē′))

Figure 10: FJQ: Operational Semantics


