
Tagged Sets: A Secure and Transparent
Coordination Medium

Manuel Oriol and Michael Hicks

University of Maryland, College Park MD 20742, USA,
{oriol,mwh}@cs.umd.edu,

WWW home page: http://www.cs.umd.edu/~{oriol, mwh}

Abstract. A simple and effective way of coordinating distributed, mo-
bile, and parallel applications is to use a virtual shared memory (VSM),
such as a Linda tuple-space. In this paper, we propose a new kind of
VSM, called a tagged set. Each element in the VSM is a value with an
associated tag, and values are read or removed from the VSM by match-
ing the tag. Tagged sets exhibit three properties useful for VSMs:
1. Ease of use. A tagged value naturally corresponds to the notion that

data has certain attributes, expressed by the tag, which can be used
for later retrieval.

2. Flexibility. Tags are implemented as propositional logic formulae,
and selection as logical implication, so the resulting system is quite
powerful. Tagged sets naturally support a variety of applications,
such as shared data repositories (e.g., for media or e-mail), message
passing, and publish/subscribe algorithms; they are powerful enough
to encode existing VSMs, such as Linda spaces.

3. Security. Our notion of tags naturally corresponds to keys, or capa-
bilities: a user may not select data in the set unless she presents a
legal key or keys. Normal tags correspond to symmetric keys, and we
introduce asymmetric tags that correspond to public and private key
pairs. Treating tags as keys permits users to easily specify protection
criteria for data at a fine granularity.

This paper motivates our approach, sketches its basic theory, and places
it in the context of other data management strategies.

1 Introduction

Computer users require means to store, share, retrieve, and compute data to
perform a myriad of tasks. Currently, these means are provided in different ways
in different settings, ranging from relational databases to file systems to indi-
vidual applications. To be useful, any data management approach must answer
basic questions concerning organization and security:

1. Is the data organized so that relevant information can be easily found? Is
the organizational model easy to use and understand?

2. Is the data protected from malicious tampering? Are the policies for doing
so flexible and easy to use?
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Relational databases are extremely flexible and optimized for concurrency,
fault-tolerance, and throughput. However, they can be difficult to use, particu-
larly in setting up and managing schemas. File systems are easy to understand,
and support flexible and intuitive security policies, but have a limited organiza-
tional capacity. Linda-style tuple spaces [4], and more generally virtual shared
memories (VSMs), have a simple and effective organizational strategy, but typ-
ical Linda spaces have limited support for security.

In this paper, we propose to manage data as tagged values forming part
of a tagged set. Our approach is inspired by the simplicity and power of the
many applications that use tagging as their organizational mechanism, including
Google Mail (GMail)1 and the iLife suite (iTunes, iPhoto, etc.).2

A tagged value is merely some data with attached meta-information specified
as a tag. Tags are typically used to organize data. For example, iTunes uses the
notion of a playlist to organize songs. A playlist is essentially a kind of tag, with
each song tagged with the playlist (or playlists) it belongs to, and perhaps the
order in which it should played for a given list. A photo album in iPhoto is a
similar idea. A file system can also be viewed as tagging system by considering
each directory name as a tag; a file “stored” in some directory d is tagged with d.
The richer the language for tags, the more organizational traits one can express.
In our approach, we encode tags as propositional logic formulae; selecting tagged
data from a set is done by logical implication. This approach is powerful enough
to easily construct the above examples, as well as to encode more structured
repositories, like Linda-style tuple spaces.

In our system, tags serve not only to organize data, but also to protect it
from unauthorized access. A tag corresponds naturally to the idea of a key (or
capability). A user may not select data in a tagged set unless she presents the
keys that protect it. Normal tags correspond to symmetric keys, and we intro-
duce asymmetric tags that correspond to public and private key pairs. Treating
tags as keys permits users to easily specify protection criteria for data at a fine
granularity. Like a file system, individual tagged values can have widely differing
access policies. We illustrate this idea by encoding a secure GMail, and extending
the Linda-space encoding to incorporate security tags.

Treating tags as keys naturally lends itself to a distributed setting, which
is important if tagged sets are to be used as a coordination medium between
cooperating applications. By literally using tags as cryptographic keys, we can
encrypt data to ensure it can only be read by the appropriate key holder. (As
expected, with asymmetric tags we can do this without requiring the host of the
tagged set know a user’s private tag/key.)

The contributions of this paper are as follows:

– We present a simple formalism for tagged sets (Section 2). The key novelty
of our approach is the use of propositional logic as the language of tags, and
logical implication as the means to select tagged data.

1 http://www.gmail.com
2 http://www.apple.com/ilife/
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– We show how tags can be treated as keys in order to protect data at a
fine granularity (Section 3). We prove a confidentiality theorem that loosely
states that one cannot select data protected by some tag t unless he is
in possession of that tag. Tags can be used as cryptographic keys, both
symmetric and asymmetric, for secure sharing over a distributed medium.

– We show how tagged sets compare to related approaches in terms of security,
flexibility, and performance (Section 4).

2 Tagged Sets

At the most basic level, data stored within a repository can be tagged with
attributes that describe the data. More formally, a repository is a multi-set of
pairs 〈τ, v〉, where each pair consists of a tag τ and a value v. We use the {| · |}
notation to clarify our use of multi-sets (which can contain more than one copy
of the same element).

As an example, consider an audio repository S containing 3 clips (clip1, clip2,
and clip3), each of which is tagged to indicate its genre, drawing from topics Jazz,
Classical, and Blues. If each clip falls squarely under one genre, we can tag them
as such:

S0 = {|〈Jazz, clip1〉, 〈Classical, clip2〉, 〈Blues, clip3〉|}

Naturally, a clip could be described by more than one genre. For example, if clip
clip1 is in genres Jazz and Blues, we could set up the repository as:

S = {|〈Jazz ∨ Blues, clip1〉, 〈Classical, clip2〉, 〈Blues, clip3〉|}

To select the clips belonging to a particular genre, we perform a selection
operation (designated ↓) on the repository. For example, to select the clips in
genre Blues, we would have:

S ↓ Blues = {|〈Jazz ∨ Blues, clip1〉, 〈Blues, clip3〉|} (1)

2.1 Selection as Logical Implication

We naturally think of selection as a kind of matching: to select with tag Jazz
yields those elements whose tags contain Jazz. However, by considering the selec-
tion tag and the data tags as propositions, we can view selection more generally
as a kind of implication: selecting tag t in set S yields those elements in S whose
tags τ are implied by t.

This notion is made precise in Figure 1, which gives the syntax and semantics
of tagged sets. A tagged set S represents a multi-set of tagged values. Sets are
defined by set literals {|〈τ, v〉|}, possibly modified by operators ∪, ↓, ↓n, −, and
−n, discussed below. Values v in these sets are drawn from the countably-infinite
set V ; their exact makeup is not important for our purposes. Tags are constructed
from tag literals t (drawn from the countably-infinite set T ), > (representing “all
tags”), and standard operators ∨ (“or”) and ∧ (“and”). (We do not have ¬ or ⊥
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Syntax:

tag literals t ∈ T
values v ∈ V
tags τ ::= t | τ ∨ τ | τ ∧ τ | >
tagged set S ::= ∅ | {|〈τ, v〉|} | S ∪ S | S ↓ τ | S − τ | S ↓n τ | S −n τ

Semantics:
D[[·]] : S → P(prop × V )
D[[∅]] = ∅
D[[{|〈τ, v〉|}]] = {|〈τ, v〉|}
D[[S1 ∪ S2]] = D[[S1]] ∪ D[[S2]]
D[[S ↓ τ ]] = {|〈τ ′, v〉 ∈ D[[S]] | τ ` τ ′|}
D[[S − τ ]] = D[[S]]−D[[S ↓ τ ]]
D[[S ↓n τ ]] = s iff s ⊆ D[[S ↓ τ ]] and |s| = n
D[[S −n τ ]] = s iff s ⊆ D[[S]] and |D[[S]]− s| = n

Fig. 1. Syntax and denotational semantics of Tagged Sets

as they would allow selections to violate a useful notion of confidentiality that
we introduce in the next section.)

The semantics is given as a semantic function D[[·]] which maps the syntactic
notion of tagged set S to a mathematical multi-set containing pairs of proposi-
tions and values. As described above, S ↓ τ denotes the set whose elements are
contained in S, but whose tags are implied by the selection tag τ , following the
rules of propositional logic. For example, in (1) above we have

S ↓ Blues = {|〈Jazz ∨ Blues, clip1〉, 〈Blues, clip3〉|}
since Blues ` Jazz ∨ Blues,

Blues 6` Classical and
Blues ` Blues

The inference rules for deriving judgments τ ` τ ′ are standard; they are pre-
sented with one extension in Figure 4 in the next section.

The syntax S1∪S2 denotes the tagged set that results from the combination of
tagged sets S1 and S2 (using multi-set union). S−τ denotes those tagged values
not implied by the selection tag. Finally, one can limit the results of a selection
or subtraction to n elements using the ↓n and −n operators, respectively. The
actual contents of the defined set are non-deterministically chosen.

We can illustrate ∪ and − with some additional examples. To define a refine-
ment of S that covers genres Jazz or Classical could be done with two selections,
and taking the union of the results:

(S ↓ Jazz) ∪ (S ↓ Classical) = {|〈Jazz ∨ Blues, clip1〉, 〈Classical, clip2〉|}

To select those documents that cover both genres Jazz and Blues, we can do one
of two things:

(S ↓ Jazz) ↓ Blues = {|〈Jazz ∨ Blues, clip1〉|}
S ↓ Jazz ∨ Blues = {|〈Jazz ∨ Blues, clip1〉|}
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To select those documents that cover genre Blues but not topic Jazz, we perform
a selection followed by a subtraction:

(S ↓ Blues)− Jazz = {|〈Blues, clip3〉|}

2.2 Playlists as Ordered Tuples

So far, we have not considered tags defined with ∧. These are interesting because
they effectively restrict selections: if a value has tag t1 ∧ t2, then it cannot be
selected with either t1 or t2 alone: t1 6` t1 ∧ t2 and t2 6` t1 ∧ t2.

We can use ∧ tags to extend our audio repository with playlists. A playlist
is essentially a tuple whose first element designates the first clip to be played,
whose second element designates the second clip, etc. Clips can belong to more
than one playlist. With tagged sets, we can designate clips clip1, clip2, and
clip3 as tracks one, two, and three, respectively, of playlist Favorites by defining
repository Sp as follows:

Sp = {|〈Favorites ∧ 1, clip1〉, 〈Favorites ∧ 2, clip2〉, 〈Favorites ∧ 3, clip3〉|}

To play the first track of Favorites, we select it with Favorites ∧ 1; to play the
second we select with Favorites ∧ 2, and so on:

Sp ↓ Favorites ∧ 1 = {|〈Favorites ∧ 1, clip1〉|}
Sp ↓ Favorites ∧ 2 = {|〈Favorites ∧ 2, clip2〉|}

(2)

To permit selecting all songs in a playlist, we can store the clips using a special
tag Any:

S′
p = {| 〈Favorites ∧ (1 ∨ Any), clip1〉, 〈Favorites ∧ (2 ∨ Any), clip2〉,

〈Favorites ∧ (3 ∨ Any), clip3〉|}

To select all of the songs in playlist Favorites, we simply do S′
p ↓ Favorites∧Any.

Of course, we can continue to organize songs by genre as well as by playlist:

S′
p = {| 〈(Favorites ∧ (1 ∨ Any)) ∨ (Jazz ∨ Blues), clip1〉,

〈(Favorites ∧ (2 ∨ Any)) ∨ Classical, clip2〉,
〈(Favorites ∧ (3 ∨ Any)) ∨ Blues, clip3〉|}

2.3 Tuple Sets with Linda-style Matching

We can formalize this basic encoding of tuples to include matching as in Linda-
style tuple spaces [4]. Consider the syntax of a simple language of tuple sets
shown in Figure 2. The basic operations on tuple sets T are similar to those
on tagged sets, but rather than performing selections based on a tag, the user
provides a pattern p. This pattern consists of either a value v or a wildcard ?
which matches any value. Subtraction with T−p is as with tagged sets: it defines
the set T ′ with all elements in T removed that match p.
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Syntax:

tuple u ::= (v) | (v, v) | (v, v, v) | . . .
pattern var a ::= v | ?
pattern p ::= (a) | (a, a) | (a, a, a) | . . .
tuple set T ::= ∅ | {|u|} | T ∪ T | T ↓ p | T − p | T ↓n p | T −n p

Semantics:
L[[∅]] = ∅
L[[{|(v1, . . . , vn)|}]] = {|〈n ∧

W
1≤i≤n(i ∧ vi), (v1, ..., vn)〉|}

L[[T1 ∪ T2]] = L[[T1]] ∪ L[[T2]]
L[[T ↓ p]] = L[[T ]] ↓ T [[p]]
L[[T − p]] = L[[T ]]− T [[p]]
L[[T ↓n p]] = L[[T ]] ↓n T [[p]]
L[[T −n p]] = L[[T ]]−n T [[p]]

T [[(a1, . . . , an)]] = n ∧
W

1≤i≤n(i ∧ ai) where ai 6= ?

Fig. 2. Syntax of Linda-style tuples, semantics via Tagged Sets

As an example, say we have the following tuple set which mentions the birth-
days of Alice and Bob:

T = {|(“birthday”, “alice”, 10, 29, 1991), (“birthday”, “bob”, 10, 4, 1993)|}

If we wanted to select all birthday records, we could do:

T ↓ (“birthday”, ?, ?, ?, ?) = {| (“birthday”, “alice”, 10, 29, 1991),
(“birthday”, “bob”, 10, 4, 1993)|} (3)

If we wanted only Alice’s birthday, we could do

T ↓ (“birthday”, “alice”, ?, ?, ?) = {|(“birthday”, “alice”, 10, 29, 1991)|} (4)

Conversely, we could define the set with an arbitrary birthday element removed:

T −1 (“birthday”, ?, ?, ?, ?) = {|(“birthday”, “bob”, 10, 4, 1993)|}
or {|(“birthday”, “alice”, 10, 29, 1991)|} (5)

The selections in Examples (3) and (4) are similar to what is possible with the
read(-) operator for Linda-spaces. Example (5) is like the Linda-space in(-),
which removes a single tuple from the space (as our language is declarative, we
actually define a new tuple set which lacks an element present in the original).
Section 3.1 presents communication commands which when combined with these
operators can be used to build traditional Linda spaces.

Tuple sets and their operations can be encoded using tagged sets. Shown
in Figure 2, the translation function L[[·]] maps tuple sets T to tagged sets S,
employing auxiliary function T [[·]] to map patterns p to tags τ . In the tagged
set, the tuple is stored as the value part of the tagged value (i.e., it is in V ),
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and the tag encodes its structure. The first part of the tag is the tuple length n;
to select a tuple of length n one must provide this length as a tag. The second
part is a union of tags, one for each element in the tuple. As with playlists, these
tags encode the position of the element i as tag i. In addition, we include the
element v itself as tag, so that we can match literal values present in patterns.
The resulting element tag is thus i∧ v. Selection patterns are encoded similarly,
except that when a ? appears in a pattern, it does not appear in the tag. This
way, it has no bearing on the selection (thus encoding its meaning as a “wild
card”). Note that we ignore the possible collision between the tags of indices (i),
the tag for indicating size (n), and integer values used as tags. Addressing this
problem would be straightforward.

Here are some examples that illustrate the translation:

Tuple sets Tagged sets
L[[{|(v)|}]] = {|〈1 ∧ (1 ∧ v), v〉|}
L[[{|(v1, v2)|}]] = {|〈2 ∧ ((1 ∧ v1) ∨ (2 ∧ v2)), (v1, v2)〉|}
L[[T − (v1, v2)]] = L[[T ]]− 2 ∧ ((1 ∧ v1) ∨ (2 ∧ v2))
L[[T ↓ (?, v2)]] = L[[T ]] ↓ 2 ∧ (2 ∧ v2)

Tagged sets are not rich enough to encode SQL-style or publish/subscribe
service queries, mainly because tags can only be used to match set elements; it is
not possible to, for example, treat a tag as an integer and then return all tagged
values whose tag is “greater than 1.” We are compare our approach more closely
to these systems in Section 4.

3 Secure Tags

If a tagged set is to be used in a secure, multi-user setting, it should allow users
to only reveal their data to others whom they trust. For example, a typical file
system labels a file with an access control list, specifying an effective list of users
and the operations they can perform on the file (e.g., read, write, delete).

A useful feature of tagged sets is that “user lists,” or more properly operation
system-style capabilities, can be encoded using tags. That is, a tag can be viewed
as a key, which means that to select a value, one must produce the key with
which it is locked. A value can be locked multiple times (using ∧) requiring the
selector produce multiple keys to unlock it. A value may have alternate access
points (using ∨) which permits unlocking with different key sets. This is similar
to Gifford’s sealed objects [6].

In the remainder of this section, we show how tags can form the foundation
of secure access control of shared data. We present a simple interface for shared
tagged sets that ensures confidentiality. Then we show how asymmetric tags
can be used to support public key-style encryption in tagged sets. Finally, we
consider how to provide secure, distributed access to a shared tagged set.
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3.1 A Shared Repository

Imagine we wish to define tagged sets that may be shared by processes within
an operating system. We extend our presentation so far in two ways. First, we
need a way to name a shared tagged set. Second, we must specify a list of
commands for manipulating named tagged sets that respects the confidentiality
policies of data stored in them; these policies are specified by tags. The syntax
and semantics of these changes is shown in Figure 3.

Shared tagged sets STS are tagged sets S extended to include variable names
x, whose semantics is simply to look up the tagged set named by x from a
global store. We designate this in the semantics D[[x]] as the function lookup(x);
elsewhere we use the function update(x, s) to designate updating the name x in
the global store to refer to multi-set s.

Commands cmd can be used by processes to manipulate shared tagged
sets: readτ (STS) reads (selects) data from a tagged set STS; addτ (x, STS)
adds the set STS to the named tagged set x (using multi-set union ∪), and
removeτ (x, STS) removes data in set STS from the named tagged set x (using
multi-set subtraction). Both add and remove operate by side-effect only, “return-
ing” the empty set ∅. We assume the implementation of commands is atomic.
Linda tuple spaces are essentially the combination of these commands with the
tuple encoding presented in Section 2.3.

STS ::= x | ∅ | {|〈τ, v〉|} | STS ∪ STS | STS ↓ τ | STS − τ
| STS ↓n τ | STS −n τ

cmd ::= readτ (STS) | addτ (x, STS) | removeτ (x, STS)

D[[·]] : STS → P(prop × V )
D[[x]] = lookup(x)
D[[STS]] = as in Figure 1 otherwise

C[[·]] : cmd → P(prop × V )
C[[readτ (STS)]] = D[[STS ↓ τ ]]
C[[addτ (x, STS)]] = let s = D[[STS ↓ τ ]] in

let = update(x, lookup(x) ∪ s) in ∅
C[[removeτ (x, STS)]] = let s = D[[STS ↓ τ ]] in

let = update(x, lookup(x)− s) in ∅

Fig. 3. Commands for manipulating shared Tagged Sets

The security of these commands is based on implication: to read, add, or
remove data having tag t from a shared set, the user must hold a “credential”
τ that implies t; the credential τ is presented as a subscript on each operation.3

Without requiring a credential, a user could use subtraction to extract elements
from a shared set for which she did not hold the tags. For example, say that x

3 While τ can be any tag, it is most useful as a capability list, having the form t1∧. . .∧tn.
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is bound to {|〈Jazz ∨ Blues, clip1〉, 〈Classical, clip2〉, 〈Blues, clip3〉|}, and the user
knows about the tag Classical. The user should thus only be allowed to read
the tagged value 〈Classical, clip2〉, since she does not know the names of the
tags on the other values. Indeed, readClassical(x − Classical) is ∅, whereas not
requiring a credential and just permitting the subtraction would have yielded
{|〈Jazz ∨ Blues, clip1〉, 〈Blues, clip3〉|}, violating confidentiality. Tag implication
has been defined so that only when a tag t appears in credential τ can t be
selected. Thus a user must “know about” a tag, and place it in her credential,
to be able to unlock values locked with that tag. We formally state and prove
this notion of confidentiality in the next subsection.

In this scheme, if the tag t is implied by the credential τ , then any data 〈t, v〉
can be added, removed, or read from the tagged set. We could encode richer
access rights for better control over these operations. For example, to provide
separate read and removal permissions, we could define special tags Read and
Remove; a value’s tag would be (Read∧τread)∨(Remove∧τremove). The semantics
of readτ (STS) would become D[[STS ↓ τ∧Read]], so as to verify against the τread
part of the tag, and removal would be similar. We would also have to ensure that
these special tags neither appear in credentials τ nor clash with normal tags.

3.2 Asymmetric Tags

Tags defined so far essentially correspond to symmetric keys: if the user can
produce the key, he can acquire the value. We can also easily extend our notion
of tag to model asymmetric keys, as are provided in public key cryptography.

Asymmetric tags are defined in pairs (k, k). As shown in the top right of
Figure 4, asymmetric tags are drawn from the countably-infinite set Keys and
extend our notion of tags τ . Tagging a value using an asymmetric tag k is
equivalent to locking it with an asymmetric key. To select this value requires
producing the opposite tag k. We do not consider how asymmetric tags are
generated; we only assume that if a tagged set contains data locked by some
tag k, then it has some way of knowing when the complement tag k is provided
during selection. We consider how to do this securely in a distributed setting
in the next subsection. By convention, we say k is the private tag and k is the
public tag.

The left side of Figure 4 shows the (slightly modified) inference rules for the
fragment of propositional logic that we use in our tagging system. As usual, Γ is
simply an ordered list of assumptions τ1, . . . , τn. The rules employ an additional
operator [·] that is the identity on symmetric tags, but the complement for
asymmetric ones. The operator is used in the assumptions of the (∨ELIM) and
(HYP) rules to enforce that k can only be implied by its complement k and vice
versa. This relationship is not transitive: having proven k, there is no way to
include it in the assumptions to prove k. If there were, it would allow the holder
of a public tag k to access data tagged with that tag, rather than only allowing
the holder of k to access it.
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∧INTRO
Γ ` τ1 Γ ` τ2

Γ ` τ1 ∧ τ2

∧ELIM1

Γ ` τ1 ∧ τ2

Γ ` τ1

∧ELIM2

Γ ` τ1 ∧ τ2

Γ ` τ2

∨ELIM
Γ ` τ1 ∨ τ2

Γ, [τ1] ` τ3 Γ, [τ2] ` τ3

Γ ` τ3

∨INTRO1

Γ ` τ1

Γ ` τ1 ∨ τ2

∨INTRO2

Γ ` τ2

Γ ` τ1 ∨ τ2

>ELIM

Γ ` >
HYP

Γ, [τ ], Γ ′ ` τ

k, k ∈ Keys

τ ::= . . . | k | k

[t] = t

[k] = k

[k] = k
[τ1 ∨ τ2] = [τ1] ∨ [τ2]
[τ1 ∧ τ2] = [τ1] ∧ [τ2]
[>] = >

Fig. 4. Proof system extended with asymmetric tags

We can now make our notion of confidentiality precise. We wish to ensure
that cmd operations do not provide or revoke access to data tagged with keys
not contained in the credential τ . This is ensured by the following theorem:

Theorem 1 (Confidentiality). If τ ` t, then t ∈ [τ ].

In a logical sense, this theorem simply states that to prove t, we have to know
about t in the first place; intuitively it “appears” in our assumption τ . In the
simplest case, if τ has the form t1 ∧ . . . ∧ tn, then exactly t1, . . . , tn appear in τ ;
only these tags can be proved by τ . Since all operations on shared tagged sets
must ultimately be filtered against the credential τ , we ensure that only data
whose tags appear in the credential can be manipulated. This theorem is proven
by structural induction on derivations τ ` t, aided by some simple lemmas on
the ∈ relation. A full definition of “appears in” (∈) is presented in Figure 5.

t ∈ t t ∈ τ1 ∨ τ2 iff t ∈ τ1 and t ∈ τ2

k ∈ k t ∈ τ1 ∧ τ2 iff t ∈ τ1 or t ∈ τ2

k ∈ k τ1 ∨ τ2 ∈ t iff τ1 ∈ t or τ2 ∈ t
> ∈ t τ1 ∧ τ2 ∈ t iff τ1 ∈ t and τ2 ∈ t

Fig. 5. Definition of t ∈ t′

A Secure Mail System As a simple example of the use of asymmetric tags,
consider a secure e-mail system that supports tagging for categorization, as in
GMail. When a mail is received for a particular user, it is tagged with her public
key. For example, if Daniel sends a private message to Bridget, it is locked with
her public key Bridget:

S = {|..., 〈Bridget, ”Y ou appear to have forgotten ...”〉, ...|}
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To retrieve her messages, Bridget selects using her private key:

S ↓ Bridget = {|〈Bridget, ”Y ou appear to have forgotten ...”〉|}

A message addressed to many users is simply tagged with their public keys:

S = {|..., 〈Bridget ∨Mark, ”Come home, I have jumpers for you two.”〉, ...|}

Either Mark or Bridget can be used to select the message.
Users can use the normal tagging system to organize their mail. For example,

Bridget could annotate the message from Daniel as a love letter:

S′ = {|..., 〈Bridget ∧ Loveletter, ”Y ou appear to have forgotten...”〉, ...|}

Multiple categories are of course possible, by annotating with tags of the form
(e.g.) Bridget ∧ (t1 ∨ t2 ∨ ... ∨ tn).

Encoding encrypted tuples. With asymmetric tags, we can support a simple
extension to our tuple language: tagging each tuple with a public key. We can
modify the syntax of tuples u and patterns p in Figure 2 to be as follows:

tuple u ::= k : (v1, v2, . . . , vn)
pattern p ::= k : (a1, a2, . . . , an)

Tuples now include the public key, and patterns must now specify the private
key to select the desired tuple. We modify our semantic functions to take these
changes into account:

L[[{|(k : (v1, v2, . . . , vn))|}]] = {|〈k ∧ (
∨

1≤i≤n(vi)), (v1, ..., vn)〉|}
T [[k : (a1, a2, . . . , an)]] = (k ∧ (

∨
1≤i≤n,ai 6=? ai))

While this is a simple extension of the tuple space encoding, we can encode
more complex systems, such as SecOS [15] or CryptoKlava [2].

3.3 Distributed Tagged Sets

To use shared tagged sets as a distributed coordination mechanism, we have
to protect the repository and the data it contains from malicious tampering.
We have two goals. First, tags/keys and the data they protect should not be
transmitted in clear text, to prevent snooping. Second, users should not have to
present their private tag/key to the database to retrieve data stored with the
public key. Here we briefly sketch how these goals might be achieved.

A client can communicate with a server hosting a shared tagged set using a
secure channel, in the style of the Secure Socket Layer (SSL)4. The client begins
by presenting the server with a credential τ of the form t1 ∧ . . . ∧ tn, but rather
than sending the actual tags ti, the client sends a public name for each tag. The
4 http://wp.netscape.com/eng/ssl3/
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mapping between the public name and the key must be known by both the client
and server; for example, the tag Red could have the name “Red.” This credential
is sent along with a random integer nu, both encrypted with the server’s public
key (to ensure that commands are not redirected to the wrong server). The server
maps the names to tags, and then challenges the user to prove he actually holds
tags t1 . . . tn by sending a message containing integers encrypted with each tag,
along with a nonce (to prevent replay attacks). The user decrypts these values,
and from them derives the value ns. The user sends the decrypted values back
to the server, which verifies they are correct.

At this point, both sides have a shared secret (nu,ns), and the server is satis-
fied that the user holds the keys in the claimed credential. Users send commands
encrypted with the shared secret, and the server evaluates the commands using
the verified credential τ .

Because we are treating tags as keys, the server should be careful about the
tags it returns with values selected by a read command. For example, if a shared
tagged set contains the value 〈Bridget∨Mark, ”Y ou appear to have forgotten ...”〉,
then Bridget can read this value using her public key Bridget. However, if the
server includes the tag Bridget∨Mark in the result, then Bridget can see Mark’s
private key! The simplest solution is to simply strip the tags at the server, re-
turning only a set of values (encypted by the shared secret), or else to use the
public names of the tags, rather than the tags themselves.

We can avoid the need for a secure channel for read commands by having
the server encrypt returned values using their tags. For each tagged value 〈τ, v〉
in the returned set, we return the value as the tuple (clear(τ), E[〈τ, v〉]), where
clear(τ) is a translation of τ with the keys replaced by their names, and where
E[.] performs encryption as defined below (similar to Gifford’s schema [6]):

E[〈>, v〉] → v
E[〈t, v〉] → {v}t

E[〈k, v〉] → {v}k

E[〈τ1 ∧ τ2, v〉] → (E[〈τ1, E[〈τ2, v〉]〉])
E[〈τ1 ∨ τ2, v〉] → (E[〈τ1, v〉], E[〈τ2, v〉])

The notation {v}t denotes encrypting v with key t. The user then maps back-
wards from the provided tag names to the actual tags to decrypt the returned
values.

4 Discussion

Tagged sets aim to organize and share data simply and securely. They bear re-
semblance to coordination spaces [4], relational databases [13, 7], semi-structured
documents [3], and publish/subscribe services [5, 14, 1], but differ chiefly in how
data is organized, selected, and secured.

Data Organization and Selection. Coordination spaces (e.g., Linda-spaces) orga-
nize data as tuples, which are essentially a fixed-length, ordered list of simple val-
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Table 1. Comparison of data selection and locking mechanisms

System k Data d ::= Queries q ::=

Linda v k | d ∨ d k | q ∨ q

Siena/Gryphon t op v k | d ∨ d k | q ∨ q

Elvin t op v k | d ∨ d k | q ∨ q | q ∧ q | ¬q

Tagged Sets t, k k | d ∨ d | d ∧ d k | q ∨ q | q ∧ q

Sealed Objects k k | d ∨ d | d ∧ d k | q ∧ q

ues. Relational databases and publish/subscribe (hereafter pub/sub) systems or-
ganize data as (unordered) labeled records; an example might be (what=alarm)
∨ (level=5). For databases, records are stored in tables, while for pub/sub they
are periodically published as events. Compared to these, tagged sets are rela-
tively semi-structured : while events and records typically adhere to a schema,
we place no restrictions on the form of tags.

As with tagged sets, these systems permit certain records/events/tuples to
be selected based on user queries. Linda-based queries were described in sub-
section 2.3. For pub/sub systems, queries are in the form of subscriptions, de-
fined as patterns meant to match subsequently published events. Subscriptions
in Siena [5] and Gryphon [1] mimic the structure of events where = can be re-
placed by a more general operator. For example, the subscription (what=alarm)
∨ (level < 7) matches the event presented earlier. Elvin [14] extends these sorts
of queries with other logical operators, approximating SQL-style queries used
in databases. Compared with tagged sets, coordination spaces are strictly less
powerful. Pub/sub systems have both more and less powerful selections: they
are more powerful in that they can select based on data, whereas tagged sets
only select on tags, but Siena and Gryphon are less powerful in that subscrip-
tions can only be specified as a list of attributes, like a record, whereas tagged
sets permit more general logical formulae.5 Elvin and typical databases allow
subscriptions/queries to include the ¬ (not) operator, which we have avoided for
security reasons, but can model using subtraction.

These results are summarized in Table 1 (along with a row for Sealed Objects,
described below). Selectable data d and queries over that data q are defined as
a combination of elements k. The systems are ordered by expressiveness: Linda-
spaces are the most simple, and Elvin (also representing databases) is the most
expressive. We have made notation uniform so that in all cases selection is defined
by logical entailment: query q selects data d iff q ` d (adjusted to take data and
relational operators into account for pub/sub systems).6

5 To select on data in a tagged set, we could duplicate the data as part of the tag.
6 This may be unintuitive at first: a query that says “select those records having both

the t1 and t2 tags” would be expressed as t1∨t2 since t1∨t2 ` t1∨t2 but t1∨t2 6` t1;
conversely, if we expressed the query as t1∧ t2, then we would have the undesirable
result t1 ∧ t2 ` t1. See Section 2.1.
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Generally speaking, the more expressive the system, the more expensive the
selection algorithm. For example, given a record and a subscription each with
m attributes, selection in Siena takes time O(m) (assuming set membership
can be implemented in O(1) time); this approach can be further optimized [1,
14]. By contrast, selection in Linda-spaces is cheaper, and selection in Elvin is
more expensive. The performance of tagged sets in part depends on how data
is encoded. For example, a simple approach (implemented in our current Java
prototype) is to store each tagged value in a collection, with each tag τ stored
in Conjunctive Normal Form (CNF):7

τCNF ::= c1 ∧ c2 ∧ . . . ∧ cn c ::= l1 ∨ l2 ∨ . . . ∨ lm l ::= t | k

Given selection tag q and a data tag d, both having the form τCNF , the impli-
cation q ` d holds whenever each literal li in each of the n conjuncts of d appears
in all of the n′ conjuncts of q. This can be decided in time O(n′nm), where m
is the maximum number of literals in each conjunct of d (again assume O(1)
set memberships). Pub/sub events and Siena-style subscriptions are degenerate
cases in which n and n′ are 1, yielding identical performance. A DNF-oriented
encoding would be more expensive in this degenerate case (essentially O(m2)),
but would perform better on a complementary set of queries (ones that use ∧
more heavily). A hybrid or adaptive encoding would be useful.

Security. Our notion of tags as keys for symmetric and asymmetric cryptog-
raphy is similar to Gifford’s Sealed Objects [6]. Sealed Objects are values en-
crypted/locked using a set of keys, which can be either combined with KeyAnd
and KeyOr, analogous to our ∧ and ∨. Like us, he supports asymmetric keys
(not shown in the Table). Unsealing an encrypted value requires presenting the
necessary held keys, specified as a conjunction.

In the original Linda model, security is implied by knowledge of the tuple
structure: only a correctly-specified pattern (in particular knowing the arity of
the tuple) can select the data [4]. A number of researchers have aimed to provide
stronger security guarantees, e.g., to prevent untrusted mobile applications from
illegally removing data from a Linda-space [10, 9, 17, 11]. These systems use a
variety of access control policies (applying to the entire repository or the actions
that might be performed) and verification strategies.

Several Linda-based approaches have similarly proposed to provide both se-
curity and easy selection. SecOS [15] provides the ability to match encrypted
tuples. SecOS values can only be encrypted by one key, whereas our use of
logical formulas provides many possible combinations of keys per value, with-
out inhibiting selection. CryptoKlava [2] encrypts tuple elements. Selection
requires an agent to select the tuple to decrypt it, and relies on the “good be-
havior” of the agents to put back the tuples that they cannot decrypt. The key
itself does not play any role in the initial selection. It is similar to the example
of encrypted tuples we showed in section 3. Finally, SecSpaces [8] extends the
7 As tags are simply propositional formulae, an arbitrary tag can always be converted

to CNF before it is stored in a tagged set.
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operations allowed on Linda spaces to include partitioning the tuple space based
on keys (possibly asymmetric) attached to tuples. These keys are treated as with
our ∨. After the partitioning, no entry is still encrypted when read, similarly to
proposal for distributed selection via secure channels.

Databases often provide fine-grained access control, to the granularity of
individual table elements (e.g. Oracle 10g [13]). Tagged values need not adhere
to a schema, so users can specify policies per object, rather than per relation.
Treating tags as keys also naturally supports storing or communicating data in
encrypted form [7].

In general, security in pub/sub systems is challenging and largely unexplored.
Our approach tackles one aspect of the problem: publication security [16]. In
particular, interpreting tags as cryptographic keys permits fine-grained control
over what parts of an event should be encrypted, without requiring point-to-point
communication. However, it reduces some “content queries” (e.g., is this event’s
alarm < 7) to “existence queries” (e.g., does this event have an alarm attribute),
placing more work on subscribers to perform filtering. Opyrchal and Prakash [12]
describe a means to implement dynamic access control lists within a pub/sub
system. Our approach embeds policy with the data, treating tags as capabilities.
Compared to access control lists, capabilities support more decentralized policies,
but make revocation more challenging.

5 Conclusions

This article presented tagged sets: a data management approach that relies on
tags based on propositional logic to lock and select values. The model is flexible,
intuitive, and supports fine-grained access control for individual data, as we have
shown with many examples. We believe it is a promising approach to organizing
and securing data, and for supporting distributed coordination.

For future work, we plan to explore data encodings and selection strategies,
drawing on results from pub/sub systems [1] and database systems. We are in-
terested further clarifying the relationship between tagged sets and databases
and pub/sub systems, with the hope of finding a useful and efficient encoding
in both directions, to support various applications. We are interested in under-
standing how tagged sets with cryptographic operations could be implemented
by peer-to-peer networks.
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