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ABSTRACT
Drones are breaking away from their role as recreational toys
and are emerging as trusted delivery systems and tools for law
enforcement. This new role makes them targets of midair attacks
for pro�t and vandalism. Despite tremendous advancement in
robotic navigation and control, drones are still vulnerable to
collisions with dynamic objects. While projectile detection and
direction-of-arrival estimation techniques are mature in theory
and fully functional in modern aircrafts’ defense systems, these
solutions could not make their ways to these resource-constrained
�ying robots. We envision to develop an ecosystem of lightweight
and low-power defense modules for small drones. This paper
explores the viability of this vision and as a proof of concept,
develops a single microphone-based acoustic sensing mechanism
capable of identifying the direction of approaching projectiles
thrown at the drone. Experiments on the developed prototype of the
sensing systems show perfect accuracy for detecting cases where
a dynamic object is about to hit the drone. The low latency of our
system detects an approaching object around 100 ms before the
event giving su�cient time for the drone to dodge it. Despite being
far from a complete defense solution, our prototype bolsters the
possibility of developing sensing-inferencing modules for extreme
resource-constrained scenarios.
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1 INTRODUCTION
Drones are now trusted with serious responsibilities. It has emerged
as a solution for the time-critical deliveries to the remote and
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Figure 1: A lightweight, low-power self-defense system for small
drones and other robotic vehicles.

unreachable location. Twenty percent of the medical deliveries
in Rwanda, Central Africa is now carried out by drones [4]. Fast
air delivery of packages to the doorsteps through drones [8, 12]
is just around the corner. Unfortunately, important and valuable
cargos make these unmanned vehicles vulnerable to en-route
attacks by criminals and thieves. On the other hand, neighborhood
surveillance police drones [11, 16] and recreational drones are
potential targets of vandalism [3, 5]. Despite their important
usages, drones are still defenseless even against thrown objects.
The slightest midair collision can disrupt its stability leading to a
crash. This paper envisions an ecosystem of defense mechanism
for these resource constrained systems.

An extensive set of techniques have been developed over the
past �ve decades to prevent attacks on aircrafts. Advanced radar
systems, Directed Infrared Countermeasure (DIRCM) systems, and
various other situational awareness technologies are perfected
to detect projectile attacks on commercial and military planes
and helicopters. However, their smaller counterparts, the drones,
are mostly defenseless. The best situational awareness system
a commercial drone is equipped with today is the proximity
sensor that can only detect large obstacles for �ight safety and
cannot detect speeding objects directed toward it. The primary
reasons that prevent drones from adapting the existing defense
technologies are the limited energy source, low weight carrying
capacity, and low onboard computational power. Unlike some
other drone-based applications, the self-defense mechanism cannot
depend on o�oading the data to a cloud server for computation.
Self-defense system will require extremely low latency which is
di�cult to achieve through cloud-based computation. As shown in
the Figure 1, we aim to develop onboard sensor-actuator modules
and small-footprint inferencing algorithms for a defense system for
drones.



This project is our �rst step toward a long-term research
commitment focused around developing low-latency
sensing-inferencing mechanism to defend autonomous systems
against high-speed dynamic obstacles and projectile objects. We
particularly target miniature robots and drones. Developing motion
detection techniques for such devices are challenging because of
three major reasons: (a) small form factor and low weight carrying
capacity limits size of the sensor, (b) limited onboard processing
power makes computationally expensive sensing techniques,
including vision based approaches, infeasible, and (b) limited
energy source discourages the use multi-sensor object detection
techniques.

An acoustic signal changes its frequency when it is re�ected o�
a moving object – a phenomenon known as Doppler shift. The
core idea of this paper lies in the observation that the Doppler shift
observed by a microphone depends on the object’s direction of
motion. We explore this idea further to �nd that it is possible to
infer whether the object is about to collide by simply tracking the
Doppler frequency on only one microphone. Unlike acoustic arrays
or radar, our system does not attempt to �nd the direction of arrival
of the object or its speed, it rather reports a one-bit information
about whether a nearby moving object is about to hit the sensor.
So, an acoustic sensing module mounted on a drone can instantly
detect if an object is approaching and whether it is a threat or
not. We develop our proof of concept prototype for low-power and
low-latency sensing system to prevent a projectile attack on drones.
While our primary application space is situational awareness in
drone while operating in hostile environments, these techniques
are equally capable in other robotic vehicles.

Needless to say, this paper is an explorative early attempt toward a
broader vision and hasmany limitations at this point. It sidesteps the
question of attacks from highly specialized systems like DroneGun
[6] or trained birds [2]. While the projectile sensing prototype
is operational as a standalone module for testing, we are yet to
incorporate it on a �ying drone. However, in this paper, we attempt
to identify the key challenges, develop independent solutions
for them, and most importantly assess the feasibility of enabling
self-defense techniques on tiny robotic vehicles. Overall, we explore
a new vision for sensing-inferencing research and share our early
�ndings with the community.

2 SYSTEM OVERVIEW
The primarymodule of the system is a low-power sensing technique
that detects if there is a dynamic object approaching the drone and
gives a binary output classifying the intention of the projectile –
meaning detecting whether or not the object will hit the drone. We
develop a low-power, low-complexity sensing technique to detect
this one-bit “hit” or “miss” information using awave property, called
the Doppler e�ect. Next, we describe the details of this ‘projectile
intention detection’ approach, starting with a brief tutorial on the
Doppler e�ect.

2.1 Doppler E�ect: Primer
Sound wave is a function of both time and space. Therefore, the
observed properties of a sound source, like the frequency, phase,

and amplitude, depends on the time of the observation and also
the relative location of the sound source and the observer (or the
microphone). When the source or the microphone move relative
to each other, the observed frequency appears di�erent from the
original frequency of the sound source. This change in observed
frequency depends on their relative speed and is called the Doppler
e�ect. The di�erence in frequency is referred as Doppler shift. The
observed frequency can be calculated using the following equation,
where fo and fs are the observed and source frequency values, and
�o , �s , and �sound are the velocities of the observer, source, and
sound respectively. The velocities�o and�s are considered positive
when the source and/or the observer moves closer to the other.

fo = fs
�sound +�s
�sound ��o

(1)

However, as shown in Figure 2, despite the static sound source
and microphone setup, the microphone can observe Doppler shift
due to nearby moving objects that re�ect the signal. The re�ector
behaves like a source of signal and the frequency is shifted twice,
once while traveling from the sound source to the moving re�ector
and then while traveling from the re�ector to the microphone.

Figure 2: Doppler frequency shift due to moving re�ector with
static speaker-microphone setup.

The total Doppler shift (�f ) is shown by the following equation.
Here, �r is the velocity of the re�ector which is the moving object
in this case.

�f = fs
2�r

�sound ��r
⇡ fs

2�r
�sound

[as �r << �sound ]

(2)

We use a similar static transmitter-receiver setup to detect the
doppler shift due to the approaching projectile.

2.2 Core Intuition: Motion angle from Doppler
The Doppler shift shown in Equation 2 considers the radial velocity
of the projectile object. It is often ignored in literature that the
shift in frequency also depends on the direction of the velocity. For
instance, if the path of the moving object makes an angle � with the
straight line joining the object and the microphone, the observed
doppler shift will be a�ected by only the radial component of the
velocity, i.e., �r cos(� ), as in the following equation.

�f = fs
2�r cos(� )
�sound

(3)



Observe that the radial angle is zero when the object is moving
straight toward the microphone, while for any other case this
angle increases exponentially. Figure 3 explains this observation.
Interestingly, the trend in this radial angle of a moving object can
be estimated by tracking Doppler shift in only one microphone. For
a constant projectile velocity, which is an assumption we relaxed
later, the Doppler frequency shift is inversely proportional to the
radial angle. As the angle increases the component of the velocity
toward themicrophone,�r cos(� ), decreases and so does the Doppler
frequency. When the object moves directly at the microphone, the
radial velocity is maximum as the angle is zero. Therefore, when
the projectile collides with the drone, we call a Hit, the Doppler
frequency remains constant over a time. On the other hand, in a
Miss case the frequency drops exponentially. A system that observes
the trend in the Doppler shift can identify an imminent collision
well ahead in time giving it an opportunity to react.

Figure 3: The di�erent trends in the radial velocities and the
Doppler frequencies when the projectile hits and misses the target.

We ran an experiment to verify our intuition with a collocated
speaker-microphone setup as a Doppler sensor while throwing
objects of various sizes at them. Figure 4 shows the trend in the
Doppler shift for a Hit and a Miss case when a toy bullet [10] was
shot at the sensor. Note that the strength of the received signal
depends on the cross-section of the re�ecting surface, i.e., the size
of the moving object. However, due to low noise at the inaudible
frequency bands, the plot shows prominent doppler shift even for
the small cross-section of the toy bullet (0.91 cm-square) in our
experiment.

We build on this core observation to develop a simple sensing
system that can detect if a projectile is going to hit the drone or
not. Obviously, key idea is to observe the Doppler frequency and
estimate the trend in radial angle from it, but it is challenging to do
so with minimum latency.

Figure 4: Spectrograms showing the doppler frequencies for two
cases when a toy bullet is shot. (a) In the �rst case, the bullet hits
the sensor, and (b) in the second case, it misses the sensor by twenty
centimeters.

2.3 The Basic Solution
Along with the radial angle, the other factor in the Doppler
frequency shift is the projectile’s velocity and in practice the
velocity changes (decreases) during the motion due to the
environmental drag [27]. Variable velocity makes it di�cult to
estimate the radial angle from the Doppler shift. As a solution,
we divide the �ight time in a series of consecutive time segments.
If time di�erence between two adjacent segments is �t , then the
Doppler shift in these segments can be written as:

�f (t) = fs
2�r (t)cos(� (t))

�sound

�f (t + �t) = fs
2�r (t + �t)cos(� (t + �t))

�sound

(4)

In the above equation, we select �t such that the change in the
object’s speed is negligible. Then the ratio of the Doppler shifts
in these segments gives the ratio of the radial angles as shown in
Equation 5.

�f (t + �t)
�f (t) ⇡ cos(� (t + �t))

cos(� (t)) (5)

This ratio of angle is basically the rate of change in radial angle,
we call this metric the radial drift. Clearly, a constant one value
for the radial drift over multiple segment pairs indicates a Hit case.
Ideally, any other value of this metric indicates a Miss. Although,
in practice it won’t strictly follow these values because of noise,
but Hit and Miss cases will have a separation in their radial drifts
providing a classi�cation opportunity.

As a proof of concept, we develop a Short-Term-Fourier-Transform
(STFT) based algorithm that applies Fast Fourier Transform (FFT) to
estimates the frequency spectrum of each segment. It then locates
Doppler frequency in them and calculates the radial drifts. Figure 5
shows the di�erence in the output radial drifts for a set of Hit and
Miss projectile intentions from our experiments.

2.4 Challenge: Latency
Continuous detection of projectile will require continuous
frequency estimation of the incoming signal that leads to hundreds
of FFT operations per second. FFT is an expensive operation. Apart
from super-linear computation complexity, its memory requirement
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Figure 5: The estimated radial drift metric using FFT-based
Doppler frequency tracking.

leads to frequent cache misses and page swaps increasing the
latency even further for small micro-controllers. In our design, we
attempt to reduce the computational complexity of the operations
by replacing the FFT-based frequency tracking problem with our
frequency translation-based approach.

2.5 Frequency translation
Imagine that the received signal is organized in consecutive
windows of bu�ers, and Buf_A and Buf_B are two of such adjacent
bu�ers. The Doppler frequencies of the signals in these bu�ers are
fA and fB respectively. The signals Buf_A and Buf_B are shown
below.

Bu f _A = sin(2� fAt), Bu f _B = sin(2� fBt) (6)

Following fundamental trigonometric rules, the time domain
multiplication of these two signals will result in a signal with
frequency components (fA+ fB ) and (fA� fB ). We use the following
formula to get an intermediate signal in Buf_C.

Bu f _C = (Bu f _A ⇥ Bu f _B)
= sin(2� fAt) ⇥ sin(2� fBt)
= 0.5cos(2� (fA � fB )t) � 0.5cos(2� (fA + fB )t)

(7)

Buf_C contains a fraction of the wavelength of the low frequency
(fA� fB )within its short bu�er length. This makes the time domain
signal in the bu�er asymmetric around zero and therefore the sum
of all sample values in Buf_C gives a non-zero output. Actually, in
case of aMiss, the di�erence frequency (fA � fB ) changes over time
and therefore the sample sum of Buf_C also varies. On the other
hand, in a Hit case, the doppler frequency remains constant (i.e.,
fA = fB ), which makes (fA � fB ) a non-oscillating DC component.
This results in a symmetric time-domain signal around a constant
DC bias in Buf_C and the sample sum gives a constant value. We
track the change in the sample sum of Buf_C to separate a Hit
projectile intention from a Miss. To capture this change in a metric,
we �rst estimate the absolute di�erence in the sample sums over
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Figure 6: The estimated radial drift metric using DopplerDodge’s
frequency translation algorithm.

time. A cumulative sum of the outputs increases over time for a
Miss, but remain close to zero for a Hit, as shown in Figure 6. This
an alternative representation of the radial drift with a di�erent span
of values.

3 EVALUATION
Our evaluations focus on assessing the performance of the projectile
intention detection module. We develop a stand-alone prototype
of this sensing-inferencing module and collected data for di�erent
design parameters.

Implementation
The hardware frontend of our prototype consists of a speaker
set and a microphone for generating the carrier frequency and
recording theDoppler frequency.We tested the performance for two
di�erent types of carrier frequencies (fs ) – near-ultrasound 18 kHz
and ultrasound 40 kHz. The 18 kHz frequency can be generated from
regular speakers and we used piezo-electric ultrasound transducers
for the 40 kHz tone. Although designed for applicationswith audible
sounds, ADMP-401 MEMS microphones [1] have response over
a wide range of frequencies (from 0 to 90 kHz) as observed in
our past research [21–23]. Therefore, we used this microphone
for experiments with both the carrier frequencies. We sample the
pre-ampli�ed analog output of this microphone using Keysight
U2331A Data Acquisition System [9] and process the signal on a
laptop.

Experimental setup
During the data experiments, we throw objects of various sizes,
and shapes from 4 meters of distance toward the DopplerDodge
sensor from di�erent angles and at di�erent speeds. In the Hit
cases, the object either hits the sensor or lands within 10 cm
from the microphone. For the Miss cases, we throw the objects
such that it misses the sensor by a speci�ed distance – we call
‘missed-by distance’. Next we report our performance for each of
these scenarios.



Performance: Detection accuracy
We plot the classi�cation performance of the system using our
low-computation frequency translation algorithm in Figure 7.
Figure 8 show the performance with the FFT-based frequency
tracking algorithm for comparison. As desired, both the algorithms
perfectly identify all true cases of Hits. However, when the
projectile misses the sensor by closer distances, they show some
misclassi�cation errors and falsely identify it as a Hit. This is
because we tuned the system to avoid any false negatives for the
Hit cases, which is a more expensive error compared to the reverse.
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Figure 7: The performance of the projectile intention classi�cation
using DopplerDodge’s frequency translation algorithm.
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Figure 8: The performance of the projectile intention classi�cation
using FFT-based Doppler frequency tracking algorithm.

Performance: Computational latency
The FFT-based algorithm shows better accuracy at the expense
of more computation, while our algorithm detects the event
faster leaving time for the drone to move. Figure 9 compares the
latency of these two algorithms for di�erent bu�er length. Our
frequency translation algorithm completes the computation around

50% faster. The absolute value for the latency may di�er when
the algorithms run on a small micro-controller, but in that case
frequency translation technique likely to work even better for its
low space complexity. Note that the bigger bu�er length gives faster
processing but leads to a poor time resolution. The system waits
longer to �ll in the bu�er wasting time when the projectile is in
�ight. Therefore, an implementation of the proposed system should
�nd the optimal bu�er length for its target application.
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Figure 9: The computational latency for di�erent bu�er lengths
in (a)FFT-basedDoppler frequency tracking, and (b)DopplerDodge’s
frequency translation algorithm.

4 RELATEDWORK
The fundamentals of moving object detection and projectile
tracking system are deeply rooted into the rich literature of
the wave theory [28], radar technology [25, 26], and acoustics
[14, 17]. Applications of these ideas in robotic navigation is also
not new [13, 18, 29]. Many recent works in mobile computing and
cyber-physical systems have also adapted these core principles
in various forms. For instance, WiSee [20] exploits doppler in
OFDM signals to recognize human gestures. Soundwave [15]
and FingerIO [19] uses microphone and speakers to detect hand
and �nger gestures. DopplerDodge explores a unique direction
to develop an ecosystem of sensing and control techniques
for situational awareness and defense in resource-constrained
robotic vehicles. Probably the closest to our work is EVDodge
[24], that develops a deep learning-based solution for dynamic
obstacle avoidance using event cameras on a quadrotor. Apart
from the strict lighting constraints and power requirement of
the camera, processing each the multidimensional image frame
through the neural-network algorithms takes signi�cant portion
of the onboard processing cycles. While targets the same problem
as DopplerDodge, clearly this camera-based solution di�ers from
our motivation of developing low-power, low-computation, and
lightweight solution for drone’s self-defense.

5 DISCUSSIONS
This paper is an initial step towards a broader vision. A substantial
amount of work is part of our ongoing and future research plans.
We discuss a few signi�cant points here.



Adversarial attacks: DopplerDodge is based on acoustic sensing
techniques and therefore susceptible to jamming attacks. Moreover,
an equipped adversary can sendmodulated signal to spoof projectile
attacks for disrupting the drone’s normal �ight path. We are set
to explore a pseudo-random frequency hopping technique and a
jamming detection logic to deal with such adversarial attacks.

High-speed projectiles: Dynamic obstacle detection systems,
including the camera-based solutions and DopplerDodge, cannot
detect very high-speed projectiles (e.g., bullets of �rearms). Acoustic
sensing-based techniques face additional challenges as the speed
of such projectiles can be comparable to that of sound waves.
However, in the state-of-the-art defense systems for drones the
primary bottleneck is the computation latency. Despite the slow
speed of sound, DopplerDodge shows the possibility to have better
lookahead time than the camera-based systems. Of course, the core
principle of its projectile intention detection technique can be used
with RF signals, which are signi�cantly faster than sound.

Detection range: The maximum range of a signal re�ection-based
technique depends on the attenuation factors of the signal. Our
prototype is evaluated to detect thrown objects from a distance
of four meters, allowing small drones su�cient lookahead time
to maneuver. Commercial low-cost ultrasound devices are known
to function from a distance of over 30 meters for re�ected signals
[7]. We believe a professional implementation of our technique can
o�er a longer detection range.

Estimating optimal motion path: Detecting Hit and Miss cases
are su�cient for small and agile drones that can quickly move in
a random direction to avoid the collision. However, bigger drones
have higher inertia and take longer to move. Once the attacking
projectile is detected, bigger drones will need to estimate an optimal
motion path to utilize available time for a successful dodge. For
the motion planning, the drone needs to know the direction of the
incoming object. While a one-microphone system can detect the
projectiles’ intention, it cannot �nd the spatial direction of arrival
of the object. We plan to build on the current system to explore
low-power sensing techniques to address this problem.

6 CONCLUSION
This paper explores the vision of developing low-power
sensing-inferencing modules to enable a way of self-defense in
resource-constrained robotic vehicles and drones. As a proof of
concept, we designed a low-power acoustic system to detect thrown
objects at the drone. While there are many scopes for improvement,
evaluation of our prototype shows promise. We believe that this
research direction can mature to a complete defense solution to
such lightweight unmanned aerial systems.
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