Objective

- Road accidents are a major cause of human fatalities (1.2 million fatalities each year).
- We design a driver assistance system that uses location data and dashboard camera feed. Edge computing on smartphone and local processing on Raspberry Pi combine to alert drivers and nearby vehicles of potential collisions with pedestrians and other vehicles at intersections.
- Each vehicle uploads its location sensor data to smartphones when it is near an intersection (over wireless networks). Cloud platform uses the vehicular locations to predict potential collisions at intersections and send alerts to drivers ahead of time.
- Optimized local processing on dashboard camera video feed detects pedestrians in collision trajectory in real time.
- We benchmark wireless network latencies and traffic densities when such collaborative driver assistance is feasible using edge/cloud computing framework.

System Design

Sensing on vehicle. On-board camera detects pedestrians at 9.8 fps using Raspberry Pi. DRIZY mobile application infers speed and location attributes of the vehicle.

Alerts. Smartphone application or Raspberry Pi generates different sound alerts for potential collisions to pedestrians and other vehicles.

Vehicle-to-vehicle collisions at road intersections

Each vehicle that enters an accident blackspot uploads its GPS coordinates via a smartphone application to the cloud database. The database maintains an optimized hierarchical structure of accident blackspots, associated roads, the vehicles and their attributes.
- Speed of car, Latitude, Longitude
- Direction of vehicle
- Road Number

Sensing on road intersections: Edge-computing on smartphone only uploads GPS coordinates to the relevant accident blackspot in cloud database.

Cloud server uses these attributes in database to predict potential collisions in a blackspot every few seconds and alerts the vehicles on a probable collision trajectory.

Vehicle-to-pedestrian collisions

Accident blackspots. Accident prone areas whose GPS coordinates are known to the server. Cloud server. Cars are dynamically assigned to clusters in the vicinity of each accident blackspot. Each cluster uploads vehicular data to the cloud database. The server then predicts potential vehicle-to-vehicle collisions at road intersections and sends alerts to concerned vehicles.

For vehicle-to-vehicle collisions, edge computing on the smartphone application processes location sensor data to identify accident blackspot cluster so that the cloud database only predicts collisions within each blackspot, reducing processing latency at the server. For vehicle-to-pedestrian collisions, edge computing on the embedded platform optimizes processing of the video feeds to enable pedestrian detection in real-time. Under wireless network latencies, evaluation suggests that DRIZY is feasible in low and medium traffic density conditions.

Summary and conclusions