
Algorithm and
Complexity Issues in
Discrete Multistage Games

Michael L. Littman

Rutgers University
Department of Computer Science
Rutgers Laboratory for Real-Life Reinforcement Learning

Simple Game: “Sharks”
6x4 grid, two players (with directionality)
Movement: Step forward, option of turning

right or left (or no turn).
Lose on your turn if facing a wall or your

opponent.

“Sharks” Robot

Class of Games Considered
Finite states: Position on the board matters, history does

not (Markov property).
Finite actions: Agents’ decisions from finite set of choices

(say forward, turn left 90 degrees, stop).
Discrete time: Decisions take place in rounds.
Stochastic transitions: Actions (like turn) change state,

but not deterministically (perhaps a wheel slips).
Perfect observations: State perceived by all players.
Objective: Maximize total discounted expected reward.

Formal Models (Zero-sum)
Stochastic Game
• S: finite set of states (starting state s0 ∈ S)
• A1, A2: finite sets of actions for the two players.
• Pr(s’|s,a1,a2) probability of state s’ ∈ S after joint

action choice for the two players from state s ∈ S.
• R(s,a1,a2): one-step reward for first player after joint

action choice in state s (opponent: 1–R(s,a1,a2)).
“Alternating” Game: For all s, a1, a2, s’, a’ either

– Pr(s’|s,a1,a’) = Pr(s’|s,a1,a2), R(s,a1,a’) = R(s,a1,a2) , or
– Pr(s’|s,a’,a2) = Pr(s’|s,a1,a2), R(s,a’,a2) = R(s,a1,a2)

MDP (One-player game): For all s, a1, a2, s’, a’
– Pr(s’|s,a1,a’) = Pr(s’|s,a1,a2), R(s,a1,a’) = R(s,a1,a2)

Solution Concept: Minimax
Algorithmic problem:
• given game (S, A1, A2, Pr, R)
• find a strategy for selecting actions (policy)
• that maximizes total expected discounted

reward (value): Σt γt R(st,a1
t,a2

t)
• assuming opponent knows the strategy and

chooses actions to minimize value.
Helpful fact:
• There is a stationary optimal policy: π*(s).

Complexity Concerns
Assume rational-valued transitions, rewards.
Stochastic Game
• optimal value, policy can be irrational (Vrieze 87)

• approximations feasible, though
“Alternating” Game
• optimal deterministic stationary policy
• optimal value always rational numbers
• in NP ∩ co-NP, not known to be in P (Condon 93)

MDP
• P-complete (Papadimitriou and Tsitsiklis 87)

Deterministic Models
Pr(s’|s,a1,a2) = 0 or 1 Stochastic Game

“Alternating” Game: Open (Zwick & Paterson 96)

MDP: in NC (P & T 87), O(|A||S|3) (Littman 96)

(Littman 96)

Planning in Markov Models

Basic idea, need to know value of s0:
Total expected discounted reward of best
policy starting from state s0.

“Simple machines” of Markov model planning:
• Search: Create a tree of possible sequences.
• Simulation: Use weighted sampling to

handle stochastic transitions.
• Dynamic programming: Calculate value

from all states in S simultaneously.
Can be combined in various ways.

Evaluation Example: Coinopoly

Start at “Go”. Flip: heads move 1, tails 2. Reward
based on landing space. “Go To Jail” (“tails” to get
out). Before each move, game terminated with
probability 0.02 (γ=0.98).

MONOPOLY® is a trademark of Parker Brothers.
(COINOPOLY isn’t.)

Search

Expand tree out from start state, sum values up tree.

Search: Analysis
Strengths:
• Simple.
• Focus computation on reachable states.
• Combines well with heuristics.
Weaknesses:
• May consider the same state multiple times

(resulting in a huge search tree).
• Results in an approximation for cyclic models.

Search: Running Time
Given a discount factor of γ, expanding tree to

a depth of
D = O(1/(1-γ) (log(1/(1-γ))+log(1/ε)))

is sufficient to get an ε-optimal policy.
If B is the branching factor, then O(BD) time is

sufficient for near-optimal decision making.
Note: No dependence on |S|.

Simulation
Run it m times, take the average.
• 5 7 1 3 3 1 3 3 1 3 3 3 1 3 1 3 1 2 4 5 6 8

2 3 9: 100
• 5 6 8 1 2 4 5 7 1 3 1 3 9: +200
• 5 7 8 2 3 1 3 9: -50
• 5 7 8 2 9: +50
• 5 6 7 1 3 3 3 3 1 3 1 2 3 3 1 2 9: -250
• ...
1,000 times, mean: +269.65.

Simulation: Analysis
Strengths:
• Simple.
• Focus computation on likely reachable states.
• Can get good approximation with little work.
• Applicable without explicit transition probabilities.
• “PAC”-style guarantees with tail bounds.
Weaknesses:
• Only approximate guarantee.
• May require many samples.
• Somewhat wasteful of data.

Simulation: Running Time
From Hoeffding bounds, m = O(1/ε2 log(1/δ))

samples sufficient to estimate a random
quantity to within an accuracy of ε with
probability 1−δ.

To get an approximate value, each sample
should be D steps, so m D time altogether.

Note: No dependence on |S| or branching
factor B. However, fails with some prob.

Dynamic Programming
Fundamental idea: Instead of just the value of

the start state, we find the value of all states
(the “value function”).

Insight: By the linearity of expectations,
V(s) = Σs’ in S Pr(s’|s) γ (R(s’) + V(s’))

System of simultaneous linear equations.

Dynamic Programming: Analysis

Strengths:
• Calculation exact even for cyclic problems.
• Calculation is relatively efficient.
Weaknesses:
• More complicated to represent & compute

values.
• Can ‘‘overcompute’’ in that values are

computed for states that don’t matter.

Dynamic Prog.: Running Time
Using Gaussian elimination, solution found in

O(|S|3).
Note: Big dependence on |S|, but exact

answer and no branching or γ dependence.

Extending to Games
The evaluation problem doesn’t deal with

decision making.
We’ll next discuss more complex decision

making using a more general game
scenario.

Grid Soccer Example
N,S,E,W,X; lose ball if hit other; order randomized

Soccer Dilemma

What should A do in this situation?
Depends on what B will do!

Randomness Can Help

If A chooses N with probability .2 and E with .8:
• B goes E: 0.2
• B stays put: 0.2
Any other choice for A does worse.
Equivalent to LP; solvable in P (Khachiyan 79).

Bellman Equation for Games
Stochastic Game
For all s ∈ S,

Q*(s,a1,a2) = R(s,a1,a2)+ γ Σs’ ∈ S Pr(s’|s,a1,a2) V*(s’)
V*(s) = maxρ ∈ Π(A1) mina2 ∈ A2 Σa1 ∈ A1 ρ(a1) Q*(s,a1,a2)

The ρ that achieves the max in s is the optimal choice.
“Alternating” Game

V*(s) = max a1 ∈ A1 Q*(s,a1,a2), or
V*(s) = min a2 ∈ A2 Q*(s,a1,a2)

MDP
V*(s) = max a1 ∈ A1 Q*(s,a1,a2)

Value Iteration
Use approximate values to improve approximation.
Let V0(s) = 0 for all s ∈ S.
Let t=1.
Do {

For all s ∈ S, a1 ∈ A1, a2 ∈ A2,
Qt(s,a1,a2) = R(s,a1,a2)+ γ Σs’ ∈ S Pr(s’|s,a1,a2) Vt -1(s’))

For all s ∈ S,
Vt(s) = maxρ ∈ Π(A1) mina2 ∈ A2 Σa1 ∈ A1 ρ(a1) Qt(s,a1,a2)

t=t+1
} Until (maxs |Vt − 1(s) − Vt − 2(s)|≤ ε)

Value Iteration Analysis
Stochastic Game
After D iterations: Vt −2(s0) ≈ Vt −1(s0) ≈ V*(s0).
Each iteration:

|S|2 |A1||A2| + |S| poly(|A1|,|A2|)
So, an ε-optimal policy can be found in time

poly(|S|,|A1|,|A2|,1/ε,1/(1−γ)).
“Alternating” Game, MDP
Optimal value polynomial-precision rational, there is

an ε for which the policy is exactly optimal.
Overall: poly(|S|,|A1|,|A2|,1/(1−γ)).

Linear Programming
To express:
V(s) = maxa (R(s,a) + γ Σs’ ∈ S Pr(s’|s,a) V(s’))

for s ∈ S.
V(s) are vars. “Max” is smallest upper bound.
min V(s) Σs V(s)
 V(s) ≥ R(s,a) + γ Σs’ ∈ S Pr(s’|s,a) V(s’)) for s,a
Can be implemented to run in polytime (in

number of bits) (Khachiyan 79).

Beyond Zero-sum
Personal philosophy: Nothing in life is zero-sum.
• War: Can win a war and lose the peace.
• Baseball: Can win a game, but damage the

sport.
• Family dynamics: Can win the argument, but

wreck the relationship.
The art of the deal is finding the win-win.

Simple General-Sum Example

A B

U, D, R, L, X

No move on collision

Semiwalls (50%)

-1 for step, -10 for
collision, +100 for goal,
0 if back to initial config.

Both can get goal.

(Hu & Wellman 01)
Grid Game 2

A B

XX

Strategies in Grid Game
Average reward:

– (32.3, 16.0) , C, S
– (16.0, 32.3) , S, C
– (-1.0 , -1.0) , C, C
– (15.8, 15.8) , S, S
– (15.9, 15.9) , mix
– (25.7, 25.8) , L, F
– (25.8, 25.7) , F, L

What’s the Right Strategy?
Assume the worst (minimax): side.
Assume the best: center.
Assume other agent will adapt: center
Watch other agent and choose: opponent

modeling.
Other ideas?

Nash Equilibrium
Choose strategies so no incentive to switch.

Joint best response.
Corresponds to (joint) minimax in zero-sum

case.
GG2: A side, B center; A center, B side;

symmetric.
How would we find such a thing? DP,

simulation, search?

Failed Analogies to Zero-sum
In the general-sum case:
• optimal value function need not be unique.
• multiple incompatible policies for the same value

function.
• value-iteration style algorithm doesn’t converge.
• equilibrium can require randomization even in

deterministic “alternating” case! (Zinkovich)

• no efficient algorithm known

Active area of research. One result: In repeated case,
use threats to stabilize simple strategies. Builds on
the zero-sum solutions (Littman & Stone 02).

Other Models to Know
• RL: Reinforcement learning, trying to find

good behaviors without knowledge of
transition and reward functions.

• POMDPs: Partially observable MDPs, agent
doesn’t know the current state (sensors).
– exact incomputable, can approximate with VI

• D-POMDPs: Distributed POMDPs, set of
agents, shared reward function, distributed
knowledge and action!
– way hard

Other Approaches to Know
• RTDP, reinforcement learning, neuro-dynamic

programming : simulation + DP (Barto, Bradtke & Singh,
93; Bertsekas & Tsitsiklis 96)

• sparse sampling: simulation + search (Kearns, Mansour
& Ng 99)

• envelope methods: search + simulation + DP (Tash &
Russell, 94; Dean et al. 93)

• heuristic search: search + background knowledge
(Hansen & Zilberstein, 99).

• policy search (Jaakkola et al., 93; Baird & Moore, 99;
Meuleau et al., 99; etc.)

• hierarchical representations (Parr; Sutton, Precup &
Singh; Dean & Lin; Dietterich 00; etc.)

Parting Thoughts
• Stochastic games (and variants) provide

analytically tractible formal models for
adversarial decision making

• Search, simulation, dynamic programming
are the basic algorithmic ideas.

• More realistic problems can be solved
building on these models and ideas.

CFP, MLJ special issue: “Special Issue on Learning and
Computational Game Theory” with Amy
Greenwald.

