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Markov Decision Process (M DP)

I. state space,;

A: action space,;

A(z): action set available at state i;
p(z,a, 7). transition probabilities;

© o o o o

ri(¢,a): one-step rewards.

For a stationary policy, a selected action depends only on
the current state. We also consider randomized stationary
policies. General policies may be randomized and depend
on the past.
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| ntroduction

® Consider a problem with K + 1 criteria
Wo(m),Wi(m),...,Wgk(m), where « is a policy. A natural
approach to dynamic optimization is

maximize Wy ()

subject to
Wi (m) > Ch, k=1,..., K.

® For K > 0 this approach typically leads to the optimality of
randomized policies with the number of randomizations is
limited by the number of constraints.

® [or unconstrained problems (K = 0) there exists a
nonrandomized stationary policy. This policy is usually optimal
for all initial states.
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Performance Criteria

The most common criteria are:

# EXxpected total rewards over the finite horizon.

#® Average rewards per unit time.
#® EXxpected total discounted rewards.

Let r.(i, a) be the one-step reward for criterion k if an action

a 1S used In state ;.

Expected total rewards over N steps:

N-—-1

Wi(io, m, N) :=EL Y rg(is, az),
t=0

where i Is the Initial state and = is the policy.
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Performance Criteria: Continuation

Average rewards per unit time:

: .. Wk (i07 T, N)
W =] f .
k(o ™) :=lim in N
Total discounted rewards:
Wk(l(),ﬂ') — EZ) Zﬁtrk(ltaat>a
t=0

where § € [0, 1) is a discount factor.

In some problems, the initial state is given by an initial
distribution x. Similar criteria can be considered for
continuous-time problems.
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L P Formulation

maximize S S ro(i,a xm

ZEI aEA (4)

subject to

Z Tia— B Y pliai)zia = pnlj),

acA(j 1€l ac A7)

S: S: Tk(iaa)$i,a > Cy, E=1,...

1€l acA(i)

Tia > 0, rel, ae A).
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Optimal policy

2

Tia/ Y. Tib, If the denominatior is positive;
qﬁ(a‘@') =5 be A(17)
\ arbitrary, otherwise.

Interpretation: x; , are so-called occupation measures,

oo
Tig = Efj Zﬁtl{it =1i,a; = a}.

t=0

For average rewards per unit time, x; , are state-action frequencies,

| N—
wi,a—hmﬁ Z {ir =1,a; = a}.
t=0
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Number of Randomizations

Let Rand(¢) be the number of randomizations for a
randomized stationary policy ¢,

Rand(¢) =) {—1+ Z I{é(ali) > 0} }.

el ac€A(i

Then
Rand(¢) < K, (1)

where K Is the number of constraints.

o For finite I, (1) follows from the LP arguments ( Ross
1989).

# For countable I: F & Shwartz (1996) (Borkar 1992 for
average rewards per unit time).

# For uncountable I: an open problem.
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Constrained MDPs and problemsin adversarial domains

# Constrained MDP is a nice model for problems in
adversarial domains because of optimality of
randomized policies. It is natural for problems in
adversarial domains to keep the randomization index as
large as possible.

# This leads to new problem formulations.
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F'scurrent research directionsrelevant to MDPs

® Continuous time MDPs:
® Non-atomic discrete-time MDPs;:

# Applications to inventory control, discrete optimization,
gueueing control, ...
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Continuoustime MDPs

® The time Is continuous and an action a selected In state
i defines a vector of transition intensities (i, a, j) > 0,

i # J.
® Letq(i,a) =) .49 a,]).
® If ¢(i,a) = 0 then i Is an absorbing state.

» Otherwise, the system spends on average ¢! (i, a) units
of time in state ¢ and then moves to j # ¢ with the

probability p(i, a, j) = q(i,a, j)/a(i, ).
# There are reward rates r;(i,a) when the system stays in

state ¢ and instant rewards Ry (i, a, j) when the system
jumps from state : to state j.

# Major motivation: control of queues and queueing
networks.
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Continuoustime MDPs: Switching policies

® Let x be the LP solution and
A () = {a € Ali) : 20 >0} = {a(i,1),....a(i,n(i,2))}.

® Let Sy(i,z) =0. Forl{=1,...,n(i,z), we set

n(i,x)

se(i,2) = —(a+ q(i,a(i, €))7 In(1 — 240300/ Z Tia(i,g))

=t
and Se(i,x) = Sp_1(i,x) + s¢(i, x).

#® Optimal switching stationary policy .

a(i, 0),if Ap(i) £ 0 and S;_1(i,x) <t < Se(i, z);

arbitrary action a, if A,(i) = 0.

¥(i ) =
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Optimality of switching policies

Change of intensity between jumps is equivalent to
randomized decisions at jump epochs.

# Consider two independent Poisson arrival processes 1
or 2 with positive intensities A1 and ).

# At each epocht € |0,00], an observer can watch either
process 1 or 2. The process stops when the observer
sees an arrival.

# A policy 7 is a measurable function = : |0, 00|— {1,2}.
s Letpl, 1 = 1,2 be the probability that the first
observed arrival belongs to process ..

s Let ¢ be the time when an observer sees an arrival
for the first time. In other words, p; = P{n (&) = }.
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Optimality of switching policies

Let & be the time that process : has been watched before
the first detected arrival, £ = & + &9,

§
6 /0 I{r(t) = iYdt.

® Lemmal pi = N IEE;.
# Remark 1 p; and E¢&; depend on the policy =

® Remark 2 If w(t) = 1 for all t, we get E¢; = 5 - the
mean of an exponential random variable.

Selecting intensities A1 and A\, randomly with the
probabilities p; and py respectively yields the same average
characteristics as selecting intensity A; during time

T = —X;'In(1 — p1) and then switching to ..

Participation in the PanelMDPs: Al versus ORWorkshop on Decision Making in Adversarial DomainsGreenbelt, MD — p. 14/



Non-Atomic M DPs

# |f the state space is uncountable, we denote it by X
Instead of /. In this case, we use the notation p, ,(Y")

Instead of p(i, a, j). Let the initial distribution ; and
transition probabilities p, , be non-atomic; i.e. u(z) =0
and p, .(y) = 0 for all states x,y and for all actions a.

# Then for any policy 7 there exists a deterministic policy
0) such that Wk(u, gb) — Wk(,u,w), k=0,1,..., K.

# F and Piunovskiy (2002, 2004).

# Examples of applications:

s Statistical decision theory (Dvoretzky, Wald, and
Wolfowitz 1951, Blackwell 1951).

s Inventory control.
s Portfolio management.
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Finite State and Action M DP with Discounted Costs

Wi

Ci--

Deterministic
stationary policy

Y S S Randomized
stationary optimal

policy

Randomized
stationary policy

Wo
Performance Set maximize
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Explanation

The set of state-
action frequencies
(or occupation

N measures)

\lt \

The performance set —'f
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Nonatomic M DP with Discounted Costs

Wit

Optimal policy

o — _,_;\_,k_.k_-___--:.._--hx-'jz._- A

Randomized policy

Deterministic policy

Performance Set

-
o

Wo
maximize
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Deter ministic Statistical Decisions

© o o o

X Borel state space;

A: Borel action space,;

tun, n = 1,...,N: non-atomic initial probabilities on X
p(pin, T, a) : COSIS.

W (p, ) = /X /A 0(tn, 2, a)(dal)n(d2).

Dvoretzky, Wald, and Wolfowitz (1951): If A is finite, for
any 7 there exists a deterministic decision rule ¢ such
that

(W(:ula ¢)7 s 7W(MN7 ¢)) — (W(:uly 7T)7 S W(MN) ﬂ-))
F & Piunovskiy (2004): A could be arbitrary.
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Other OR/AI approaches

# Neuro-Dynamic Programming

°

Perturbation analysis

# We need more applications to test and compare
different approaches

# A possible military-relevant application to test various
approaches is the Generalized Pinwheel Problem
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M otivation for the Generalized Pinwheal Problem

~Sectors to be
scanned

Fixed Dome
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Generalized Pinwheel Problem

The radar sensor management problem can be formulated

In general terms.
Consider the following infinite-horizon non-preemptive

scheduling problem:
#® There are N jobs. Eachjobi,:=1,...,NIs
characterized by two parameters:

s 7;, the duration of job i,

s wu;, the maximum amount of time between instances
when job 7 iIs completed and started again.
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Generalized Pinwhedl Problem

#® A schedule is feasible if each time job 7 is performed, it
will be started again no more than u; seconds after it is
completed.

n=2 =1 ] 7,=15
by =2 u, =2.5

# Our goalis to find a feasible schedule or conclude that it
does not exist.
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Generalized Pinwheel Problem

This problem is NP-hard but a good heuristic is a so-called
Frequency-Based Algorithm (F & Curry, 2005):

# Consider a relaxation,

# Formulate an MDP for this relaxation,

# Find optimal frequencies by solving this LP,
# Find a time-sharing policy (sequence),

# Try to cut a feasible piece of this sequence.
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Time-Sharing Policies

Let I and A be finite and let stationary policies define recurrent
Markov chains. Let z; , be the vector of optimal state-action
frequencies and ¢ is the corresponding randomized stationary
optimal policy. For any finite trajectory xg, ag, .. ., z,—1, define

n—1
Ny, (2,a) = Zl{azt =1,a; = a},
t=0

n—1
Np(i) =Y ay =i},
t=0
. N,(z,a)+1
o(i,m) = argma:paEA(i){xi,a — Ni(z) )+ 1 |2

Then policies ¢ and 4 yield the same performances.
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