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Markov Decision Process (MDP)

I: state space;

A: action space;

A(i): action set available at state i;

p(i, a, j): transition probabilities;

rk(i, a): one-step rewards.

For a stationary policy, a selected action depends only on
the current state. We also consider randomized stationary
policies. General policies may be randomized and depend
on the past.
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Introduction
Consider a problem with K + 1 criteria

W0(π),W1(π), . . . ,WK(π), where π is a policy. A natural

approach to dynamic optimization is

maximize W0(π)

subject to

Wk(π) ≥ Ck, k = 1, . . . ,K.

For K > 0 this approach typically leads to the optimality of

randomized policies with the number of randomizations is

limited by the number of constraints.

For unconstrained problems (K = 0) there exists a

nonrandomized stationary policy. This policy is usually optimal

for all initial states.
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Performance Criteria
The most common criteria are:

Expected total rewards over the finite horizon.

Average rewards per unit time.

Expected total discounted rewards.

Let rk(i, a) be the one-step reward for criterion k if an action
a is used in state i.

Expected total rewards over N steps:

Wk(i0, π,N) := E
π
i0

N−1
∑

t=0

rk(it, at),

where i0 is the initial state and π is the policy.
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Performance Criteria: Continuation

Average rewards per unit time:

Wk(i0, π) := lim inf
N→∞

Wk(i0, π,N)

N
.

Total discounted rewards:

Wk(i0, π) := E
π
i0

∞
∑

t=0

βtrk(it, at),

where β ∈ [0, 1) is a discount factor.

In some problems, the initial state is given by an initial
distribution µ. Similar criteria can be considered for
continuous-time problems.
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LP Formulation

maximize
∑

i∈I

∑

a∈A(i)

r0(i, a)xi,a

subject to
∑

a∈A(j)

xj,a − β
∑

i∈I

∑

a∈A(i)

p(j, a, i)xi,a = µ(j), j ∈ I,

∑

i∈I

∑

a∈A(i)

rk(i, a)xi,a ≥ Ck, k = 1, . . . ,K,

xi,a ≥ 0, i ∈ I, a ∈ A(i).
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Optimal policy

φ(a|i) =











xi,a/
∑

b∈A(i)

xi,b, if the denominatior is positive;

arbitrary, otherwise.

Interpretation: xi,a are so-called occupation measures,

xi,a = E
φ
µ

∞
∑

t=0

βtI{it = i, at = a}.

For average rewards per unit time, xi,a are state-action frequencies,

xi,a = lim
N→∞

1

N
E

φ
µ

N−1
∑

t=0

I{it = i, at = a}.
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Number of Randomizations
Let Rand(φ) be the number of randomizations for a
randomized stationary policy φ,

Rand(φ) =
∑

i∈I

{−1 +
∑

a∈A(i)

I{φ(a|i) > 0}}.

Then
Rand(φ) ≤ K, (1)

where K is the number of constraints.

For finite I, (1) follows from the LP arguments ( Ross
1989).

For countable I: F & Shwartz (1996) (Borkar 1992 for
average rewards per unit time).

For uncountable I: an open problem.
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Constrained MDPs and problems in adversarial domains

Constrained MDP is a nice model for problems in
adversarial domains because of optimality of
randomized policies. It is natural for problems in
adversarial domains to keep the randomization index as
large as possible.

This leads to new problem formulations.
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F’s current research directions relevant to MDPs

Continuous time MDPs;

Non-atomic discrete-time MDPs;

Applications to inventory control, discrete optimization,
queueing control, ...
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Continuous time MDPs
The time is continuous and an action a selected in state
i defines a vector of transition intensities q(i, a, j) ≥ 0,
i 6= j.

Let q(i, a) =
∑

j 6=i q(i, a, j).

If q(i, a) = 0 then i is an absorbing state.

Otherwise, the system spends on average q−1(i, a) units
of time in state i and then moves to j 6= i with the
probability p(i, a, j) = q(i, a, j)/q(i, a).

There are reward rates rk(i, a) when the system stays in
state i and instant rewards Rk(i, a, j) when the system
jumps from state i to state j.

Major motivation: control of queues and queueing
networks.
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Continuous time MDPs: Switching policies

Let x be the LP solution and
Ax(i) = {a ∈ A(i) : xi,a > 0} = {a(i, 1), . . . , a(i, n(i, x))}.

Let S0(i, x) = 0. For ℓ = 1, . . . , n(i, x), we set

sℓ(i, x) = −(α+ q(i, a(i, ℓ)))−1 ln(1 − xi,a(i,ℓ)/

n(i,x)
∑

j=ℓ

xi,a(i,j)),

and Sℓ(i, x) = Sℓ−1(i, x) + sℓ(i, x).

Optimal switching stationary policy ψ:

ψ(i, t) =







a(i, ℓ), if Ax(i) 6= ∅ and Sℓ−1(i, x) ≤ t < Sℓ(i, x);

arbitrary action a, if Ax(i) = ∅.
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Optimality of switching policies
Change of intensity between jumps is equivalent to
randomized decisions at jump epochs.

Consider two independent Poisson arrival processes 1
or 2 with positive intensities λ1 and λ2.

At each epoch t ∈ [0,∞[, an observer can watch either
process 1 or 2. The process stops when the observer
sees an arrival.

A policy π is a measurable function π : [0,∞[→ {1, 2}.

Let pπ
i , i = 1, 2 be the probability that the first

observed arrival belongs to process i.
Let ξ be the time when an observer sees an arrival
for the first time. In other words, pi = P{π(ξ) = i}.
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Optimality of switching policies
Let ξi be the time that process i has been watched before
the first detected arrival, ξ = ξ1 + ξ2,

ξi =

∫ ξ

0
I{π(t) = i}dt.

Lemma 1 pi = λi E ξi.

Remark 1 pi and E ξi depend on the policy π

Remark 2 If π(t) = 1 for all t, we get E ξ1 = 1
λ1

- the
mean of an exponential random variable.

Selecting intensities λ1 and λ2 randomly with the
probabilities p1 and p2 respectively yields the same average
characteristics as selecting intensity λ1 during time
T = −λ−1

i ln(1 − p1) and then switching to λ2.
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Non-Atomic MDPs
If the state space is uncountable, we denote it by X
instead of I. In this case, we use the notation px,a(Y )

instead of p(i, a, j). Let the initial distribution µ and
transition probabilities px,a be non-atomic; i.e. µ(x) = 0

and px,a(y) = 0 for all states x, y and for all actions a.

Then for any policy π there exists a deterministic policy
φ such that Wk(µ, φ) = Wk(µ, π), k = 0, 1, . . . ,K.

F and Piunovskiy (2002, 2004).

Examples of applications:
Statistical decision theory (Dvoretzky, Wald, and
Wolfowitz 1951, Blackwell 1951).
Inventory control.
Portfolio management.
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Finite State and Action MDP with Discounted Costs
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Explanation
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Nonatomic MDP with Discounted Costs
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Deterministic Statistical Decisions
X: Borel state space;

A: Borel action space;

µn, n = 1, . . . , N : non-atomic initial probabilities on X;

ρ(µn, x, a) : costs.

W (µ, π) =

∫

X

∫

A

ρ(µn, x, a)π(da|x)µn(dx).

Dvoretzky, Wald, and Wolfowitz (1951): If A is finite, for
any π there exists a deterministic decision rule φ such
that

(W (µ1, φ), . . . ,W (µN , φ)) = (W (µ1, π), . . . ,W (µN , π)).

F & Piunovskiy (2004): A could be arbitrary.
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Other OR/AI approaches
Neuro-Dynamic Programming

Perturbation analysis

We need more applications to test and compare
different approaches

A possible military-relevant application to test various
approaches is the Generalized Pinwheel Problem
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Motivation for the Generalized Pinwheel Problem
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Generalized Pinwheel Problem
The radar sensor management problem can be formulated
in general terms.
Consider the following infinite-horizon non-preemptive
scheduling problem:

There are N jobs. Each job i, i = 1, . . . , N is
characterized by two parameters:

τi, the duration of job i,
ui, the maximum amount of time between instances
when job i is completed and started again.
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Generalized Pinwheel Problem
A schedule is feasible if each time job i is performed, it
will be started again no more than ui seconds after it is
completed.

Our goal is to find a feasible schedule or conclude that it
does not exist.
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Generalized Pinwheel Problem
This problem is NP-hard but a good heuristic is a so-called
Frequency-Based Algorithm (F & Curry, 2005):

Consider a relaxation,

Formulate an MDP for this relaxation,

Find optimal frequencies by solving this LP,

Find a time-sharing policy (sequence),

Try to cut a feasible piece of this sequence.
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Time-Sharing Policies
Let I and A be finite and let stationary policies define recurrent

Markov chains. Let xi,a be the vector of optimal state-action

frequencies and φ is the corresponding randomized stationary

optimal policy. For any finite trajectory x0, a0, . . . , xn−1, define

Nn(i, a) =

n−1
∑

t=0

I{xt = i, at = a},

Nn(i) =

n−1
∑

t=0

I{xt = i},

δ(i, n) = argmaxa∈A(i){xi,a −
Nn(i, a) + 1

Nn(i) + 1
}.

Then policies φ and δ yield the same performances.
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