Planning in Factored Hybrid-MDPs

Milos Hauskrecht Department of Computer Science, University of Pittsburgh

Branislav Kveton Intelligent Systems Program, University of Pittsburgh

Carlos Guestrin Department of Computer Science, CMU

Factored MDPs

Limitations

- Standard MDP formulation permits only flat discrete state and action spaces
- Real-world problems are complex, factored, and involve continuous quantities
- Factored MDPs with discrete components
 - State and action spaces grow exponentially in the number of variables
 - Traditional methods for solving MDPs are polynomial in the size of state and action spaces
- Factored MDPs with continuous components
 - State and action spaces are infinitely large
 - optimal value function or policy may not have finite support
 - Naive discretization of continuous variables often leads to an exponential complexity of solution methods

Hybrid Factored MDPs

- A hybrid factored MDP (HMDP) is a 4-tuple M = (X, A, P, R):
 - X = (X_D, X_C) is a vector of state variables (discrete or continuous)
 - A = (A_D, A_C) is a vector of action variables (discrete or continuous)
 - P and R are factored transition and reward models represented by a dynamic Bayesian network (DBN)

Optimal Value Function and Policy

 Optimal policy π* maximizes the infinite horizon discounted reward:

$$\Xi_{\pi}\left[\sum_{t=0}^{\infty}\gamma^{t}\mathsf{R}(\mathbf{x}_{t},\pi(\mathbf{x}_{t}))\right]$$

 Optimal value function V* is a fixed point of the Bellman equation:

$$V^{*}(\mathbf{x}) = \sup_{\mathbf{a}} \left[R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}_{D}} \int_{\mathbf{x}_{C}} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^{*}(\mathbf{x}') d\mathbf{x}_{C}' \right]$$

- Linear value function approximation
 - A compact representation of an MDP does not guarantee the same structure in the optimal value function or policy
 - Approximation by a linear combination of |w| basis functions:

$$V^{\mathbf{w}}(\mathbf{x}) = \sum_{i} W_{i} f_{i}(\mathbf{x}_{i})$$

Hybrid Approximate Linear Programming

Hybrid approximate linear programming (HALP) formulation:

Basis function relevance weight: $\alpha_{i} = \sum_{\mathbf{x}_{D}} \int_{\mathbf{x}_{C}} \psi(\mathbf{x}) \mathbf{f}_{i}(\mathbf{x}) d\mathbf{x}_{C}$ minimize $\sum_{i}^{i} w_{i} \alpha_{i}$ subject to : $\sum_{i}^{i} w_{i} F_{i}(\mathbf{x}, \mathbf{a}) - R(\mathbf{x}, \mathbf{a}) \ge 0$ $\forall \mathbf{x} \in \mathbf{X}, \mathbf{a} \in \mathbf{A}$ Difference between the basis function $f_i(\mathbf{x})$ and its discounted backprojection: $F_{i}(\mathbf{x}, \mathbf{a}) = f_{i}(\mathbf{x}) - \gamma \sum_{\mathbf{x}_{c}} \int_{\mathbf{x}_{c}} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) f_{i}(\mathbf{x}') d\mathbf{x}_{c}'$

HALP solutions

HALP formulation contains infinite number of constraints, $\sum_{i} w_{i} F_{i}(\mathbf{x}, \mathbf{a}) - R(\mathbf{x}, \mathbf{a}) \ge 0, \quad \forall \mathbf{x} \in \mathbf{X}, \mathbf{a} \in \mathbf{A}$

Methods:

- Monte Carlo (Hauskrecht, Kveton, 2004):
 - Sample constraint space
- ε-HALP (Guestrin, Hauskrecht, Kveton, 2004):
 - Discretize constraint space on the regular grid
 - Take advantage of the structure
 - Cutting plane methods on discrete state space
 - Exponential in the treewidth of the problem
- Direct cutting plane methods (Kveton, Hauskrecht, 2005)
 - Stochastic optimizations for finding a maximally violated constraint

Scale-up potential

Problems with over 25 state and 20 action variables

Traffic Management

- Recent surveys show
 - Americans spend billions of hours in city traffic jams
 - Congestions have grown in urban areas of every size
 - Congestions have increasing economic impact
 - The problem is too complex and growing rapidly
 - No technology has provided a definite solution yet
- Our approach
 - Automatic traffic management to ease congestions
 - Traffic management exhibits local structure with long-term global consequences

Automatic Traffic Management

X_{F.3} – # cars on Forbes Ave between Schenley Dr and S Bellefield Ave

X_{F-2} – # cars on Forbes Ave between Bigelow Blvd and Schenley Dr

X_{B-1} – # cars on Bigelow Blvd between 5th Ave and Forbes Ave

X_{F-1} – # cars on Forbes Ave between S Bouquet St and Bigelow Blvd

A_{F-2} – traffic lights at Forbes Ave and Schenley Dr

A_{F-1} – traffic lights at Forbes Ave and Bigelow Blvd