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Factored MDPs

• Limitations
 Standard MDP formulation permits only flat discrete state and

action spaces
 Real-world problems are complex, factored, and involve

continuous quantities
• Factored MDPs with discrete components

 State and action spaces grow exponentially in the number of
variables

 Traditional methods for solving MDPs are polynomial in the size
of state and action spaces

• Factored MDPs with continuous components
 State and action spaces are infinitely large
 optimal value function or policy may not have finite support
 Naive discretization of continuous variables often leads to an

exponential complexity of solution methods



Hybrid Factored MDPs

• A hybrid factored MDP
(HMDP) is a 4-tuple M =
(X, A, P, R):
 X = (XD, XC) is a vector of

state variables (discrete or
continuous)

 A = (AD, AC) is a vector of
action variables (discrete
or continuous)

 P and R are factored
transition and reward
models represented by a
dynamic Bayesian network
(DBN)
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Optimal Value Function and Policy

• Optimal policy π∗ maximizes the infinite horizon
discounted reward:

• Optimal value function V∗ is a fixed point of the Bellman
equation:

• Linear value function approximation
 A compact representation of an MDP does not guarantee the

same structure in the optimal value function or policy
 Approximation by a linear combination of |w| basis functions:
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Hybrid Approximate Linear Programming

• Hybrid approximate linear programming (HALP)
formulation:
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Basis function relevance weight:

Difference between the basis function fi(x) and
its discounted backprojection:
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HALP formulation contains infinite number of constraints,

Methods:
• Monte Carlo (Hauskrecht, Kveton, 2004):

 Sample constraint space
•  ε−HALP (Guestrin, Hauskrecht, Kveton, 2004):

 Discretize constraint space on the regular grid
 Take advantage of the structure
 Cutting plane methods on discrete state space
 Exponential in the treewidth of the problem

• Direct cutting plane methods (Kveton, Hauskrecht, 2005)
 Stochastic optimizations for finding a maximally violated

constraint

HALP solutions
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Scale-up potential

• Problems with over 25 state and 20 action variables

Large irrigation network

Outflow
regulation

device

Inflow
regulation

device

Irrigation channel
represented by a

continuous variable

Regulation device
represented by a

discrete action node
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Traffic Management

• Recent surveys show
 Americans spend billions of hours in city traffic jams
 Congestions have grown in urban areas of every size
 Congestions have increasing economic impact
 The problem is too complex and growing rapidly
 No technology has provided a definite solution yet

• Our approach
 Automatic traffic management to ease congestions
 Traffic management exhibits local structure with long-term global

consequences



Automatic Traffic Management

XF-1 – # cars on Forbes Ave
between S Bouquet St and

Bigelow Blvd

XF-2 – # cars on Forbes Ave between
Bigelow Blvd and Schenley Dr

XF-3 – # cars on Forbes
Ave between Schenley Dr

and S Bellefield Ave

AF-1 – traffic lights
at Forbes Ave and

Bigelow Blvd

AF-2 – traffic
lights at Forbes

Ave and
Schenley Dr

XB-1 – # cars on Bigelow Blvd
between 5th Ave and Forbes Ave


