## Planning in Factored Hybrid-MDPs

## Milos Hauskrecht

Department of Computer Science, University of Pittsburgh

Branislav Kveton<br>Intelligent Systems Program, University of Pittsburgh<br>Carlos Guestrin<br>Department of Computer Science, CMU

## Factored MDPs

- Limitations
- Standard MDP formulation permits only flat discrete state and action spaces
- Real-world problems are complex, factored, and involve continuous quantities
- Factored MDPs with discrete components
- State and action spaces grow exponentially in the number of variables
- Traditional methods for solving MDPs are polynomial in the size of state and action spaces
- Factored MDPs with continuous components
- State and action spaces are infinitely large
- optimal value function or policy may not have finite support
- Naive discretization of continuous variables often leads to an exponential complexity of solution methods


## ybrid Factored MDPs

- A hybrid factored MDP (HMDP) is a 4-tuple $M=$ ( $\mathrm{X}, \mathrm{A}, \mathrm{P}, \mathrm{R}$ ):
- $X=\left(X_{D}, X_{C}\right)$ is a vector of state variables (discrete or continuous)
- $A=\left(A_{D}, A_{C}\right)$ is a vector of action variables (discrete or continuous)
- P and R are factored transition and reward models represented by a dynamic Bayesian network (DBN)



## Optimal Value Function and Policy

- Optimal policy $\pi^{*}$ maximizes the infinite horizon discounted reward:

$$
E_{\pi}\left[\sum_{i=0}^{\infty} \gamma^{t} R\left(\mathbf{x}_{t}, \pi\left(\mathbf{x}_{t}\right)\right)\right]
$$

- Optimal value function $\mathrm{V}^{*}$ is a fixed point of the Bellman equation:

$$
V^{*}(\mathbf{x})=\sup _{\mathbf{a}}\left[R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}_{0}} \int_{\mathbf{x}_{\mathrm{c}}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) \mathcal{N}^{*}\left(\mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x}_{c}^{\prime}\right]
$$

- Linear value function approximation
- A compact representation of an MDP does not guarantee the same structure in the optimal value function or policy
- Approximation by a linear combination of |w| basis functions:

$$
V^{w}(x)=\sum_{i} w_{i} f_{i}\left(x_{i}\right)
$$

## 青ybrid Approximate Linear Programming

- Hybrid approximate linear programming (HALP) formulation:
minimize $_{\text {w }}$

> Basis function relevance weight:

$$
\alpha_{i}=\sum_{\mathbf{x}_{D}} \int_{\mathbf{x}_{\mathrm{C}}} \psi(\mathbf{x})_{i}(\mathbf{x}) \mathrm{d} \mathbf{x}_{\mathrm{C}}
$$

## HALP solutions

HALP formulation contains infinite number of constraints,

$$
\sum_{1} w_{i} F_{i}(\mathbf{x}, \mathbf{a})-R(\mathbf{x}, \mathbf{a}) \geq 0, \quad \forall \mathbf{x} \in \mathbf{X}, \mathbf{a} \in \mathbf{A}
$$

## Methods:

- Monte Carlo (Hauskrecht, Kveton, 2004):
- Sample constraint space
- $\varepsilon$-HALP (Guestrin, Hauskrecht, Kveton, 2004):
- Discretize constraint space on the regular grid
- Take advantage of the structure
- Cutting plane methods on discrete state space
- Exponential in the treewidth of the problem
- Direct cutting plane methods (Kveton, Hauskrecht, 2005)
- Stochastic optimizations for finding a maximally violated constraint


## scale-up potential

- Problems with over 25 state and 20 action variables



## Fraffic Management



- Recent surveys show
- Americans spend billions of hours in city traffic jams
- Congestions have grown in urban areas of every size
- Congestions have increasing economic impact
- The problem is too complex and growing rapidly
- No technology has provided a definite solution yet
- Our approach
- Automatic traffic management to ease congestions
- Traffic management exhibits local structure with long-term global consequences


## Automatic Traffic Management



