Markov Decision Processes: AI vs. OR

Workshop on Decision-Making in Adversarial Domains

May 23, 2005

> Warren Powell
> CASTLE Laboratory Princeton University http://www.casillelab.princeton.edul

Bellman's equations

- The classic view of Bellman's optimality equation:
, Deterministic problems
$\gamma \quad+1$
)
> Stochastic problems

$$
\gamma \sum_{s \in S} \mathrm{p}
$$

HANDBOOK of LEARNING AND APPROXIMATE DYNAMIC PROGRAMMING

EDITED BY
JENNIE SI
ANDREW G. BARTO
WARREN B. POWELL
DONALD WUNSCH II

Approximate Dynamic Programming for Asset Management:

Solving the curses of dimensionality

Warren B. Powell

March 31, 2004
(c) Warren B. Powell, 2003-2004 All rights reserved.

AI vs OR

\square If we are all solving the same problem, why do OR and AI people have such different attitudes?
> Hypothesis: We are solving very different problems

- AI problems
> Typically managing a single entity (aka resource, asset)
» Playing a game
» Controlling a robot
- OR Problems
, Typically managing multiple resources/assets:
» Routing a fleet of vehicles
» Balancing a financial portfolio

Problem characteristics

- Single entity/resource/asset
- State space
» "Small" state space (state $=$ attributes of the resource)
- Small $=$ small enough to enumerate
» Large state space
, Reward structure
» Shallow reward structure
- Receive rewards at every step, providing guidance
» Deeply-nested reward structure
- Have to play many steps before receiving a reward

Connect-4

Backgammon

OR problems

- Multiproduct inventory problems

The problem classes

- Class 4: Multicommodity flow problems

\square Financial asset management:

\qquad

State variables

- How big is the state space?

If the attribute vector has one dimension:

$$
a^{\text {Truck }}=[\text { Location }] \|=\text { Ab0 - } 1000 \text { locations }
$$

The attribute space grows with the number of dimensions:

$$
\begin{aligned}
& a^{\text {Truck }}=\left[\begin{array}{lc}
\text { Location500 locations, } 5 \text { fleet ty } & \text { pes } \\
\text { Fleet type } & \mid A D 5500
\end{array}\right. \\
& a^{\text {Truck }}=\left[\begin{array}{lc}
\text { Location } & 500 \text { locations, } 5 \text { fleet types, } 100 \text { domiciles } \\
\text { Fleet type } & \\
\text { pomicile } & \text { |AD550,000 }
\end{array}\right.
\end{aligned}
$$

... classic curse of dimensionality.

State variables

- Attributes can get complicated:

Location ETA
Equipment type
Train priority
Pool
Due for maint
Home shop

$\left[\begin{array}{l}\text { Location } \\ \text { ETA } \\ \text { Bus. segment } \\ \text { Single/team } \\ \text { Domicile } \\ \text { Drive hours } \\ \text { Duty hours } \\ 8 \text { day history } \\ \text { days from home }\end{array}\right]\left[\begin{array}{c}\text { Location } \\ \text { ETA } \\ \text { A/C type } \\ \text { Fuel level } \\ \text { Home shop } \\ \text { Crew } \\ \text { Eqpt1 } \\ \vdots \\ \text { Eqpt100 }\end{array}\right.$

State variables

\square We need to distinguish between the state of a single resource, and the state of our system
For a single resource:
$a=$ Attribute (state) of a single resource.
A = Attribute space (state space of a single resource).

For multiple resources:
KNumber of resources with attribute
(at time)
R_{t} esource state vector

$$
=\left(R_{t a}\right)_{a \in \mathrm{~A}}
$$

$\mathrm{R}=$ Resource state space (set of all possible outcomes of $\not \mathbb{R}_{t}$

State variables

- What if we have $\mathbf{N}>1$ trucks?

$$
\| R=\left(\int^{N+\# A} \| A-\right.
$$

Why are they hard?

- AI problems are hard because
> "attribute space" is often very large.
> Reward structure is deeply nested.
\square OR problems are hard because
> we are managing many resources.

The curses of dimensionality

- Actually the situation is somewhat worse...

The curses of dimensionality

- The computational challenge:

Managing multiple resources

Resources
 Demands

Set of decisions for a single resource

Managing multiple resources

(C) Warren B. Powell 2005

Managing multiple resources

Random future demands

Managing multiple resources

\square We can use a separable approximation of the future:

© Warren B. Powell 2005

Managing multiple resources

- OR people normally assume we can enumerate the attribute space:

The set of locations

Managing multiple resources

- ... in reality, we often cannot.

