

Reachability Heuristics for Handling State Uncertainty

Daniel Bryce, Will Cushing Subbarao Kambhampati

Joint with David E. Smith, NASA

[ICAPS 2004; AAAI 2005; UAI 2005]

Belief Space Search

- Partially known initial state
- Actions with nondeterministic effects
- Need to search in Belief Space
 - Belief States are sets of world states (2^S)
 - Represented as formulas over fluents (implemented as BDDs)

Acute need for effective search control

Using a Single, Labeled Graph

Relaxed Plan on Labeled Graph

State Agnostic Graphs

- Labelled graphs handle "state uncertainty" using labels on the PG elements
- But the same idea can be use to handle "search uncertainty"
 - We can compute a labelled graph that gives us reachability information from any set of states including the set of all reachable states
 - Such state agnostic graphs do "all pairs shortest path" analysis (as against single source shortest path analysis done by normal PG).

Empirical Evaluation

Figure 3: Reachable-SAG (using SLUG) vs. PG (using PGLUG), Belief-Space Problems

Figure 5: Comparison of planners on conformant (left) and conditional (right) domains. Four domains appear in each plot. The conformant domains are Rovers(Rv1-Rv6), Logistics(L1-L5), Cube Center(C5-C13), and Ring(R2-R10). The conditional domains are Rovers(Rv1-Rv6), Logistics(L1-L5), Medical(M2-M14), and BTCS(B10-B80).

- PG Variations
 - Serial
 - Parallel
 - Temporal
 - Labelled
 - State Agnostic

- Propagation Methods
 - Level
 - Mutex
 - Cost
 - Label

Versatility of PG Heuristics

- Planning Problems
 - Classical
 - Resource/Temporal
 - Conformant/Conditional
 - Partial Satisfaction

- Planners
 - Regression
 - Progression
 - Partial Order
 - Graphplan-style