Partial Satisfaction Planning

J. Benton, Romeo Sanchez
Minh Do (PARC)
Subbarao Kambhampati

[AAAI 04; ICAPS 05; IJCAI 05]
Yochan Research Group

Plan-Yochan

- Automated Planning
 - Foundational work in classical planning
 - Heuristics for scaling up a wide spectrum of plan synthesis problems
 - Applications to manufacturing, biological pathway discovery, web services, autonomic computing

B. Srivastava; IBM IRL
M. Do; Xerox PARC
T. Zimmerman; CMU RI
R. Sanchez; USC/ISI

Db-Yochan

- Information Integration
 - Mediator frameworks that are adaptive to the sources and users.
 - Applications to Bioinformatics, Archaeological informatics

Z. Nie; Microsoft Research
T. Hernandez; Amazon
U. Nambiar; SDSC/UC Davis

Recent Alumni
In many real world planning tasks, the agent often has more goals than it has resources to accomplish.

Currently *humans* are forced to pick goal subsets

Example: Rover Mission Planning (MER)
Military logistics
Most replanning problems (*)

Need automated support for Over-subscription/Partial Satisfaction Planning

Actions have execution costs, goals have utilities, and the objective is to find the plan that has the highest net benefit.
A spectrum of approaches for PSP-Net Benifit

Optimal Approaches

- **Deterministic MDPs**
 - Reward of a state is equal to the utility of the goals that hold in it.
 - Need to avoid collecting rewards for a goal more than once
 - Optimal, but *SLOW*
- **Optiplan**
 - Integer programming based STRIPS planner
 - Optimal for a given plan length

Heuristic Approaches

- **AltAlt_{ps}/ AltAwlt<sub>ps**
 - Selects the “objectives” up front heuristically
 - Uses a clever modification of relaxed plan heuristic
 - Not optimal, but fast

- **Sapa_{ps}/ Sapa<sub>Mps**
 - Models PSP as heuristic search. Can be optimal given admissible heuristics.
 - Sapa_{Mps} can handle numerical goals and degrees of satisfaction
Adapting PG heuristics for PSP

Challenges:
- Need to propagate costs on the planning graph
- The exact set of goals are not clear
 - Interactions between goals
- Obvious approach of considering all 2^n goal subsets is *infeasible*

Idea: Select a subset of the top level goals upfront

Challenge: Goal interactions

- **Approach:** Estimate the net benefit of each goal in terms of its utility minus the cost of its relaxed plan
 - Bias the relaxed plan extraction to (re)use the actions already chosen for other goals
Some Empirical Results for \(\text{AltAlt}^{ps} \)

Exact algorithms based on MDPs don’t scale at all

[AAAI 2004]
Overcoming Complex Interactions: AltAwlt

- Problems with Goal Selection Procedure
 1. Ignores group interactions
 2. Ignores negative interactions

- Ideas:
 1. Consider multiple groups of sub-goals during the selection process
 2. Add penalty costs for ignoring negative interactions based on mutex analysis
PSP + MTP = SAPA

• In MTP, PSP will involve
 – Partial Degree of satisfaction
 • If you can’t give me 1000$, give me half at least
 • Need to track costs for various intervals of a numeric quantity 😞
 – Delayed Satisfaction
 • If you submit the homework past the deadline, you will get penalty points

Figure 3: The RTPG for our example. Our actions are defined above it.

Figure 4: Comparison of utilities for our rovers domain