Laboratory for Computational Cultural Dynamics

Dana Nau (nau@cs.umd.edu)

V.S. Subrahmanian (vs@cs.umd.edu)

University of Maryland

A partnership with sociologists, anthropologists, political scientists, linguists, and health care professionals.

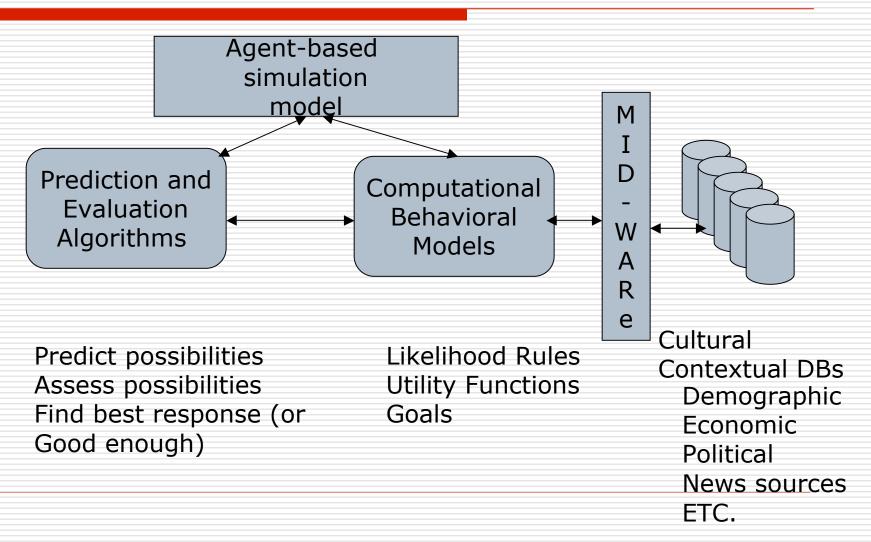
Motivation

- Reasoning about cultures is critical for multiple applications:
 - War/Counter-Terrorism: how can we get different tribes/groups in a region to do what we'd like them to do?
 - Global Health: how do social/cultural behaviors contribute to the spread of infectious diseases?
 - Post-Conflict Reconstruction: how can we set up an infrastructure in a country that has gone through a period of internal (or other) war?

All of these factors affect us.

LCCD

Today's focus

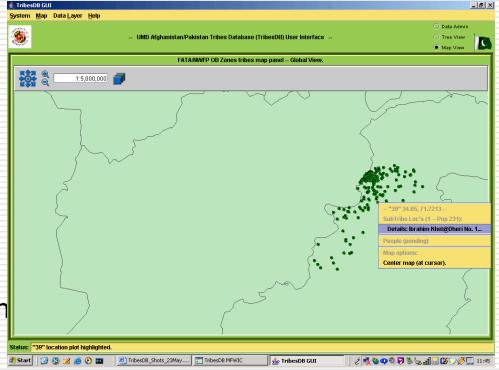

- Overall goal is to develop the computation infrastructure needed to help others
 - Wage effective war/counterterrorism operation
 - Ensure socio-economic-political change in foreign countries
 - □ E.g. Social security reform in foreign countries
 - Help reconstruct post-conflict or post-disaster societies.

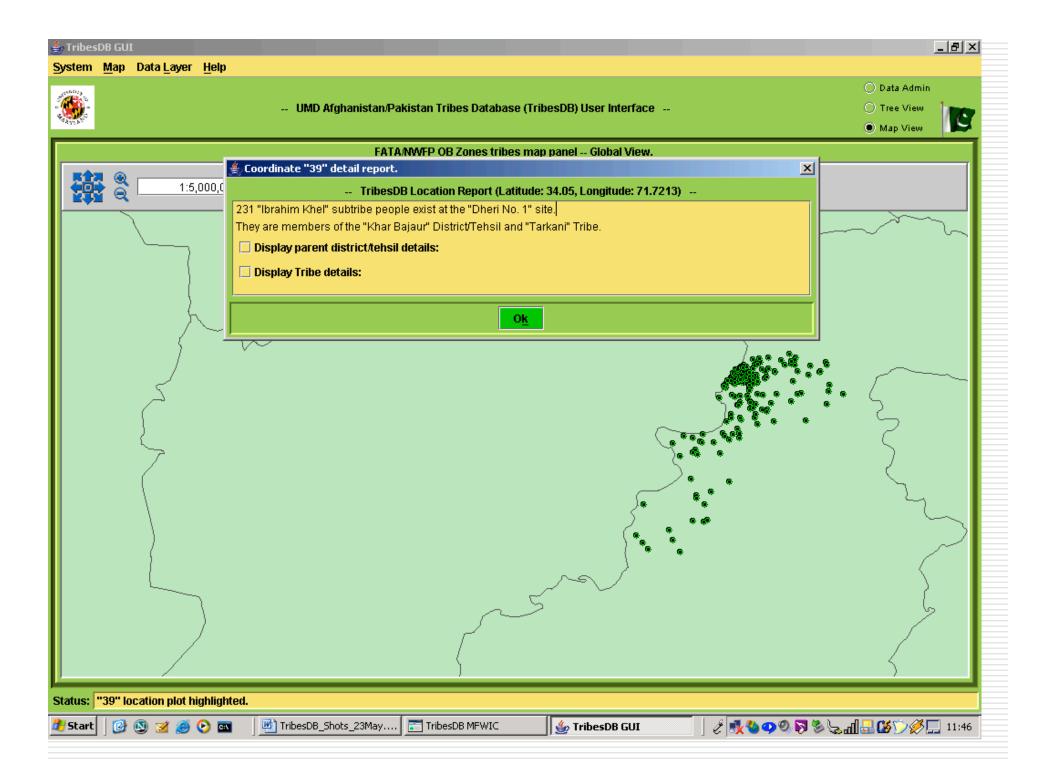
LCCD Work with AFOSR

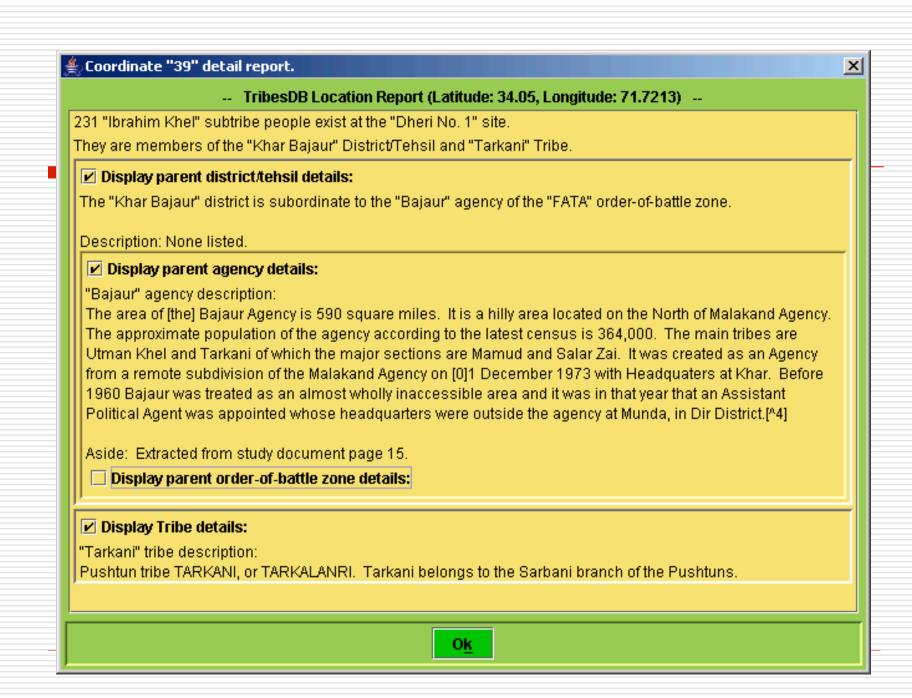
- AFOSR provides core funding for LCCD.
- ☐ Basic theoretical foundation to build applications that reason about different cultures (to some extent).
- Software platform based on the above theory for application development.
- ☐ Instantiate the above theory and system with a cultural context for the Pakistan/Afghanistan borderlands.

- Cultural Advisory Board
 - Current Deputy Minister of the Interior of Afghanistan
 - Former Pakistan Ambassador to UK
 - A well known filmmaker about Afghanistan tribes
 - Former State Dept. offical stationed in Pakistan
 - + Other well known authors about Pak/Afghan tribes

LCCD Architecture (parts)

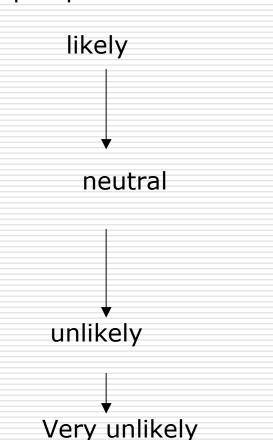

Cultural Contextual Database


- Set of DBs about background information on a given culture.
- Characteristics about data/problem
 - Comes from multiple sources: need to track pedigree. Pedigree/reliability algebra.
 - Inconsistency and Uncertainty are omnipresent. Draw inferences in the presence of incomplete and uncertain information. Algebra/calculus to integrate information from multiple incomplete/inconsistent data sources.
 - Data is obtained from heterogeneous sources. Even accessing these can be a challenge.
 - Assessing tone/opinion of select sources (e.g. news sources) can be an indicator.
 - Users need data in English, not SQL.


Cultural Contextual DB Work Underway

- UMD's PAT-DB

 (Pakistan-Afghanistan
 Tribes DB) is well
 under construction.
- Names
 - People
 - Tribes
 - Locations
 - Historical information
 - Alliances, etc.



Provenance wrappers/reliability ontology

- Each data source has a provenance wrapper.
- Function χ(s,o) that specifies for a given object o and source s, the reliability of the information in object o according to source s.
- Output can either be on a qualitative scale or a quantitative scale.
- Algorithms to go from qualitative to quantitative and vice versa.
- Algorithms to learn and revise reliability periodically.
- Reliability ontology associates reliabilities with sources, subsources, etc.

Example qualitative levels

Computational Behavior Models

- Consists of three components
 - Qualitative deontic likelihood rules.
 - Utility functions.
 - Goals.
- ☐ Identify a set of plausible things that a decision maker might do that satisfy the rules and progress towards the goal as measured by the objective function.
- Builds on our past work on the IMPACT heterogeneous agent system (4 papers on this in AIJ since 1999, plus several others).

Qualitative Likelihood Rules

- \square Action atom a: p(X1,...,Xn)
- Expression of the form OP a where OP is one of:
 - P permitted
 - F forbidden
 - O obligatory
 - DO does
 - W obligation is waived
- □ **Rules:** a IF < cond. on CC-DBs > & conjunction of action atoms.
- Likelihood rules: Replace "a" by "a:I" where I is a likelihood level.
- FOR OUR O.R. FRIENDS: Likelihood rules are like constraints.

Utility Functions

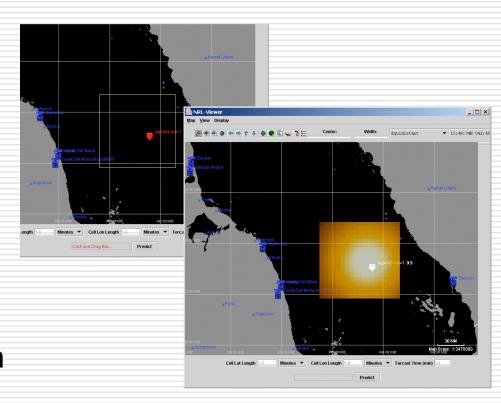
- Express the utility of certain actions in a given situation.
- ☐ Triple:
 - Condition C
 - Action atom A
 - Numeric Formula F
- F returns the value of doing A in a situation satisfying condition C.
- □ E.g.
 - C=tribal leader threatened with execution
 - A=any action that preserves honor of tribe
 - V=some high number

Goal-Utility-Triples

- □ Specify the value V of achieving goal G if the situation satisfies condition C.
- □ E.g.
 - G = save-tribal-leader
 - C = difference between terror group strength and tribal strength exceeds some bound.
 - V = some value

Recent work

- Developed algorithms to find a set S of actions that optimize <u>any</u> given objective function and satisfy a set of deontic rules (without likelihoods). Also fast heuristic algorithms to find suboptimal solutions.
 - Stroe, Subrahmanian, Dasgupta AAMAS 2005 best paper award nominee. (4 nominees of ~530 papers).
- Extended this when rules include time and uncertainty. Dix, Kraus, Subrahmanian – ACM Trans.
 On Computational Logic (to appear 2005).
- □ Builds on temporal probabilistic DB models
 - Dekhtyar, Ross, Subrahmanian ACM-TODS 2001
 - Biazzo, et. Al. IEEE-TKDE 2004.
 - Ross, Subrahmanian, Grant J.ACM 2005


Prediction and Evaluation Algorithms

- We can also view this as a game tree problem where
 - Nodes represent situations
 - Edges represent moves that either we or an opponent can make.

- Search space can be enormous. Strategies we propose to follows:
 - Strategy based game trees. (Smith, Nau et.al. win World Computer Bridge Comp. 1997)
 - Abstraction and decomposition
 - Statistical simulation based on random hypotheses (of what the enemy might do)
 - Planning under uncertainty

Spatio-Temporal Prediction

- □ Joint with NRL, BBN, Lockheed and many others as part of the DARPA Co-ABS program.
- Predict when and where enemy submarines will be in the future.
- ☐ Similar system for vehicle prediction with the Army. (video available).

Conclusions

- LCCD Director: Dana Nau
- □ Associate Director: Antonio Carvalho.
- □ Contact info:
- Univ. of Maryland Institute for Advanced Computer Studies, AV Williams Building, College Park, MD 20742.
- □ Tel: (301) 405-6722.
- □ Email: vs@cs.umd.edu