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Incomplete-Information Games
and Planning Under Uncertainty

Dana Nau, University of Maryland

Outline:
  Game-tree search in imperfect-information games
  Planning under uncertainty
  How they are related
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 I’ll focus on games in which
 Two players (or teams)
 Zero-sum payoffs
 Players take turns

 Case 1: perfect information
 Throughout the game, have complete

knowledge of the current state
» All possible actions for each player
» Outcomes of each action

 chess, checkers, othello, go, …

 Case 2: imperfect information
 Only partial knowledge

of the current state
 most card games, kriegspiel chess,

wargaming
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Search Space
 Naïve game theory: optimize over all possible strategies

 Strategy for Max = what move to make in every possible
situation where it’s Max’s move

 Strategy for Min = what move to make in every possible
situation where it’s Min’s move

 For large games, not feasible
 (number of possible chess games)

≈ 1023 x (number of particles in the universe)

 Game-tree search
 Some of the techniques can be justified game-theoretically
 Some are ad hoc
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 Each path from the root is a possible sequence of moves
 For each node x, compute a utility value (usually a minimax value)

that depends on the utility values of x’s children
 Game tree usually far too big

to search completely
 Techniques for pruning

portions of the tree
 alpha-beta pruning
 cutoff depth and static evaluation function
 quiescence search and biasing
 transposition tables

 Even then, still must examine a huge number of game positions

Game-Trees in
Perfect-Information Games
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 Each game-tree node is a
belief state b = {all states consistent with the available information}
 In kriegspiel chess, |b| ≈ 1020

 Many things the adversary might be able to do
 Need to include all of them as branches in the game tree
 successors(b) = U {successors(s) : s is in b}

 branching factor = |successors(b)|
 If b is contains many states, the branching factor can be quite large
 Size of game-tree is exponential in the average branching factor!

Imperfect-
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Reducing the Size of the Game Tree
 Plan-based game trees

 Use AI planning techniques to generate a game tree in which each branch
corresponds to a possible tactic that a player might use

» E.g., ruffing, finessing, cross-ruffing, cashing out
 Usually much fewer of these than there are possible moves

 In 1997, Bridge Baron [Smith, Nau & Throop, '96, '97, '98] used this technique
to win the world
championship of
computer bridge
[Wash Post,
NY Times, …]
 Successful

commercial
product
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 Abstraction
 Consider certain sets of moves or states to be equivalent
 Only generate/evaluate one of them, not all of them

 Used in sprouts, go, bridge, poker, …

 Statistical sampling
 Make a random guess for what the missing information is
 Search the perfect-information game tree
 Do this many times, average the results

 Theoretical problems: can’t reason about deception, information-gathering
 But it seems to work OK in some games

 Several leading bridge programs use a combination of abstraction and statistical
sampling

 We’re currently using a variant of statistical sampling in kriegspiel chess [Parker,
Nau, & Subrahmanian, ICJAI-05]

♠AQ532 =  ♠AQxxx

Reducing the Size of the Game Tree
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 Actions with multiple
possible outcomes
 Action failures

» Robot gripper
drops its load

 Exogenous events
» Road closed
» Shipment arrives

 Primary approaches
1. Discrete Markov Decision Processes (MDPs)

» Dynamic programming algorithms
2. Nondeterministic state-transition networks

» Like MDPs but without the probabilities
» Model-checking algorithms

Planning Under
Uncertainty

Goal

Start
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 Research communities are nearly disjoint
 Underlying models are closely related

 Opponent’s actions =
multiple outcomes of our actions

 Terminal nodes = absorbing states
 Main difference: how each formulation

assigns probabilities to the outcomes
 MDPs: probabilities are assumed to be known in advance
 Nondeterministic state-transition networks: no probabilities

» Find policy (contingency plan) that works under all “fair”
transitions

 Game-tree search
» Probabilities depend on how the opponent decides to respond

Relation
to Game-Tree Search
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Primary Difficulty
 Algorithms for planning with under uncertainty have

very high computational complexity
 Gigantic search space, algorithms search almost all of it

» On large problems this is not feasible

 “Classical” AI planning (for deterministic domains)
 Lots of work on generating plans quickly
 Techniques for pruning large parts of the entire space
 Can we generalize any of these techniques for use in

nondeterministic domains?
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Our Results
 We’ve shown how to take a large class of classical planning algorithms,

and systematically generalize them to solve
 Nondeterministic transition networks [Kuter & Nau, AAAI-04, ICAPS-05]
 MDPs [Kuter & Nau, AAAI-05]

 Theoretical analysis:
 Under the right conditions, can run exponentially faster than the best

previous algorithms
 Experiments:

 On the largest
problems the
previous algorithms
could solve, the
new ones were
more than 10,000
times as fast
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Relation to Game-Tree Search

 As I said earlier, the relationship
seems quite close

 Example: our previous work on
Bridge Baron can be viewed as
a special case of the
planner-generalization process
 We generalized HTN planning

to generate game trees
 The same kind of

generalization as what I
described for MDPs

 It should be possible to generalize several other planning
algorithms in the same way
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Summary
 Problem: incomplete information leads to a huge search space
 I’ve discussed several techniques, and summarized their

advantages/disadvantages
 My own work

 Plan-based approach
» Bridge Baron, nondeterministic transition networks, MDPs
» Advantage: can get huge speedups
» Disadvantage: expert human labor to encode the tactics

 Stochastic sampling in kriegspiel chess
» Advantage: less human effort: don’t have to encode tactics
» Disadvantage: some theoretical limitations
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