

Panel: Markov Games Versus Game-Tree Search

Dana Nau, moderatorComputer Science, University of MarylandPeter CramtonEconomics, University of MarylandRon ParrComputer Science, Duke UniversityStephen SmithGreat Game ProductsMike WellmanComputer Science, University of Michigan

Incomplete-Information Games and Planning Under Uncertainty

Dana Nau, University of Maryland

Outline:

- Game-tree search in imperfect-information games
- Planning under uncertainty
- How they are related

LCD Adversarial Games of Strategy

- I'll focus on games in which
 - Two players (or teams)
 - Zero-sum payoffs
 - Players take turns

• Case 1: perfect information

- Throughout the game, have complete knowledge of the current state
 - » All possible actions for each player
 - » Outcomes of each action
- chess, checkers, othello, go, ...

• Case 2: imperfect information

- Only partial knowledge of the current state
- most card games, kriegspiel chess, wargaming

Search Space

• Naïve game theory: optimize over all possible strategies

- Strategy for Max = what move to make in every possible situation where it's Max's move
- Strategy for Min = what move to make in every possible situation where it's Min's move
- For large games, not feasible
 - (number of possible chess games)
 ≈ 10²³ × (number of particles in the universe)
- Game-tree search
 - Some of the techniques can be justified game-theoretically
 - Some are *ad hoc*

Game-Trees in Perfect-Information Games

- Each path from the root is a possible sequence of moves
- For each node *x*, compute a utility value (usually a minimax value) that depends on the utility values of *x*'s children
- Game tree usually far too big to search completely
- Techniques for pruning portions of the tree
 - alpha-beta pruning

- cutoff depth and static evaluation function
- quiescence search and biasing
- transposition tables
- Even then, still must examine a huge number of game positions

Imperfect-Information Games

Each game-tree node is a belief state $b = \{all states consistent with the available information\}$

• In kriegspiel chess, $|b| \approx 10^{20}$

- Many things the adversary *might* be able to do
 - Need to include all of them as branches in the game tree
 - successors(b) = U {successors(s) : s is in b}

- branching factor = |successors(b)|
- If *b* is contains many states, the branching factor can be quite large
- Size of game-tree is exponential in the average branching factor! Nau: Games Panel, 2005

L@CD Reducing the Size of the Game Tree

Plan-based game trees

- Use AI planning techniques to generate a game tree in which each branch corresponds to a possible tactic that a player might use
 - » E.g., ruffing, finessing, cross-ruffing, cashing out
- Usually much fewer of these than there are possible moves
- In 1997, Bridge Baron [Smith, Nau & Throop, '96, '97, '98] used this technique to win the world $task - - \rightarrow Finesse(P_1; S)$ championship of method ---> computer bridge [*Wash Post*, LeadLow(P_1 ; S) FinesseTwo(P₂; S) NY Times, ...] Successful $PlayCard(P_1; S, R_1)$ EasyFinesse(P₂; S) StandardFinesse(P₂; S) BustedFinesse(P₂; S) commercial dummy product StandardFinesseThree(P₃; S) StandardFinesseTwo(P₂; S) FinesseFour(P_4 ; S) $PlayCard(P_2; S, R_2)$ $PlayCard(P_3; S, R_3)$ PlayCard(P₄; S, R₄) $PlavCard(P_4; S, R_4')$ Nau: Games Panel, 2005 1st opponent declarer 2nd opponent

L^{CD} Reducing the Size of the Game Tree

Abstraction

- Consider certain sets of moves or states to be equivalent
- Only generate/evaluate one of them, not all of them
- Used in sprouts, go, bridge, poker, ...

Statistical sampling

- Make a random guess for what the missing information is
- Search the perfect-information game tree
- Do this many times, average the results
- Theoretical problems: can't reason about deception, information-gathering
 - But it seems to work OK in some games
- Several leading bridge programs use a combination of abstraction and statistical sampling
- We're currently using a variant of statistical sampling in kriegspiel chess [Parker, Nau, & Subrahmanian, *ICJAI-05*]

AQ532 = AQxxx

- Actions with multiple possible outcomes
 - Action failures
 - » Robot gripper drops its load
 - Exogenous events
 - » Road closed
 - » Shipment arrives
- Primary approaches
 - 1. Discrete Markov Decision Processes (MDPs)
 - » Dynamic programming algorithms
 - 2. Nondeterministic state-transition networks
 - » Like MDPs but without the probabilities
 - » Model-checking algorithms

L
 CD
 Relation
 to Game-Tree Search

- Research communities are nearly disjoint
- Underlying models are closely related
 - Opponent's actions = multiple outcomes of our actions
 - Terminal nodes = absorbing states
- Main difference: how each formulation assigns probabilities to the outcomes

- Nondeterministic state-transition networks: no probabilities
 - » Find policy (contingency plan) that works under all "fair" transitions
- Game-tree search
 - » Probabilities depend on how the opponent decides to respond

9

Possible

outcomes

10

3

Primary Difficulty

- Algorithms for planning with under uncertainty have very high computational complexity
 - Gigantic search space, algorithms search almost all of it
 - » On large problems this is not feasible
- "Classical" AI planning (for deterministic domains)
 - Lots of work on generating plans quickly
 - Techniques for pruning large parts of the entire space
 - Can we generalize any of these techniques for use in nondeterministic domains?

Our Results

- We've shown how to take a large class of classical planning algorithms, and systematically generalize them to solve
 - ◆ Nondeterministic transition networks [Kuter & Nau, AAAI-04, ICAPS-05]
 - MDPs [Kuter & Nau, AAAI-05]
- Theoretical analysis:
 - Under the right conditions, can run exponentially faster than the best previous algorithms
- Experiments:
 - On the largest problems the previous algorithms could solve, the new ones were more than 10,000 times as fast

LCD Relation to Game-Tree Search

- As I said earlier, the relationship seems quite close
- Example: our previous work on *Bridge Baron* can be viewed as a special case of the planner-generalization process
 - We generalized HTN planning to generate game trees
 - The same kind of generalization as what I described for MDPs

• It should be possible to generalize several other planning algorithms in the same way

Summary

- Problem: incomplete information leads to a huge search space
- I've discussed several techniques, and summarized their advantages/disadvantages
- My own work
 - Plan-based approach
 - » Bridge Baron, nondeterministic transition networks, MDPs
 - » Advantage: can get huge speedups
 - » Disadvantage: expert human labor to encode the tactics
 - Stochastic sampling in kriegspiel chess
 - » Advantage: less human effort: don't have to encode tactics
 - » Disadvantage: some theoretical limitations

