
1Nau: Games Panel, 2005

Panel: Markov Games Versus
Game-Tree Search

Dana Nau, moderator Computer Science, University of Maryland
Peter Cramton Economics, University of Maryland
Ron Parr Computer Science, Duke University
Stephen Smith Great Game Products
Mike Wellman Computer Science, University of Michigan

2Nau: Games Panel, 2005

Incomplete-Information Games
and Planning Under Uncertainty

Dana Nau, University of Maryland

Outline:
 Game-tree search in imperfect-information games
 Planning under uncertainty
 How they are related

3Nau: Games Panel, 2005

 I’ll focus on games in which
 Two players (or teams)
 Zero-sum payoffs
 Players take turns

 Case 1: perfect information
 Throughout the game, have complete

knowledge of the current state
» All possible actions for each player
» Outcomes of each action

 chess, checkers, othello, go, …

 Case 2: imperfect information
 Only partial knowledge

of the current state
 most card games, kriegspiel chess,

wargaming

Adversarial Games of Strategy

West

North

East

South

6
2

8
Q

Q
J
6
5

9
7

A
K
5
3

A
9

4Nau: Games Panel, 2005

Search Space
 Naïve game theory: optimize over all possible strategies

 Strategy for Max = what move to make in every possible
situation where it’s Max’s move

 Strategy for Min = what move to make in every possible
situation where it’s Min’s move

 For large games, not feasible
 (number of possible chess games)

≈ 1023 x (number of particles in the universe)

 Game-tree search
 Some of the techniques can be justified game-theoretically
 Some are ad hoc

5Nau: Games Panel, 2005

 Each path from the root is a possible sequence of moves
 For each node x, compute a utility value (usually a minimax value)

that depends on the utility values of x’s children
 Game tree usually far too big

to search completely
 Techniques for pruning

portions of the tree
 alpha-beta pruning
 cutoff depth and static evaluation function
 quiescence search and biasing
 transposition tables

 Even then, still must examine a huge number of game positions

Game-Trees in
Perfect-Information Games

10 -3 5 9 -2 -7 2 3

10 9 -2 3

9 -2

Max’s move

Min’s move

Max’s move
9

6Nau: Games Panel, 2005

 Each game-tree node is a
belief state b = {all states consistent with the available information}
 In kriegspiel chess, |b| ≈ 1020

 Many things the adversary might be able to do
 Need to include all of them as branches in the game tree
 successors(b) = U {successors(s) : s is in b}

 branching factor = |successors(b)|
 If b is contains many states, the branching factor can be quite large
 Size of game-tree is exponential in the average branching factor!

Imperfect-
Information Games

West

North

East

South

6
2

8
Q

Q
J
6
5

9
7

A
K
5
3

A
9

b = {s1, s2, s3, …, s1020}

… sq … s1020sp
s1 …

7Nau: Games Panel, 2005

Reducing the Size of the Game Tree
 Plan-based game trees

 Use AI planning techniques to generate a game tree in which each branch
corresponds to a possible tactic that a player might use

» E.g., ruffing, finessing, cross-ruffing, cashing out
 Usually much fewer of these than there are possible moves

 In 1997, Bridge Baron [Smith, Nau & Throop, '96, '97, '98] used this technique
to win the world
championship of
computer bridge
[Wash Post,
NY Times, …]
 Successful

commercial
product

8Nau: Games Panel, 2005

 Abstraction
 Consider certain sets of moves or states to be equivalent
 Only generate/evaluate one of them, not all of them

 Used in sprouts, go, bridge, poker, …

 Statistical sampling
 Make a random guess for what the missing information is
 Search the perfect-information game tree
 Do this many times, average the results

 Theoretical problems: can’t reason about deception, information-gathering
 But it seems to work OK in some games

 Several leading bridge programs use a combination of abstraction and statistical
sampling

 We’re currently using a variant of statistical sampling in kriegspiel chess [Parker,
Nau, & Subrahmanian, ICJAI-05]

♠AQ532 = ♠AQxxx

Reducing the Size of the Game Tree

9Nau: Games Panel, 2005

 Actions with multiple
possible outcomes
 Action failures

» Robot gripper
drops its load

 Exogenous events
» Road closed
» Shipment arrives

 Primary approaches
1. Discrete Markov Decision Processes (MDPs)

» Dynamic programming algorithms
2. Nondeterministic state-transition networks

» Like MDPs but without the probabilities
» Model-checking algorithms

Planning Under
Uncertainty

Goal

Start

10Nau: Games Panel, 2005

 Research communities are nearly disjoint
 Underlying models are closely related

 Opponent’s actions =
multiple outcomes of our actions

 Terminal nodes = absorbing states
 Main difference: how each formulation

assigns probabilities to the outcomes
 MDPs: probabilities are assumed to be known in advance
 Nondeterministic state-transition networks: no probabilities

» Find policy (contingency plan) that works under all “fair”
transitions

 Game-tree search
» Probabilities depend on how the opponent decides to respond

Relation
to Game-Tree Search

10 9 -2 3
Min’s move

Max’s move

10 9 -2 3

Possible
outcomes

Max’s move

11Nau: Games Panel, 2005

Primary Difficulty
 Algorithms for planning with under uncertainty have

very high computational complexity
 Gigantic search space, algorithms search almost all of it

» On large problems this is not feasible

 “Classical” AI planning (for deterministic domains)
 Lots of work on generating plans quickly
 Techniques for pruning large parts of the entire space
 Can we generalize any of these techniques for use in

nondeterministic domains?

12Nau: Games Panel, 2005

Our Results
 We’ve shown how to take a large class of classical planning algorithms,

and systematically generalize them to solve
 Nondeterministic transition networks [Kuter & Nau, AAAI-04, ICAPS-05]
 MDPs [Kuter & Nau, AAAI-05]

 Theoretical analysis:
 Under the right conditions, can run exponentially faster than the best

previous algorithms
 Experiments:

 On the largest
problems the
previous algorithms
could solve, the
new ones were
more than 10,000
times as fast

13Nau: Games Panel, 2005

Relation to Game-Tree Search

 As I said earlier, the relationship
seems quite close

 Example: our previous work on
Bridge Baron can be viewed as
a special case of the
planner-generalization process
 We generalized HTN planning

to generate game trees
 The same kind of

generalization as what I
described for MDPs

 It should be possible to generalize several other planning
algorithms in the same way

10 9 -2 3
Min’s move

Max’s move

10 9 -2 3

Possible
outcomes

Max’s move

14Nau: Games Panel, 2005

Summary
 Problem: incomplete information leads to a huge search space
 I’ve discussed several techniques, and summarized their

advantages/disadvantages
 My own work

 Plan-based approach
» Bridge Baron, nondeterministic transition networks, MDPs
» Advantage: can get huge speedups
» Disadvantage: expert human labor to encode the tactics

 Stochastic sampling in kriegspiel chess
» Advantage: less human effort: don’t have to encode tactics
» Disadvantage: some theoretical limitations

15Nau: Games Panel, 2005

