Modeling & Simulation of Agents in Resource Strategy Games

Barry G. Silverman, PhD Tony Smith Phd E;ectrical & Systems Engineering Dept. Inst. For Research in Cognitive Science (IRCS) Center for Human Modeling & Simulation University of Pennsylvania, Philadelphia, PA 19104-6315 (215-573-8368) barryg@seas.upenn.edu www.seas.upenn.edu/~barryg

May 2005

Challenge I: Design a Human Playable Game for Influencing World Leaders & Situations

- Help to Generate Influence Ideas

 Foster outside box, transformational thinking (ACH)
- Promote Situational Understanding
 - Reduce 'Mirroring' Bias
- Trace out Transforming/Influencing Possibilities

Result: LeaderSim Game (Athena's Prism)

Best Method of Forecasting Conflict

Table 1 - Accuracy of forecasts doubles with Role Playing*

Percent correct forecasts (number of forecasts)

Conflict Case:	Pu Chane	re ce ji b	Unaided udgement y novices	theo	Game ry experts	S in wi	imulated iteraction th novices
Artists Protest	17	5	(60)	6	(17)	29	(14)
Distribution Channel	33	15	(68)	23	(13)	75	(12)
55% Pay Plan	25	15	(39)	29	(17)	60	(10)
Telco Takeover	25	29	(34)	0	(7)	40	(10)
Personal Grievance	25	35	(31)	43	(7)	60	(10)
Zenith Investment	33	36	(44)	22	(18)	59	(17)
Water Dispute	33	51	(35)	75	(8)	90	(10)
Nurses Dispute	<u>33</u>	<u>65</u>	<u>(46)</u>	<u>50</u>	<u>(14)</u>	<u>82</u>	<u>(22)</u>
Averages (unweighted)	28	32	(357)	31	(101)	62	(105)

*data from Green (2002) and Green & Armstrong (2004), Jnl of Forecasting.

Challenge II: Add PMFserv Agent Opponents to LeaderSim Game

- 1. Develop a Resource-based Game (~ 12 resources, in ea of 8 lands)
- 2. Factional Leaders Control Resources by Territory
- 3. Add Actions Leaders Take (~ 70 actions, 5 speech act types, spying)
- 4. Observe Human Players, Action Strategies, Speech Acts
- 5. Develop Agents to Mimic Humans/Real Leaders
 - 1. Simple game theory
 - 2. Emotion- and stress-based games (GSP trees: culture/personality)
 - 3. Static intention models of the other agents (mirror of GSP trees)
 - 4. Dynamic modeling of others (MOO) informal proof
 - 5. Castelfranchi's socio-cognitive model of trust

Agents in Role Playing Game Simulations

www.seas.upenn,edu/~barryg/HBMR

Many Parameters (θ_i) in PMFserv

- Physiology/Biology
 - Nourishment
 - Muscle Energy
 - Injury Levels
 - Sleep Need
 - Adrenaline
 - Others (open to user)
- Stress/Coping Style
 - Time Pressure
 - Event Stress
 - Effective Fatigue
 - Decision Style (5 levels)
 - Adherence
 - Vigilance
 - Panic
- Emotions (11 pairs)
 - Joy/Despair, Fear/Hope, etc.

- GSP Value Trees (10E2 nodes)
 - Long Term Preferences (by Resource and Territory)
 - Standards (Norms, Doctrine)
 - Short Term Goals (Maslow-type)
- Relationship Parameters
 - Alignment Level (Ally-Foe, 5 levels)
 - Group Affiliation (6-10 groups)
 - Valence/CognUnit/Agent-Object
 - Trust (by Resource and Territory)
- Decision Parameters
 - Utility and Cost (continuous)
 - Action Choices (10s to 100s)
 - Discount Factors (risk-prone/averse)
 - World State
 - Perception & Modeling of Others
 - N*(GSPs+Relations+Actions)

Gallery of Some Past PMFserv Agent Studies

Crowd Behavior Emergence : (Bio-Affect-Values-Panic-Riots)

•WTO Talks in Seattle -- Protesting/rioting crowds at roadblock:

Males (employed/unempl.), females, instigators

•Rioting/looting crowds at police station (impact of chanting upon crowd behavior)

•Soccer Hooligans (Manchester United Supporters)

•Scale up to 2000 agents in Sony OpenSteer

Political Agents for RPGs

•Nested intention models, speech acts, relationship/reputation management •World loadors in diplomatic strategy

•World leaders in diplomatic strategy role playing game

•Third Crusade Leaders (Saladin, Emir, Richard, Philip, etc.)

Asymmetric Plots (Culture/Emotions)

- Ambush from terrorists on school bus
 - Recreate Black Hawk Down: Four types of Somalians
 - Women/Kids, Civilian Males, Militia, Clan Leaders
 - Intifadah dynamics cell leader, suicide-bomber, Mayor, populace reactions
- SE Asia Prime Minister, Populace, Insurgents

Scope of LeaderSim

•Silverman, B.G., Johns, M., et al. (2002, May). "Constructing Virtual Asymmetric Opponents from Data and Models in the Literature." <u>11th BRIMS</u>, SISO.

Agents Form Beliefs about the GSP Trees of other Agents (Static Model: 'Mirroring and Stereotyping)

LeaderSim AI Prototype File View Options Help								
People Economy	Utility Detail - Blue's view of Yellow Vuin Table Ideal Board Agreements							
	Туре	Player	Resource	Territory	Achievemer			
	Eliminate	Blue	Armed Forces	YellowLand	1.000			
BlueLand	- Eliminate	Blua	People	YellowLand	1 000			
People Economy Armed Forces	Eliminate Eliminate Eliminate Eliminate Eliminate Eliminate Grow	Blue Blue Blue Blue Blue Blue Yellow	Armed Forces Economy People Armed Forces Economy People People	RedLand RedLand RedLand BlueLand BlueLand BlueLand YellowLand	1.000 1.000 1.000 0.741 0.670 0.670 0.551			
Yellowi and	Grow	Yellow	Economy	YellowLand	0.551			
People Economy Armed Forces	Grow Grow Grow Grow Grow	Yellow Yellow Yellow Yellow Yellow	Armed Forces Armed Forces Economy People Armed Forces	YellowLand BlueLand BlueLand BlueLand RedLand	0.503 0.000 0.000 0.000 0.000			
Action Target Resource Te	errib Add	Edit	Remove					

Prototype LeaderSim Results

Nash Equilib: 2 winners in conflictual world

Rare 3 in endgame. Yellow specialized away from Red and Blue.

Using threats, Yellow turns Red and Blue against one another

Y's power is curtailed early. Y then uses treaties to negotiate peace.

Challenge III: Sensitivity Analysis & Wizard for Design of Simulation Experiments

- Find principled way to explore the simulation space
 Identify possibilities for conflict, non-conflict
- Understand how model parameters (θ_i) influence outcomes
 - Ho: P(Conflict | θ_i) > Threshold OR < Limit
 - Parameter elasticities (e.g., regression estimators)
- Create wizard for Policy Analysts

SENSITIVITY ANALYSIS

 $P(\Phi) = conflict probability$

OBJECTIVE: Determine most influential parameters in P(0) θ

SIMULATION SAMPLING

 Θ = parameter space

MORRIS RANDOM WALK

SIMULATION SAMPLES

Morris, M. D. (1991) "Factorial sampling plans for preliminary computational experiments", *Technometrics*, 33: 161-174. Campolongo, F., S. Tarantola and A. Saltelli (1999) "Tackling quantitatively large dimensionality problems", *Computer Physics Communications*, 117: 75-85.

MULTIPLE - SPLITTING EXTENSION

Glasserman, P., P. Heidelberger, P. Shahabuddin and T. Zajic (1999) "Multilevel splitting for estimating rare event probabilities", *Operations Research*, 47:585-600.

SENSITIVITY ESTIMATES

SAMPLE DATA: $H_N(\theta)$ = number of *C* "hits" in *N* simulation samples using θ

NONPARAMETRIC APPROACHES

$$\hat{P}(\Phi) = \frac{1}{N}$$

(Simple Relative Frequencies)

PARAMETRIC APPROACHES

$$P(\mathbf{f}) \quad \theta = \frac{\exp(\beta\beta\theta)}{1\exp(\beta\beta\theta)} \quad '$$

(Logistic Regression)

 $\implies \hat{\beta}_i$ = sensitivity estimate for θ_i

SEQUENTIAL OPTIMIZATION APPROACH?

- Given an initial state, S_0 , find parameter values, θ , that achieve "almost minimal" conflict probabilities, $P(-) = \theta$
- Find parameter values, θ , that achieve acceptable risk levels for a wide range of initial conditions, S_0 .
- Are there useful reinforcement learning strategies
 for accomplishing these objectives?
 Littman's interval estimation for exploring parameter spaces of HMMs
 Schaeffer's hierarchical approach to "near optimal path-finding"
 - •Carlyle's "D-optimal sequential experiments"

Summary

- <u>LeaderSim</u> Rapidly mockup realworld scenarios and play out how DIME action choices lead to alternative PMESII effects and ways to influence leaders
- Human Behavior (PMFserv) Compose leaders and peoples. Open the agenda to research on parameters across many human behavior disciplines (biology/stress, values/personality/emotion, culture/groups, trust/reputation, decisions/gaming)
- <u>Sensitivity Studies</u> Find principled ways to explore the space of possible outcomes, to avoid conflict states, and to understand the elasticities of behavior parameters as DIME interventions are attempted