CMSC 421: Neural Computation

e definition

* synonyms
neural networks
artificial neural networks
neural modeling

connectionist models
parallel distributed processing

* Al perspective

Applications of Neural Networks

* pattern classification

- virus/explosive detection, financial predictions, etc.
* image processing

- character recognition, manufacturing inspection, etc.
* control

- autonomous vehicles, industrial processes, etc.
* optimization

- VLSI layout, scheduling, etc.
* bionics

- prostheses, brain implants, etc.
* brain/cognitive models

- memory, learning, disorders, etc.




Nature-Inspired Computation

natural g57imiE
! ——————= models, > applications
system .
theories
biology, interdisciplinary computer s?ience
physics, etc. engineering
neural networks
genetic programming
swarm intelligence
self-replicating machines
Inspiration for neural networks?
Neural Networks
nature model/theory applications

pattern classification
speech recognition

rando_m netWO_rkS image processing
—)> Hebbian learning ) text-to-speech

perceptrons expert systems

error backpropagation autonomous vehicles

self-organizing maps financial predictions
associative memory
data visualization

+ brain modeling




The Brain

- complex
- flow of information
- what is known?

- neurons
- synapses

Neuron Information Processing

Axonal arborization

\ Axon from another cell

Synapse
Dendrite

Nucleus

\/

Synapses

Cell body or Soma




How Does the Brain Compute?

- massively parallel processing

A familiar example ...

How fast is the processing?
- cycle time vs. CPU...
- signal speeds ...

How does it do that?! ...

- different computational principles

10! neurons

Summary: Brain as Inspiration

network of neurons

neuron

: : E’ synapse

flow of

information

Relevance to Al:

Can a machine think?

Alan Turing and “weak AI”
Prospects for “strong AI”?

10'" neurons, 10'* synapses

spikes (pulses)




The Computer vs. The Brain

2

information access global local

control centralized decentralized
processing method sequential massively parallel
how programmed programmed self-organizing
adaptability minimally prominently

Our immediate focus: supervised/inductive learning

History of Neural Networks
1945-1955: pre-computing

1955-1970: classical period ==~~~ pereepirons
1970-1985: dark ages pRTY
1985-1995: renaissance ------""" oo

1995-today: modern era




Neural Computation

— e« basics

» feedforward networks
- perceptrons
- error backpropagation

* recurrent networks

Neural Network Basics

neural network = network + activation rule + learning rule




Neural Networks

1. network graph
node/neuron activation level a
connection/synapse  weight Wy

excitatory: w; >0

Clj Wij a;
O—’j O inhibitory: w, < 0
1

feedforward vs. recurrent networks

2. activation rule in,; = z w;a; O
J
a; =g(in;) a a;

Wi

* “executing” a neural network

Choices for Activation Function

A o(in,) &lin;)

-1

LTU (step) logistic (sigmoid)

a; = stepy (in;) a;=o(n;)

local computations — emergent behavior
others: sign, tanh, linear, radial basis, ...




3. Learning Rule

weight changes as function of local activity

i Q)

w.. Awl] =f(aj,ai,ini,wl-]-,...)

Neural Computation

* basics

— « feedforward networks
- perceptrons
- error backpropagation

* recurrent networks




Single Layer Networks
‘ = ‘ number of layers?

inputs  outputs

* supervised learning:
Perceptron Learning Rule

LMS Rule
* derived using gradient descent
* associative memory, pattern classification

Elementary Perceptron
LTU = linear threshold unit

input layer
output

= response

ar
{0, 1} a, = step(in,)

QY

Example ...




Perceptrons as Logic Gates

Threshold needed to produce ...

AND OR NOT

2, Od O 1 q
O}X 1 O—>0O—
% 6.=1.5 O/ev, =0.5 6,=-0.5

a4

Perceptron Learning Rule

If the target output for unitrist, | w,=w,.+n(t, -a,)q;

n>0 6,=t.-a,
Equivalent to the intuitive rules:
If output is correct: don’t change the weights

If output is low (a,=0, t=1): increment weights for inputs = 1

If output is high (a,=1, t=0): decrement weights for inputs = 1

Must also adjust threshold: 0,.=0,.-n(,.-a,)

(or, equivalently, assume there is a weight w,, for an extra input
unit that has a,=-1: bias node)

10



Example of Perceptron Learning

1 3.0
50 6,=1.0 Wyi =Wri+n(tr_ar)ai
- 0.=0,-n,.-a,)
1.0 r r r r
| Q/

Suppose n=0.1and ¢,=0 ...

Perceptron Learning Algorithm

+ repeatedly iterate through examples adjusting weights
using perceptron learning rule until all outputs correct

— initialize the weights randomly or to all zero

— until outputs for all training examples are correct
« for each training example do
— compute the current output a,
— compare it to the target t. and update weights

« each pass through the training data is an epoch

» when will the algorithm terminate?
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Perceptron Properties

« Perceptron Convergence Theorem: If there are a set
of weights that are consistent with the training data
(i.e., the data is linearly separable), the perceptron
learning algorithm will converge on a solution.

» Perceptrons can only represent linear threshold
functions and can therefore only learn functions that
linearly separate the data, i.e., the positive and
negative examples are separable by a hyperplane in
n-dimensional space.

+ Unfortunately, some functions (like xor) cannot be
represented by a LTU.

Error Backpropagation

* widely used neural network learning method

« seminal version about 1960 (Rosenblatt)

» multiple versions since

* basic contemporary version popularized = 1985
* uses multi-layer feedforward network
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Uses Layered Feedforward Network

output units

hidden units

input units

Representation Power of
Multi-Layer Networks

Theorem: any boolean function of N inputs can be represented
by a network with one layer of hidden units.

XOR

a,=a, A ~a;
= or(a,a,) A ~and(a,a,)
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Activation Function

glin;)

logistic (sigmoid)

a,=0o(n,)

Error Backpropagation Learning

Op =ty —ay)a,(1-ay)

Awk] = T](Sk aj

9, =(Ewkj6k)aj(l—aj)
k

Awﬂ =T]6jai
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Recall: Perceptron Learning Rule

H—I
o
Rewritten:

EBP Learning Rule

output  J R

output k’s

hidden

input
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Error Backpropagation

» repeatedly found to be effective in practice
» however, not guaranteed to find solution
* why? hill climbing can get stuck

in local minima

 most widely used neural network method

Error Backpropagation Applications

NETtalk

OCR

ALVINN

medical diagnosis
plasma confinement
neuroscience models
cognitive models
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NETtalk

TEACHER
v

I/

Output Units 000000 26 (distributed representation)
71N\
Hidden Units  OO00000000000000000000 60 - 120 (best: 120)
77T TANN

Input Units  OOCO 0OCO 0000 0000 0000 0000 000 203 (7 x 29; local)

_ a - ¢ a t -).
( ®

““window”
« typically > 18,000 weights
« training data: phonetic transcription of speech
« after 50 epochs: 95% correct on training data,
80% correct on test data

Optical Character Recognition (OCR)

0123456789 Output layer

3,000 connection eval. by DSP

s A SR MG 0

4 Hidden layers
130,000 connections
eval. by NN-chip

2 ¢

1 ‘ . Input (20 x 20 pixels)
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ALVINN

(Autonomous Land Vehicle In a Neural Network)

* neural net trained to drive a van along roads viewed
through a TV camera
* speeds > 50 mph up to 20 miles (15 images/sec.)

ALVINN’s Neural Network

Left Ahcad Right

Typical weights from a hidden node:
30 Output
Units PR H—-0O

30x32 Sensor
Input Retina

=~ 4000 weights/biases
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