
1

CMSC 421: Neural Computation

• definition
• synonyms
 neural networks
 artificial neural networks
 neural modeling
 connectionist models
 parallel distributed processing
• AI perspective

Applications of Neural Networks
• pattern classification
 - virus/explosive detection, financial predictions, etc.
• image processing
 - character recognition, manufacturing inspection, etc.
• control
 - autonomous vehicles, industrial processes, etc.
• optimization
 - VLSI layout, scheduling, etc.
• bionics
 - prostheses, brain implants, etc.
• brain/cognitive models
 - memory, learning, disorders, etc.

2

Nature-Inspired Computation

 natural
 system applications

formal
models,
theories

 biology,
physics, etc.

 computer science
 engineering

interdisciplinary

 neural networks
 genetic programming
 swarm intelligence
 self-replicating machines
 ..

Inspiration for neural networks?

applications
pattern classification
speech recognition
image processing
text-to-speech
expert systems
autonomous vehicles
financial predictions
associative memory
data visualization
 …

+ brain modeling

Neural Networks
model/theory

random networks
Hebbian learning
perceptrons
error backpropagation
self-organizing maps
 …

nature

3

- complex
- flow of information
- what is known?

The Brain

(Purkinje cells; Golgi + Nissl stains)

 - neurons
 - synapses

Neuron Information Processing

4

How Does the Brain Compute?
A familiar example …

How fast is the processing?
 - cycle time vs. CPU…
 - signal speeds …

How does it do that?! …

 - massively parallel processing 1011 neurons
 - different computational principles

Summary: Brain as Inspiration
 network of neurons
 1011 neurons, 1014 synapses

 Relevance to AI:
 Can a machine think?
 Alan Turing and “weak AI”
 Prospects for “strong AI”?

 neuron

 flow of
information

 synapse

 spikes (pulses)

5

The Computer vs. The Brain

• information access

• control

• processing method

• how programmed
• adaptability

local

decentralized

massively parallel

self-organizing
prominently

global

centralized

sequential

programmed

minimally

History of Neural Networks
1945-1955: pre-computing
1955-1970: classical period
1970-1985: dark ages
1985-1995: renaissance
1995-today: modern era

perceptrons

error back-
propagation

Our immediate focus: supervised/inductive learning

6

Neural Computation
• basics
• feedforward networks
 - perceptrons
 - error backpropagation
• recurrent networks

Neural Network Basics

 neural network = network + activation rule + learning rule

7

Neural Networks

 node/neuron activation level ai
 connection/synapse weight wij

 excitatory: wij > 0
 inhibitory: wij < 0

1. network graph

2. activation rule

!

ini = wij

j

" a j

!

ai = g(ini)

• “executing” a neural network

 feedforward vs. recurrent networks

...
ai

!

r
w

i

!

r
a

wijaj ai

j i

+

Choices for Activation Function

LTU (step) logistic (sigmoid)

!

a
i
=" (in

i
)

local computations → emergent behavior
others: sign, tanh, linear, radial basis, …

!

a
i

= step" (ini)

θ

8

3. Learning Rule

 weight changes as function of local activity

!

"wij = f (a j ,ai ,ini ,wij ,...)

j

i

 wij

Neural Computation
• basics
• feedforward networks
 - perceptrons
 - error backpropagation
• recurrent networks

9

Single Layer Networks

• supervised learning:
 LMS Rule Perceptron Learning Rule
• derived using gradient descent
• associative memory, pattern classification

 inputs outputs

 o
 o
 o |
 o

 o
 o
 o |
 o

 number of layers?

...

Elementary Perceptron

ar

!

r
w

r

LTU = linear threshold unit

!

r
a

θr

!

a
r

= step(in
r
)

 input layer

 output

r = response

 {0, 1}

Example …

ar =

1

0

1

 3.0

 5.0
-1.0

inr = 2.0

1

θr = 1.0

10

Perceptrons as Logic Gates

1
1

1
1 -1

Threshold needed to produce …

 AND OR NOT

θr = 1.5 θr = 0.5 θr = -0.5

 a1

 a2

 a2

 a1 a1 a1

 a2 a2

Linear separability:

Perceptron Learning Rule

!

w
ri

= w
ri

+"(t
r
a

r
)a

i

Equivalent to the intuitive rules:
If output is correct:

If output is low (ar=0, tr=1):

If output is high (ar=1, tr=0):

Must also adjust threshold:

(or, equivalently, assume there is a weight wr0 for an extra input
 unit that has a0=-1: bias node)

If the target output for unit r is tr

 don’t change the weights

 increment weights for inputs = 1

 decrement weights for inputs = 1

!

"
r

="
r
#$(t

r
a

r
)

η > 0 δr = tr - ar

11

Example of Perceptron Learning

1

0

1

 3.0

 5.0
-1.0

θr = 1.0

!

w
ri

= w
ri

+"(t
r
a

r
)a

i

Suppose η = 0.1 and tr = 0 … +!

"
r

="
r
#$(t

r
a

r
)

Perceptron Learning Algorithm
• repeatedly iterate through examples adjusting weights

using perceptron learning rule until all outputs correct
– initialize the weights randomly or to all zero
– until outputs for all training examples are correct

• for each training example do
– compute the current output ar

– compare it to the target tr and update weights

• each pass through the training data is an epoch

• when will the algorithm terminate?

12

Perceptron Properties

• Perceptrons can only represent linear threshold
functions and can therefore only learn functions that
linearly separate the data, i.e., the positive and
negative examples are separable by a hyperplane in
n-dimensional space.

• Unfortunately, some functions (like xor) cannot be
represented by a LTU.

• Perceptron Convergence Theorem: If there are a set
of weights that are consistent with the training data
(i.e., the data is linearly separable), the perceptron
learning algorithm will converge on a solution.

Error Backpropagation

• widely used neural network learning method
• seminal version about 1960 (Rosenblatt)
• multiple versions since
• basic contemporary version popularized ≈ 1985
• uses multi-layer feedforward network

13

Uses Layered Feedforward Network

output units

hidden units

input units

O

H

I

Representation Power of
Multi-Layer Networks

Theorem: any boolean function of N inputs can be represented
 by a network with one layer of hidden units.

XOR

 a1

 a2

 a3

 a4

 ar

1

1

1

-2

1

1
θ3 = 1.5

θ4 = 0.5

θr = 0.5 ar = a4 ∧ ~ a3
 = or(a1,a2) ∧ ~and(a1,a2)

14

Activation Function

 logistic (sigmoid)

!

a
r

=" (in
r
)

Error Backpropagation Learning

 activity errors

!

"wkj = #$k a j

!

"
k

= (t
k
a

k
)a

k
(1# a

k
)

!

" j = wkj"k
k

#
$

%

&
&

'

(

)
)
a j (1* a j)

!

"w ji = #$ j ai

ai

aj

ak

15

Recall: Perceptron Learning Rule

!

w ji = w ji +"(t j # a j)ai

δj

Rewritten:

!

"w ji = #$ j ai

EBP Learning Rule

!

"w ji = #$ j ai
!

" j = (t j # a j)a j (1# a j)

!

" j = wkj"k
k

#
$

%

&
&

'

(

)
)
a j (1* a j)

j

i

 wji

!

"w ji = #$ j ai

j

i

k’s

 wji

!

"
k

 output

 hidden

 output

 hidden

 input

16

Error Backpropagation

• repeatedly found to be effective in practice
• however, not guaranteed to find solution
• why?

• most widely used neural network method

 hill climbing can get stuck
 in local minima

Error Backpropagation Applications

NETtalk
OCR
ALVINN
medical diagnosis
plasma confinement
neuroscience models
cognitive models

 …

17

NETtalk

26 (distributed representation)

60 - 120 (best: 120)

203 (7 x 29; local)

 “window”
• typically > 18,000 weights
• training data: phonetic transcription of speech
• after 50 epochs: 95% correct on training data,
 80% correct on test data

Optical Character Recognition (OCR)

18

ALVINN
(Autonomous Land Vehicle In a Neural Network)

• neural net trained to drive a van along roads viewed
 through a TV camera
• speeds > 50 mph up to 20 miles (15 images/sec.)

ALVINN’s Neural Network

- + -

Typical weights from a hidden node:

H → O

I → H

≈ 4000 weights/biases

