
Last update: January 26, 2010

Intelligent Agents

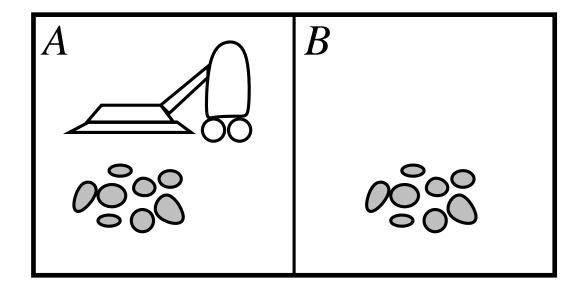
CMSC 421: CHAPTER 2

Agents and environments

Russell & Norvig's book is organized around the concept of *intelligent agents* humans, robots, softbots, thermostats, etc.

The agent function maps from percept histories to actions:

$$f: \mathcal{P}^* \to \mathcal{A}$$


The agent program runs on the physical architecture to produce f

Chapter 2 - Purpose and Outline

Purpose of Chapter 2: basic concepts relating to agents

- ♦ Agents and environments
- Rationality
- The PEAS model of an environment
- ♦ Environment types
- ♦ Agent types

Vacuum-cleaner world

Percepts: location and contents, e.g., [A, Dirty]

Actions: Left, Right, Suck, NoOp

A vacuum-cleaner agent

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], $[A, Dirty]$	Suck
:	i i

```
function Reflex-Vacuum-Agent([location,status]) returns an action

if status = Dirty then return Suck

else if location = A then return Right

else if location = B then return Left
```

What is the **right** function? Can it be implemented in a small agent program?

Rationality

Fixed *performance measure* evaluates the environment sequence

- one point per square cleaned up in time T?
- one point per clean square per time step, minus one per move?
- penalize for > k dirty squares?

A rational agent chooses whichever action maximizes the expected value of the performance measure, given the percept sequence to date

Rational \neq omniscient

percepts may not supply all relevant information

Rational \neq clairvoyant

action outcomes may not be as expected

Hence, rational \neq successful

Rational \Rightarrow exploration, learning, autonomy

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

Performance measure?

Environment?

Actuators?

Sensors?

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

<u>Performance measure?</u> safety, destination, profits, legality, comfort, . . .

<u>Environment?</u> streets/freeways, traffic, pedestrians, weather, . . .

Actuators? steering, accelerator, brake, horn, speaker/display, . . .

<u>Sensors?</u> video, accelerometers, gauges, engine sensors, keyboard, GPS, . . .

Internet shopping agent

Performance measure?

Environment?

Actuators?

Sensors?

Internet shopping agent

<u>Performance measure?</u> price, quality, appropriateness, efficiency

Environment? current and future WWW sites, vendors, shippers

Actuators? display to user, follow URL, fill in form

Sensors? HTML pages (text, graphics, scripts)

	Solitaire	Backgammon	Internet shopping	Taxi
Fully observable?				
Deterministic?				
Episodic?				
Static?				
Discrete?				
Single-agent?				

	Solitaire	Backgammon	Internet shopping	Taxi
Fully observable?	No	Yes	No	No
Deterministic?				
Episodic?				
Static?				
Discrete?				
Single-agent?				

	Solitaire	Backgammon	Internet shopping	Taxi
Fully observable?	No	Yes	No	No
Deterministic?	Yes*	No	Partly	No
Episodic?				
Static?				
Discrete?				
Single-agent?				

^{*}After the cards have been dealt

Episodic: task divided into atomic episodes, each to be considered by itself *Sequential*: Current decision may affect all future decisions

	Solitaire	Backgammon	Internet shopping	Taxi
Fully observable?	No	Yes	No	No
Deterministic?	Yes*	No	Partly	No
Episodic?	No	No	No	No
Static?				
Discrete?				
Single-agent?				

^{*}After the cards have been dealt

Static: the world does not change while the agent is thinking

	Solitaire	Backgammon	Internet shopping	Taxi
Fully observable?	No	Yes	No	No
Deterministic?	Yes*	No	Partly	No
Episodic?	No	No	No	No
Static?	Yes	Semi	Semi	No
Discrete?				
Single-agent?				

^{*}After the cards have been dealt

	Solitaire	Backgammon	Internet shopping	Taxi
Fully observable?	No	Yes	No	No
Deterministic?	Yes*	No	Partly	No
Episodic?	No	No	No	No
Static?	Yes	Semi	Semi	No
Discrete?	Yes	Yes	Yes	No
Single-agent?				

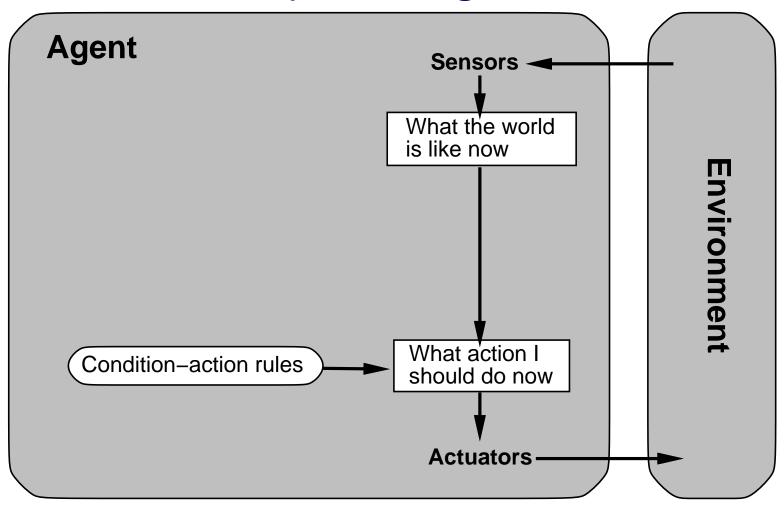
^{*}After the cards have been dealt

	Solitaire	Backgammon	Internet shopping	Taxi
Fully observable?	No	Yes	No	No
Deterministic?	Yes*	No	Partly	No
Episodic?	No	No	No	No
Static?	Yes	Semi	Semi	No
Discrete?	Yes	Yes	Yes	No
Single-agent?	Yes	No	No	No

^{*}After the cards have been dealt

The environment type largely determines the agent design

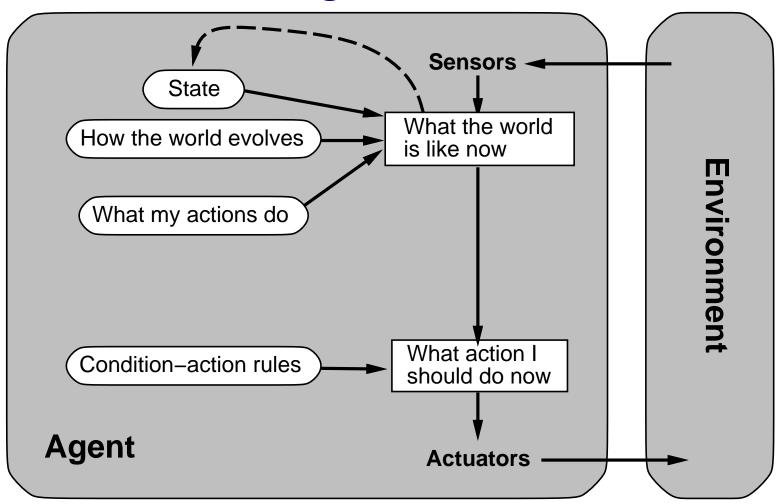
Real world: partially observable, stochastic, sequential, dynamic, continuous, multi-agent


Agent types

Four basic types in order of increasing generality:

- simple reflex agents
- reflex agents with state
- goal-based agents
- utility-based agents

All of these can be turned into learning agents

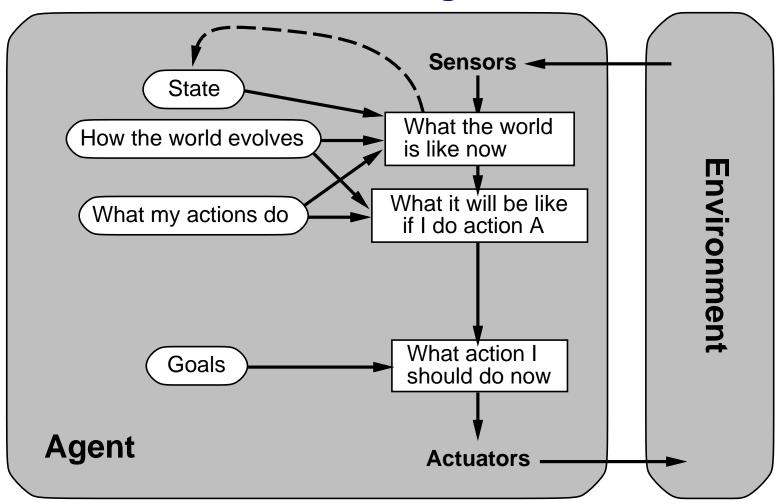

Simple reflex agents

Example

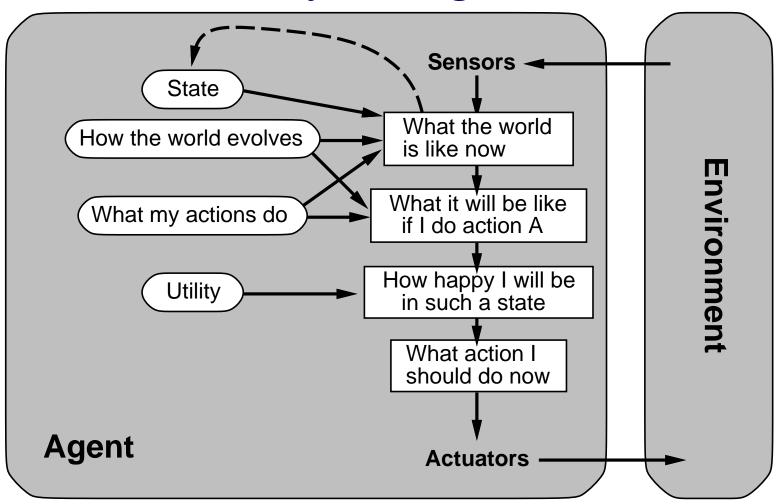
```
function Reflex-Vacuum-Agent([location,status]) returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left
```

Reflex agents with state

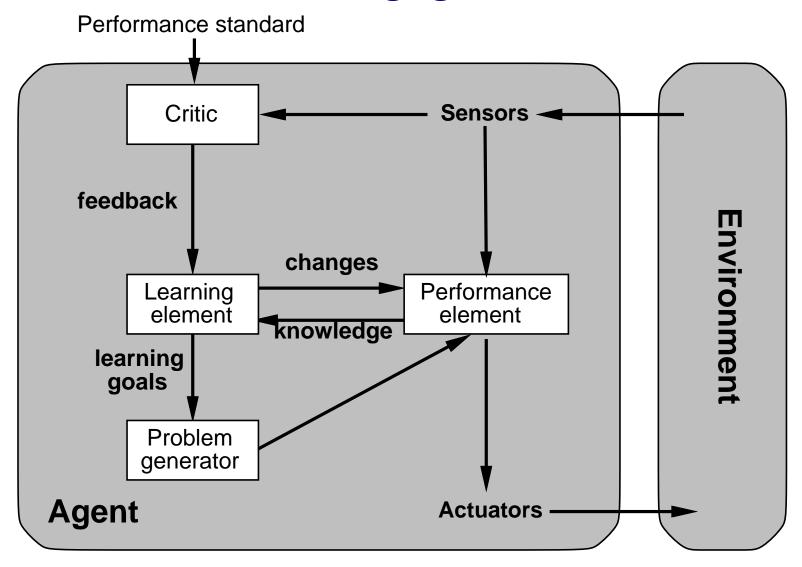
Example


Suppose the percept didn't tell the agent what room it's in. Then the agent could remember its location:

```
function VACUUM-AGENT-WITH-STATE([location]) returns an action static: location, initially A


if status = Dirty then return Suck
else if location = A then
location \leftarrow B
return Right
else if location = B then
location \leftarrow A
return Left
```

Above, I've assumed we know the agent always starts out in room A. What if we didn't know this?


Goal-based agents

Utility-based agents

Learning agents

Summary

Agents interact with environments through actuators and sensors

The agent function describes what the agent does in all circumstances

The *performance measure* evaluates the environment sequence

A perfectly rational agent maximizes expected performance

Agent programs implement (some) agent functions

PEAS descriptions define task environments

Environments are categorized along several dimensions:

observable? deterministic? episodic? static? discrete? single-agent?

Some basic agent architectures:

reflex, reflex with state, goal-based, utility-based