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Iterative improvement algorithms

In many optimization problems, the path to a goal is irrelevant;
the goal state itself is the solution

Then state space = a set of goal states
find one that satisfies constraints (e.g., no two classes at same time)

or, find optimal one (e.g., highest possible value, least possible cost)

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

♦ Constant space
♦ Suitable for online as well as offline search
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Example: the n-Queens Problem

♦ Put n queens on an n× n chessboard
♦ No two queens on the same row, column, or diagonal

Iterative improvement:
Start with one queen in each column
move a queen to reduce number of conflicts

h = 5 h = 2 h = 0

Even for very large n (e.g., n= 1 million),
this usually finds a solution almost instantly

CMSC 421: Chapter 4, Sections 3–4 3



Example: Traveling Salesperson Problem

♦ Given a complete graph (edges between all pairs of nodes)
♦ A tour is a cycle that visits every node exactly once
♦ Find a least-cost tour (simple cycle that visits each city exactly once)

Iterative improvement:
Start with any tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thou-
sands of cities
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Outline

♦ Hill-climbing
♦ Simulated annealing
♦ Genetic algorithms (briefly)
♦ Local search in continuous spaces (very briefly)
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Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing( problem) returns a state that is a local maximum

inputs: problem, a problem

local variables: current, a node

neighbor, a node

current←Make-Node(Initial-State[problem])

loop do

neighbor← a highest-valued successor of current

if Value[neighbor] ≤ Value[current] then return State[current]

current← neighbor

end

At each step, move to a neighbor of higher value
in hopes of getting to a solution having the highest possible value

Can easily modify this for problems where we want to minimize rather than
maximize
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Hill-climbing, continued

Useful to consider state space landscape

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

Random-restart hill climbing: repeat with randomly chosen starting points
Russell & Norvig say it’s trivially complete; they’re almost right

If finitely many local maxima, then limrestarts→∞P (complete) = 1
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Simulated annealing

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function Simulated-Annealing( problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to “temperature”

local variables: current, a node

next, a node

T, a “temperature” controlling prob. of downward steps

current←Make-Node(Initial-State[problem])

for i← 1 to ∞ do

T← schedule[i]

if T = 0 then return current

next← a randomly selected successor of current

∆E←Value[next] – Value[current]

if ∆E > 0 then current← next

else with probability e∆E/T , set current← next
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A simple example

Each state is a number x ∈ [0, 1], initial state is 0, all states are neighbors,
Value(x) = x2, 100 iterations, schedule[i] = 10× 0.9i

function Simulated-Annealing( problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to “temperature”

local variables: current, a node

next, a node

T, a “temperature” controlling prob. of downward steps

current←Make-Node(Initial-State[problem])

for i← 1 to ∞ do

T← schedule[i]

if T = 0 then return current

next← a randomly selected successor of current

∆E←Value[next] – Value[current]

if ∆E > 0 then current← next

else with probability e∆E/T , set current← next
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Simple example, continued

100 iterations, each state is a number x ∈ [0, 1], initial state is x = 0,
Value(x) = x2, all states are neighbors, schedule[i] = 10× 0.9i
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Properties of simulated annealing

At fixed “temperature” T , probability of being in any given state x reaches
Boltzman distribution

p(x) = αe
E(x)
kT

for every state x other than x∗ and for small T ,

p(x∗)/p(x) = e
E(x∗)
kT /e

E(x)
kT = e

E(x∗)−E(x)
kT � 1

From this it can be shown that
if we decrease T slowly enough, Pr[reach x∗] approaches 1

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.
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Local beam search

function Beam-Search( problem, k) returns a solution state

start with k randomly generated states

loop

generate all successors of all k states

if any of them is a solution then return it

else select the k best successors

Not the same as k parallel searches
Searches that find good states will recruit other searches to join them

Problem: often all k states end up on same local hill

Stochastic beam search:
choose k successors randomly, biased towards good ones

Close analogy to natural selection
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Genetic algorithms

Genetic algorithms
= stochastic local beam search + generate successors from pairs of states

Each state should be a string of characters;
Substrings should be meaningful components

Example: n-queens problem
i’th character = row where i’th queen is located

+ =

672 47588 752 51447 672 51447
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Genetic algorithms

Genetic algorithms
= stochastic local beam search + generate successors from pairs of states
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Genetic algorithms 6= biological evolution
for example, real genes encode replication machinery
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Hill-climbing in continuous state spaces

Suppose we want to put three airports in Romania – what locations?

♦ 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
♦ Objective function f (x1, y2, x2, y2, x3, y3) measures desirability,

e.g., sum of squared distances from each city to nearest airport
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Hill-climbing in continuous state spaces

A technique from numerical analysis:

Given a surface z = f (x, y), and a point (x, y), a gradient is a vector

∇f (x, y) =

∂f
∂x
,
∂f

∂y


The vector points in the direction of the
steepest slope, and its length is proportional
to the slope.

Gradient methods compute ∇f and use it
to increase/reduce f ,

e.g., by x← x− α∇f (x)

If ∇f = 0 then you’ve reached a local max-
imum/minimum
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Hill-climbing in continuous state spaces

Suppose we want to put three airports in Romania – what locations?

∇f =

 ∂f
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

Look for x1, y1, x2, y2, x3, y3 such that ∇f (x1, y1, x2, y2, x3, y3) = 0
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Continuous state spaces, continued

Sometimes can solve for ∇f (x) = 0 exactly (e.g., with one city)

Newton–Raphson (1664, 1690) iterates x← x−H−1
f (x)∇f (x)

to solve ∇f (x) = 0, where Hij = ∂2f/∂xi∂xj

Discretization methods turn
continuous space into discrete
space

e.g., empirical gradient considers
±δ change in each coordinate

•••••
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Homework

Problems 4.1,
4.2,
4.9 (but you don’t need to suggest a way to calculate it)
4.11,
4.12

10 points each, 50 points total

Due in one week
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