Last update: April 13, 2010

#### UNCERTAINTY

CMSC 421: Chapter 13

CMSC 421: Chapter 13 1

## Motivation

Let action  $A_t$  = leave for airport t minutes before flight Will  $A_t$  get me there on time?

Problems:

1) partial observability (road state, other drivers' plans, etc.)

- 2) noisy sensors (radio traffic reports)
- 3) uncertainty in action outcomes (flat tire, etc.)
- 4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either

1) risks falsehood: " $A_{25}$  will get me there on time"

or 2) leads to conclusions that are too weak for decision making:

" $A_{25}$  will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

## Methods for handling uncertainty

Default or nonmonotonic logic:

Assume my car does not have a flat tire

Assume  $A_{25}$  works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:

 $A_{25} \mapsto_{0.3} AtAirportOnTime$ Sprinkler  $\mapsto_{0.99} WetGrass$  $WetGrass \mapsto_{0.7} Rain$ 

Issues: Problems with combination, e.g., Sprinkler causes Rain?

#### Probability

Given the available evidence,

 $A_{25}$  will get me there on time with probability 0.04 Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

(*Fuzzy logic* handles **degree of truth** NOT uncertainty e.g., WetGrass is true to degree 0.2)

# Outline

#### $\diamondsuit$ Probability

- $\diamondsuit~$  Syntax and Semantics
- $\diamondsuit$  Inference
- $\diamondsuit$  Independence and Bayes' Rule

## Probability

Probabilistic assertions **summarize** effects of

laziness: failure to enumerate exceptions, qualifications, etc. ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:

Probabilities relate propositions to one's own state of knowledge e.g.,  $P(A_{25}|\text{no reported accidents}) = 0.06$ 

They are **not** claims of a "probabilistic tendency" in the current situation

They might be learned from past experience of similar situations

Probabilities of propositions change with new evidence: e.g.,  $P(A_{25}|\text{no reported accidents}, 5 \text{ a.m.}) = 0.15$ 

### Making decisions under uncertainty

Suppose I believe the following:

 $P(A_{25} \text{ gets me there on time}|...) = 0.04$  $P(A_{90} \text{ gets me there on time}|...) = 0.70$  $P(A_{120} \text{ gets me there on time}|...) = 0.95$  $P(A_{1440} \text{ gets me there on time}|...) = 0.9999$ 

Which action to choose?

Depends on both the probabilities and my *preferences* missing flight vs. getting to airport early and waiting, etc.

Utility theory (Chapter 16) is used to represent and infer preferences

*Decision theory* = utility theory + probability theory

#### **Probability basics**

Begin with a set  $\Omega$  called the *sample space* Each  $\omega \in \Omega$  is a *sample point/possible world/atomic event* e.g., 6 possible rolls of a die:  $\{1, 2, 3, 4, 5, 6\}$ 

*Probability space* or *probability model*: take a sample space  $\Omega$ , and assign a number  $P(\omega)$  (the *probability* of  $\omega$ ) to every atomic event  $\omega \in \Omega$ 

A probability space must satisfy the following properties:

 $0 \leq P(\omega) \leq 1$  for every  $\omega \in \Omega$  $\sum_{\omega \in \Omega} P(\omega) = 1$ 

e.g., for rolling the die, P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6.

An *event* A is any subset of  $\Omega$ 

$$P(A) = \sum_{\{\omega \in A\}} P(\omega)$$

E.g., P(die roll < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2

#### Random variables

A *random variable* is a function from sample points to some range We'll use capitalized words for random variables

e.g., rolling the die:  $Odd(\omega) = \begin{cases} true \text{ if } \omega \text{ is even}, \\ false \text{ otherwise} \end{cases}$ 

A probability distribution gives a probability for every possible value. If X is a random variable, then  $P(X = x_i) = \sum \{P(\omega) : X(\omega) = x_i\}$ 

e.g., P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2

Note that we don't write Odd's argument  $\omega$  here.

## Propositions

Odd is a *Boolean* or *propositional* random variable: its range is {true, false}

We'll use the corresponding lower-case word (in this case *odd*) for the event that a propositional random variable is true

e.g., P(odd) = P(Odd = true) = 1/6 $P(\neg odd) = P(Odd = false) = 5/6$ 

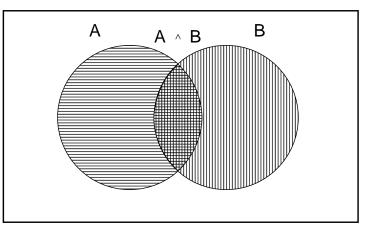
Boolean formula = disjunction of the sample points in which it is true e.g.,  $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$  $\Rightarrow P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$ 

## Why use probability?

The definitions imply that certain logically related events must have related probabilities

E.g., 
$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

True



de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

## Syntax for propositions

Propositional or Boolean random variables e.g., Cavity (do I have a cavity in one of my teeth?) Cavity = true is a proposition, also written cavity

Discrete random variables (finite or infinite) e.g., Weather is one of  $\langle sunny, rain, cloudy, snow \rangle$ Weather = rain is a proposition Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded) e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions e.g.,  $\neg cavity$  means Cavity = false

Probabilities of propositions

e.g., P(cavity) = 0.1 and P(Weather = sunny) = 0.72

## Syntax for probability distributions

Represent a discrete probability distribution as a vector of probability values:

 $\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle$ probabilities of sunny, rain, cloudy, snow (must sum to 1)

If B is a Boolean random variable, then  $\mathbf{P}(B) = \langle P(b), P(\neg b) \rangle$ 

A *joint probability distribution* for a set of n random variables gives the probability of every atomic event on those variables (i.e., every sample point) Represent it as an n-dimensional matrix

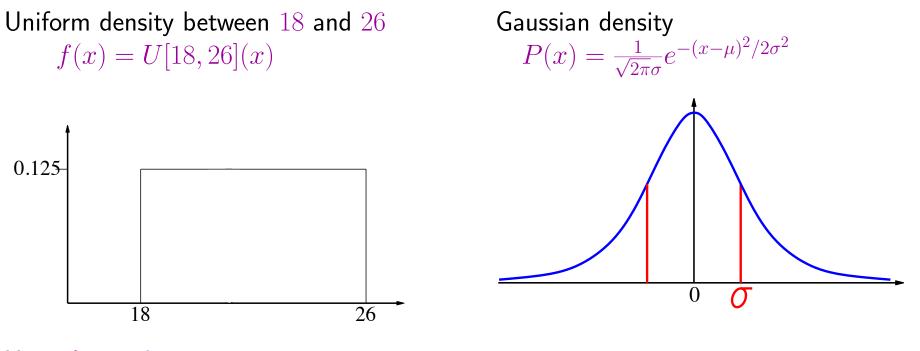
```
e.g., \mathbf{P}(Weather, Cavity) is a 4 \times 2 matrix:

Weather = sunny \ rain \ cloudy \ snow
\overline{Cavity = true} \quad 0.144 \quad 0.02 \quad 0.016 \quad 0.02
Cavity = false \quad 0.576 \quad 0.08 \quad 0.064 \quad 0.08
```

Every event is a sum of sample points, hence its probability is determined by the joint distribution

### **Probability for continuous variables**

Express continuous probability distributions using parameterized functions, e.g.,



Here *f* is a *density*; integrates to 1.  $P(20 \le X \le 22) = \int_{20}^{22} 0.125 \, dx = 0.25$ 

## **Conditional probability**

Conditional or posterior probabilities e.g., P(cavity|toothache) = 0.8i.e., given that toothache is all I know NOT "if toothache then 80% chance of cavity"

(Notation for conditional distributions:

 $\mathbf{P}(Cavity|Toothache) = 2$ -element vector of 2-element vectors)

Suppose we get more evidence, e.g., cavity is also given. Then P(cavity|toothache, cavity) = 1

Note: the less specific belief **remains valid**, but is not always **useful** 

New evidence may be irrelevant, allowing simplification, e.g., P(cavity|toothache, OriolesWin) = P(cavity|toothache) = 0.8

#### **Conditional probability**

Definition of conditional probability:  $P(a|b) = P(a \land b)/P(b)$ 

*Product rule* holds even if P(b) = 0:  $P(a \land b) = P(a|b)P(b)$ 

A general version holds for an entire probability distribution, e.g.,

 $\mathbf{P}(Weather, Cavity) = \mathbf{P}(Weather|Cavity)\mathbf{P}(Cavity)$ 

This is **not** matrix multiplication, it's a set of  $4 \times 2 = 8$  equations:

P(sunny, cavity) = P(sunny|cavity)P(cavity) P(rain, cavity) = P(rain|cavity)P(cavity) P(cloudy, cavity) = P(cloudy|cavity)P(cavity) P(snow, cavity) = P(snow|cavity)P(cavity)

$$\begin{split} P(sunny, \neg cavity) &= P(sunny|\neg cavity)P(\neg cavity)\\ P(rain, \neg cavity) &= P(rain|\neg cavity)P(\neg cavity)\\ P(cloudy, \neg cavity) &= P(cloudy|\neg cavity)P(\neg cavity)\\ P(snow, \neg cavity) &= P(snow|\neg cavity)P(\neg cavity) \end{split}$$

*Chain rule* is derived by successive application of product rule:

$$\mathbf{P}(X_{1},...,X_{n}) = \mathbf{P}(X_{1},...,X_{n-1}) \mathbf{P}(X_{n}|X_{1},...,X_{n-1}) 
= \mathbf{P}(X_{1},...,X_{n-2}) \mathbf{P}(X_{n-1}|X_{1},...,X_{n-2}) \mathbf{P}(X_{n}|X_{1},...,X_{n-1}) 
= ... 
= \Pi_{i=1}^{n} \mathbf{P}(X_{i}|X_{1},...,X_{i-1})$$

Start with the joint distribution:

|               | toothache |              | ⊐ toothache |              |
|---------------|-----------|--------------|-------------|--------------|
|               | catch     | $\neg$ catch | catch       | $\neg$ catch |
| cavity        | .108      | .012         | .072        | .008         |
| $\neg$ cavity | .016      | .064         | .144        | .576         |

For any proposition  $\phi$ , sum the atomic events where it is true:

 $P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$ 

Start with the joint distribution:

|               | toothache |              | ⊐ toothache |              |
|---------------|-----------|--------------|-------------|--------------|
|               | catch     | $\neg$ catch | catch       | $\neg$ catch |
| cavity        | .108      | .012         | .072        | .008         |
| $\neg$ cavity | .016      | .064         | .144        | .576         |

For any proposition  $\phi$ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$$

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Start with the joint distribution:

|               | toothache |              | <i>¬ toothache</i> |              |
|---------------|-----------|--------------|--------------------|--------------|
|               | catch     | $\neg$ catch | catch              | $\neg$ catch |
| cavity        | .108      | .012         | .072               | .008         |
| $\neg$ cavity | .016      | .064         | .144               | .576         |

For any proposition  $\phi$ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$$

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

 $\begin{array}{l} P(cavity \lor toothache) \\ = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 \\ = 0.28 \end{array}$ 

Start with the joint distribution:

|               | toothache |              | ⊐ toothache |              |
|---------------|-----------|--------------|-------------|--------------|
|               | catch     | $\neg$ catch | catch       | $\neg$ catch |
| cavity        | .108      | .012         | .072        | .008         |
| $\neg$ cavity | .016      | .064         | .144        | .576         |

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = P(\neg cavity \land toothache) / P(toothache)$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

General idea: compute distribution on *query variable* (e.g., *Cavity*) by fixing *evidence variables* (*Toothache*) and summing over all possible values of *hidden variables* (*Catch*)

|               | toothache          |      | ¬ toothache |              |
|---------------|--------------------|------|-------------|--------------|
|               | $catch \neg catch$ |      | catch       | $\neg$ catch |
| cavity        | .108               | .012 | .072        | .008         |
| $\neg$ cavity | .016               | .064 | .144        | .576         |

## Normalization

 $P(\neg cavity | toothache) = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$ 

$$P(cavity|toothache) = \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6$$

The quantity  $\alpha = 1/P(toothache) = 1/(0.108 + 0.012 + 0.016 + 0.064)$ can be viewed as a *normalization constant*. It's the multiplier that's needed to get  $\mathbf{P}(Cavity|toothache)$  to sum to 1.

Thinking of  $\alpha$  this way is useful because it enables us to compute  $\alpha$  as a by-product of other computations

|               | toothache |              | <i>¬ toothache</i> |              |
|---------------|-----------|--------------|--------------------|--------------|
|               | catch     | $\neg$ catch | catch              | $\neg$ catch |
| cavity        | .108      | .012         | .072               | .008         |
| $\neg$ cavity | .016      | .064         | .144               | .576         |

## Normalization

Recall that *events* are *lower case*, *random variables* are *Capitalized* 

For a set of n random variables, **P** is an n-dimensional table giving the probability of each possible combination of values

 $\mathbf{P}(Cavity|toothache) = \alpha \, \mathbf{P}(Cavity,toothache)$ 

- $= \alpha \left[ \mathbf{P}(Cavity, toothache, catch) + \mathbf{P}(Cavity, toothache, \neg catch) \right]$
- $= \alpha [\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle]$
- $= \alpha \langle 0.12, 0.08 \rangle$
- =  $\langle 0.6, 0.4 \rangle$  since the entries must sum to 1

Compute  $\alpha$  directly from the last line, as  $\alpha = 1/(0.12 + 0.08)$ 

#### Inference by enumeration, continued

Let  $\mathbf{X} = \{$ all the variables $\}$ . Typically, we want the posterior (i.e., conditional) joint distribution of the *query variables*  $\mathbf{Y}$ given specific values  $\mathbf{e}$  for the *evidence variables*  $\mathbf{E}$ 

Let the *hidden variables* be  $\mathbf{H} = \mathbf{X} - \mathbf{Y} - \mathbf{E}$ 

Then the required summation of joint entries is done by summing out the hidden variables:

 $\mathbf{P}(\mathbf{Y}|\mathbf{E}\!=\!\mathbf{e}) = \alpha \mathbf{P}(\mathbf{Y},\mathbf{E}\!=\!\mathbf{e}) = \alpha \Sigma_{\mathbf{h}} \mathbf{P}(\mathbf{Y},\mathbf{E}\!=\!\mathbf{e},\mathbf{H}\!=\!\mathbf{h})$ 

i.e., sum over every possible combination of values  $\mathbf{h} = \langle h_1, \ldots, h_n \rangle$  of the hidden varables  $\mathbf{H} = \langle H_1, \ldots, H_n \rangle$ 

Obvious problems:

- 1) Worst-case time complexity  $O(d^n)$  where d is the largest arity
- 2) Space complexity  $O(d^n)$  to store everything
- 3) How to find the numbers for  $O(d^n)$  entries?

### Independence



$$\begin{split} \mathbf{P}(Toothache, Catch, Cavity, Weather) \\ &= \mathbf{P}(Toothache, Catch, Cavity) \, \mathbf{P}(Weather) \end{split}$$

 $2 \times 2 \times 2 \times 4 = 32$  entries reduced to  $(2 \times 2 \times 2) + 4 = 12$  entries

For n independent biased coins,  $2^n$  entries reduced to n

Absolute independence powerful but rare E.g., dentistry is a large field with hundreds of variables, none of which are independent. What to do?

## **Conditional independence**

Consider  $\mathbf{P}(Toothache, Cavity, Catch)$ 

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity:  $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$ 

Thus *Catch* is *conditionally independent* of *Toothache* given *Cavity*:  $\mathbf{P}(Catch|Toothache, Cavity) = \mathbf{P}(Catch|Cavity)$ 

Or equivalently:

$$\begin{split} \mathbf{P}(Toothache|Catch, Cavity) &= \mathbf{P}(Toothache|Cavity) \\ \mathbf{P}(Toothache, Catch|Cavity) &= \mathbf{P}(Toothache|Cavity) \mathbf{P}(Catch|Cavity) \end{split}$$

### **Conditional independence, continued**

Write out full joint distribution using chain rule:

 $\mathbf{P}(Toothache, Catch, Cavity)$  $\mathbf{P}(Toothache, Catch, Cavity)$ 

- $= \mathbf{P}(Toothache | Catch, Cavity) \mathbf{P}(Catch, Cavity)$
- $= \mathbf{P}(Toothache|Catch,Cavity) \mathbf{P}(Catch|Cavity) \mathbf{P}(Cavity)$

 $= \mathbf{P}(Toothache|Cavity) \mathbf{P}(Catch|Cavity) \mathbf{P}(Cavity)$ 

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

### **Bayes' Rule**

Product rule: 
$$P(a \land b) = P(a|b)P(b) = P(b|a)P(a)$$
  
 $\Rightarrow$  Bayes' rule  $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$ 

or in probability distribution form,

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$$

Useful for assessing *diagnostic* probability from *causal* probability:

$$P(\textit{Cause} | \textit{Effect}) = \frac{P(\textit{Effect} | \textit{Cause}) P(\textit{Cause})}{P(\textit{Effect})}$$

E.g., let M be meningitis, S be stiff neck:

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!

#### Bayes' Rule and conditional independence

 $\mathbf{P}(Cavity|toothache \wedge catch)$ 

- $= \mathbf{P}(toothache \wedge catch|Cavity) \mathbf{P}(Cavity) / P(toothache \wedge catch)$
- $= \alpha \mathbf{P}(toothache \wedge catch | Cavity) \mathbf{P}(Cavity)$
- $= \alpha \mathbf{P}(toothache|Cavity)\mathbf{P}(catch|Cavity)\mathbf{P}(Cavity)$

A *naive Bayes* model is a mathematical model that assumes the effects are conditionally independent, given the cause

 $\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause) \prod_i \mathbf{P}(Effect_i | Cause)$ 



Naive Bayes model  $\Rightarrow$  total number of parameters is **linear** in n

| Wumpus | World |
|--------|-------|
|--------|-------|

| 1,4                       | 2,4                       | 3,4 | 4,4 |
|---------------------------|---------------------------|-----|-----|
| 1,3                       | 2,3                       | 3,3 | 4,3 |
| <sup>1,2</sup><br>B<br>OK | 2,2                       | 3,2 | 4,2 |
| <sup>1,1</sup><br>OK      | <sup>2,1</sup><br>B<br>OK | 3,1 | 4,1 |

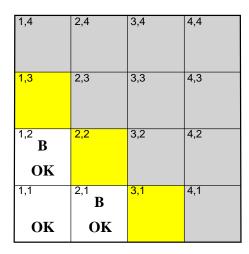
 $P_{ij} = true \text{ iff } [i, j] \text{ contains a pit}$ 

 $B_{ij} = true \text{ iff } [i, j] \text{ is breezy}$ 

The only breezes we care about are  $B_{1,1}, B_{1,2}, B_{2,1}$ ; ignore all the others Then the joint distribution is

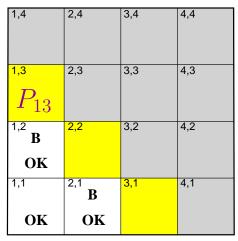
 $\mathbf{P}(P_{1,1},\ldots,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$ 

## Specifying the probability model



Apply the product rule to the joint distribution:

 $\mathbf{P}(P_{1,1}, \dots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1})$   $= \mathbf{P}(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, \dots, P_{4,4}) \mathbf{P}(P_{1,1}, \dots, P_{4,4})$ First term: 1 if pits are adjacent to breezes, 0 otherwise Second term: pits are placed independently, probability 0.2 per square:  $\mathbf{P}(P_{1,1}, \dots, P_{4,4}) = \prod_{i=1}^{4} \prod_{i=1}^{4} \mathbf{P}(P_{i,i})$ 



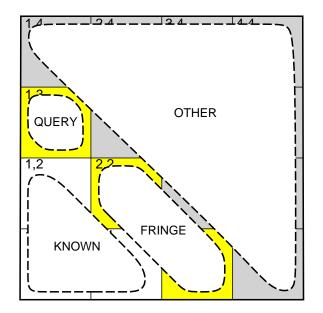
General form of query:  $\mathbf{P}(\mathbf{Y}|\mathbf{E}=\mathbf{e}) = \alpha \mathbf{P}(\mathbf{Y},\mathbf{E}=\mathbf{e}) = \alpha \Sigma_{\mathbf{h}} \mathbf{P}(\mathbf{Y},\mathbf{E}=\mathbf{e},\mathbf{H}=\mathbf{h})$ 

In our case, query is  $\mathbf{P}(P_{1,3}|p^*, b^*)$ , where the evidence is  $b^* = \neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$  $p^* = \neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$ 

Sum over hidden variables:  $\mathbf{P}(P_{1,3}|p^*, b^*) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, b^*)$  $unknown = \text{all } P_{ij}\text{s}$  other than  $P_{1,3}$  and the known squares  $(P_{1,1}, P_{1,2}, P_{2,1})$ Two values for each  $P_{ij} \Rightarrow$  grows exponentially with number of squares!

### Using conditional independence

Basic insight: Given the *fringe* squares (see below), b is conditionally independent of the *other* hidden squares



The unknown variables are  $Unknown = Fringe \cup Other$   $\mathbf{P}(b^*|P_{1,3}, p^*, Unknown) = \mathbf{P}(b^*|P_{1,3}, p^*, Fringe, Other)$  $= \mathbf{P}(b^*|P_{1,3}, p^*, Fringe)$ 

Next: translate the query into a form where we can use this

#### Using conditional independence, continued

Looks easy, doesn't it? 😂

 $\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*) / \mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*)$  $= \alpha \sum_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, b^*)$  $= \alpha \sum_{unknown} \mathbf{P}(b^* | P_{1,3}, p^*, unknown) \mathbf{P}(P_{1,3}, p^*, unknown)$ =  $\alpha \sum_{\text{fringe other}} \sum_{\text{other}} \mathbf{P}(b^* | p^*, P_{1,3}, \text{fringe, other}) \mathbf{P}(P_{1,3}, p^*, \text{fringe, other})$ =  $\alpha \sum_{fringe other} \sum_{other} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) \mathbf{P}(P_{1,3}, p^*, fringe, other)$  $= \alpha \sum_{fringe} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) \sum_{other} \mathbf{P}(P_{1,3}, p^*, fringe, other)$  $= \alpha \sum_{fringe} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) \sum_{other} \mathbf{P}(P_{1,3}) P(p^*) P(fringe) P(other)$  $= \alpha P(p^*) \mathbf{P}(P_{1,3}) \sum_{\text{fringe}} \mathbf{P}(b^* | p^*, P_{1,3}, \text{fringe}) P(\text{fringe}) \sum_{\text{other}} P(\text{other})$  $= \alpha' \mathbf{P}(P_{1,3}) \sum_{\text{fringe}} \mathbf{P}(b^* | p^*, P_{1,3}, \text{fringe}) P(\text{fringe}) \sum_{\text{other}} P(\text{other})$  $= \alpha' \mathbf{P}(P_{1,3}) \sum_{\text{fringe}} \mathbf{P}(b^* | p^*, P_{1,3}, \text{fringe}) P(\text{fringe})$ 

Use the definition of conditional probability

 $\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*) / \underline{\mathbf{P}(p^*,b^*)}$ 

$$\begin{split} \mathbf{P}(p^*,b^*) &= P(p^*,b^*) \text{ is a scalar constant; use as a normalization constant} \\ \mathbf{P}(P_{1,3}|p^*,b^*) &= \mathbf{P}(P_{1,3},p^*,b^*) / \underline{\mathbf{P}(p^*,b^*)} = \underline{\alpha} \mathbf{P}(P_{1,3},p^*,b^*) \end{split}$$

Sum over the unknowns

$$\mathbf{P}(P_{1,3}|p^*, b^*) = \mathbf{P}(P_{1,3}, p^*, b^*) / \mathbf{P}(p^*, b^*) = \alpha \mathbf{P}(P_{1,3}, p^*, b^*)$$
  
=  $\alpha \sum_{\underline{unknown}} \mathbf{P}(P_{1,3}, \underline{unknown}, p^*, b^*)$ 

Use the product rule

$$\begin{aligned} \mathbf{P}(P_{1,3}|p^*, b^*) &= \mathbf{P}(P_{1,3}, p^*, b^*) / \mathbf{P}(p^*, b^*) = \alpha \mathbf{P}(P_{1,3}, p^*, b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, \underline{b^*}) \\ &= \alpha \sum_{unknown} \mathbf{P}(\underline{b^*}|P_{1,3}, p^*, unknown) \mathbf{P}(P_{1,3}, p^*, unknown) \end{aligned}$$

Separate *unknown* into *fringe* and *other* 

$$\begin{split} \mathbf{P}(P_{1,3}|p^*,b^*) &= \mathbf{P}(P_{1,3},p^*,b^*)/\mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(b^*|P_{1,3},p^*,\underline{unknown})\mathbf{P}(P_{1,3},p^*,\underline{unknown}) \\ &= \alpha \sum_{fringe \ other} \mathbf{P}(b^*|p^*,P_{1,3},\underline{fringe},other)\mathbf{P}(P_{1,3},p^*,\underline{fringe},other) \end{split}$$

 $b^*$  is conditionally independent of other given fringe

$$\begin{split} \mathbf{P}(P_{1,3}|p^*,b^*) &= \mathbf{P}(P_{1,3},p^*,b^*) / \mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(b^*|P_{1,3},p^*,unknown) \mathbf{P}(P_{1,3},p^*,unknown) \\ &= \alpha \sum_{fringe \ other} \mathbf{P}(b^*|p^*,P_{1,3},\underline{fringe},other) \mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe \ other} \mathbf{P}(b^*|p^*,P_{1,3},\underline{fringe}) \mathbf{P}(P_{1,3},p^*,fringe,other) \end{split}$$

$$\begin{split} & \mathsf{Move} \ \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \ \mathsf{outward} \\ & \mathbf{P}(P_{1,3} | p^*, b^*) = \mathbf{P}(P_{1,3}, p^*, b^*) / \mathbf{P}(p^*, b^*) = \alpha \mathbf{P}(P_{1,3}, p^*, b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(b^* | P_{1,3}, p^*, unknown) \mathbf{P}(P_{1,3}, p^*, unknown) \\ &= \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b^* | p^*, P_{1,3}, fringe, other) \mathbf{P}(P_{1,3}, p^*, fringe, other) \\ &= \alpha \sum_{fringe} \sum_{other} \frac{\mathbf{P}(b^* | p^*, P_{1,3}, fringe) \mathbf{P}(P_{1,3}, p^*, fringe, other) \\ &= \alpha \sum_{fringe} \sum_{other} \frac{\mathbf{P}(b^* | p^*, P_{1,3}, fringe)}{other} \mathbf{P}(P_{1,3}, p^*, fringe, other) \end{split}$$

All of the pit locations are independent

$$\begin{split} \mathbf{P}(P_{1,3}|p^*,b^*) &= \mathbf{P}(P_{1,3},p^*,b^*)/\mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,p^*,b^*) \\ &= \alpha \sum_{unknown} \mathbf{P}(b^*|P_{1,3},p^*,unknown)\mathbf{P}(P_{1,3},p^*,unknown) \\ &= \alpha \sum_{fringe other} \sum \mathbf{P}(b^*|p^*,P_{1,3},fringe,other)\mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe other} \sum \mathbf{P}(b^*|p^*,P_{1,3},fringe)\mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe} \sum \mathbf{P}(b^*|p^*,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3},p^*,fringe,other) \\ &= \alpha \sum_{fringe} \mathbf{P}(b^*|p^*,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3})P(p^*)P(fringe)P(other) \end{split}$$

Move  $P(p^*)$ ,  $\mathbf{P}(P_{1,3})$ , and P(fringe) outward  $\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*) / \mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*)$  $= \alpha \sum_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, b^*)$  $= \alpha \sum_{unknown} \mathbf{P}(b^* | P_{1,3}, p^*, unknown) \mathbf{P}(P_{1,3}, p^*, unknown)$ =  $\alpha \sum_{\text{fringe other}} \sum_{\text{other}} \mathbf{P}(b^* | p^*, P_{1,3}, \text{fringe, other}) \mathbf{P}(P_{1,3}, p^*, \text{fringe, other})$  $= \alpha \sum_{fringe other} \sum_{other} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) \mathbf{P}(P_{1,3}, p^*, fringe, other)$  $= \alpha \sum_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \sum_{other} \mathbf{P}(P_{1,3}, p^*, fringe, other)$  $= \alpha \sum_{fringe} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) \sum_{other} \underline{\mathbf{P}(P_{1,3})P(p^*)P(fringe)}P(other)$  $= \alpha \underline{P(p^*)\mathbf{P}(P_{1,3})} \sum_{fringe} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) \underline{P(fringe)} \sum_{other} P(other)$ 

Remove  $\Sigma_{other} P(other)$  because it equals 1  $\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*) / \mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*)$  $= \alpha \sum_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, b^*)$  $= \alpha \sum_{unknown} \mathbf{P}(b^* | P_{1,3}, p^*, unknown) \mathbf{P}(P_{1,3}, p^*, unknown)$  $= \alpha \sum_{\text{fringe other}} \sum_{\text{other}} \mathbf{P}(b^* | p^*, P_{1,3}, \text{fringe, other}) \mathbf{P}(P_{1,3}, p^*, \text{fringe, other})$ =  $\alpha \sum_{fringe other} \sum_{other} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) \mathbf{P}(P_{1,3}, p^*, fringe, other)$  $= \alpha \sum_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \sum_{other} \mathbf{P}(P_{1,3}, p^*, fringe, other)$  $= \alpha \sum_{fringe} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) \sum_{other} \mathbf{P}(P_{1,3}) P(p^*) P(fringe) P(other)$  $= \alpha P(p^*) \mathbf{P}(P_{1,3}) \sum_{\text{fringe}} \mathbf{P}(b^* | p^*, P_{1,3}, \text{fringe}) P(\text{fringe}) \sum_{\text{other}} P(\text{other})$  $= \alpha P(p^*) \mathbf{P}(P_{1,3}) \sum_{\text{frince}} \mathbf{P}(b^* | p^*, P_{1,3}, \text{fringe}) P(\text{fringe})$ 

 $P(p^*)$  is a scalar constant, so make it part of the normalization constant  $\mathbf{P}(P_{1,3}|p^*,b^*) = \mathbf{P}(P_{1,3},p^*,b^*) / \mathbf{P}(p^*,b^*) = \alpha \mathbf{P}(P_{1,3},p^*,b^*)$  $= \alpha \sum_{unknown} \mathbf{P}(P_{1,3}, unknown, p^*, b^*)$  $= \alpha \sum_{unknown} \mathbf{P}(b^* | P_{1,3}, p^*, unknown) \mathbf{P}(P_{1,3}, p^*, unknown)$ =  $\alpha \sum_{\text{fringe other}} \sum_{\text{other}} \mathbf{P}(b^* | p^*, P_{1,3}, \text{fringe, other}) \mathbf{P}(P_{1,3}, p^*, \text{fringe, other})$ =  $\alpha \sum_{fringe other} \sum_{other} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) \mathbf{P}(P_{1,3}, p^*, fringe, other)$  $= \alpha \sum_{fringe} \mathbf{P}(b^* | p^*, P_{1,3}, fringe) \sum_{other} \mathbf{P}(P_{1,3}, p^*, fringe, other)$  $= \alpha \sum_{fringe} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) \sum_{other} \mathbf{P}(P_{1,3}) P(p^*) P(fringe) P(other)$  $= \alpha P(p^*) \mathbf{P}(P_{1,3}) \sum_{\text{fringe}} \mathbf{P}(b^* | p^*, P_{1,3}, \text{fringe}) P(\text{fringe}) \sum_{\text{other}} P(\text{other})$  $= \underline{\alpha P(p^*)} \mathbf{P}(P_{1,3}) \sum_{\text{fringe}} \mathbf{P}(b^*|p^*, P_{1,3}, \text{fringe}) P(\text{fringe})$  $= \underline{\alpha'} \mathbf{P}(P_{1,3}) \sum_{\text{fringe}} \mathbf{P}(b^* | p^*, P_{1,3}, \text{fringe}) P(\text{fringe})$ 

#### How to get the answer?

We have

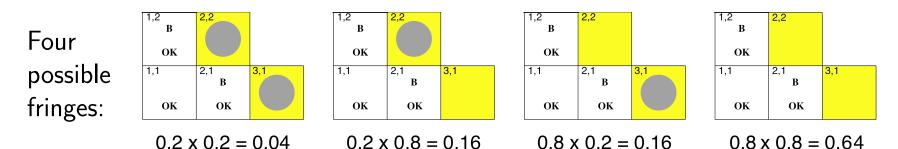
 $\mathbf{P}(P_{1,3}|p^*,b^*) = \alpha' \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) P(fringe)$ 

- $\diamond$  It won't be hard to compute  $\sum_{fringe} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) P(fringe)$ , because there are only four possible fringes (see next slide)
- $\diamond$  We know that  $\mathbf{P}(P_{1,3}) = \langle 0.2, 0.8 \rangle$ .
- $\diamond$  We can compute the normalization coefficient  $\alpha'$  afterwards; it's whatever number will make the probabilities sum to 1.

Start by rewriting as two separate equations:

 $P(p_{1,3}|p^*, b^*) = \alpha' P(p_{1,3}) \sum_{fringe} P(b^*|p^*, p_{1,3}, fringe) P(fringe)$  $P(\neg p_{1,3}|p^*, b^*) = \alpha' P(\neg p_{1,3}) \sum_{fringe} P(b^*|p^*, \neg p_{1,3}, fringe) P(fringe)$ 

### Getting the answer



For each of them,  $P(b^*|...)$  is 1 if the breezes occur, 0 otherwise

 $\sum_{fringe} P(b^*|p^*, p_{1,3}, fringe) P(fringe) = 1(0.04) + 1(0.16) + 1(0.16) + 0 = 0.36$  $\sum_{fringe} P(b^*|p^*, \neg p_{1,3}, fringe) P(fringe) = 1(0.04) + 1(0.16) + 0 = 0.2$ 

so 
$$\mathbf{P}(P_{1,3}|p^*, b^*) = \alpha' \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b^*|p^*, P_{1,3}, fringe) P(fringe)$$
  
=  $\alpha' \langle 0.2, 0.8 \rangle \langle 0.36, 0.2 \rangle$   
=  $\alpha' \langle 0.072, 0.16 \rangle$ 

so  $\alpha' = 1/(0.072 + 0.16) = 1/0.232 \approx 4.31$ 

so  $\mathbf{P}(P_{1,3}|p^*, b^*) = \langle 0.072 \, \alpha', 0.16 \, \alpha' \rangle \approx \langle 0.31, 0.69 \rangle$ Similarly,  $\mathbf{P}(P_{2,2}|p^*, b^*) \approx \langle 0.86, 0.14 \rangle$ 

## Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies probability of every atomic event

Queries can be answered by *inference by enumeration* (summing over atomic events)

Can reduce combinatorial explosion using *independence* and *conditional independence* 

### Homework assignment

I'll post it to the discussion forum