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Motivation

Let action At = leave for airport t minutes before flight
Will At get me there on time?

Problems:
1) partial observability (road state, other drivers’ plans, etc.)
2) noisy sensors (radio traffic reports)
3) uncertainty in action outcomes (flat tire, etc.)
4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either
1) risks falsehood: “A25 will get me there on time”

or 2) leads to conclusions that are too weak for decision making:
“A25 will get me there on time if there’s no accident on the bridge
and it doesn’t rain and my tires remain intact etc etc.”
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Methods for handling uncertainty

Default or nonmonotonic logic:
Assume my car does not have a flat tire
Assume A25 works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:
A25 7→0.3 AtAirportOnTime
Sprinkler 7→0.99 WetGrass
WetGrass 7→0.7 Rain

Issues: Problems with combination, e.g., Sprinkler causes Rain?

Probability
Given the available evidence,

A25 will get me there on time with probability 0.04
Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

(Fuzzy logic handles degree of truth NOT uncertainty e.g.,
WetGrass is true to degree 0.2)
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Outline

♦ Probability

♦ Syntax and Semantics

♦ Inference

♦ Independence and Bayes’ Rule
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Probability

Probabilistic assertions summarize effects of
laziness: failure to enumerate exceptions, qualifications, etc.
ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:

Probabilities relate propositions to one’s own state of knowledge
e.g., P (A25|no reported accidents) = 0.06

They are not claims of a “probabilistic tendency” in the current situation

They might be learned from past experience of similar situations

Probabilities of propositions change with new evidence:
e.g., P (A25|no reported accidents, 5 a.m.) = 0.15
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Making decisions under uncertainty

Suppose I believe the following:

P (A25 gets me there on time| . . .) = 0.04

P (A90 gets me there on time| . . .) = 0.70

P (A120 gets me there on time| . . .) = 0.95

P (A1440 gets me there on time| . . .) = 0.9999

Which action to choose?

Depends on both the probabilities and my preferences
missing flight vs. getting to airport early and waiting, etc.

Utility theory (Chapter 16) is used to represent and infer preferences

Decision theory = utility theory + probability theory
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Probability basics

Begin with a set Ω called the sample space
Each ω ∈ Ω is a sample point/possible world/atomic event

e.g., 6 possible rolls of a die: {1, 2, 3, 4, 5, 6}

Probability space or probability model: take a sample space Ω, and assign
a number P (ω) (the probability of ω) to every atomic event ω ∈ Ω

A probability space must satisfy the following properties:

0 ≤ P (ω) ≤ 1 for every ω ∈ Ω

Σω∈ΩP (ω) = 1

e.g., for rolling the die, P (1) =P (2) =P (3) =P (4) =P (5) =P (6) = 1/6.

An event A is any subset of Ω

P (A) = Σ{ω∈A}P (ω)

E.g., P (die roll < 4) = P (1) + P (2) + P (3) = 1/6 + 1/6 + 1/6 = 1/2
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Random variables

A random variable is a function from sample points to some range
We’ll use capitalized words for random variables

e.g., rolling the die: Odd(ω) =


true if ω is even,
false otherwise

A probability distribution gives a probability for every possible value. If X is
a random variable, then P (X =xi) = Σ{P (ω) : X(ω) =xi}

e.g., P (Odd= true) = P (1) + P (3) + P (5) = 1/6 + 1/6 + 1/6 = 1/2

Note that we don’t write Odd’s argument ω here.
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Propositions

Odd is a Boolean or propositional random variable: its range is {true, false}

We’ll use the corresponding lower-case word (in this case odd) for the event
that a propositional random variable is true

e.g., P (odd) = P (Odd= true) = 1/6
P (¬odd) = P (Odd= false) = 5/6

Boolean formula = disjunction of the sample points in which it is true
e.g., (a ∨ b) ≡ (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)
⇒ P (a ∨ b) = P (¬a ∧ b) + P (a ∧ ¬b) + P (a ∧ b)
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Why use probability?

The definitions imply that certain logically related events must have related
probabilities

E.g., P (a ∨ b) = P (a) + P (b)− P (a ∧ b)

>A     B

True

A B

de Finetti (1931): an agent who bets according to probabilities that violate
these axioms can be forced to bet so as to lose money regardless of outcome.
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Syntax for propositions

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity in one of my teeth?)
Cavity= true is a proposition, also written cavity

Discrete random variables (finite or infinite)
e.g., Weather is one of 〈sunny, rain, cloudy, snow〉
Weather= rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)
e.g., Temp= 21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions
e.g., ¬cavity means Cavity= false

Probabilities of propositions
e.g., P (cavity) = 0.1 and P (Weather= sunny) = 0.72
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Syntax for probability distributions

Represent a discrete probability distribution as a vector of probability values:

P(Weather) = 〈 0.72, 0.1, 0.08, 0.1 〉
probabilities of sunny, rain, cloudy, snow (must sum to 1)

If B is a Boolean random variable, then P(B) = 〈P (b), P (¬b)〉

A joint probability distribution for a set of n random variables gives the
probability of every atomic event on those variables (i.e., every sample point)

Represent it as an n-dimensional matrix

e.g., P(Weather, Cavity) is a 4× 2 matrix:
Weather=

sunny rain cloudy snow
Cavity= true 0.144 0.02 0.016 0.02
Cavity= false 0.576 0.08 0.064 0.08

Every event is a sum of sample points, hence its probability is determined by
the joint distribution
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Probability for continuous variables

Express continuous probability distributions using parameterized functions,
e.g.,

Uniform density between 18 and 26
f (x) = U [18, 26](x)

0.125

dx18 26

Here f is a density; integrates to 1.

P (20 ≤ X ≤ 22) =
∫ 22
20 0.125 dx = 0.25

Gaussian density
P (x) = 1√

2πσ
e−(x−µ)2/2σ2

0
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Conditional probability

Conditional or posterior probabilities
e.g., P (cavity|toothache) = 0.8
i.e., given that toothache is all I know
NOT “if toothache then 80% chance of cavity”

(Notation for conditional distributions:
P(Cavity|Toothache) = 2-element vector of 2-element vectors)

Suppose we get more evidence, e.g., cavity is also given. Then
P (cavity|toothache, cavity) = 1

Note: the less specific belief remains valid, but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P (cavity|toothache,OriolesWin) = P (cavity|toothache) = 0.8
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Conditional probability

Definition of conditional probability: P (a|b) = P (a ∧ b)/P (b)

Product rule holds even if P (b) = 0: P (a ∧ b) = P (a|b)P (b)

A general version holds for an entire probability distribution, e.g.,

P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)

This is not matrix multiplication, it’s a set of 4× 2 = 8 equations:

P (sunny, cavity) = P (sunny|cavity)P (cavity) P (sunny,¬cavity) = P (sunny|¬cavity)P (¬cavity)

P (rain, cavity) = P (rain|cavity)P (cavity) P (rain,¬cavity) = P (rain|¬cavity)P (¬cavity)

P (cloudy, cavity) = P (cloudy|cavity)P (cavity) P (cloudy,¬cavity) = P (cloudy|¬cavity)P (¬cavity)

P (snow, cavity) = P (snow|cavity)P (cavity) P (snow,¬cavity) = P (snow|¬cavity)P (¬cavity)

Chain rule is derived by successive application of product rule:
P(X1, . . . , Xn)

= P(X1, . . . , Xn−1) P(Xn|X1, . . . , Xn−1)
= P(X1, . . . , Xn−2) P(Xn−1|X1, . . . , Xn−2) P(Xn|X1, . . . , Xn−1)
= . . .
= Πn

i= 1P(Xi|X1, . . . , Xi−1)
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:

P (φ) = Σω:ω|=φP (ω)
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:

P (φ) = Σω:ω|=φP (ω)

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

For any proposition φ, sum the atomic events where it is true:

P (φ) = Σω:ω|=φP (ω)

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

P (cavity ∨ toothache)
= 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064
= 0.28
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Inference by enumeration

Start with the joint distribution:

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Can also compute conditional probabilities:

P (¬cavity|toothache) = P (¬cavity ∧ toothache)/P (toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4

General idea: compute distribution on query variable (e.g., Cavity)
by fixing evidence variables (Toothache)
and summing over all possible values of hidden variables (Catch)

CMSC 421: Chapter 13 19



Normalization

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

P (¬cavity|toothache) =
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4

P (cavity|toothache) =
0.108 + 0.012

0.108 + 0.012 + 0.016 + 0.064
= 0.6

The quantity α = 1/P (toothache) = 1/(0.108 + 0.012 + 0.016 + 0.064)
can be viewed as a normalization constant. It’s the multiplier that’s needed
to get P(Cavity|toothache) to sum to 1.

Thinking of α this way is useful because it enables us to compute α as a
by-product of other computations
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Normalization

cavityL

toothache

cavity

catch catchL
toothacheL

catch catchL

.108 .012

.016 .064

.072

.144

.008

.576

Recall that events are lower case, random variables are Capitalized

For a set of n random variables, P is an n-dimensional table giving the
probability of each possible combination of values

P(Cavity|toothache) = αP(Cavity, toothache)

= α [P(Cavity, toothache, catch) + P(Cavity, toothache,¬catch)]

= α [〈0.108, 0.016〉 + 〈0.012, 0.064〉]
= α 〈0.12, 0.08〉
= 〈0.6, 0.4〉 since the entries must sum to 1

Compute α directly from the last line, as α = 1/(0.12 + 0.08)
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Inference by enumeration, continued

Let X = {all the variables}. Typically, we want the posterior
(i.e., conditional) joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variables be H = X−Y− E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y|E = e) = αP(Y,E = e) = αΣhP(Y,E = e,H = h)

i.e., sum over every possible combination of values h = 〈h1, . . . , hn〉
of the hidden varables H = 〈H1, . . . , Hn〉

Obvious problems:
1) Worst-case time complexity O(dn) where d is the largest arity
2) Space complexity O(dn) to store everything
3) How to find the numbers for O(dn) entries?
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Independence

Random variables A and B are independent iff
P(A|B) = P(A) or P(B|A) = P(B) or P(A,B) = P(A)P(B)

Weather

Toothache Catch

Cavity decomposes into

Weather

Toothache Catch
Cavity

P(Toothache, Catch, Cavity,Weather)
= P(Toothache, Catch, Cavity) P(Weather)

2× 2× 2× 4 = 32 entries reduced to (2× 2× 2) + 4 = 12 entries

For n independent biased coins, 2n entries reduced to n

Absolute independence powerful but rare
E.g., dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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Conditional independence

Consider P(Toothache, Cavity, Catch)

If I have a cavity, the probability that the probe catches in it doesn’t depend
on whether I have a toothache:

P (catch|toothache, cavity) = P (catch|cavity)

The same independence holds if I haven’t got a cavity:
P (catch|toothache,¬cavity) = P (catch|¬cavity)

Thus Catch is conditionally independent of Toothache given Cavity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Or equivalently:
P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
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Conditional independence, continued

Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch, Cavity)
= P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.
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Bayes’ Rule

Product rule: P (a ∧ b) = P (a|b)P (b) = P (b|a)P (a)

⇒ Bayes’ rule P (a|b) =
P (b|a)P (a)

P (b)

or in probability distribution form,

P(Y |X) =
P(X|Y )P(Y )

P(X)
= αP(X|Y )P(Y )

Useful for assessing diagnostic probability from causal probability:

P(Cause|Effect) =
P(Effect |Cause)P(Cause)

P(Effect)

E.g., let M be meningitis, S be stiff neck:

P (m|s) =
P (s|m)P (m)

P (s)
=

0.8× 0.0001

0.1
= 0.0008

Note: posterior probability of meningitis still very small!
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Bayes’ Rule and conditional independence

P(Cavity|toothache ∧ catch)

= P(toothache ∧ catch|Cavity)P(Cavity)/P (toothache ∧ catch)

= αP(toothache ∧ catch|Cavity)P(Cavity)

= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

A naive Bayes model is a mathematical model that assumes the effects are
conditionally independent, given the cause

P(Cause,Effect1 , . . . ,Effectn) = P(Cause)ΠiP(Effecti |Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

Naive Bayes model ⇒ total number of parameters is linear in n
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Wumpus World

OK
 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

Pij = true iff [i, j] contains a pit

Bij = true iff [i, j] is breezy

The only breezes we care about are B1,1, B1,2, B2,1; ignore all the others
Then the joint distribution is

P(P1,1, . . . , P4,4, B1,1, B1,2, B2,1)
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Specifying the probability model

OK
 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

Apply the product rule to the joint distribution:

P(P1,1, . . . , P4,4, B1,1, B1,2, B2,1)
= P(B1,1, B1,2, B2,1 |P1,1, . . . , P4,4) P(P1,1, . . . , P4,4)

First term:
↗

1 if pits are adjacent to breezes, 0 otherwise
Second term: pits are placed independently, probability 0.2 per square:

P(P1,1, . . . , P4,4) = Π4
i=1Π

4
j=1P(Pi,j)
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Inference by enumeration

OK
 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

P13

General form of query: P(Y|E = e) = αP(Y,E = e) = αΣhP(Y,E = e,H = h)

In our case, query is P(P1,3|p∗, b∗), where the evidence is
b∗ = ¬b1,1 ∧ b1,2 ∧ b2,1

p∗ = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

Sum over hidden variables: P(P1,3|p∗, b∗) = αΣunknownP(P1,3, unknown, p∗, b∗)

unknown = all Pijs other than P1,3 and the known squares (P1,1, P1,2, P2,1)

Two values for each Pij ⇒ grows exponentially with number of squares!

CMSC 421: Chapter 13 30



Using conditional independence

Basic insight: Given the fringe squares (see below), b is conditionally inde-
pendent of the other hidden squares

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

KNOWN
FRINGE

QUERY
OTHER

The unknown variables are Unknown = Fringe ∪Other
P(b∗|P1,3, p

∗, Unknown) = P(b∗|P1,3, p
∗, F ringe,Other)

= P(b∗|P1,3, p
∗, F ringe)

Next: translate the query into a form where we can use this

CMSC 421: Chapter 13 31



Using conditional independence, continued

Looks easy, doesn’t it?

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= α
∑

unknown
P(P1,3, unknown, p∗, b∗)

= α
∑

unknown
P(b∗|P1,3, p

∗, unknown)P(P1,3, p
∗, unknown)

= α
∑

fringe

∑
other

P(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )

= α
∑

fringe

∑
other

P(b∗|p∗, P1,3, fringe)P(P1,3, p
∗, fringe, other )

= α
∑

fringe
P(b∗|p∗, P1,3, fringe)

∑
other

P(P1,3, p
∗, fringe, other )

= α
∑

fringe
P(b∗|p∗, P1,3, fringe)

∑
other

P(P1,3)P (p∗)P (fringe)P (other )

= αP (p∗)P(P1,3)
∑

fringe
P(b∗|p∗, P1,3, fringe)P (fringe)

∑
other

P (other )

= α′P(P1,3)
∑

fringe
P(b∗|p∗, P1,3, fringe)P (fringe)

∑
other

P (other )

= α′P(P1,3)
∑

fringe
P(b∗|p∗, P1,3, fringe)P (fringe)
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Same thing, step by step

Use the definition of conditional probability

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗)
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Same thing, step by step

P(p∗, b∗) = P (p∗, b∗) is a scalar constant; use as a normalization constant

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)
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Same thing, step by step

Sum over the unknowns

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= α
∑

unknown
P(P1,3, unknown, p∗, b∗)
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Same thing, step by step

Use the product rule

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= α
∑

unknown
P(P1,3, unknown, p∗, b∗)

= α
∑

unknown
P(b∗|P1,3, p

∗, unknown)P(P1,3, p
∗, unknown)
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Same thing, step by step

Separate unknown into fringe and other

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= α
∑

unknown
P(P1,3, unknown, p∗, b∗)

= α
∑

unknown
P(b∗|P1,3, p

∗, unknown)P(P1,3, p
∗, unknown)

= α
∑

fringe

∑
other

P(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )
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Same thing, step by step

b∗ is conditionally independent of other given fringe

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= α
∑

unknown
P(P1,3, unknown, p∗, b∗)

= α
∑

unknown
P(b∗|P1,3, p

∗, unknown)P(P1,3, p
∗, unknown)

= α
∑

fringe

∑
other

P(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )

= α
∑

fringe

∑
other

P(b∗|p∗, P1,3, fringe)P(P1,3, p
∗, fringe, other )
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Same thing, step by step

Move P(b∗|p∗, P1,3, fringe) outward

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= α
∑

unknown
P(P1,3, unknown, p∗, b∗)

= α
∑

unknown
P(b∗|P1,3, p

∗, unknown)P(P1,3, p
∗, unknown)

= α
∑

fringe

∑
other

P(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )

= α
∑

fringe

∑
other

P(b∗|p∗, P1,3, fringe)P(P1,3, p
∗, fringe, other )

= α
∑

fringe
P(b∗|p∗, P1,3, fringe)

∑
other

P(P1,3, p
∗, fringe, other )
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Same thing, step by step

All of the pit locations are independent

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= α
∑

unknown
P(P1,3, unknown, p∗, b∗)

= α
∑

unknown
P(b∗|P1,3, p

∗, unknown)P(P1,3, p
∗, unknown)

= α
∑

fringe

∑
other

P(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )

= α
∑

fringe

∑
other

P(b∗|p∗, P1,3, fringe)P(P1,3, p
∗, fringe, other )

= α
∑

fringe
P(b∗|p∗, P1,3, fringe)

∑
other

P(P1,3, p
∗, fringe, other )

= α
∑

fringe
P(b∗|p∗, P1,3, fringe)

∑
other

P(P1,3)P (p∗)P (fringe)P (other )
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Same thing, step by step

Move P (p∗), P(P1,3), and P (fringe) outward

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= α
∑

unknown
P(P1,3, unknown, p∗, b∗)

= α
∑

unknown
P(b∗|P1,3, p

∗, unknown)P(P1,3, p
∗, unknown)

= α
∑

fringe

∑
other

P(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )

= α
∑

fringe

∑
other

P(b∗|p∗, P1,3, fringe)P(P1,3, p
∗, fringe, other )

= α
∑

fringe
P(b∗|p∗, P1,3, fringe)

∑
other

P(P1,3, p
∗, fringe, other )

= α
∑

fringe
P(b∗|p∗, P1,3, fringe)

∑
other

P(P1,3)P (p∗)P (fringe)P (other )

= αP (p∗)P(P1,3)
∑

fringe
P(b∗|p∗, P1,3, fringe)P (fringe)

∑
other

P (other )
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Same thing, step by step

Remove ∑
other P (other ) because it equals 1

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= α
∑

unknown
P(P1,3, unknown, p∗, b∗)

= α
∑

unknown
P(b∗|P1,3, p

∗, unknown)P(P1,3, p
∗, unknown)

= α
∑

fringe

∑
other

P(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )

= α
∑

fringe

∑
other

P(b∗|p∗, P1,3, fringe)P(P1,3, p
∗, fringe, other )

= α
∑

fringe
P(b∗|p∗, P1,3, fringe)

∑
other

P(P1,3, p
∗, fringe, other )

= α
∑

fringe
P(b∗|p∗, P1,3, fringe)

∑
other

P(P1,3)P (p∗)P (fringe)P (other )

= αP (p∗)P(P1,3)
∑

fringe
P(b∗|p∗, P1,3, fringe)P (fringe)

∑
other

P (other )

= αP (p∗)P(P1,3)
∑

fringe
P(b∗|p∗, P1,3, fringe)P (fringe)
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Same thing, step by step

P (p∗) is a scalar constant, so make it part of the normalization constant

P(P1,3|p∗, b∗) = P(P1,3, p
∗, b∗)/P(p∗, b∗) = αP(P1,3, p

∗, b∗)

= α
∑

unknown
P(P1,3, unknown, p∗, b∗)

= α
∑

unknown
P(b∗|P1,3, p

∗, unknown)P(P1,3, p
∗, unknown)

= α
∑

fringe

∑
other

P(b∗|p∗, P1,3, fringe, other )P(P1,3, p
∗, fringe, other )

= α
∑

fringe

∑
other

P(b∗|p∗, P1,3, fringe)P(P1,3, p
∗, fringe, other )

= α
∑

fringe
P(b∗|p∗, P1,3, fringe)

∑
other

P(P1,3, p
∗, fringe, other )

= α
∑

fringe
P(b∗|p∗, P1,3, fringe)

∑
other

P(P1,3)P (p∗)P (fringe)P (other )

= αP (p∗)P(P1,3)
∑

fringe
P(b∗|p∗, P1,3, fringe)P (fringe)

∑
other

P (other )

= αP (p∗)P(P1,3)
∑

fringe
P(b∗|p∗, P1,3, fringe)P (fringe)

= α′P(P1,3)
∑

fringe
P(b∗|p∗, P1,3, fringe)P (fringe)
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How to get the answer?

We have

P(P1,3|p∗, b∗) = α′P(P1,3)
∑

fringe
P(b∗|p∗, P1,3, fringe)P (fringe)

♦ It won’t be hard to compute
∑

fringe
P(b∗|p∗, P1,3, fringe)P (fringe),

because there are only four possible fringes (see next slide)

♦ We know that P(P1,3) = 〈0.2, 0.8〉.

♦ We can compute the normalization coefficient α′ afterwards;
it’s whatever number will make the probabilities sum to 1.

Start by rewriting as two separate equations:

P (p1,3|p∗, b∗) = α′ P (p1,3)
∑

fringe
P (b∗|p∗, p1,3, fringe)P (fringe)

P (¬p1,3|p∗, b∗) = α′ P (¬p1,3)
∑

fringe
P (b∗|p∗,¬p1,3, fringe)P (fringe)
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Getting the answer

Four
possible
fringes:

For each of them, P (b∗| . . .) is 1 if the breezes occur, 0 otherwise
∑

fringe
P (b∗|p∗, p1,3, fringe)P (fringe) = 1(0.04) + 1(0.16) + 1(0.16) + 0 = 0.36

∑
fringe

P (b∗|p∗,¬p1,3, fringe)P (fringe) = 1(0.04) + 1(0.16) + 0 + 0 = 0.2

so P(P1,3|p∗, b∗) = α′P(P1,3)
∑

fringe
P(b∗|p∗, P1,3, fringe)P (fringe)

= α′ 〈0.2, 0.8〉 〈0.36, 0.2〉
= α′ 〈0.072, 0.16〉

so α′ = 1/(0.072 + 0.16) = 1/0.232 ≈ 4.31

so P(P1,3|p∗, b∗) = 〈0.072α′, 0.16α′〉 ≈ 〈0.31, 0.69〉
Similarly, P(P2,2|p∗, b∗) ≈ 〈0.86, 0.14〉
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Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies probability of every atomic event

Queries can be answered by inference by enumeration (summing over atomic
events)

Can reduce combinatorial explosion using independence and conditional in-
dependence
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Homework assignment

I’ll post it to the discussion forum
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