Last update: May 11, 2010

BAYESIAN NETWORKS

CMSC 421: Chapter 14.1-4

CMSC 421: Chapter 14.1–4 1

Outline

\diamondsuit Syntax

- \diamondsuit Semantics
- \diamondsuit Parameterized distributions

Bayesian networks

Graphical network that encodes conditional independence assertions:

- \diamond a set of nodes, one per variable
- \diamond a directed, acyclic graph (link \approx "directly influences")
- \diamond a conditional distribution $\mathbf{P}(X_i | Parents(X_i))$ for each node X_i

Weather is independent of the other variables Toothache and Catch are conditionally independent given Cavity

For each node X_i , $\mathbf{P}(X_i | Parents(X_i))$ is represented as a *conditional probability table* (CPT); we'll have examples later

Example from Judea Pearl at UCLA:

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: *Burglar*, *Earthquake*, *Alarm*, *JohnCalls*, *MaryCalls* Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example, continued

Compactness

For a Boolean node X_i with k Boolean parents, the CPT has 2^k rows, one for each combination of parent values

Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1 - p)

If there are n variables and if each variable has no more than k parents, the complete network requires no more than $n \cdot 2^k$ numbers

I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution

How many numbers for the burglary net?

Compactness

For a Boolean node X_i with k Boolean parents, the CPT has 2^k rows, one for each combination of parent values

Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1 - p)

If there are n variables and if each variable has no more than k parents, the complete network requires no more than $n \cdot 2^k$ numbers

I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution

How many numbers for the burglary net? 1+1+4+2+2=10 numbers (vs. $2^5-1=31$ for the joint distribution)

Semantics of Bayesian nets

In general, *semantics* = "what things mean." Here, we're interested in what a Bayesian net means.

We'll look at *global* and *local* semantics

Global semantics

Global semantics defines the full joint distribution as the product of the local conditional distributions

If X_1, \ldots, X_n are all of the random variables, then by combining the chain rule and conditional independence, we get

 $P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i | parents(X_i))$

e.g., $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$

=

Global semantics

Global semantics defines the full joint distribution as the product of the local conditional distributions

If X_1, \ldots, X_n are all of the random variables, then by combining the chain rule and conditional independence, we get

 $P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i | parents(X_i))$

e.g.,
$$P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$$

$$= P(j|a)P(m|a)P(a|\neg b, \neg e)P(\neg b)P(\neg e)$$

 $= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$

 ≈ 0.00063

Local semantics

Local semantics: each node is conditionally independent of its nondescendants given its parents

Theorem: Local semantics \Leftrightarrow global semantics

Markov blanket

Each node is conditionally independent of all others given its *Markov blanket*: parents + children + children's parents

Constructing Bayesian networks

Given a set of random variables

- 1. Choose an ordering X_1, \ldots, X_n In principle, *any* ordering will work
- 2. For i = 1 to n, add X_i to the network as follows:

For $Parents(X_i)$, choose a subset of $\{X_1, \ldots, X_{i-1}\}$ such that X_i is conditionally independent of the other nodes in $\{X_1, \ldots, X_{i-1}\}$,

i.e., $\mathbf{P}(X_i | Parents(X_i)) = \mathbf{P}(X_i | X_1, \ldots, X_{i-1})$

This choice of parents guarantees the global semantics:

 $\mathbf{P}(X_1, \dots, X_n) = \prod_{i=1}^n \mathbf{P}(X_i | X_1, \dots, X_{i-1}) \quad \text{(chain rule)} \\ = \prod_{i=1}^n \mathbf{P}(X_i | Parents(X_i)) \quad \text{(by construction)}$

Suppose we choose the ordering $M,\,J,\,A,\,B,\,E$

$$P(J|M) = P(J)?$$

Suppose we choose the ordering $M,\ J,\ A,\ B,\ E$

$$P(J|M) = P(J)$$
? No
 $P(A|J,M) = P(A|J)$? $P(A|J,M) = P(A)$?

Suppose we choose the ordering $M,\,J,\,A,\,B,\,E$

 $\begin{array}{ll} P(J|M) = P(J) ? & {\sf No} \\ P(A|J,M) = P(A|J) ? & P(A|J,M) = P(A) ? & {\sf No} \\ P(B|A,J,M) = P(B|A) ? \\ P(B|A,J,M) = P(B) ? \end{array}$

Suppose we choose the ordering M, J, A, B, E

Suppose we choose the ordering M, J, A, B, E

Example, continued

Deciding conditional independence is hard in noncausal directions Assessing conditional probabilities is hard in noncausal directions Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

Example: Car diagnosis

Initial evidence: car won't start Testable variables (green), "broken, so fix it" variables (orange) Hidden variables (gray) ensure sparse structure, reduce parameters

Compact conditional distributions

Problem: CPT grows exponentially with number of parents.

Can overcome this if the causes don't interact: use a Noisy-OR distribution

- 1) Parents $U_1 \dots U_k$ include all causes (can add *leak node*)
- 2) Independent failure probability q_i for each cause U_i by itself

$$\Rightarrow P(\neg X | U_1 \dots U_j, \neg U_{j+1} \dots \neg U_k) = \prod_{i=1}^j q_i$$

Number of parameters linear in number of parents

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Compact conditional distributions, continued

Problem: CPT becomes infinite with continuous-valued parent or child

Solution: *canonical* distributions that are defined compactly *canonical: conforming to orthodox or well-established rules or patterns* (e.g., something for which we can write an equation)

 $\ensuremath{\textit{Deterministic}}$ nodes are the simplest case: $X = f(Parents(X)) \mbox{ for some function } f$

Examples:

- \diamondsuit Numerical relationships among continuous variables

 $\frac{\partial Level}{\partial t} = \text{ inflow + precipitation - outflow - evaporation}$

The book discusses this in detail, but I'll skip that part.

Inference tasks

Simple queries: compute posterior marginal distribution $\mathbf{P}(X_i | \mathbf{E} = \mathbf{e})$

e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: $\mathbf{P}(X_i, X_j | \mathbf{E} = \mathbf{e}) = \mathbf{P}(X_i | \mathbf{E} = \mathbf{e})\mathbf{P}(X_j | X_i, \mathbf{E} = \mathbf{e})$

Optimal decisions: decision networks include utility information; probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

Inference by enumeration

Can sum out variables from the joint distribution without actually constructing its explicit representation:

Joint probabilities are products of probabilities in the network:

 $\begin{aligned} \mathbf{P}(B|j,m) &= \alpha \Sigma_e \Sigma_a \mathbf{P}(B,e,a,j,m) \\ &= \alpha \Sigma_e \Sigma_a \mathbf{P}(B) P(e) \mathbf{P}(a|B,e) P(j|a) P(m|a) & \text{(conditional independence)} \\ &= \alpha \mathbf{P}(B) \Sigma_e P(e) \Sigma_a \mathbf{P}(a|B,e) P(j|a) P(m|a) & \text{(move term outside of } \Sigma\text{)} \end{aligned}$

Recursive depth-first enumeration: O(n) space, $O(d^n)$ time

Enumeration algorithm

```
function ENUMERATION-ASK(X, e, bn) returns a distribution over X
   inputs: X, the query variable
              e, observed values for variables E
              bn, a Bayesian network with variables \{X\} \cup \mathbf{E} \cup \mathbf{Y}
   \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
        extend e with value x_i for X
        \mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(\text{VARS}[bn], \mathbf{e})
   return NORMALIZE(\mathbf{Q}(X))
function ENUMERATE-ALL(vars, e) returns a real number
   if EMPTY?(vars) then return 1.0
   Y \leftarrow \text{FIRST}(vars)
   if Y has value y in e
        then return P(y \mid Pa(Y)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), e)
        else return \Sigma_y P(y \mid Pa(Y)) \times \text{ENUMERATE-ALL}(\text{Rest}(vars), e_y)
              where \mathbf{e}_y is \mathbf{e} extended with Y = y
```

Inefficient due to repeated computation

Inference by variable elimination

Variable elimination: carry out summations right-to-left, storing intermediate results (*factors*) to avoid recomputation

$$\begin{split} \mathbf{P}(B|j,m) &= \alpha \underbrace{\mathbf{P}(B)}_{B} \underbrace{\sum_{e} P(e)}_{E} \underbrace{\sum_{a} \mathbf{P}(a|B,e)}_{A} \underbrace{P(j|a)}_{J} \underbrace{P(m|a)}_{M} \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{E} \underbrace{P(a|B,e)}_{A} \underbrace{P(j|a)}_{J} f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{a} \mathbf{P}(a|B,e) f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{a} \underbrace{f_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{M}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{M}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{M}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{M}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{M}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{M}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{M}(b) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{M}(b) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{M}(b) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{M}(b) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{M}(b) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{M}(b) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{M}(b) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{M}(b) f_{M}(b) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} f_{M}(b) f_{M}(b) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{A} \underbrace{f_{A}(a,b,e)}_{J} \\ &=$$

Summing out a variable from a product of factors: move any constant factors outside the summation add up submatrices in pointwise product of remaining factors

Less complicated than it looks. Algorithmically, it's just caching

Irrelevant variables

Consider the query P(JohnCalls|Burglary = true)

 $P(J|b) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a|b, e) P(J|a) \sum_{m} P(m|a)$

Sum over m is identically 1; M is **irrelevant** to the query

Thm 1: Y is irrelevant unless $Y \in Ancestors(\{X\} \cup \mathbf{E})$

Here, X = JohnCalls, $\mathbf{E} = \{Burglary\}$, and $Ancestors(\{X\} \cup \mathbf{E}) = \{Alarm, Earthquake\}$ so M is irrelevant

Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: U is <u>m-separated</u> from V by W iff separated by W in the moral graph

Thm 2: Y is irrelevant if m-separated from X by \mathbf{E}

For P(JohnCalls|Alarm = true), both Burglary and Earthquake are irrelevant

Complexity of exact inference

Singly connected networks (or *polytrees*):

- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O(d^k n)$

Multiply connected networks:

- exponential time and space in the worst case
- as hard as **counting** the number of models of a propositional formula

Summary

Bayes nets provide a natural representation for (causally induced) conditional independence

Topology + CPTs = compact representation of joint distribution Generally easy for (non)experts to construct Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables \Rightarrow parameterized distributions (e.g., linear Gaussian)