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Outline

♦ Syntax

♦ Semantics

♦ Parameterized distributions
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Bayesian networks

Graphical network that encodes conditional independence assertions:
♦ a set of nodes, one per variable
♦ a directed, acyclic graph (link ≈ “directly influences”)
♦ a conditional distribution P(Xi|Parents(Xi)) for each node Xi

Weather Cavity

Toothache Catch

Weather is independent of the other variables
Toothache and Catch are conditionally independent given Cavity

For each node Xi, P(Xi|Parents(Xi)) is represented as a conditional prob-
ability table (CPT); we’ll have examples later
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Example

Example from Judea Pearl at UCLA:

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it’s set off by minor earthquakes. Is there a
burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call
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Example, continued
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Compactness

For a Boolean nodeXi with k Boolean parents, the CPT has
B E

J

A

M

2k rows, one for each combination of parent values

Each row requires one number p for Xi = true
(the number for Xi = false is just 1− p)

If there are n variables and if
each variable has no more than k parents,
the complete network requires no more than n · 2k numbers

I.e., grows linearly with n, vs. O(2n) for the full joint distribution

How many numbers for the burglary net?
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Compactness

For a Boolean nodeXi with k Boolean parents, the CPT has
B E

J

A

M

2k rows, one for each combination of parent values

Each row requires one number p for Xi = true
(the number for Xi = false is just 1− p)

If there are n variables and if
each variable has no more than k parents,
the complete network requires no more than n · 2k numbers

I.e., grows linearly with n, vs. O(2n) for the full joint distribution

How many numbers for the burglary net?
1 + 1 + 4 + 2 + 2 = 10 numbers

(vs. 25 − 1 = 31 for the joint distribution)
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Semantics of Bayesian nets

In general, semantics = “what things mean.”
B E

J

A

M

Here, we’re interested in what a Bayesian net means.

We’ll look at global and local semantics
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Global semantics

Global semantics defines the full joint distribution
B E

J

A

M

as the product of the local conditional distributions

If X1, . . . , Xn are all of the random variables,
then by combining the chain rule and conditional
independence, we get

P (X1, . . . , Xn) = Πn
i= 1P (Xi|parents(Xi))

e.g., P (j ∧m ∧ a ∧ ¬b ∧ ¬e)

=
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Global semantics

Global semantics defines the full joint distribution
B E

J

A

M

as the product of the local conditional distributions

If X1, . . . , Xn are all of the random variables,
then by combining the chain rule and conditional
independence, we get

P (X1, . . . , Xn) = Πn
i= 1P (Xi|parents(Xi))

e.g., P (j ∧m ∧ a ∧ ¬b ∧ ¬e)

= P (j|a)P (m|a)P (a|¬b,¬e)P (¬b)P (¬e)
= 0.9× 0.7× 0.001× 0.999× 0.998

≈ 0.00063

CMSC 421: Chapter 14.1–4 10



Local semantics

Local semantics: each node is conditionally independent
of its nondescendants given its parents
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Theorem: Local semantics ⇔ global semantics
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Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Constructing Bayesian networks

Given a set of random variables

1. Choose an ordering X1, . . . , Xn

In principle, any ordering will work

2. For i = 1 to n, add Xi to the network as follows:

For Parents(Xi), choose a subset of {X1, . . . , Xi−1} such that
Xi is conditionally independent of the other nodes in {X1, . . . , Xi−1},

i.e., P(Xi|Parents(Xi)) = P(Xi|X1, . . . , Xi−1)

This choice of parents guarantees the global semantics:

P(X1, . . . , Xn) = Πn
i= 1P(Xi|X1, . . . , Xi−1) (chain rule)

= Πn
i= 1P(Xi|Parents(Xi)) (by construction)
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

JohnCalls

P (J |M) = P (J)?
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

JohnCalls

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)?
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

JohnCalls

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)? No
P (B|A, J,M) = P (B|A)?
P (B|A, J,M) = P (B)?
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)? No
P (B|A, J,M) = P (B|A)? Yes
P (B|A, J,M) = P (B)? No
P (E|B,A, J,M) = P (E|A)?
P (E|B,A, J,M) = P (E|A,B)?
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)? No
P (B|A, J,M) = P (B|A)? Yes
P (B|A, J,M) = P (B)? No
P (E|B,A, J,M) = P (E|A)? No
P (E|B,A, J,M) = P (E|A,B)? Yes
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Example, continued

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

Deciding conditional independence is hard in noncausal directions

Assessing conditional probabilities is hard in noncausal directions

Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed
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Example: Car diagnosis

Initial evidence: car won’t start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

lights

no oil no gas starter
broken

battery age alternator
  broken

fanbelt
broken

battery
  dead no charging

battery
    flat

gas gauge

fuel line
blocked

oil light

battery
 meter

car won’t
    start dipstick
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Compact conditional distributions

Problem: CPT grows exponentially with number of parents.

Can overcome this if the causes don’t interact: use a Noisy-OR distribution
1) Parents U1 . . . Uk include all causes (can add leak node)
2) Independent failure probability qi for each cause Ui by itself

⇒ P (¬X|U1 . . . Uj,¬Uj+1 . . .¬Uk) = Πj
i= 1qi

Number of parameters linear in number of parents

Cold F lu Malaria P (Fever) P (¬Fever)
F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02 = 0.2× 0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6× 0.1
T T F 0.88 0.12 = 0.6× 0.2
T T T 0.988 0.012 = 0.6× 0.2× 0.1
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Compact conditional distributions, continued

Problem: CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly
canonical: conforming to orthodox or well-established rules or patterns
(e.g., something for which we can write an equation)

Deterministic nodes are the simplest case:
X = f (Parents(X)) for some function f

Examples:

♦ Boolean functions
NorthAmerican ⇔ Canadian ∨ US ∨Mexican

♦ Numerical relationships among continuous variables

∂Level

∂t
= inflow + precipitation - outflow - evaporation

The book discusses this in detail, but I’ll skip that part.
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Inference tasks

Simple queries: compute posterior marginal distribution P(Xi|E = e)

e.g., P (NoGas|Gauge= empty, Lights= on, Starts= false)

Conjunctive queries: P(Xi, Xj|E = e) = P(Xi|E = e)P(Xj|Xi,E = e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
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Inference by enumeration

Simple query on the burglary network:
B E

J

A

M

P(B|j,m)
= P(B, j,m)/P (j,m) (def. of cond. probability)
= αP(B, j,m) (normalization constant)
= αΣeΣaP(B, e, a, j,m) (sum over hidden variables)

[ notation: ΣaP(. . . , a, . . .) means P(. . . ,¬a, . . .) + P(. . . , a, . . .) ]

Can sum out variables from the joint distribution without actually construct-
ing its explicit representation:

Joint probabilities are products of probabilities in the network:
P(B|j,m)
= αΣeΣaP(B, e, a, j,m)
= αΣeΣaP(B)P (e)P(a|B, e)P (j|a)P (m|a) (conditional independence)
= αP(B)ΣeP (e)ΣaP(a|B, e)P (j|a)P (m|a) (move term outside of Σ)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Enumeration algorithm

function Enumeration-Ask(X,e, bn) returns a distribution over X

inputs: X, the query variable

e, observed values for variables E

bn, a Bayesian network with variables {X} ∪ E ∪ Y

Q(X )← a distribution over X, initially empty

for each value xi of X do

extend e with value xi for X

Q(xi)←Enumerate-All(Vars[bn],e)

return Normalize(Q(X ))

function Enumerate-All(vars,e) returns a real number

if Empty?(vars) then return 1.0

Y←First(vars)

if Y has value y in e

then return P (y | Pa(Y )) × Enumerate-All(Rest(vars),e)

else return
∑

y P (y | Pa(Y )) × Enumerate-All(Rest(vars),ey)

where ey is e extended with Y = y
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Inefficient due to repeated computation

P(B|j,m) = αP(B)ΣeP (e)ΣaP(a|B, e)P (j|a)P (m|a)
computes P (j|a)P (m|a) for each value of e

P(j|a)
.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a) P(j|a)

.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a)

P(b)
.001

P(e)
.002

P(   e)
.998

P(a|b,e)
.95 .06

P(   a|b,   e)
.05
P(   a|b,e)

.94
P(a|b,   e)
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Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j,m)
= αP(B)︸ ︷︷ ︸

B

Σe P (e)︸ ︷︷ ︸
E

ΣaP(a|B, e)︸ ︷︷ ︸
A

P (j|a)︸ ︷︷ ︸
J

P (m|a)︸ ︷︷ ︸
M

= αP(B)ΣeP (e)ΣaP(a|B, e)P (j|a)fM(a)
= αP(B)ΣeP (e)ΣaP(a|B, e)fJ(a)fM(a)
= αP(B)ΣeP (e)ΣafA(a, b, e)fJ(a)fM(a)
= αP(B)ΣeP (e)fĀJM(b, e) (sum out A)
= αP(B)fĒĀJM(b) (sum out E)
= αfB(b)× fĒĀJM(b)

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

Less complicated than it looks. Algorithmically, it’s just caching
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Irrelevant variables

Consider the query P (JohnCalls|Burglary= true)
B E

J

A

M

P (J |b) = αP (b)
∑
e
P (e)

∑
a
P (a|b, e)P (J |a)

∑
m
P (m|a)

Sum over m is identically 1; M is irrelevant to the query

Thm 1: Y is irrelevant unless Y ∈Ancestors({X}∪E)

Here, X = JohnCalls, E = {Burglary}, and
Ancestors({X}∪E) = {Alarm,Earthquake}
so M is irrelevant
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Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: U is m-separated from V by W iff separated by W in the moral
graph

Thm 2: Y is irrelevant if m-separated fromX by E
B E

J

A

M

For P (JohnCalls|Alarm= true), both
Burglary and Earthquake are irrelevant
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Complexity of exact inference

Singly connected networks (or polytrees):
– any two nodes are connected by at most one (undirected) path
– time and space cost of variable elimination are O(dkn)

Multiply connected networks:
– exponential time and space in the worst case
– as hard as counting the number of models of a propositional formula
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1.  A  v  B  v  C

2.  C  v  D  v    A

3.  B  v  C  v    D
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Summary

Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables ⇒ parameterized distributions (e.g., linear Gaussian)
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