
Last update: April 20, 2010

Complex decisions

CMSC 421: Chapter 17, Sections 1–3

CMSC 421: Chapter 17, Sections 1–3 1

Outline

Sequential decision problems
♦ Markov decision processes
♦ Value iteration
♦ Policy iteration

CMSC 421: Chapter 17, Sections 1–3 2

Sequential decision problems

Search

Planning Markov decision
problems (MDPs)

Decision−theoretic
 planning

Partially observable
MDPs (POMDPs)

explicit actions
and subgoals

uncertainty
and utility

uncertainty
and utility

uncertain
sensing

(belief states)explicit actions
and subgoals

CMSC 421: Chapter 17, Sections 1–3 3

Example MDP

1 2 3

1

2

3

− 1

+ 1

4

START

0.8

0.10.1

States s ∈ S, actions a ∈ A

Model T (s, a, s′) ≡ P (s′|s, a) = probability that a in s leads to s′

Reward function R(s) (or R(s, a), R(s, a, s′))

=


−0.04 (small penalty) for nonterminal states
±1 for terminal states

CMSC 421: Chapter 17, Sections 1–3 4

Solving MDPs

In search problems, aim is to find a sequence of actions 〈a1, a2, . . .〉

In MDPs, we can’t be sure what state a sequence of actions will take us to.
Aim is to find a policy: a function π from states to actions

π(s) is the action to perform if we are in state s

Optimal policy: best possible action in each state
π(s) = the action having the highest utility U(s)

Example:

♦ Suppose utility is expected sum
of rewards

♦ Optimal policy if R(s) = −0.04 at
all states other than (4, 2) and (4, 2):

1 2 3

1

2

3

− 1

+ 1

4

CMSC 421: Chapter 17, Sections 1–3 5

Optimal policies under various conditions

R = −2 R = −0.3

R = −0.04 R = −0.01

CMSC 421: Chapter 17, Sections 1–3 6

Utility of state sequences

Need to understand preferences between different histories,
i.e., sequences of states h = [s0, s1, s2, . . .]

Typically consider stationary preferences on the rewards for the states
“stationary” = the same, regardless of what time it is

〈s0, s1, s2, . . .〉 � 〈s0, s
′
1, s
′
2, . . .〉 ⇔ 〈s1, s2, . . .〉 � 〈s′1, s′2, . . .〉

Stationary preferences ⇒ only two ways to combine rewards over time:

1) Additive utility function:
U([s0, s1, s2, . . .]) = R(s0) + R(s1) + R(s2) + · · ·

2) Discounted utility function:
U([s0, s1, s2, . . .]) = R(s0) + γR(s1) + γ2R(s2) + · · ·
where 0 < γ < 1 is the discount factor

CMSC 421: Chapter 17, Sections 1–3 7

Utilities continued

Problem: infinite sequences ⇒ additive utilities may be infinite
How to fix?

(1) Finite horizon: termination at a fixed time T
⇒ nonstationary policy: π(s) depends on how much time is left

(2) Absorbing state(s): states where nothing ever happens again.
If every π, with probability 1, eventually goes to an absorbing state,
then every state has a finite expected utility

(3) Discounting: assuming γ < 1, R(s) ≤ Rmax,

U([s0, . . . s∞]) = Σ∞t=0γ
tR(st) ≤ Rmax/(1− γ)

γ < 1⇒ earlier states matter more than later ones

(4) Maximize system gain = average reward per time step

We’ll mainly use (3)

CMSC 421: Chapter 17, Sections 1–3 8

Utility of states

Given a policy π, a state’s utility (or value) is
Uπ(s) = expected (discounted) sum of rewards for π

= E
 ∞∑
t=0

γtR(st)|π, s0 = s


1 2 3

1

2

3

− 1

+ 1

4

0.611

0.812

0.655

0.762

0.912

0.705

0.660

0.868

 0.388

1 2 3

1

2

3

− 1

+ 1

4

Define U(s) = maxπ U
π(s) = best possible value for s

Optimal policy: a policy π∗ such that Uπ∗(s) = U(s)
How to find?

CMSC 421: Chapter 17, Sections 1–3 9

Dynamic programming: the Bellman equation

How to find π∗ and U?

Formulate π∗ using the MEU principle from Chapter 16
At each state s, maximize expected utility of next state s′

π∗(s) = argmaxsΣs′T (s, a, s′)U(s)

Bellman equation (1957):

U(s) = R(s) + γ max
a

Σs′U(s′)T (s, a, s′)

1 2 3

1

2

3

− 1

+ 1

4

0.611

0.812

0.655

0.762

0.912

0.705

0.660

0.868

 0.388

U(1, 1) = −0.04
+ γ max{0.8U(1, 2) + 0.1U(2, 1) + 0.1U(1, 1), up

0.9U(1, 1) + 0.1U(1, 2) left
0.9U(1, 1) + 0.1U(2, 1) down
0.8U(2, 1) + 0.1U(1, 2) + 0.1U(1, 1)} right

One equation per state = n nonlinear equations in n unknowns

CMSC 421: Chapter 17, Sections 1–3 10

Value iteration algorithm

Idea: For each state s, start with an arbitrary guess U0(s) of its utility value
Repeatedly update the guesses to make them locally consistent
with the Bellman equation

Repeat for every s simultaneously until Ut+1 = Ut:

Ut+1(s)← R(s) + γ max
a

Σs′Ut(s
′)T (s, a, s′) for all s

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)
(2,3)

(1,1)
(3,1)

(4,1)

(4,2)

CMSC 421: Chapter 17, Sections 1–3 11

Convergence

Theorem: For any two approximations Ut and Vt

max
s

[Ut+1(s)− Vt+1(s)] ≤ γ max
s

[Ut(s)− Vt(s)]
so value iteration converges

Theorem: if maxs[Ut+1(s)− Ut(s)] < ε,
then maxs[Ut+1(s)− U(s)] < 2εγ/(1− γ)

i.e., once the change in Ut becomes small, we are almost done.

For every approximation Ut, we can define a policy πt that chooses the
actions that Ut says are best:

πt(s) = arg max
a

∑
s′
Ut(s

′)T (s, a, s′)

πt may be optimal long before Ut converges

CMSC 421: Chapter 17, Sections 1–3 12

Policy iteration

Howard, 1960: search for optimal policy and utility values simultaneously

Algorithm:
π ← an arbitrary initial policy
repeat until no change in π

compute utilities given π
update π as if utilities were correct (i.e., local MEU)

To compute utilities given a fixed π (value determination):

Ut+1(s) = R(s) + γΣs′Ut(s
′)T (s, π(s), s′) for all s

i.e., n simultaneous linear equations in n unknowns, solve in O(n3)

Compare with the value-iteration equation:

Ut+1(s)← R(s) + γ max
a

Σs′Ut(s
′)T (s, a, s′) for all s

CMSC 421: Chapter 17, Sections 1–3 13

Modified policy iteration

Policy iteration often converges in few iterations, but each is expensive

Idea: interleave policy-iteration steps and value-iteration steps
Often converges much faster than pure VI or PI

Reinforcement learning algorithms operate by performing such updates
based on the observed transitions made in an initially unknown environment

CMSC 421: Chapter 17, Sections 1–3 14

Partial observability

POMDP has an observation model O(s, e) defining the probability that
the agent obtains evidence e when in state s

Agent does not know which state it is in
⇒ makes no sense to talk about policy π(s)

Theorem (Astrom, 1965): the optimal policy in a POMDP is a function
π(b) where b is the belief state (probability distribution over states)

Can convert a POMDP into an MDP in belief-state space, where
T (b, a, b′) is the probability that the new belief state is b′

given that the current belief state is b and the agent does a.
I.e., essentially a filtering update step

Solutions automatically include information-gathering behavior

If there are n states, b is an n-dimensional real-valued vector
⇒ solving POMDPs is very difficult (PSPACE-hard)

CMSC 421: Chapter 17, Sections 1–3 15

