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Outline

Sequential decision problems
♦ Markov decision processes
♦ Value iteration
♦ Policy iteration
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Example MDP
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States s ∈ S, actions a ∈ A

Model T (s, a, s′) ≡ P (s′|s, a) = probability that a in s leads to s′

Reward function R(s) (or R(s, a), R(s, a, s′))

=


−0.04 (small penalty) for nonterminal states
±1 for terminal states
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Solving MDPs

In search problems, aim is to find a sequence of actions 〈a1, a2, . . .〉

In MDPs, we can’t be sure what state a sequence of actions will take us to.
Aim is to find a policy: a function π from states to actions

π(s) is the action to perform if we are in state s

Optimal policy: best possible action in each state
π(s) = the action having the highest utility U(s)

Example:

♦ Suppose utility is expected sum
of rewards

♦ Optimal policy if R(s) = −0.04 at
all states other than (4, 2) and (4, 2):
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Optimal policies under various conditions

R = −2 R = −0.3

R = −0.04 R = −0.01
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Utility of state sequences

Need to understand preferences between different histories,
i.e., sequences of states h = [s0, s1, s2, . . .]

Typically consider stationary preferences on the rewards for the states
“stationary” = the same, regardless of what time it is

〈s0, s1, s2, . . .〉 � 〈s0, s
′
1, s
′
2, . . .〉 ⇔ 〈s1, s2, . . .〉 � 〈s′1, s′2, . . .〉

Stationary preferences ⇒ only two ways to combine rewards over time:

1) Additive utility function:
U([s0, s1, s2, . . .]) = R(s0) + R(s1) + R(s2) + · · ·

2) Discounted utility function:
U([s0, s1, s2, . . .]) = R(s0) + γR(s1) + γ2R(s2) + · · ·
where 0 < γ < 1 is the discount factor
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Utilities continued

Problem: infinite sequences ⇒ additive utilities may be infinite
How to fix?

(1) Finite horizon: termination at a fixed time T
⇒ nonstationary policy: π(s) depends on how much time is left

(2) Absorbing state(s): states where nothing ever happens again.
If every π, with probability 1, eventually goes to an absorbing state,
then every state has a finite expected utility

(3) Discounting: assuming γ < 1, R(s) ≤ Rmax,

U([s0, . . . s∞]) = Σ∞t=0γ
tR(st) ≤ Rmax/(1− γ)

γ < 1⇒ earlier states matter more than later ones

(4) Maximize system gain = average reward per time step

We’ll mainly use (3)
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Utility of states

Given a policy π, a state’s utility (or value) is
Uπ(s) = expected (discounted) sum of rewards for π

= E
 ∞∑
t=0

γtR(st)|π, s0 = s

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Define U(s) = maxπ U
π(s) = best possible value for s

Optimal policy: a policy π∗ such that Uπ∗(s) = U(s)
How to find?
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Dynamic programming: the Bellman equation

How to find π∗ and U?

Formulate π∗ using the MEU principle from Chapter 16
At each state s, maximize expected utility of next state s′

π∗(s) = argmaxsΣs′T (s, a, s′)U(s)

Bellman equation (1957):

U(s) = R(s) + γ max
a

Σs′U(s′)T (s, a, s′)
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U(1, 1) = −0.04
+ γ max{0.8U(1, 2) + 0.1U(2, 1) + 0.1U(1, 1), up

0.9U(1, 1) + 0.1U(1, 2) left
0.9U(1, 1) + 0.1U(2, 1) down
0.8U(2, 1) + 0.1U(1, 2) + 0.1U(1, 1)} right

One equation per state = n nonlinear equations in n unknowns
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Value iteration algorithm

Idea: For each state s, start with an arbitrary guess U0(s) of its utility value
Repeatedly update the guesses to make them locally consistent
with the Bellman equation

Repeat for every s simultaneously until Ut+1 = Ut:

Ut+1(s)← R(s) + γ max
a

Σs′Ut(s
′)T (s, a, s′) for all s
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Convergence

Theorem: For any two approximations Ut and Vt

max
s

[Ut+1(s)− Vt+1(s)] ≤ γ max
s

[Ut(s)− Vt(s)]
so value iteration converges

Theorem: if maxs[Ut+1(s)− Ut(s)] < ε,
then maxs[Ut+1(s)− U(s)] < 2εγ/(1− γ)

i.e., once the change in Ut becomes small, we are almost done.

For every approximation Ut, we can define a policy πt that chooses the
actions that Ut says are best:

πt(s) = arg max
a

∑
s′
Ut(s

′)T (s, a, s′)

πt may be optimal long before Ut converges
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Policy iteration

Howard, 1960: search for optimal policy and utility values simultaneously

Algorithm:
π ← an arbitrary initial policy
repeat until no change in π

compute utilities given π
update π as if utilities were correct (i.e., local MEU)

To compute utilities given a fixed π (value determination):

Ut+1(s) = R(s) + γΣs′Ut(s
′)T (s, π(s), s′) for all s

i.e., n simultaneous linear equations in n unknowns, solve in O(n3)

Compare with the value-iteration equation:

Ut+1(s)← R(s) + γ max
a

Σs′Ut(s
′)T (s, a, s′) for all s
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Modified policy iteration

Policy iteration often converges in few iterations, but each is expensive

Idea: interleave policy-iteration steps and value-iteration steps
Often converges much faster than pure VI or PI

Reinforcement learning algorithms operate by performing such updates
based on the observed transitions made in an initially unknown environment
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Partial observability

POMDP has an observation model O(s, e) defining the probability that
the agent obtains evidence e when in state s

Agent does not know which state it is in
⇒ makes no sense to talk about policy π(s)

Theorem (Astrom, 1965): the optimal policy in a POMDP is a function
π(b) where b is the belief state (probability distribution over states)

Can convert a POMDP into an MDP in belief-state space, where
T (b, a, b′) is the probability that the new belief state is b′

given that the current belief state is b and the agent does a.
I.e., essentially a filtering update step

Solutions automatically include information-gathering behavior

If there are n states, b is an n-dimensional real-valued vector
⇒ solving POMDPs is very difficult (PSPACE-hard)
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