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Learning from Observations
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Outline

♦ Learning agents

♦ Inductive learning

♦ Decision tree learning

♦ Measuring learning performance
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Learning

Learning is essential for unknown environments,
i.e., when designer lacks omniscience

Learning is useful as a system construction method,
i.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent’s decision mechanisms to improve performance
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Learning element

Design of learning element is dictated by
♦ what type of performance element is used
♦ which functional component is to be learned
♦ how that functional compoent is represented
♦ what kind of feedback is available

Example scenarios:

Performance element

Alpha−beta search

Logical agent

Simple reflex agent

Component

Eval. fn.

Transition model

Transition model

Representation

Weighted linear function

Successor−state axioms

Neural net

Dynamic Bayes netUtility−based agent

Percept−action fn

Feedback

Outcome

Outcome

Win/loss

Correct action

Supervised learning: correct answers for each instance
Reinforcement learning: occasional rewards
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Inductive learning

Simplest form: learn a function from examples

f is the target function

An example is a pair x, f (x), e.g.,


O O X

X
X

, +1



Problem: find a hypothesis h
such that h ≈ f
given a training set of examples

Highly simplified model of real learning:
– Ignores prior knowledge
– Assumes f is deterministic
– Assumes f and its arguments are observable
– Assumes examples are given
– Assumes that the agent wants to learn f
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Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

x

f(x)
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Ockham’s razor

William of Ockham, fourteenth century:
“Pluralitas non est ponenda sine neccesitate”

This translates as
“entities should not be multiplied unnecessarily”

Maximize a combination of consistency and simplicity

x

f(x)
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Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.)
E.g., examples of situations where a friend will/won’t wait for a table:

Example Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T

X2 T F F T Full $ F F Thai 30–60 F

X3 F T F F Some $ F F Burger 0–10 T

X4 T F T T Full $ F F Thai 10–30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0–10 T

X7 F T F F None $ T F Burger 0–10 F

X8 F F F T Some $$ T T Thai 0–10 T

X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10–30 F

X11 F F F F None $ F F Thai 0–10 F

X12 T T T T Full $ F F Burger 30–60 T

Classification of examples is positive (T) or negative (F)
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Decision trees

One possible representation for hypotheses
E.g., here is your friend’s “true” tree for deciding whether to wait:

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

None Some Full

>60 30−60 10−30 0−10

No  Yes
Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF
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Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row → path to leaf:

FT

A

B

F T

B

A B A xor B

F F F
F T T
T F T
T T F

F

F F

 T

 T  T

Trivially, there’s a consistent decision tree for any training set that has
a different path to a leaf for each example (unless f nondeterministic in x)
but it probably won’t generalize to new examples

Ockham’s razor ⇒
Prefer to find more compact decision trees
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes?
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How many distinct decision trees with n Boolean attributes?

= number of Boolean functions
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes?

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes?

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)?
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes?

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)?

Each attribute can be in (positive), in (negative), or out
⇒ 3n distinct conjunctive hypotheses

More expressive hypothesis space
– increases chance that target function can be expressed
– increases number of hypotheses consistent w/ training set
⇒ may get worse predictions
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Decision tree learning

Aim: find a small tree consistent with the training examples

Idea: construct the tree by going downward recursively from the top
At each node, choose “most significant” attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default

else if all examples have the same classification then return the classification

else if attributes is empty then return Mode(examples)

else

best←Choose-Attribute(attributes, examples)

tree← a new decision tree with root test best

for each value vi of best do

examplesi←{elements of examples with best = vi}
subtree←DTL(examplesi,attributes− best,Mode(examples))

add a branch to tree with label vi and subtree subtree

return tree
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Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classification
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Information

Information answers questions

The more clueless I am about the answer initially, the more information is
contained in the answer

Scale: 1 bit = answer to Boolean question with prior 〈0.5, 0.5〉
(this is the maximum possible amount of info in a Boolean answer)

Information in an answer when prior distribution is 〈P1, . . . , Pn〉 is

H(〈P1, . . . , Pn〉) = Σn
i = 1 − Pi log2 Pi

where 0 log2 0 is taken to be 0

Also called the entropy of the prior distribution

H(〈0.5, 0.5〉) = −0.5 log2 0.5− 0.5 log2 0.5 = 0.5 + 0.5 = 1

H(〈1, 0〉) = − 1 log2 1 − 0 log2 0 = 0 + 0 = 0
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Choosing an attribute

We’re building the decision tree node by node, going top down

At node N , suppose there’s a set E of p positive and n negative examples

Entropy at N is H(〈p/(p + n), n/(p + n)〉)
⇒ need H(〈p/(p + n), n/(p + n)〉) bits to classify an example

E.g., for the 12 restaurant examples, p = n = 6 so we need 1 bit

What attribute A to use to classify these examples?

If A has k possible values, this splits E into subsets E1, . . . , Ei, . . . , Ek

Each of them will be a new node of the decision tree
Each (we hope) will need less information to complete the classification

Basic idea:
♦ Compute the expected number of additional bits we’ll need if we use A
♦ Choose the attribute A that minimizes the above value
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Choosing an attribute (continued)

Expected number of additional bits we’ll need after using A:

Remainder (A) = weighted average over all the subsets created by A
= Σi P (example is in Ei)(entropy of Ei)

If Ei has pi positive and ni negative examples, then
P(example is in Ei) = (pi + ni)/(p + n)

entropy of Ei = H(〈pi/(pi + ni), ni/(pi + ni)〉)

Expected number of additional bits we’ll need if we use A

= Σi
pi + ni

p + n
H(〈pi/(pi + ni), ni/(pi + ni)〉)

Want to choose an attribute A that minimizes the above value
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Information, continued

Choose attribute that minimizes the following quantity:

Σi
pi + ni

p + n
H(〈pi/(pi + ni), ni/(pi + ni)〉)

For Patrons?, this is

( 2
12 + 4

12)H(〈0, 1〉) + 6
12 H(〈(2/6, 4/6〉)

= 1
2 0 + 1

2 0.918

= 0.459 bits

For Type?, it is

( 2
12 + 2

12 + 4
12 + 4

12) H(〈0.5, 0.5〉)
= 12

12 1

= 1 bit

None Some Full

Patrons?

French Italian Thai Burger

Type?
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Example, continued

Decision tree learned from the 12 examples:

No  Yes
Fri/Sat?

None Some Full

Patrons?

No Yes
Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

Substantially simpler than the “true” tree shown earlier.
The small amount of data doesn’t justify a more complex hypothesis
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Performance measurement

How do we know that h ≈ f? (Hume’s Problem of Induction)

1) Use theorems of computational/statistical learning theory

2) Try h on a test set: a different set of examples from
the same probability distribution

Learning curve = % correct on test set as a function of training set size

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

%
 c

or
re

ct
 o

n 
te

st
 s

et

Training set size

CMSC 421: Chapter 18: Sections 1–3 30



Performance measurement, continued

Learning curve depends on
– realizable (can express target function) vs. non-realizable

non-realizability can be due to missing attributes
or restricted hypothesis class (e.g., thresholded linear function)

– redundant expressiveness (e.g., loads of irrelevant attributes)

% correct

# of examples

1

nonrealizable

redundant

realizable
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Summary

Learning needed for unknown environments, lazy designers

Learning agent = performance element + learning element

Learning method depends on type of performance element, available
feedback, type of component to be improved, and its representation

For supervised learning, the aim is to find a simple hypothesis
that is approximately consistent with training examples

Decision tree learning using information gain

Learning performance = prediction accuracy measured on test set
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