
Last update: December 4, 2008

Neural networks

CMSC 421: Chapter 20, Section 5

CMSC 421: Chapter 20, Section 5 1

Outline

♦ Brains

♦ Neural networks

♦ Perceptrons

♦ Multilayer perceptrons

♦ Applications of neural networks

CMSC 421: Chapter 20, Section 5 2

Brains

1011 neurons of > 20 types, 1014 synapses, 1ms–10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

CMSC 421: Chapter 20, Section 5 3

McCulloch–Pitts “unit”

Output depends on a weighted sum of the inputs:

ai ← g(ini) = g
(
ΣjWj,iaj

)

Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = −1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

CMSC 421: Chapter 20, Section 5 4

Activation functions

(a) (b)

+1 +1

iniini

g(ini)g(ini)

(a) is a step function or threshold function
g(ini) = 1 if ini > 0; g(ini) = 0 otherwise

(b) is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location

CMSC 421: Chapter 20, Section 5 5

Implementing logical functions

Use step function as activation function

AND

W0 = 1.5

W1 = 1

W2 = 1

OR

W2 = 1

W1 = 1

W0 = 0.5

NOT

W1 = –1

W0 = – 0.5

McCulloch and Pitts: every Boolean function can be implemented
as a collection of units

CMSC 421: Chapter 20, Section 5 6

Network structures

Feed-forward networks:
– single-layer perceptrons
– multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
– Hopfield networks have symmetric weights (Wi,j = Wj,i)

g(x) = sign(x), ai = ± 1; holographic associative memory
– Boltzmann machines use stochastic activation functions
– recurrent neural nets have directed cycles with delays
⇒ have internal state (like flip-flops), can oscillate etc.

CMSC 421: Chapter 20, Section 5 7

Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Adjusting weights changes the function: do learning this way!

CMSC 421: Chapter 20, Section 5 8

Perceptrons

Input
Units Units

Output
Wj,i

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1
Perceptron output

Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff

CMSC 421: Chapter 20, Section 5 9

Perceptron learning

in = ∑Wi xi
= W•X

W0
W1

Wn
…

a = g(in)
x0

x1

xn

Learn by adjusting weights to
reduce error on training set

The squared error for an example with input x and true output y is

E =
1

2
Err 2 ≡ 1

2
(y − a)2

Perform optimization search by gradient descent:
∂E

∂Wj
= Err × ∂Err

∂Wj
= Err × ∂

∂Wj

(
y − g(Σn

j= 0Wjxj)
)

= −Err × g′(in)×xj
Simple weight update rule:

Wj ← Wj + α×Err × g′(in)×xj
E.g., positive error ⇒ increase network output
⇒ increase weights on pos. inputs, decrease on neg. inputs

CMSC 421: Chapter 20, Section 5 10

Perceptron learning, continued

Perceptron learning rule converges to a consistent function
for any linearly separable data set

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100P
ro

po
rt

io
n

co
rr

ec
t o

n
te

st
 s

et

Training set size - MAJORITY on 11 inpu

Perceptron
Decision tree

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100P
ro

po
rt

io
n

co
rr

ec
t o

n
te

st
 s

et

Training set size - RESTAURANT data

Perceptron
Decision tree

Perceptron learns majority function easily.

DTL doesn’t: majority is representable,
but only as a very large decision tree, DTL
won’t learn that without a very large data
set.

DTL learns restaurant function
easily, perceptron cannot repre-
sent it

CMSC 421: Chapter 20, Section 5 11

Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc., but not XOR

Represents a linear separator in input space:

ΣjWjxj > 0 or W · x > 0

(a) x1 and x2

1

0
0 1������������x1

x2

(b) x1 or x2������������
0 1

1

0

x1

x2

(c) x1 xor x2

?

0 1

1

0

x1

x2

Minsky & Papert (1969) pricked the neural network balloon

CMSC 421: Chapter 20, Section 5 12

Multilayer feed-forward networks

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak

CMSC 421: Chapter 20, Section 5 13

Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

Combine two opposite-facing threshold functions to make a ridge

Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (like in the DTL proof)

CMSC 421: Chapter 20, Section 5 14

Back-propagation learning

k
Wjk

i
Wji
…

j…

ai

ak…

aj

Output layer: same as for single-layer perceptron,

Wj,i ← Wj,i + α× aj ×∆i

where ∆i = Err i × g′(in i)

Hidden layer: back-propagate the error from the output layer:

∆j = g′(inj)
∑
i
Wj,i∆i .

Update rule for weights in hidden layer:

Wk,j ← Wk,j + α× ak ×∆j .

(Most neuroscientists deny that back-propagation occurs in the brain)

CMSC 421: Chapter 20, Section 5 15

Back-propagation derivation

Like perceptron learning, back-propagation is optimization search by gradient
descent

The squared error on a single example is defined as

E =
1

2

∑
i
(yi − ai)2 ,

where the sum is over the nodes in the output layer.

∂E

∂Wj,i
= −(yi − ai)

∂ai
∂Wj,i

= −(yi − ai)
∂g(in i)

∂Wj,i

= −(yi − ai)g′(in i)
∂in i
∂Wj,i

= −(yi − ai)g′(in i)
∂

∂Wj,i

∑
j
Wj,iaj

= −(yi − ai)g′(in i)aj = −aj∆i

CMSC 421: Chapter 20, Section 5 16

Back-propagation derivation, continued

∂E

∂Wk,j
= −∑

i
(yi − ai)

∂ai
∂Wk,j

= −∑
i
(yi − ai)

∂g(in i)

∂Wk,j

= −∑
i
(yi − ai)g′(in i)

∂in i
∂Wk,j

= −∑
i

∆i
∂

∂Wk,j

∑
j
Wj,iaj

= −∑
i

∆iWj,i
∂aj
∂Wk,j

= −∑
i

∆iWj,i
∂g(inj)

∂Wk,j

= −∑
i

∆iWj,ig
′(inj)

∂inj
∂Wk,j

= −∑
i

∆iWj,ig
′(inj)

∂

∂Wk,j

∑
k
Wk,jak

= −∑

i
∆iWj,ig

′(inj)ak = −ak∆j

CMSC 421: Chapter 20, Section 5 17

Back-propagation learning, continued

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400
T

ot
al

 e
rr

or
 o

n
tr

ai
ni

ng
 s

et

Number of epochs

Typical problems: slow convergence, local minima

CMSC 421: Chapter 20, Section 5 18

Back-propagation learning, continued

Learning curve for multi-layer perceptron with 4 hidden units:

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

P
ro

po
rt

io
n

co
rr

ec
t o

n
te

st
 s

et

Training set size - RESTAURANT data

Decision tree
Multilayer network

Multi-layer perceptrons are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily

CMSC 421: Chapter 20, Section 5 19

Computational Example

1

3

2

0

 y2

 y3

a2

a3

a1

W12=1

W13=2
W01=1

a0

ai = output of unit i; Wij = weight of link from unit i to unit j

For output units, ∆j = g′(inj)(yj−aj). For hidden units, ∆j = g′(inj)Σiwji∆i.

Suppose g(ini) = ini for every unit i. Then g′(ini) = 1.
(Note: one wouldn’t use such a g in practice!)

Problem 1. For what values of ∆2 and ∆3 will ∆1 = 0?

0 = ∆1 = g′(in1)(W12∆2 + W13∆3) = W12∆2 + W13∆3 = ∆2 + 2∆3

i.e., ∆2 = −2∆3.

CMSC 421: Chapter 20, Section 5 20

Computational Example

1

3

2

0

 y2=1

 y3=1

a2

a3

a1

W12=1

W13=2
W01=1

a0=1

Problem 2. Let α = 0.1.
Suppose there is just one training example: a0 = 1, y2 = 1, y3 = 1.
First epoch:

a1 = g(in1) = W01a0 = 1 ∗ 1 = 1
a2 = g(in2) = W12a1 = 1 ∗ 1 = 1
a3 = g(in3) = W13a1 = 2 ∗ 1 = 2

∆2 = y2 − a2 = 1− 1 = 0
∆3 = y3 − a3 = 1− 2 = −1
∆1 = ∆2 + 2∆3 = 0 + 2(−1) = −2

W12 ← W12 + αa1∆2 = 1 + 0.1 ∗ 1 ∗ 0 = 1
W13 ← W13 + αa1∆3 = 2 + 0.1 ∗ 1 ∗ (−1) = 1.9
W01 ← W01 + αa0∆1 = 1 + 0.1 ∗ 1 ∗ (−2) = 0.8

CMSC 421: Chapter 20, Section 5 21

Computational Example

1

3

2

0

 y2=1

 y3=1

a2

a3

a1

W12=1

W13=1.9

W01=0.8
a0=1

Second epoch:

a1 = g(in1) = W01a0 = 0.8 ∗ 1 = 0.8
a2 = g(in2) = W12a1 = 1 ∗ 0.8 = 0.8
a3 = g(in3) = W13a1 = 1.9∗0.8 = 1.52

∆2 = y2 − a2 = 1− 0.8 = 0.2
∆3 = y3 − a3 = 1− 1.52 = −0.52

∆1 = W12∆2 + W13∆3 = 1 ∗ 0.2 + 1.9 ∗ (−0.52) = 0.2− 0.988 = −0.788

W12 ← W12 + αa1∆2 = 1 + 0.1 ∗ 0.8 ∗ 0.2 = 1.016
W13 ← W13 + αa1∆3 = 1.9 + 0.1 ∗ 0.8 ∗ (−0.52) = 1.8584
W01 ← W01 + αa0∆1 = 0.8 + 0.1 ∗ 1 ∗ (−0.788) = 0.7212.

CMSC 421: Chapter 20, Section 5 22

Handwritten digit recognition

3-nearest-neighbor = 2.4% error
400–300–10 unit MLP = 1.6% error
LeNet: 768–192–30–10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) ≈ 0.6% error

CMSC 421: Chapter 20, Section 5 23

Summary

Most brains have lots of neurons; each neuron ≈ linear–threshold unit (?)

Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged

CMSC 421: Chapter 20, Section 5 24

