Last update: December 4, 2008

NEURAL NETWORKS

CMSC 421: Chapter 20, Section 5

CMSC 421: Chapter 20, Section 5 1

Outline

- \diamondsuit Brains
- \Diamond Neural networks
- \diamondsuit Perceptrons
- \diamond Multilayer perceptrons
- \diamondsuit Applications of neural networks

Brains

 10^{11} neurons of > 20 types, 10^{14} synapses, 1ms–10ms cycle time Signals are noisy "spike trains" of electrical potential

McCulloch–Pitts "unit"

Output depends on a weighted sum of the inputs:

 $a_i \leftarrow g(in_i) = g\left(\Sigma_j W_{j,i} a_j\right)$

A gross oversimplification of real neurons, but its purpose is to develop understanding of what networks of simple units can do

Activation functions

(a) is a step function or threshold function $g(in_i) = 1$ if $in_i > 0$; $g(in_i) = 0$ otherwise

(b) is a sigmoid function $1/(1+e^{-x})$

Changing the bias weight $W_{0,i}$ moves the threshold location

Implementing logical functions

Use step function as activation function

McCulloch and Pitts: every Boolean function can be implemented as a collection of units

Network structures

Feed-forward networks:

- single-layer perceptrons
- multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:

- Hopfield networks have symmetric weights $(W_{i,j} = W_{j,i})$ $g(x) = \operatorname{sign}(x), a_i = \pm 1$; holographic associative memory
- Boltzmann machines use stochastic activation functions
- recurrent neural nets have directed cycles with delays
 - \Rightarrow have internal state (like flip-flops), can oscillate etc.

Feed-forward example

Feed-forward network = a parameterized family of nonlinear functions:

$$a_{5} = g(W_{3,5} \cdot a_{3} + W_{4,5} \cdot a_{4})$$

= $g(W_{3,5} \cdot g(W_{1,3} \cdot a_{1} + W_{2,3} \cdot a_{2}) + W_{4,5} \cdot g(W_{1,4} \cdot a_{1} + W_{2,4} \cdot a_{2}))$

Adjusting weights changes the function: do learning this way!

Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff

Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input \mathbf{x} and true output y is

$$E = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y-a)^2$$

Perform optimization search by gradient descent:

$$\frac{\partial E}{\partial W_j} = Err \times \frac{\partial Err}{\partial W_j} = Err \times \frac{\partial}{\partial W_j} \left(y - g(\sum_{j=0}^n W_j x_j) \right)$$
$$= -Err \times g'(in) \times x_j$$

Simple weight update rule:

$$W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j$$

E.g., positive error \Rightarrow increase network output

 \Rightarrow increase weights on pos. inputs, decrease on neg. inputs

Perceptron learning, continued

Perceptron learning rule converges to a consistent function for any linearly separable data set

Perceptron learns majority function easily.

DTL doesn't: majority is representable, but only as a very large decision tree, DTL won't learn that without a very large data set. DTL learns restaurant function easily, perceptron cannot represent it

Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc., but not XOR

Represents a linear separator in input space:

 $\Sigma_j W_j x_j > 0$ or $\mathbf{W} \cdot \mathbf{x} > 0$

Minsky & Papert (1969) pricked the neural network balloon

Multilayer feed-forward networks

Layers are usually fully connected; numbers of hidden units typically chosen by hand

Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

Combine two opposite-facing threshold functions to make a ridge Combine two perpendicular ridges to make a bump Add bumps of various sizes and locations to fit any surface Proof requires exponentially many hidden units (like in the DTL proof)

Back-propagation learning

Output layer: same as for single-layer perceptron,

$$W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i$$

where $\Delta_i = Err_i \times g'(in_i)$

Hidden layer: **back-propagate** the error from the output layer:

$$\Delta_j = g'(in_j) \sum_i W_{j,i} \Delta_i \; .$$

Update rule for weights in hidden layer:

$$W_{k,j} \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j$$
.

(Most neuroscientists deny that back-propagation occurs in the brain)

Back-propagation derivation

Like perceptron learning, back-propagation is optimization search by gradient descent

The squared error on a single example is defined as

$$E = \frac{1}{2} \sum_{i} (y_i - a_i)^2 ,$$

where the sum is over the nodes in the output layer.

$$\begin{aligned} \frac{\partial E}{\partial W_{j,i}} &= -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial g(in_i)}{\partial W_{j,i}} \\ &= -(y_i - a_i) g'(in_i) \frac{\partial in_i}{\partial W_{j,i}} = -(y_i - a_i) g'(in_i) \frac{\partial}{\partial W_{j,i}} \left(\sum_{j} W_{j,i} a_j \right) \\ &= -(y_i - a_i) g'(in_i) a_j = -a_j \Delta_i \end{aligned}$$

Back-propagation derivation, continued

$$\begin{aligned} \frac{\partial E}{\partial W_{k,j}} &= -\sum_{i} (y_{i} - a_{i}) \frac{\partial a_{i}}{\partial W_{k,j}} = -\sum_{i} (y_{i} - a_{i}) \frac{\partial g(in_{i})}{\partial W_{k,j}} \\ &= -\sum_{i} (y_{i} - a_{i}) g'(in_{i}) \frac{\partial in_{i}}{\partial W_{k,j}} = -\sum_{i} \Delta_{i} \frac{\partial}{\partial W_{k,j}} \left(\sum_{j} W_{j,i} a_{j}\right) \\ &= -\sum_{i} \Delta_{i} W_{j,i} \frac{\partial a_{j}}{\partial W_{k,j}} = -\sum_{i} \Delta_{i} W_{j,i} \frac{\partial g(in_{j})}{\partial W_{k,j}} \\ &= -\sum_{i} \Delta_{i} W_{j,i} g'(in_{j}) \frac{\partial in_{j}}{\partial W_{k,j}} \\ &= -\sum_{i} \Delta_{i} W_{j,i} g'(in_{j}) \frac{\partial}{\partial W_{k,j}} \left(\sum_{k} W_{k,j} a_{k}\right) \\ &= -\sum_{i} \Delta_{i} W_{j,i} g'(in_{j}) a_{k} = -a_{k} \Delta_{j} \end{aligned}$$

Back-propagation learning, continued

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit

Typical problems: slow convergence, local minima

Back-propagation learning, continued

Learning curve for multi-layer perceptron with 4 hidden units:

Multi-layer perceptrons are quite good for complex pattern recognition tasks, but resulting hypotheses cannot be understood easily

Computational Example

 $a_i =$ output of unit i; $W_{ij} =$ weight of link from unit i to unit j

For output units, $\Delta_j = g'(in_j)(y_j - a_j)$. For hidden units, $\Delta_j = g'(in_j)\Sigma_i w_{ji}\Delta_i$.

Suppose $g(in_i) = in_i$ for every unit *i*. Then $g'(in_i) = 1$. (Note: one wouldn't use such a *g* in practice!)

Problem 1. For what values of Δ_2 and Δ_3 will $\Delta_1 = 0$?

$$0 = \Delta_1 = g'(in_1)(W_{12}\Delta_2 + W_{13}\Delta_3) = W_{12}\Delta_2 + W_{13}\Delta_3 = \Delta_2 + 2\Delta_3$$

i.e., $\Delta_2 = -2\Delta_3$.

Computational Example

Problem 2. Let $\alpha = 0.1$.

Suppose there is just one training example: $a_0 = 1, y_2 = 1, y_3 = 1$. First epoch:

$$\begin{aligned} a_1 &= g(in_1) = W_{01}a_0 = 1 * 1 = 1 & \Delta_2 = y_2 - a_2 = 1 - 1 = 0 \\ a_2 &= g(in_2) = W_{12}a_1 = 1 * 1 = 1 & \Delta_3 = y_3 - a_3 = 1 - 2 = -1 \\ a_3 &= g(in_3) = W_{13}a_1 = 2 * 1 = 2 & \Delta_1 = \Delta_2 + 2\Delta_3 = 0 + 2(-1) = -2 \\ W_{12} \leftarrow W_{12} + \alpha a_1 \Delta_2 = 1 + 0.1 * 1 * 0 = 1 \\ W_{13} \leftarrow W_{13} + \alpha a_1 \Delta_3 = 2 + 0.1 * 1 * (-1) = 1.9 \\ W_{01} \leftarrow W_{01} + \alpha a_0 \Delta_1 = 1 + 0.1 * 1 * (-2) = 0.8 \end{aligned}$$

Computational Example

Second epoch:

$$\begin{aligned} a_1 &= g(in_1) = W_{01}a_0 = 0.8 * 1 = 0.8 \\ a_2 &= g(in_2) = W_{12}a_1 = 1 * 0.8 = 0.8 \\ a_3 &= g(in_3) = W_{13}a_1 = 1.9 * 0.8 = 1.52 \end{aligned} \qquad \begin{aligned} \Delta_2 &= y_2 - a_2 = 1 - 0.8 = 0.2 \\ \Delta_3 &= y_3 - a_3 = 1 - 1.52 = -0.52 \end{aligned}$$

$$\begin{aligned} \Delta_1 &= W_{12}\Delta_2 + W_{13}\Delta_3 = 1 * 0.2 + 1.9 * (-0.52) = 0.2 - 0.988 = -0.788 \\ W_{12} &\leftarrow W_{12} + \alpha a_1\Delta_2 = 1 + 0.1 * 0.8 * 0.2 = 1.016 \\ W_{13} \leftarrow W_{13} + \alpha a_1\Delta_3 = 1.9 + 0.1 * 0.8 * (-0.52) = 1.8584 \\ W_{01} \leftarrow W_{01} + \alpha a_0\Delta_1 = 0.8 + 0.1 * 1 * (-0.788) = 0.7212. \end{aligned}$$

Handwritten digit recognition

3-nearest-neighbor = 2.4% error 400–300–10 unit MLP = 1.6% error LeNet: 768–192–30–10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) pprox 0.6% error

Summary

Most brains have lots of neurons; each neuron \approx linear-threshold unit (?)

Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling subfields have largely diverged