Last update: December 4, 2008

NEURAL NETWORKS

CMSC 421: CHAPTER 20, SECTION 5

CMSC 421: Chapter 20, Section 5 1

Outline

{> Brains

> Neural networks

> Perceptrons

> Multilayer perceptrons

> Applications of neural networks

CMSC 421: Chapter 20, Section 5 2

Brains

10" neurons of > 20 types, 10'* synapses, 1ms—10ms cycle time
Signals are noisy “spike trains’ of electrical potential

Axonal arborization

\ Axon from another cell

Synapse

Dendrite

\/

Synapses

Cell body or Soma

CMSC 421: Chapter 20, Section 5

McCulloch—Pitts “unit”

Output depends on a weighted sum of the inputs:
a; <— g(ml) = (g (Zjojiaj)

a; = g(im)
A
- g
a4 -
v
I nput Input Activation Output
Links Function Function Output Links

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

CMSC 421: Chapter 20, Section 5

Activation functions

glin,) , 9in)

+1

- -
IN; In;

(@) (b)

(a) is a step function or threshold function
g(in;) = 1if in; > 0; g(in;) = 0 otherwise

(b) is a sigmoid function 1/(1 + ")

Changing the bias weight 17, ; moves the threshold location

CMSC 421: Chapter 20, Section 5 5

Implementing logical functions

Use step function as activation function

WO =15 WO = 05
W= T W, o=
/ /
WZ =1 W2 =1
AND OR NOT

McCulloch and Pitts: every Boolean function can be implemented
as a collection of units

CMSC 421: Chapter 20, Section 5

Network structures

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (17, ; = ;)
g(x)=sign(z), a; = + 1, holographic associative memory
— Boltzmann machines use stochastic activation functions
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.

CMSC 421: Chapter 20, Section 5

Feed-forward example

W

Wos

Feed-forward network = a parameterized family of nonlinear functions:

as = gWss-as+ Wys-ay)
= g(Ws5-gWis-a1+Was-as) +Wys-g(Wiyg-ar+ Way-ag))

Adjusting weights changes the function: do learning this way!

CMSC 421: Chapter 20, Section 5 8

Perceptrons

Perceptron output /;/;/,/,',

08 | / // / ’

0.4 ! /:////////”/

| /// i

0.2 A

: .54

0 - -0 2
4 - %

Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff

CMSC 421: Chapter 20, Section 5

Perceptron learning

X0 —_

Wo :
X1 — Wi —in = Swixi \ 2= g('”)$ Learn by adjusting weights to
“ _ Wn = W-X reduce error on training set

The squared error for an example with input x and true output vy is

1 1
E = 2E7’r2 = 2(y —a)’
Perform optimization search by gradient descent:
oL OErr O ;
oW = Err x oW, = Brr X W, (y — g(Z]—:Oijj))

= —FErr x ¢'(in) X x;
Simple weight update rule:
/ .
W, —W;+ax Errxg(in) Xz,
E.g., positive error = increase network output
= increase weights on pos. inputs, decrease on neg. inputs

CMSC 421: Chapter 20, Section 5

10

Perceptron learning, continued

Perceptron learning rule converges to a consistent function
for any linearly separable data set

o) o)

7] 1 - 79} 1 -

17 17

2009 209

c c

208 208

o)

= 0.7 = 0.7 1

3 / 3

s 0.6 - / Perceptron —— pud 0.6 - /_/\/\/\\/

k) ko)

20.5 1 20.5 1 Perceptron ——
°cop b co4
o 0 10 20 30 40 50 60 70 80 90 10! o 0 10 20 30 40 50 60 70 80 90 10!

Training set size - MAJORITY on 11 inpu Training set size - RESTAURANT data

Perceptron learns majority function easily. DTL learns restaurant function
DTL doesn’'t: majority is representable, easily, perceptron cannot repre-

but only as a very large decision tree, DTL SNt 't

won't learn that without a very large data
set.

CMSC 421: Chapter 20, Section 5 11

Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc., but not XOR

Represents a linear separator in input space:

Zjo$j>O or W-x>0

1) 1) 1)
10 ® le@ ® le® @)
?
00O O— 0 0 O0———e—
0] 1 X 0 1 X 0 1 X
(@) X; and Xo (b) X1 or X, (C) X1 xor Xo

Minsky & Papert (1969) pricked the neural network balloon

CMSC 421: Chapter 20, Section 5

12

Multilayer feed-forward networks

Layers are usually fully connected,;
numbers of hidden units typically chosen by hand

Output units a
W

Hidden units 8
Vi

Input units ay

CMSC 421: Chapter 20, Section 5 13

Expressiveness of M LPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

Py (g, %) V7
1 - ;/ 7
/
’///////’///f//’
y
08 7
I
0.6 i
Y 4
04 1 i
02 o
') -, 4
O = 2 2

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (like in the DTL proof)

CMSC 421: Chapter 20, Section 5

14

Back-propagation learning

J— ai —*
/ i
Wik —
- —P

Output layer: same as for single-layer perceptron,
Wj’i — Wj,i +a X aj; X A,
where A; = Err; x ¢'(in;)

Hidden layer: back-propagate the error from the output layer:
A; = g'(in;) %:WJLAZ .
Update rule for weights in hidden layer:
Wi« Wii+axa,xAj.

(Most neuroscientists deny that back-propagation occurs in the brain)

CMSC 421: Chapter 20, Section 5

15

Back-propagation derivation

Like perceptron learning, back-propagation is optimization search by gradient
descent

The squared error on a single example is defined as

1
B=oxi—a).
where the sum is over the nodes in the output layer.
oF Oa; dg(in;)
aWj,z’ - _(yz az)aWj’i - (yz az) aWj,z’
.0 0
= (o = g im) gy =~ — g (in) g (S Wia

CMSC 421: Chapter 20, Section 5 16

Back-propagation derivation, continued

a(zVi,j =~ 3w “i)aiii,j R ai>(m
— — Sy — a)g (in) a%: =~ A e (z Wmay)
- A, Wﬂa(zvm —§A1Wf’i(m
_ _§Ain,@-g (in;) ;;7/:
— —%AZ-WJ',@'Q/(>ama/kj (Z ijak)
_ —%Aiwj,ig/(njlay = —arA;

CMSC 421: Chapter 20, Section 5 17

Output units

Hidden units

Input units

Back-propagation learning, continued

g

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit

14
12
i
2 o0l
_C
S st
c
o
s 67
o
w 4r
S
2_
0

0O 50 100 150 200 250 300 350 400
Number of epochs

Typical problems: slow convergence, local minima

CMSC 421: Chapter 20, Section 5 18

Back-propagation learning, continued

Learning curve for multi-layer perceptron with 4 hidden units:

1 -
0.9
0.8
0.7 ;

0.6 1 Decision tree

rtion correct on test set

2 0.5 ;

rop

004

O 10 20 30 40 50 60 70 80 90 10(
Training set size - RESTAURANT data

Multi-layer perceptrons are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily

CMSC 421: Chapter 20, Section 5 19

Computational Example

Y2

Y3

a; = output of unit 7; WW;; = weight of link from unit ¢ to unit j
For output units, A; = ¢'(in;)(y;—a;). For hidden units, A; = ¢'(in;) 2w ;A

Suppose ¢g(in;) = in; for every unit ¢. Then ¢'(in;) = 1.
(Note: one wouldn't use such a g in practice!)

Problem 1. For what values of Ay and A3 will A; =07

0=A1 = ¢'(in1)(Wi2As + Wi3A3) = WiaAs + Wi3As = Ay + 2A3
i.e., Ag = —2A3.

CMSC 421: Chapter 20, Section 5 20

Computational Example

Y=

Problem 2. Let o =0.1.
Suppose there is just one training example: ag =1,y =1,y3 = 1.
First epoch:

&1:g<in1)=Wma0:1*1=1 Agzyg—a@:l—lzo
agzg(ing):ngalzl*lzl Agzyg—a3:1—2:—1

agzg(ing):W13a1:2>|<1:2 A1:A2—|—2A3:O+2<—1):—2

Wi — Wi+ aaDAo=1+0.1x1%x0=1
Wiz — Wis+aa1A3 =2+01%x1%(—=1) =1.9
Wy — Wor + aapA; =1+0.1 %1% (=2) =0.8

CMSC 421: Chapter 20, Section 5

21

Computational Example

Y=

a,=1

Second epoch:

ay — g(ml) — WOlCLO = 0.8x1=0.8
a9 = g(zng) = W126L1 =1%x0.8=0.8
as = g(ing) = W136L1 = 1.9%x0.8 = 1.52

Al — WlQAQ + W13A3 =1%x024+19x (—052) = 0.2 —0.988 = —0.788

AQZyQ_a/2:1_O.8:O.2
Agzyg—a3:1—1.52:—0.52

Wio «— Wis+aa1Ny =1+ 0.1%x0.8*0.2=1.016
Wiz «— Wiz + aa1Az3 = 1.9+ 0.1 % 0.8 % (—0.52) = 1.8584
Wor «— Wy + aapA1 = 0.8+ 0.1 % 1 (—0788) = 0.7212.

CMSC 421: Chapter 20, Section 5 22

Handwritten digit recognition

O/ FHIM|s5 |78
2001017214106 7|%

3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error

A |

Current best (kernel machines, vision algorithms) ~~ 0.6% error

CMSC 421: Chapter 20, Section 5 23

Summary

Most brains have lots of neurons; each neuron == linear—threshold unit (7)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged

CMSC 421: Chapter 20, Section 5 24

