
Last update: May 6, 2010

Robotics

CMSC 421: Chapter 25

CMSC 421: Chapter 25 1

What is a robot?

A machine to perform tasks

♦ Some level of autonomy and flexibility, in some type of environment

♦ Sensory-motor functions
- Locomotion on wheels, legs, or wings
- Manipulation with mechanical arms, grippers, and hands

♦ Communication and information-processing capabilities
- Localization with odomoters, sonars, lasers, inertial sensors, GPS, etc.
- Scene analysis and environment modeling with a stereovision system

on a pan-and-tilt platform

Reasonably mature technology when robots restricted to either

♦ well-known, well-engineered environments (e.g., manufacturing)

♦ performing single simple tasks (e.g., vacuum cleaning, lawn mowing)

For more diverse tasks and open-ended environments, robotics remains a
very active research field

CMSC 421: Chapter 25 2

Examples of Mobile Robots

CMSC 421: Chapter 25 3

Examples of Manipulators

CMSC 421: Chapter 25 4

Examples of Sensors

Range finders: sonar (land, underwater), laser range finder, radar (aircraft),
tactile sensors, GPS

Imaging sensors: cameras (visual, infrared)

Proprioceptive sensors:
shaft decoders (joints, wheels),
inertial sensors, force sensors, torque sensors

CMSC 421: Chapter 25 5

Hand-coding of robot controllers

Manual development of a robot controller for a specific task

To do hand-coding reliably and inexpensively, need

♦ well-structured, stable environment

♦ restrictions on the scope and diversity of the robot’s tasks

♦ only a limited human-robot interaction

Developing the reactive controller

♦ Devices to memorize motion of a pantomime

♦ Graphical programming interfaces

CMSC 421: Chapter 25 6

Automated robot controllers

Integrate planning, acting, sensing, learning
Nead to deal with

♦ heterogeneous partial models of the environment and of the robot

♦ information acquired through sensors and communication channels

♦ noisy and partial knowledge of the state

Specialized algorithms for different types of tasks:

♦ Path and motion planning

♦ Perception

♦ Navigation

♦ Motor control

CMSC 421: Chapter 25 7

Path Planning

Path planning: find geometric path from starting position to goal position

♦ Input: geometric model of the environment (obstacles, free space)

♦ Solution path must avoid collision with obstacles
• must also satisfy the robot’s kinematic (movement) constraints

conf-3

conf-1
conf-2

start

goal

CMSC 421: Chapter 25 8

Motion Planning

Motion planning: find a trajectory that’s
feasible in both space and time

♦ Need a feasible path
(relies on path planning)

♦ Also need a control policy that
satisfies the robot’s speed
and acceleration constraints

Technology for path planning and motion planning is relatively mature
♦ Deployed in areas such as CAD and computer animation
♦ Computational geometry and probabilistic algorithms

CMSC 421: Chapter 25 9

Configuration parameters

Configuration parameters: the numbers that specify the robot’s current state

θ

(x, y)

Three parameters: x, y, θ Seven parameters

10 parameters: 6 for arm,
4 for platform & trailer

52 parameters:
2 for the head
7 for each arm
6 for each leg
12 for each hand

CMSC 421: Chapter 25 10

Configuration parameters

q = the configuration of the robot = an n-tuple of reals
CS = the robot’s configuration space = {all possible values for q}

The configuration parameters aren’t independent
E.g., can’t change θ without changing x and y

CSfree = free configuration space (configs that don’t collide with obstacles)
CSfree can be quite complicated

CMSC 421: Chapter 25 11

Motion Planning

In ordinary geometric space, the robot occupies a region
In configuration space, it occupies a point

Idea: do path planning in configuration space
Find a path in CSfree from an initial config qi to a final config qg

conf-3

conf-1
conf-2

conf-3

conf-2

conf-1

w

w

elb

shou

CMSC 421: Chapter 25 12

Dealing with the configuration space

n-dimensional space, where n = number of configuration parameters
Each parameter is a real number ⇒ ∞n possible states

For state-space search, convert to a finite state space.

Cell decomposition:

♦ Divide up space into simple cells, such that
each of them can be traversed “easily” (e.g., convex)

♦ Find a path through the pure freespace cells
(the ones that don’t contain any part of an obstacle)

Skeletonization: identify a finite number points/lines that form a graph
Want a graph such that any two points can easily be connected
by following a path on the graph

CMSC 421: Chapter 25 13

Cell decomposition example

conf-3

conf-2

conf-1

w

w

elb

shou

start
goal

How many cells, how large?
♦ Large number of small cells ⇒ large computation time
♦ Small number of large cells ⇒ no path through pure freespace

Solution: recursively decompose mixed (free+obstacle) cells into smaller cells
♦ quadtrees

CMSC 421: Chapter 25 14

Skeletonization: Voronoi diagram

Voronoi diagram: locus of points equidistant from obstacles

Problem: doesn’t scale well to higher dimensions

CMSC 421: Chapter 25 15

Skeletonization: Probabilistic Roadmap

Probabilistic roadmap R:

1. generate random points in CS,
and keep the ones in CSfree

2. create graph by joining each
adjacent pair p1, p2 by a line
L(p1, p2)

To keep things simple, we’ll use
straight lines

More generally, the lines might
be curved, in order to satisfy the
robot’s kinematic constraints

R is adequate if it contains enough points to ensure that every start/goal
pair is connected through the graph

CMSC 421: Chapter 25 16

Path planning with roadmaps

Given an adequate roadmap for CSfree and two configurations qi and qg in
CSfree, a feasible path from qi to qg can be found as follows:

♦ Find configuration q′i in R such that L(qi, q
′
i) is in CSfree

♦ Find configuration q′g in R such that L(qg, q
′
g) is in CSfree

♦ In R, find a path from q′i to q′g

♦ The planned path is the finite sequence of line segments between them
Do postprocessing to optimize and smooth the path

This reduces path planning to a simple graph-search problem,
plus collision checking and kinematic steering

CMSC 421: Chapter 25 17

When is a roadmap adequate?

The property we want: whenever there’s a
path in CSfree from qi to qg, the roadmap
contains a path from q′i to q′g

The coverage of a configuration q is

D(q) = {q′ ∈ CSfree | L(q, q′) ⊆ CSfree}
i.e., every point that can be reached by a
straight line from q

The coverage of a set of configurations Q = {q1, q2, . . . , qn} is
D(Q) = D(q1) ∪D(q2) ∪ . . . ∪D(qn)

R is adequate if R is connected and D(vertices(R)) = CSfree

CMSC 421: Chapter 25 18

Generating an adequate roadmap

♦ Easier to use probabilistic techniques than to compute CSfree explicitly

Start with an empty roadmap R

Until (termination condition), do
Randomly generate a configuration q ∈ CSfree
Add q to R iff

either q extends R’s coverage, i.e., q 6∈ D(R)
or q extends R’s connectivity, i.e.,
q connects two unconnected subgraphs of R

CMSC 421: Chapter 25 19

Termination

Termination condition:

♦ Let k = number of random draws since the last time
a configuration was added to the roadmap

♦ Stop when k reaches some value kmax

1/kmax is a probabilistic estimate of the ratio between the part of CSfree
not covered by R and the total CSfree

For kmax = 1000, the algorithm generates a roadmap that covers CSfree
with probability 0.999

CMSC 421: Chapter 25 20

Implementation

Very efficient implementations

Marketed products used in

♦ Robotics

♦ Computer animation

♦ CAD

♦ Manufacturing

CMSC 421: Chapter 25 21

Example

Task: carry a long rod through the door
♦ Roadmap: about 100 vertices in 9-dimensional space
♦ Generated in less than 1 minute on a normal desktop machine

CMSC 421: Chapter 25 22

Motor control

Can view the motor control problem as a search problem
in the dynamic rather than kinematic state space:

– state space defined by x1, x2, . . . , ẋ1, ẋ2, . . .
– continuous, high-dimensional (Sarcos humanoid: 162 dimensions)

Deterministic control: many problems are exactly solvable
esp. if linear, low-dimensional, exactly known, observable

Simple regulatory control laws are effective for specified motions

Stochastic optimal control: very few problems exactly solvable
⇒ approximate/adaptive methods

CMSC 421: Chapter 25 23

Robust robot control

Hilare, a robot at LAAS
(a French research institute)

♦ Sensors: sonar, laser, vision
♦ Motor functions: actuators, arm

Several redundant software modules for each sensory-motor function
♦ Localization, map building and updating, motion planning and control

Redundancy needed for robustness
♦ No single method or sensor has universal coverage
♦ Each has weak points and drawbacks

CMSC 421: Chapter 25 24

Sensory-Motor Functions

Localization

♦ Laser range data
has problems with obstacles, long corridors

♦ Infrared reflectors, wall-mountedcameras, GPS
only work when in areas covered by the device

Elastic Band for Plan Execution
♦ Dynamically update and maintain a flexible trajectory

No single method or sensor works well in all cases
Instead, Hilare has several Modes of Behavior (or Modalities)

Each modality is an HTN whose primitives are sensory-motor functions
♦ Tells how to combine functions to achieve a desired task

CMSC 421: Chapter 25 25

Example of a modality

Load
Model

Reloc
Mode

Start
Loop

Load
Model

Init
Model Plan

Load
Model

Init
Model

Reset
Band

Create
Band Move

Paral−And

And

(nb)(nb)

stop suspend resume success fail

Or Or

Or

Or

Or

start

Or

Localization

Path
Planning

Path
Execution

And And And
And

And And And

Model
not loaded

Model
not loaded

Model
not loaded

Model
loaded

Model
 loaded

Model
not loaded

Not
modified

Modified

Modified

Not
modified

CMSC 421: Chapter 25 26

Which modality to use when?

Hilare uses an MDP to decide which modality to use under which conditions

Resource
Manager

Control Automata

M2

Start

plan plan plan plan

M1
M2 M3 M4

…

Feedback reports

Reactive Control System

Stop

Navigation task

Suspend
Resume

Set of modalities

Topological
graph

CMSC 421: Chapter 25 27

Summary

Mobile robots and manipulators

Configuration parameters, configuration space

Path planning with roadmaps

Example of robust control

CMSC 421: Chapter 25 28

