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What is a robot?

A machine to perform tasks

♦ Some level of autonomy and flexibility, in some type of environment

♦ Sensory-motor functions
- Locomotion on wheels, legs, or wings
- Manipulation with mechanical arms, grippers, and hands

♦ Communication and information-processing capabilities
- Localization with odomoters, sonars, lasers, inertial sensors, GPS, etc.
- Scene analysis and environment modeling with a stereovision system

on a pan-and-tilt platform

Reasonably mature technology when robots restricted to either

♦ well-known, well-engineered environments (e.g., manufacturing)

♦ performing single simple tasks (e.g., vacuum cleaning, lawn mowing)

For more diverse tasks and open-ended environments, robotics remains a
very active research field
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Examples of Mobile Robots
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Examples of Manipulators
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Examples of Sensors

Range finders: sonar (land, underwater), laser range finder, radar (aircraft),
tactile sensors, GPS

Imaging sensors: cameras (visual, infrared)

Proprioceptive sensors:
shaft decoders (joints, wheels),
inertial sensors, force sensors, torque sensors
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Hand-coding of robot controllers

Manual development of a robot controller for a specific task

To do hand-coding reliably and inexpensively, need

♦ well-structured, stable environment

♦ restrictions on the scope and diversity of the robot’s tasks

♦ only a limited human-robot interaction

Developing the reactive controller

♦ Devices to memorize motion of a pantomime

♦ Graphical programming interfaces
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Automated robot controllers

Integrate planning, acting, sensing, learning
Nead to deal with

♦ heterogeneous partial models of the environment and of the robot

♦ information acquired through sensors and communication channels

♦ noisy and partial knowledge of the state

Specialized algorithms for different types of tasks:

♦ Path and motion planning

♦ Perception

♦ Navigation

♦ Motor control
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Path Planning

Path planning: find geometric path from starting position to goal position

♦ Input: geometric model of the environment (obstacles, free space)

♦ Solution path must avoid collision with obstacles
• must also satisfy the robot’s kinematic (movement) constraints

conf-3

conf-1
conf-2

start

goal

CMSC 421: Chapter 25 8



Motion Planning

Motion planning: find a trajectory that’s
feasible in both space and time

♦ Need a feasible path
(relies on path planning)

♦ Also need a control policy that
satisfies the robot’s speed
and acceleration constraints

Technology for path planning and motion planning is relatively mature
♦ Deployed in areas such as CAD and computer animation
♦ Computational geometry and probabilistic algorithms
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Configuration parameters

Configuration parameters: the numbers that specify the robot’s current state

θ


(x, y)


Three parameters: x, y, θ Seven parameters

10 parameters: 6 for arm,
4 for platform & trailer

52 parameters:
2 for the head
7 for each arm
6 for each leg
12 for each hand
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Configuration parameters

q = the configuration of the robot = an n-tuple of reals
CS = the robot’s configuration space = {all possible values for q}

The configuration parameters aren’t independent
E.g., can’t change θ without changing x and y

CSfree = free configuration space (configs that don’t collide with obstacles)
CSfree can be quite complicated
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Motion Planning

In ordinary geometric space, the robot occupies a region
In configuration space, it occupies a point

Idea: do path planning in configuration space
Find a path in CSfree from an initial config qi to a final config qg
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Dealing with the configuration space

n-dimensional space, where n = number of configuration parameters
Each parameter is a real number ⇒ ∞n possible states

For state-space search, convert to a finite state space.

Cell decomposition:

♦ Divide up space into simple cells, such that
each of them can be traversed “easily” (e.g., convex)

♦ Find a path through the pure freespace cells
(the ones that don’t contain any part of an obstacle)

Skeletonization: identify a finite number points/lines that form a graph
Want a graph such that any two points can easily be connected
by following a path on the graph
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Cell decomposition example
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How many cells, how large?
♦ Large number of small cells ⇒ large computation time
♦ Small number of large cells ⇒ no path through pure freespace

Solution: recursively decompose mixed (free+obstacle) cells into smaller cells
♦ quadtrees
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Skeletonization: Voronoi diagram

Voronoi diagram: locus of points equidistant from obstacles

Problem: doesn’t scale well to higher dimensions

CMSC 421: Chapter 25 15



Skeletonization: Probabilistic Roadmap

Probabilistic roadmap R:

1. generate random points in CS,
and keep the ones in CSfree

2. create graph by joining each
adjacent pair p1, p2 by a line
L(p1, p2)

To keep things simple, we’ll use
straight lines

More generally, the lines might
be curved, in order to satisfy the
robot’s kinematic constraints

R is adequate if it contains enough points to ensure that every start/goal
pair is connected through the graph
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Path planning with roadmaps

Given an adequate roadmap for CSfree and two configurations qi and qg in
CSfree, a feasible path from qi to qg can be found as follows:

♦ Find configuration q′i in R such that L(qi, q
′
i) is in CSfree

♦ Find configuration q′g in R such that L(qg, q
′
g) is in CSfree

♦ In R, find a path from q′i to q′g

♦ The planned path is the finite sequence of line segments between them
Do postprocessing to optimize and smooth the path

This reduces path planning to a simple graph-search problem,
plus collision checking and kinematic steering
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When is a roadmap adequate?

The property we want: whenever there’s a
path in CSfree from qi to qg, the roadmap
contains a path from q′i to q′g

The coverage of a configuration q is

D(q) = {q′ ∈ CSfree | L(q, q′) ⊆ CSfree}
i.e., every point that can be reached by a
straight line from q

The coverage of a set of configurations Q = {q1, q2, . . . , qn} is
D(Q) = D(q1) ∪D(q2) ∪ . . . ∪D(qn)

R is adequate if R is connected and D(vertices(R)) = CSfree
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Generating an adequate roadmap

♦ Easier to use probabilistic techniques than to compute CSfree explicitly

Start with an empty roadmap R

Until (termination condition), do
Randomly generate a configuration q ∈ CSfree
Add q to R iff

either q extends R’s coverage, i.e., q 6∈ D(R)
or q extends R’s connectivity, i.e.,
q connects two unconnected subgraphs of R
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Termination

Termination condition:

♦ Let k = number of random draws since the last time
a configuration was added to the roadmap

♦ Stop when k reaches some value kmax

1/kmax is a probabilistic estimate of the ratio between the part of CSfree
not covered by R and the total CSfree

For kmax = 1000, the algorithm generates a roadmap that covers CSfree
with probability 0.999
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Implementation

Very efficient implementations

Marketed products used in

♦ Robotics

♦ Computer animation

♦ CAD

♦ Manufacturing
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Example

Task: carry a long rod through the door
♦ Roadmap: about 100 vertices in 9-dimensional space
♦ Generated in less than 1 minute on a normal desktop machine
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Motor control

Can view the motor control problem as a search problem
in the dynamic rather than kinematic state space:

– state space defined by x1, x2, . . . , ẋ1, ẋ2, . . .
– continuous, high-dimensional (Sarcos humanoid: 162 dimensions)

Deterministic control: many problems are exactly solvable
esp. if linear, low-dimensional, exactly known, observable

Simple regulatory control laws are effective for specified motions

Stochastic optimal control: very few problems exactly solvable
⇒ approximate/adaptive methods
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Robust robot control

Hilare, a robot at LAAS
(a French research institute)

♦ Sensors: sonar, laser, vision
♦ Motor functions: actuators, arm

Several redundant software modules for each sensory-motor function
♦ Localization, map building and updating, motion planning and control

Redundancy needed for robustness
♦ No single method or sensor has universal coverage
♦ Each has weak points and drawbacks
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Sensory-Motor Functions

Localization

♦ Laser range data
has problems with obstacles, long corridors

♦ Infrared reflectors, wall-mountedcameras, GPS
only work when in areas covered by the device

Elastic Band for Plan Execution
♦ Dynamically update and maintain a flexible trajectory

No single method or sensor works well in all cases
Instead, Hilare has several Modes of Behavior (or Modalities)

Each modality is an HTN whose primitives are sensory-motor functions
♦ Tells how to combine functions to achieve a desired task
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Example of a modality
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Which modality to use when?

Hilare uses an MDP to decide which modality to use under which conditions
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Summary

Mobile robots and manipulators

Configuration parameters, configuration space

Path planning with roadmaps

Example of robust control
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