Last update: May 11, 2010

Review for the Final Exam

CMSC 421: Final Review

CMSC 421: Final Review 1

Final Exam

According to the university exam schedule, the final exam is on Wednesday, May 19, 10:30-12:30, in our usual classroom

- \diamondsuit Open book, open notes
- \diamondsuit No electronic devices

Summary of what we've covered

The midterm exam covered Chapters 1-6 and Common Lisp.

The final exam will include some of that, but will emphasize the following:

logic7–9planning \approx 11-12, but use my lecture slides, not the bookuncertainty13Bayesian networks14making decisions16, 17learning18, 20.5

I won't ask you much about Chapters 22, 24, and 25

On the next few pages, I'll point out some topics you won't need to know

A few days before the exam, I'll post announcement(s) about other topics that you won't need to know

Chapter 1: Intelligent Agents

 \diamondsuit What AI is:

- \diamondsuit thinking versus acting
- \diamond humanly versus rationally

I won't ask any questions about Chapter 1

Chapter 2: Intelligent Agents

- \diamond Agents and environments
- \diamondsuit Rationality
- ♦ PEAS (Performance measure, Environment, Actuators, Sensors)
- \diamondsuit Environment types
- \diamondsuit Agent types

I won't ask much (if anything) about Chapter 2

Chapter 3: Search

- Oroblem types: deterministic/nondeterministic, fully/partially observable example: vacuum world
- Tree-search algorithms
 Breadth-first search
 Uniform-cost search
 Depth-first search
 Depth-limited search, iterative deepening
- \diamondsuit tree search versus graph search

Chapter 4: Informed Search and Exploration

- Heuristic search algorithms
 Greedy search
 A* (two versions)
 IDA*
- Heuristic functions

 admissibility
 consistency
 dominance
 problem relaxation
- Iterative improvement algorithms
 Hill climbing, simulated annealing,
 local beam search, genetic algorithms

We didn't cover sections 4.4 (continuous spaces) and 4.5 (online search)

Common Lisp

- \Diamond lists, atoms, list notation
- \diamondsuit defining your own Lisp functions
- ♦ built-in Lisp operators (functions, predicates, special forms, macros)
- \diamondsuit recursion, loops, and mapping functions
- \Diamond passing functions as arguments
- \diamond operators for sequences (lists, vectors, strings)
- good programming style
 (no direct questions on this, but don't write sloppy code!)

Chapter 5: Constraint Satisfaction

- \diamondsuit Definition: variables, constraints
- \diamond Representation: constraint graphs
- \diamond Backtracking search
- Variable selection heuristics: MRV (minimum remaining values) degree (most constraints on remaining variables)
- \diamond Value selection heuristic: least constraining value
- Pruning techniques forward checking arc consistency (constraint propagation)
- Problem structure: independent subproblems tree-structured CSPs cutset conditioning

Chapter 6: Adversarial Search

- What type of game:
 deterministic, turn-taking, 2-player, perfect information, zero sum
- \diamondsuit Game trees, minimax values
- \Diamond Alpha-beta pruning
- \diamondsuit Depth-bounded search, static evaluation functions
- \diamond Node ordering
- \diamondsuit Nondeterministic game trees (e.g., backgammon) and expectiminimax

Chapter 7: Logical agents

- \diamondsuit Knowledge-based agents
- \diamond Wumpus world
- \diamondsuit Logic in general—models and entailment
- \diamond Propositional (Boolean) logic
- \diamond Equivalence, validity, satisfiability
- \diamondsuit Inference rules and theorem proving
 - Horn clauses, forward chaining, backward chaining
 - resolution
- \diamond Completeness, complexity

Chapter 8: First-Order Logic

- \diamond Syntax: symbols, atomic sentences, quantifiers, equality, sentences
- \diamond Semantics: interpretations, models, truth
- \diamondsuit Substitutions
- \diamondsuit Wumpus world in FOL

Chapter 9: Inference in First-Order Logic

- \diamond Reducing first-order inference to propositional inference
- \diamondsuit Unification
- \diamondsuit Generalized Modus Ponens
- \diamondsuit Forward and backward chaining
- ♦ Logic programming
- $\diamondsuit~\mathsf{Resolution}$

Planning

Related to Chapters 11 and 12 of the book, but based mainly on my lecture slides

- Conceptual model, three main types of planners I won't ask you about these
- \diamondsuit Classical planning
 - restrictive assumptions
 - definitions, representation (blocks-world example)
- \diamond Classical planning algorithms:
 - GraphPlan (dinner example)
 - FastForward
- \diamond Task-list planning
 - the TFD algorithm (travel examples)

Chapter 13: Uncertainty

- \diamondsuit Random variables, propositions
- \diamondsuit Prior and conditional probability
- \diamondsuit Inference by enumeration
- \diamondsuit Independence and conditional independence
- \diamondsuit Bayes' rule
- \diamond Wumpus example

Chapter 14: Bayesian networks

- \diamondsuit Syntax what the networks look like
- \diamondsuit Global semantics: joint distribution
- \diamondsuit Local semantics: conditional independence, Markov blanket
- \diamondsuit constructing Bayesian networks
- \diamondsuit Exact inference: enumeration, variable elimination

We didn't cover these sections: 14.3 (hybrid networks), 14.5 (approximate inference), 14.6 (fist-order representations)

Chapter 16, Making Simple Decisions

- \diamond Rational preferences
- \diamond Utilities
- \diamond Multiattribute utilities
- ♦ Human utilities, and the utility of money *(not on the final exam)*
- ♦ Decision networks *(not on the final exam)*
- \diamond Value of information

We didn't cover Section 16.7 (decision-theoretic expert systems)

Sections 17.1–17.3: MDPs

- \Diamond Markov decision processes
- \diamondsuit Policies
- \diamondsuit Value iteration
- \diamondsuit Policy iteration

We didn't cover these sections: 17.4 (Partially observable MDPs) 17.5 (decision-theoretic agents)

Section 17.6: Game theory

- \diamond Prisoner's Dilemma
- \diamondsuit Strategies, strategy profiles
- \diamondsuit Dominance, dominant strategy equilibria
- \diamondsuit Pareto optimality
- \diamond Mixed strategies, expected utility
- \diamond Nash equilibria (for both pure and mixed strategies)
- \diamondsuit finding Nash equilibria
 - Battle of the sexes, soccer penalty kicks, morra, Braess's paradox
- $\diamondsuit\ p$ -beauty contest, iterated elimination of dominant strategies

The final exam won't include the following topics: roshambo, the IPD with noise, the DBS algorithm

Chapter 18: Learning from Observations

We only covered Sections 18.1–18.3:

- ♦ Inductive learning *(not on the final)*
- ♦ Ockham's razor *(not on the final)*
- \diamondsuit Decision tree learning: attributes, information gain
- \diamond Performance measurement

We didn't cover these sections: 18.4 (ensemble learning) 18.5 (computational learning theory)

Section 20.5: Neural Networks

- \diamondsuit analogy to brain computation
- $\diamondsuit \ \mathsf{nodes}/\mathsf{units}$
- \diamond activation functions: threshold (step), logistic (sigmoid)
- \diamondsuit learning rule
- \diamond perceptrons (single-layer networks with threshold units)
- \diamondsuit perceptron learning rule
- \diamond multi-layer feedforward networks
- \diamondsuit error-backpropagation learning
- ♦ Examples: Nettalk, OCR, ALVINN *(not on the final)*

Chapter 22: Communication and Language

- ♦ Communication (not on the final)
- \diamond Grammar, parse trees
- Iogical grammars (not on the final)
- Problems presented by real language (grammaticality, ambiguity, anaphora, indexicality, vagueness discourse structure, metonymy, metaphor, noncompositionality) (not on the final)
- \Diamond part-of-speech tagging
 - tagsets
 - stochastic tagging
 - Bayes' rule, computing conditional probabilities

If there are any questions about this material, they will be relatively simple

Chapter 24: Vision

- \diamond Perception generally
- \diamondsuit Vision "subsystems"
- \diamondsuit Image formation, color vision
- $\diamondsuit\,$ Edge detection, noise, smoothing
- \diamondsuit Inferring shape from motion, stereo, texture
- ♦ Inferring shape from edges (Huffman-Clowes line labeling)
- \diamondsuit Object recognition, digit recognition
- \diamondsuit Shape context matching

I might ask a question about Huffman-Clowes line labeling, but not about anything else

Chapter 25, Robotics

- \diamondsuit definition, various examples
- \diamondsuit hand coding of robot controllers
- $\diamondsuit\,$ path and motion planning
- \diamondsuit configuration parameters, configuration space
- \diamondsuit cell decomposition, voronoi diagrams
- \diamond probabilistic roadmaps: how to generate and use them
- \diamond robot control: sensory-motor functions, modalities

I might ask a question about roadmaps, but not about anything else