Last update: March 9, 2010

REVIEW FOR THE MIDTERM EXAM

CMSC 421: MIDTERM REVIEW

Midterm Exam

- ♦ Scope: Chapters 1–6, and Common Lisp The test won't include Chapters 7 and 8
- ♦ Open book, open notes
- ♦ No electronic devices

My exams can sometimes be very hard But don't let it bother you, because I grade on a curve e.g., when I taught CMSC 421 in Fall 2007:

Midterm	Final	GPA
62%	64%	2.88

To help you prepare, the "private materials" web page has the midterm and final exams for the last four times I taught the course

It also has the answers to the first two homework assignments Later today, I'll post the answers to the third one

Chapter 1: Intelligent Agents

- ♦ What AI is:
- ♦ thinking versus acting
- ♦ humanly versus rationally

I won't ask any questions about Chapter 1

Chapter 2: Intelligent Agents

- \Diamond Agents and environments
- \Diamond Rationality
- ♦ PEAS (Performance measure, Environment, Actuators, Sensors)
- ♦ Environment types
- ♦ Agent types

I probably won't ask much about Chapter 2

Chapter 3: Search

Problem types: deterministic, nondeterministic, fully observable, partially observable, non-observable example: vacuum world

Tree-search algorithms
Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening

♦ tree search versus graph search

Chapter 4: Informed Search and Exploration

Heuristic search algorithms
 Greedy search
 A* on trees or on graphs with consistent heuristics
 A* on graphs with inconsistent heuristics

- Heuristic functions
 admissibility
 consistency
 dominance
 problem relaxation
- Iterative improvement algorithms
 Hill climbing, simulated annealing,
 local beam search, genetic algorithms
- Not on the exam:
 IDA*
 sections 4.4 (continuous spaces) and 4.5 (online search)

Common Lisp

- \Diamond lists, atoms, list notation
- ♦ defining your own Lisp functions
- \diamondsuit built-in Lisp operators (functions, predicates, special forms, macros)
- recursion, loops, and mapping functions
- passing functions as arguments
- ♦ operators for sequences (lists, vectors, strings)
- good programming style
 (no direct questions on this, but don't write sloppy code!)
- \Diamond Not on the exam:
 - destructive operations (e.g., setf, nconc)
 versus nondestructive operations (e.g., setq, append)
 - the xkcd comics 😌
 - interacting with the debugger

Chapter 5: Constraint Satisfaction

- \diamondsuit Definition: variables, constraints
- ♦ Representation: constraint graphs
- ♦ Backtracking search
- Variable selection heuristics:
 MRV (minimum remaining values)
 degree (most constraints on remaining variables)
- ♦ Value selection heuristic: least constraining value
- Pruning techniques
 forward checking
 arc consistency (constraint propagation)
- Problem structure:
 independent subproblems
 tree-structured CSPs
 cutset conditioning

Chapter 6: Adversarial Search

- What type of game: two-player, perfect information, zero sum
- ♦ Game trees, minimax values
- \Diamond Alpha-beta pruning
- \Diamond Depth-bounded search, static evaluation functions
- \Diamond Node ordering
- Nondeterministic game trees (e.g., backgammon) expectiminimax