
Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Automated Planning

Dana S. Nau

CMSC 421, Spring 2010

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

3. 	

A systematic arrangement of elements
or important parts; a configuration or
outline: a seating plan; the plan of a
story.	

4. 	

A drawing or diagram made to scale
showing the structure or arrangement
of something.	

5.  A program or policy stipulating a
service or benefit: a pension plan.	

plan n.	

1. 	

A scheme, program, or method

worked out beforehand for the
accomplishment of an objective: a
plan of attack. 	

2. 	

A proposed or tentative project or
course of action: had no plans for the
evening. 	

Some Dictionary Definitions of “Plan”

  These two are closest to the
meaning used in AI

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Processes:

Opn A BC/WW Setup Runtime LN Description
001 A VMC1 2.00 0.00 01 Orient board
 02 Clamp board
 03 Establish datum point at bullseye (0.25, 1.00)
001 B VMC1 0.10 0.43 01 Install 0.30-diameter drill bit
 02 Rough drill at (1.25, -0.50) to depth 1.00
 03 Finish drill at (1.25, -0.50) to depth 1.00
001 C VMC1 0.10 0.77 01 Install 0.20-diameter drill bit
 02 Rough drill at (0.00, 4.88) to depth 1.00
 03 Finish drill at (0.00, 4.88) to depth 1.00
 [...]
001 T VMC1 2.20 1.20 01 Total time on VMC1
[...]
004 A VMC1 2.00 0.00 01 Orient board
 02 Clamp board
 03 Establish datum point at bullseye (0.25, 1.00)
004 B VMC1 0.10 0.34 01 Install 0.15-diameter side-milling tool
 02 Rough side-mill pocket at (-0.25, 1.25)
 length 0.40, width 0.30, depth 0.50
 03 Finish side-mill pocket at (-0.25, 1.25)
 length 0.40, width 0.30, depth 0.50
 04 Rough side-mill pocket at (-0.25, 3.00)
 length 0.40, width 0.30, depth 0.50
 05 Finish side-mill pocket at (-0.25, 3.00)
 length 0.40, width 0.30, depth 0.50
004 C VMC1 0.10 1.54 01 Install 0.08-diameter end-milling tool
 [...]
004 T VMC1 2.50 4.87 01 Total time on VMC1

005 A EC1 0.00 32.29 01 Pre-clean board (scrub and wash)
 02 Dry board in oven at 85 deg. F
005 B EC1 30.00 0.48 01 Setup
 02 Spread photoresist from 18000 RPM spinner
005 C EC1 30.00 2.00 01 Setup
 02 Photolithography of photoresist
 using phototool in "real.iges"
005 D EC1 30.00 20.00 01 Setup
 02 Etching of copper
005 T EC1 90.00 54.77 01 Total time on EC1

006 A MC1 30.00 4.57 01 Setup
 02 Prepare board for soldering
006 B MC1 30.00 0.29 01 Setup
 02 Screenprint solder stop on board
006 C MC1 30.00 7.50 01 Setup
 02 Deposit solder paste at (3.35,1.23) on board using nozzle
 [...]
 31 Deposit solder paste at (3.52,4.00) on board using nozzle
006 D MC1 0.00 5.71 01 Dry board in oven at 85 deg. F to solidify solder paste
006 T MC1 90.00 18.07 01 Total time on MC1
[...]
011 A TC1 0.00 35.00 01 Perform post-cap testing on board
011 B TC1 0.00 29.67 01 Perform final inspection of board
011 T TC1 0.00 64.67 01 Total time on TC1

999 T 319.70 403.37 01 Total time to manufacture

[a representation] of future ���
 behavior … usually a set of���
 actions, with temporal and ���
 other constraints on them,���
for execution by some agent���
or agents. - Austin Tate���
	

[MIT Encyclopedia of the	

	

Cognitive Sciences, 1999]	

A portion of a manufacturing process plan

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

  Sheet-metal bending machines - Amada Corporation
  Software to plan the sequence of bends

[Gupta and Bourne, J. Manufacturing Sci. and Engr., 1999]

Manufacturing

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

  Autonomous planning, scheduling, control

  NASA: JPL and Ames
  Remote Agent

Experiment (RAX)
  Deep Space 1

  Mars Exploration
Rover (MER)

Space Exploration

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

http://xkcd.com/695
  On January 26th, 2274 Mars days into the mission, NASA declared Spirit a

'stationary research station', expected to stay operational for several more months
until the dust buildup on its solar panels forces a final shutdown.

Continued
on the next
slide …

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

http://xkcd.com/695
  On January 26th, 2274 Mars days into the mission, NASA declared Spirit a

'stationary research station', expected to stay operational for several more months
until the dust buildup on its solar panels forces a final shutdown.

Continued
from the
previous
slide:

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

Outline
  Conceptual model for planning
  Restrictive assumptions to simplify the problem
  Classical planning

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

Source Material
  My lectures on AI planning are based partly on Russell & Norvig,

and partly on following book:

  M. Ghallab, D. Nau, and P. Traverso
Automated Planning: Theory and Practice
Morgan Kaufmann Publishers
May 2004
  Web site: http://www.laas.fr/planning

  For CMSC 421, you don’t need this book
  The lecture slides are self-contained

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

Conceptual Model
1. Environment

State transition system
 Σ = (S,A,E,γ)
S = {states}
A = {actions}
E = {exogenous events}
γ = state-transition function

System Σ

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

Example: The Blocks World
  Infinitely wide table, finite number of children’s blocks
  A robot hand that can pick up blocks and put them down
  A block can sit on the table or on another block
  Ignore where the blocks are located on the table
  Just consider

  whether each block is on the table, on another block, or being held
  whether each block is clear or covered by another block
  whether the robot hand is holding anything

  Example state of the world:

  For n blocks, the
number of states
is more than n!

c"
a" b" e"

d"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

Σ = (S,A,E,γ)

  S = {states}
  A = {actions}
  E = {exogenous events}
  State-transition function
γ: S x (A ∪ E) → 2S

  S = {s0, s1, s2, …, s22}

  A = {take c off of a,
 put c on the table,
 …}

  E = {}

  γ: see the arrows

State Transition
System

s1

s0
c"
a" b"

c"
a" b"

s5
c"
a"

b"

s3

s2
a" b"

c"a"
b"c"

…

…

…

s4 b"
a" c"

…

…

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

Observation function
h: S → O

Given observation
o in O, produces
action a in A

Conceptual Model
2. Controller

Controller

c"a"
b"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14

Omit unless
planning is online

Planning problem Planning problem Planning problem

Conceptual Model
3. Planner’s Input

Planner

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

Planning Problem
A planning problem includes:	

  A description of Σ	

  An initial state, e.g., s0	

  or a set of possible���
initial states (maybe with���
a probability distribution)	

  An objective, e.g.,	

  a goal state, e.g., s4	

  a set of goal states, e.g.,���

{all states in which b is on a}	

  a task to perform, e.g.,���

put all the blocks into a single stack	

  a “trajectory” of states	

  an objective function	

  …	

s1

s0
c"
a" b"

c"
a" b"

s5
c"
a"

b"

s3

s2
a" b"

c"a"
b"c"

…

…

…

s4 b"
a" c"

…

…

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

Instructions to
the controller

Conceptual Model
4. Planner’s Output

Planner

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

Plans
  Classical plan:���

a sequence of actions	

	

(take c off of a,���
 put c on the table,���
 take b off the table,���
 put b on a)	

  Policy:���
a partial function from S into A	

	

 {(s0, take c off of a),���
 (s1, put c on the table),���
 (s2, take b off the table),���
 (s3, put b on a)}	

s3

s2

s1

s0
c"
a" b"

c"
a" b"

a" b"

c"a"
b"

s4
b"
a" c"

take c off of a

put c on the table

c"

take b off the table

put b on a

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

Scheduler

Planning Versus Scheduling

  Scheduling
  Decide when and how to

perform a given set of actions
» Time constraints
» Resource constraints
» Objective functions

  Typically NP-complete

  Planning
  Decide what actions to use to achieve some set of objectives
  Can be much worse than NP-complete

» worst case is undecidable

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

Three Main Types of Planners

1. Domain-specific
2. Domain-independent
3. Configurable

  I’ll talk briefly about each

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

1. Domain-Specific Planners (Chapters 19-23)
  Made or tuned for

a specific domain
  Won’t work well (if

at all) in any other domain

  Most successful real-world
planning systems work this
way

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21

Types of Planners
2. Domain-Independent

  In principle, a domain-independent planner
works in any planning domain

  Uses no domain-specific knowledge except
the definitions of the basic actions

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 22

  In practice,
  Not feasible to develop

domain-independent planners
that work in every possible
domain

  Make simplifying assumptions to
restrict the set of domains
  Classical planning
  Historical focus of most

automated-planning research

Types of Planners
2. Domain-Independent

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

  A0: Finite system:
  finitely many states, actions, events

  A1: Fully observable:
  the controller always Σ’s current state

  A2: Deterministic:
  each action has only one outcome

  A3: Static (no exogenous events):
  no changes but the controller’s actions

  A4: Attainment goals:
  a set of goal states Sg

  A5: Sequential plans:
  a plan is a linearly ordered sequence

of actions (a1, a2, … an)
  A6: Implicit time:

  no time durations; linear sequence of instantaneous states
  A7: Off-line planning:

  planner doesn’t know the execution status

Restrictive Assumptions

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 24

  Classical planning requires all eight restrictive assumptions
  Offline generation of action sequences for a deterministic, static,

finite system, with complete knowledge, attainment goals, and
implicit time

  Reduces to a search problem:
  Given (Σ, s0, Sg)

»  s0 is the initial state, Sg is a set of goal states
  Find a sequence of actions (a1, a2, … an) that produces

a sequence of state transitions (s1, s2, …, sn)
such that sn is in Sg.

  Constraint-satisfaction problems also were search problems
  But there were special-purpose problem representations and

algorithms that were much faster than ordinary search algorithms
  Can do something similar for planning problems

  Several ways to do this
  I’ll discuss a few of the better-known ones

Classical Planning (Chapters 2-9)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 25

Problem Representation
  Several ways to represent classical planning domains

  The classical representation (or STRIPS representation)
is the best known

  That’s what I’ll describe

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 26

Symbols
  Start with a function-free first-order language

  Finitely many predicate names and constant symbols, infinitely many
variable symbols, but no function symbols

  Add a finite set of operator names
  e.g., symbols for the blocks world:

  Constant symbols: a, b, c, d, e, … (names of blocks)
  Variable symbols: u, v, w, x, y, z, x1, x2, …
  Predicates:

ontable(x) - block x is on the table
on(x,y) - block x is on block y
clear(x) - block x has nothing on it
holding(x) - the robot hand is holding block x
handempty - the robot hand isn’t holding anything

  Operator names: pickup, putdown, stack, unstack

c"
a" b" e"

d"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 27

States
  State: a set s of ground atoms representing what’s currently true
  Only finitely many ground atoms, so only finitely many possible

states

  Example:
 {ontable(a), on(c,a), clear(c),
 ontable(b), clear(b), holding(d),
 ontable(e), clear(e)}

c"
a" b" e"

d"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 28

Operators
  Operator: a triple (head, preconditions, effects)

  head: an operator name and a parameter list
» E.g., opname(x1, …, xk)
» No two operators can have the same name
» Parameter list must include all of the operator’s variables

  preconditions: literals that must be true to use the operator
  effects: literals that the operator will make true

  We’ll generally write operators in the following form:

  opname(x1, …, xk)
» Precond: p1, p2, …, pm
» Effects: e1, e2, …, en

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 29

unstack(x,y)
 Precond: on(x,y), clear(x), handempty
 Effects: ~on(x,y), ~clear(x), ~handempty,

 holding(x), clear(y)

stack(x,y)
 Precond: holding(x), clear(y)
 Effects: ~holding(x), ~clear(y),

 on(x,y), clear(x), handempty

pickup(x)
 Precond: ontable(x), clear(x), handempty
 Effects: ~ontable(x), ~clear(x),

 ~handempty, holding(x)

putdown(x)
 Precond: holding(x)
 Effects: ~holding(x), ontable(x),

 clear(x), handempty

Blocks-World Operators c"
a" b"

c"
a" b"

c"
a" b"

c"
a"

b"

c"
a" b"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 30

Actions and Plans
  Action: a ground instance (via substitution) of an operator

unstack(c,a)
 Precond: on(c,a), clear(c), handempty
 Effects: ~on(c,a), ~clear(c), ~handempty,

 holding(c), clear(a)

c"
a" b"

c"
a" b"

unstack(x,y)
 Precond: on(x,y), clear(x), handempty
 Effects: ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 31

Notation
  Let S be a set of literals. Then

  S+ = {atoms that appear positively in S}
  S– = {atoms that appear negatively in S}

  Let a be an operator or action. Then
  precond+

 (a) = {atoms that appear positively in precond(a)}
  precond–

 (a) = {atoms that appear negatively in precond(a)}
  effects+

 (a) = {atoms that appear positively in effects(a)}
  effects–

 (a) = {atoms that appear negatively in effects(a)}

  Example:
 unstack(x,y)
 Precond: on(x,y), clear(x), handempty
 Effects: ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y)

  effects+
 (unstack(x,y)) = {holding(x), clear(y)}

  effects–
 (unstack(x,y)) = {on(x,y), clear(x), handempty}

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 32

Executability
  An action a is executable in s if s satisfies precond(a),

  i.e., if precond+
 (a) ⊆ s and precond–

 (a) ∩ s = ∅
  An operator o is applicable to s if there’s a ground instance a of o that is

executable in s
  Example:
  s = {ontable(a), on(c,a), clear(c), ontable(b), clear(b),handempty}
  o = unstack(x,y)
  a = unstack(c,a)

unstack(x,y)
 Precond: on(x,y), clear(x), handempty
 Effects: ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y)

unstack(c,a)
 Precond: on(c,a), clear(c), handempty
 Effects: ~on(c,a), ~clear(c), ~handempty, holding(c), clear(a)

c"
a" b"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 33

Result of performing an action
  If a is executable in s, the result of performing it is

 γ(s,a) = (s – effects–(a)) ∪ effects+(a)
  Delete the negative effects, and add the positive ones

  s = {ontable(a), on(c,a), clear(c), ontable(b), clear(b), handempty}

  a = unstack(c,a)
 Precond: on(c,a), clear(c), handempty
 Effects: ~on(c,a), ~clear(c), ~handempty,

 holding(c), clear(a)

  γ(s,a) = {ontable(a), on(c,a), clear(c), ontable(b), clear(b), handempty,
 holding(c), clear(a)}

c"
a" b"

c"
a" b"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 34

Executability of Plans
  Plan: a sequence of actions π = (a1, …, an)
  A plan π = (a1, …, an) is executable in the state s0 if

» a1 is executable in s0, producing some state s1 = γ (s0,a1)
» a2 is executable in s1, producing some state s2 = γ (s1,a2)

» …
» an is executable in sn–1, producing some state sn= γ (sn–1,an)

  In this case, we define γ (s0,π) = sn
  Example on next slide

c"
a" b"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 35

s3

s2

s1

s0
c"
a" b"

c"

a" b"

a" b"

c"a"
b"

s4
b"
a" c"

c"

unstack(c,a)
 Precond: on(c,a), clear(c), handempty
 Effects: ~on(c,a), ~clear(c), ~handempty, holding(c), clear(a)

stack(b,a)
 Precond: holding(b), clear(a)
 Effects: ~holding(b), ~clear(a), on(b,a), clear(b), handempty

pickup(b)
 Precond: ontable(b), clear(b), handempty
 Effects: ~ontable(b), ~clear(b), ~handempty, holding(b)

putdown(c)
 Precond: holding(c)
 Effects: ~holding(c), ontable(c), clear(c), handempty

s = {ontable(a), on(c,a), clear(c), ontable(b),clear(b), handempty}
π = (unstack(c,a), putdown(c), pickup(b), stack(b,a))

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 36

Problems and Solutions
  Planning problem: a triple P = (O, s0, g)

  O is a set of operators
  s0 is the initial state - a set of atoms
  g the goal formula - a set of literals

  Every state that satisfies g is a goal state

  A plan π is a solution for P=(O,s0,g) if
  π is executable in s0

  the resulting state γ (s0,π) satisfies g

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 37

Example
  O = {stack(x,y), unstack(x,y), pickup(x), putdown(x)}

  s0 = {ontable(a), on(c,a), clear(c),
 ontable(b), clear(b), handempty}

  g = {on(a,b)}

  One of the solutions is
  π = (unstack(c,a), putdown(c), pickup(a), stack(a,b))

c"
a" b"

a"
b"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 38

Forward-Search Algorithms
  Go forward from the initial state

  Breadth-first and best-first
  Sound: if they return a plan,

then the plan is a solution
  Complete: if a problem has a solution, then they will return one
  Usually not practical because they require too much memory

»  Memory requirement is exponential in the length of the solution
  Depth-first search, greedy search

  More practical to use
  Worst-case memory requirement is linear in the length of the solution
  Sound but not complete

  But classical planning has only finitely many states
  Thus, can make depth-first search complete by doing loop-checking

s0

s1

s2

s3

a1

a2

a3

s4

s5
sg

a4

a5 …

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 39

Branching Factor of Forward Search

  Forward search can have a very large branching factor
  pickup(a1), pickup(a2) , …, pickup(a500)

  Thus forward-search can waste time trying lots of irrelevant actions
  Need a good heuristic to guide the search
  I’ll discuss one later

  But first, a very different kind of planning algorithm

a3"

a1"
a2"

…"a1" a2" a500"a3"

initial state goal

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 40

Graphplan
procedure Graphplan:
  for k = 0, 1, 2, …

  Graph expansion:
» create a “planning graph” that contains k “levels”

  Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

  If it does, then
» do solution extraction:

•  backward search,
modified to consider
only the actions in
the planning graph

•  if we find a solution,
then return it

possible
literals
in state si

possible
actions
in state si

relaxed
problem

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 41

state-level i

effects
A maintenance action for a literal l.
It represents what happens if we
don’t change l.

state-level i-1

state-level 0 (the literals true in s0)

The Planning Graph
  Search space for a relaxed version of the planning problem
  Alternating layers of ground literals and actions

  At action-level i: all actions whose preconditions appear in state-level i–1
  At state-level i: all the effects of all the actions at action-level i
  Edges: preconditions and effects

action-level i

preconditions

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 42

Example
  Due to Dan Weld (U. of Washington)

  Suppose you want to prepare dinner as a surprise for your sweetheart (who is
asleep)

 s0 = {garbage, cleanHands, quiet}
 g = {dinner, present, ¬garbage}

 Action Preconditions Effects
 cook() cleanHands dinner
 wrap() quiet present
 carry() none ¬garbage, ¬cleanHands
 dolly() none ¬garbage, ¬quiet

Also have the maintenance actions: one for each literal

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 43

Example (continued)
  state-level 0:

{all atoms in s0} U
 {negations of all atoms not in s0}

  action-level 1:
{all actions whose preconditions
 are satisfied and non-mutex in s0}

  state-level 1:
{all effects of all of the
 actions in action-level 1}

Action Preconditions Effects
cook() cleanHands dinner
wrap() quiet present
carry() none ¬garbage, ¬cleanHands
dolly() none ¬garbage, ¬quiet

Also have the maintenance actions ¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 44

Mutual Exclusion

  Two actions at the same action-level are mutex if
  Inconsistent effects: an effect of one negates an effect of the other
  Interference: one deletes a precondition of the other
  Competing needs: they have mutually exclusive preconditions

  Otherwise they don’t interfere with each other
  Both may appear in a solution plan

  Two literals at the same state-level are mutex if
  Inconsistent support: one is the negation of the other,

or all ways of achieving them are pairwise mutex

Recursive
propagation
of mutexes

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 45

Example (continued)
  Augment the graph to indicate mutexes
  carry is mutex with the maintenance

action for garbage (inconsistent effects)
  dolly is mutex with wrap

  interference
  ~quiet is mutex with present

  inconsistent support
  each of cook and wrap is mutex with

a maintenance operation

Action Preconditions Effects
cook() cleanHands dinner
wrap() quiet present
carry() none ¬garbage, ¬cleanHands
dolly() none ¬garbage, ¬quiet

Also have the maintenance actions ¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 46

¬dinner

¬present

¬dinner

¬present

Example (continued)

  Check to see whether there’s a possible
solution

  Recall that the goal is
  {¬garbage, dinner, present}

  Note that in state-level 1,
  All of them are there
  None are mutex with each other

  Thus, there’s a chance that a plan exists
  Try to find it

  Solution extraction

state-level 0 state-level 1 action-level 1

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 47

Solution Extraction

procedure Solution-extraction(g,j)
if j=0 then return the solution
for each literal l in g

 nondeterministically choose an action
 to use in state s j–1 to achieve l

if any pair of chosen actions are mutex
 then backtrack

g’ := {the preconditions of
 the chosen actions}

Solution-extraction(g’, j–1)
end Solution-extraction

The level of the state sj
The set of goals we are
trying to achieve

state-
level
i-1

action-
level

i

state-
level

i

A real action or a maintenance action

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 48

Example (continued)

  Two sets of actions for the goals at
state-level 1

  Neither of them works
  Both sets contain actions that are

mutex

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 49

Recall what the algorithm does

procedure Graphplan:
  for k = 0, 1, 2, …

  Graph expansion:
»  create a “planning graph” that contains k “levels”

  Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

  If it does, then
»  do solution extraction:

•  backward search,
modified to consider
only the actions in
the planning graph

•  if we find a solution,
then return it

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 50

Example (continued)

  Go back and do
more graph
expansion

  Generate another
action-level
and another state-
level

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 51

Example (continued)

  Solution
extraction

  Twelve combinations
at level 4
  Three ways to

achieve ¬garb
  Two ways to

achieve dinner
  Two ways to

achieve present

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 52

Example (continued)

  Several of the
combinations look
OK at level 2

  Here’s one of them

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 53

Example (continued)
  Call Solution-

Extraction
recursively at
level 2

  It succeeds
  Solution whose

parallel length
is 2

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 54

Back to Forward Search

  Earlier, I said
  Forward search can have a very large branching factor

»  pickup(a1), pickup(a2) , …, pickup(a500)
  Thus forward-search can waste time trying lots of irrelevant actions

»  Need a heuristic to guide the search

  We can use planning graphs to compute such a heuristic

a3"

a1"
a2"

…"a1" a2" a500"a3"

initial state goal

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 55

Getting Heuristic Values from
a Planning Graph

  Recall how GraphPlan works:
loop

Graph expansion:
extend a “planning graph” forward from the initial state

until we have achieved a necessary (but insufficient) condition
for plan existence

Solution extraction:
search backward from the goal, looking for a correct plan
if we find one, then return it

repeat

this takes polynomial time

this takes exponential time

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 56

Using Planning Graphs to Compute h(s)

  In the graph, there are alternating
layers of ground literals and actions

  The number of “action” layers is a lower
bound on the number of actions in the plan

  Construct a planning graph, starting at s
  Δg(s,g) = level of the first layer that

 “possibly achieves” the goal
  Some ways to improve this, but

I’ll skip the details

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 57

The FastForward Planner

  Use a heuristic function h(s) similar to Δg(s,g)
  Don’t want an A*-style search (takes too much memory)
  Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest

 (i.e., the child we think is closest to a solution)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 58

The FastForward Planner

  Use a heuristic function h(s) similar to Δg(s,g)
  Don’t want an A*-style search (takes too much memory)
  Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest

 (i.e., the child we think is closest to a solution)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 59

The FastForward Planner

  Use a heuristic function h(s) similar to Δg(s,g)
  Don’t want an A*-style search (takes too much memory)
  Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest

 (i.e., the child we think is closest to a solution)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 60

The FastForward Planner

  Use a heuristic function h(s) similar to Δg(s,g)
  Don’t want an A*-style search (takes too much memory)
  Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest

 (i.e., the child we think is closest to a solution)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 61

The FastForward Planner

  Use a heuristic function h(s) similar to Δg(s,g)
  Don’t want an A*-style search (takes too much memory)
  Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest

 (i.e., the child we think is closest to a solution)

  Problem: can get caught in local minima
  h(s') > h(s) for every successor s' of s
  Escape by doing a breadth-first search until you find a node with lower

cost
  Problem: can hit a dead end - in this case, FF fails
  No guarantee on whether FF will find a solution, or how good a solution

  But FF works quite well on many classical planning problems

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 62

International Planning Competitions
  International planning competitions in 1998, 2002, 2004, 2006, 2008

  Many of the planners in these competitions have incorporated ideas from
GraphPlan and FastForward

  Graphplan was developed in 1995
  Several years before the competitions started

  FastForward was introduced in the 2000 International Planning Competition
  It got an “outstanding performance” award
  Large variance in how good its plans were, but it found them very quickly

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 63

Three Main Types of Planners

1. Domain-specific
2. Domain-independent
3. Configurable

»  Domain-independent planning engine
»  The input includes information about how to plan efficiently in a given

problem domain

  I’ll now talk about a particular kind of configurable planner

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 64

Motivation
  For some planning problems, we may already have ideas about good ways

to solve them
  Example: travel to a destination that’s far away:

  Domain-independent planner:
»  many combinations vehicles and routes

  Experienced human: small number of “recipes”
e.g., flying:

1.  buy ticket from local airport to remote airport
2.  travel to local airport
3.  fly to remote airport
4.  travel to final destination

  How to get planning systems to use such recipes?
  General approach: Hierarchical Task Network (HTN) planning
  We’ll look at a simpler special case: Task-List Planning

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 65

Task-List Planning
  States and operators: same as in classical planning
  Instead of achieving a goal, we will want to accomplish a list of tasks

  Recursively decompose tasks into smaller and smaller subtasks
  At the bottom, actions that we know how to accomplish directly

  Task: an expression of the form t(u1,…,un)
  t is a task symbol, and each ui is a term

  Two kinds of task symbols (and tasks):
  primitive: tasks that we know how to execute directly

»  task symbol is the head of an operator
  nonprimitive: tasks that must be decomposed into subtasks

»  use methods (next slide)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 66

Methods
  Method: a 4-tuple m = (head, task, precond, subtasks)

  head: the method’s name, followed by list of variable symbols (x1,…,xn)
  task: a nonprimitive task
  precond: preconditions (literals)
  subtasks: a sequence of tasks 〈t1, …, tk〉

air-travel(x,y,u,v)
 task: travel(x,y)
 precond: far(x,y), airport(x,u), airport(y,v)
 subtasks: get-ticket(u,v), travel(x,u),

 fly(u,v), travel(v,y) travel(x,y)

get-ticket (u,v) travel (x, u) fly (u,v) travel (v,y) get-taxi ride-taxi(x,y) pay-driver

Precond: far(x,y), airport(x,u), airport(y,v) Precond: ~far(x,y)

taxi-travel(x,y) air-travel(x,y,u,v)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 67

Domains, Problems, Solutions
  Task-list planning domain: methods, operators
  Task-list planning problem: methods, operators, initial state, initial

task list

  Solution: any executable plan
that can be generated by
recursively applying
  methods to

nonprimitive tasks
  operators to

primitive tasks

nonprimitive task

precond

method instance

s0 precond effects precond effects s1 s2

primitive task primitive task

operator instance operator instance

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 68

method instance

travel(UMD,UCLA)

get-ticket (UMD,UCLA) travel (UMD,BWI) fly (BWI,LAX) travel (LAX,UCLA)

nonprimitive task

Precond: far(UMD,UCLA),
airport(UMD,BWI),

airport(LAX,UCLA)

get-taxi ride-taxi (UMD,BWI) pay-driver

Precond: ~far(UMD,BWI)

get-taxi ride-taxi (LAX,UCLA) pay-driver

Precond: ~far(LAX,UCLA)

Example
Task: travel from UMD to UCLA
  Use air-travel method
  Use taxi-travel method for

some of the subtasks
  The other subtasks

(get-taxi, etc.)
are primitive

taxi-travel(UMD,BWI) taxi-travel(LAX,UCLA)

air-travel(UMD,UCLA)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 69

Solving Task-List Planning Problems
  TFD(s,(t1,…,tk))

  if k=0 (i.e., no tasks) then return the empty plan
  else if there is an action a such that head(a) = t1 then

»  if s satisfies precond(a) then
•  return TFD(γ(s,t1),(t2,…,tk))

»  else return failure
  else

»  A = {m : m is a method instance such that
 task(m)=t1, and s satisfies precond(m)}

»  if active is empty then return failure
»  nondeterministically choose m in A
»  let u1…, uj be m’s subtasks
»  return TFD(s, (u1…, uj, t2, …, tk))

state s; task list T=(t1 ,t2,…)

 action a

state γ(s,a) ; task list T=(t2, …)

task list T=(u1,…,uj ,t2,…)

 task list T=(t1 ,t2,…)

 method instance m

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 70

Example
  TFD(s,(t1,…,tk))

  if k=0 (i.e., no tasks) then return the empty plan
  else if there is an action a such that head(a) = t1 then

»  if s satisfies precond(a) then
•  return TFD(γ(s,t1),(t2,…,tk))

»  else return failure
  else

»  A = {m : m is a method instance such that
 task(m)=t1, and s satisfies precond(m)}

»  if active is empty then return failure
»  nondeterministically choose m in A
»  let u1…, uj be m’s subtasks
»  return TFD(s, (u1…, uj, t2, …, tk))

〈travel(UMD,UCLA)〉

get-ticket (u,v) travel (x, u) fly (u,v) travel (v,y) get-taxi ride-taxi(x,y) pay-driver

Precond: far(x,y), airport(x,u), airport(y,v) Precond: ~far(x,y)

s0 : far(UMD,UCLA),
airport(UMD,BWI),
airport(UCLA,LAX)

task
list:

〈get-ticket (UMD,UCLA)
travel (UMD,BWI)

fly (BWI,LAX)
travel (LAX,UCLA)〉

apply
get-
ticket
action:

far(UMD,UCLA),
airport(UMD,BWI),
airport(UCLA,LAX)
ticket(UCLA,LAX)

apply
air-travel
method:

〈get-taxi
ride-taxi(UMD,BWI)

pay-driver
fly (BWI,LAX)

travel (LAX,UCLA)〉

apply
taxi-travel
method:

air-travel(x,y,u,v) taxi-travel(x,y)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 71

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East – 3NT
On lead: West at trick 3 East: 	

♠KJ74	

West:	

♠A2	

Out: 	

♠QT98653	

Increasing Expressivity
  Easy to generalize this beyond classical planning

  States can be arbitrary data structures

  Preconditions and effects can include
»  logical inferences (e.g., Horn clauses)
» complex numeric computations
»  interactions with other software packages

  e.g., SHOP and SHOP2
!http://www.cs.umd.edu/projects/shop!

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 72

Example

  Simple travel-planning domain
  Go from one location to another
  State = {values of variables}

(a,x,y)

(a,x,y)

(a,x,y)

(a,x,y)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 73

Precond: distance(home,park) ≤ 2 Precond: cash(me) ≥ 1.50 + 0.50*distance(home,park)

Initial task: travel(me,home,park)

Precondition succeeds

travel-by-foot travel-by-taxi

Precondition fails
Decomposition into subtasks

home" park"

Planning Problem: I am at home, I have $20, 
I want to go to a park 8 miles away"

 s1 = {location(me)=home, location(taxi)=home, cash(me)=20, distance(home,park)=8}

Initial
 state

 s0 = {location(me)=home, cash(me)=20, distance(home,park)=8}

call-taxi(me,home) ride(me,home,park) pay-driver(me,home,park)

Precond: …
Effects: …

Precond: …
Effects: …

Precond: …
Effects: …

 s2 = {location(me)=park, location(taxi)=park, cash(me)=20, distance(home,park)=8

 s3 = {location(me)=park, location(taxi)=park, cash(me)=14.50, distance(home,park)=8}

Final
state

 s1 s2 s3 s0

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 74

Comparison to Classical Planners
  Advantages:

  Can encode “recipes” (standard ways do planning in a given
domain) as collections of methods and operators

» Helps the planning system do more-intelligent search - can
speed up planning by many orders of magnitude (e.g.,
polynomial time versus exponential time)

»  Produces plans that correspond to how a human might solve
the problem

  Greater expressive power
»  Preconditions and effects can be computational algorithms

  Disadvantages:
  More complicated than just writing classical operators
  The author needs knowledge about planning in the given domain

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 75

SHOP2

  SHOP2:
  http://www.cs.umd.edu/projects/shop

  Algorithm is a generalized version of TFD
  Won an award in the AIPS-2002 Planning Competition
  Freeware, open source
  Downloaded more than 13,000 times
  Used in hundreds (thousands?) of projects worldwide

