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Some Dictionary Definitions of “Plan”

plan n.

1. A scheme, program, or method
worked out beforehand for the
accomplishment of an objective: a
plan of attack.

2. A proposed or tentative project or

course of action: had no plans for the

evening.

® These two are closest to the
meaning used in Al
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5.

. A systematic arrangement of elements

or important parts; a configuration or
outline: a seating plan; the plan of a
story.

. A drawing or diagram made to scale

showing the structure or arrangement
of something.

A program or policy stipulating a
service or benefit: a pension plan.
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[a representation] of future
behavior ... usually a set of
actions, with temporal and
other constraints on them,
for execution by some agent

or agents. - Austin Tate

[MIT Encyclopedia of the
Cognitive Sciences, 1999]

005

005

005

005

0006

006

ANA

EC1 30.00

EC1 30.00

EC1 30.00

EC1 90.00

MC1 30.00

0.48

2.00

20.00

54.77

4.57

01
02

T IGAT

Install @.15-diameter side-milling tool

Rough side-mill pocket at (-0.25, 1.25
R S5 95 it 4RR 507 4o 2h 8 55 2>

Finish side-mill pocket at (-0.25, 1.25)

length .40, width 0.30, depth_0.50
Rough side-mill pocket at (-0.25, 3.00)

length 0.40, width 0.30, depth 0.50

Finish side-mill ﬁOéket at (-0.25, 3.00)

.25
length 0.40, width 0.30, depth 0.50
Install 0.08-diameter end-milling tool

"4otal time on VMC1

Pre-clean board (scrub and wash)
Dry board in oven at 85 deg. F

Setup ) :
Spread photoresist from 18000 RPM spinner

Setup

Photolithography . of photoresist
using phototool”in "real.1iges

Setup

Etching of copper
Total %ime oanC1

Setup .
Prepare board for soldering

A portion of a manufacturing process plan

MC1_ M0 (A

7 B

o g
1

JCT CCTIPT LTTC SULUCT  SCUP UIT DU rd
Cat+iin




Manufacturing

® Sheet-metal bending machines - Amada Corporation

¢ Software to plan the sequence of bends
[Gupta and Bourne, J. Manufacturing Sci. and Engr., 1999]




Space Exploration

® Autonomous planning, scheduling, control
¢ NASA: JPL and Ames

® Remote Agent
Experiment (RAX)

¢ Deep Space 1 M%

. :/ .

® Mars Exploration
Rover (MER)




http://xkcd.com/695

® On January 26th, 2274 Mars days into the mission, NASA declared Spirit a
'stationary research station', expected to stay operational for several more months
until the dust buildup on its solar panels forces a final shutdown.

| 103 |

A MAYBE IF I DO AG@D Tm”.',.'cmu EK Rm‘ uyu“ LUELL!ZE- Continued
» ENOUGH JOB, THEYLL < on the next

Y LET ME COME HOME. , slide ...
:l','f',-. - | ONE GETTER.

{ MAYBE I DIONT DO ),
( A GOOD ENOUGH T08. )




Continued
from the
previous
slide:

http://xkcd.com/695

® On January 26th, 2274 Mars days into the mission, NASA declared Spirit a
'stationary research station', expected to stay operational for several more months
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Outline

® Conceptual model for planning
® Restrictive assumptions to simplify the problem
® Classical planning
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Source Material

® My lectures on Al planning are based partly on Russell & Norvig,

and partly on following book:

® M. Ghallab, D. Nau, and P. Traverso
Automated Planning: Theory and Practice
Morgan Kaufmann Publishers

May 2004
¢ Web site: http://www.laas.fr/planning

® For CMSC 421, you don’t need this book

¢ The lecture slides are self-contained

Dana Nau: CMSC 421, U. of Maryland
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Conceptual Model
1. Environment

l Description of X
Initial state

>| Planner

Objectives

Execution status

EEENE

t Plans

Controller

Observations T lActions

P State transition system
Akl > = (S,AEY)
T Events S = {states}

A = {actions}
E = {exogenous events}

v = state-transition function
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Example: The Blocks World

Infinitely wide table, finite number of children’s blocks
A robot hand that can pick up blocks and put them down
A block can sit on the table or on another block

Ignore where the blocks are located on the table

Just consider
¢ whether each block is on the table, on another block, or being held
¢ whether each block is clear or covered by another block
¢ whether the robot hand 1s holding anything

® Example state of the world: | d |
C

® For n blocks, the a ‘ b ‘ ‘ : |
number of states

1s more than n!
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State Transition
System

2=(SA4,E)y)

® S = {states}
® A = {actions}
® £ = {exogenous events}
@® State-transition function
V:SX(AUE)—23
® 5= {8, S5 Sy -++5 Sy}
¢ A = {take c off of a,

put c on the table,

D
¢ L={}

¢ v: see the arrows

Dana Nau: CMSC 421, U. of Maryland
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Conceptual Model
2. Controller

l Description of X
Initial state

-

>| Planner

Objectives

Execution status

EREREN =

J Plans

Controller Given observation

. . o) ir] O, p_roduces
f()).b;erve(\;on e FObservations T lActions action ain A

System X

I—I—l T Events
b

d C
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Conceptual Model
3. Planner’s Input

Planning problem

l Description of X
Initial state

——— 7| Planner
Omit unless Objectives
planning is online Execution status

Controller

Plans

SRR NE =

Observations T lActions

System X
T Events

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

14



A planning problem includes:
@® A description of X

® An initial state,e.g., s, S

¢

Planning Problem

or a set of possible

initial states (maybe with @
a probability distribution)

® An objective,e.g.,

¢
L 4

¢

*
¢

a goal state,e.g., s,

a set of goal states, e.g.,
{all states in which b is on a}

a task to perform, e.g.,
put all the blocks into a single stack

a “trajectory” of states
an objective function

* ...
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Conceptual Model
4. Planner’s Output

Initial state

l Description of X

Execution status

Instructions to
the controller

> Planner
Objectives
. J Plans

Controller

Observations T lActions

System X
T Events
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Plans * [a|[b]

® Classical plan: take c off of a
a sequence of actions |

(take c off of a, . . ©

put ¢ on the table, but ¢ on the table

take b off the table,
put b on a) s, I_LI
al|bj|c
® Policy: take b off the table@
a partial function from § into A |—L|
S, b
{(sy, take c off of a), a

(S4, put ¢ on the table), out b on a

(S,, take b off the table),
(S5, put b on a)} b

Dana Nau: CMSC 421, U. of Maryland
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Planning Versus Scheduling

l Description of

® Scheduling Initial state

¢ Decide when and how to — 7| Planner
perform a given set of actions OP€ctives 1

» Time constraints Scihedulver
» Resource constraints Controller
» Objective functions T l Actions
¢ Typically NP-complete System =
T Events

® Planning
¢ Decide what actions to use to achieve some set of objectives
¢ Can be much worse than NP-complete
» worst case 1s undecidable

Dana Nau: CMSC 421, U. of Maryland
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Three Main Types of Planners

1. Domain-specific
2. Domain-independent
3. Configurable

@ [’ll talk briefly about each

Dana Nau: CMSC 421, U. of Maryland
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1. Domain-Specific Planners (Chapters 19-23)

® Made or tuned for //

a specific domain

® Won’t work well (if
at all) in any other domain

mu‘

® Most successful real-world
planning systems work this
way meneer N

Us:East declarer, West dummy

Finesse(P, ; S) Opponents:defenders, South & North

Contract:East — 3NT
] East:#KJ74
lead:West at trick 3
Jé\ > 0o cstat e West:#dA2

@m | FinesseTwo(P,; S) | Out:#QT98653
/ || \
< P <

| PlayCard(P;; S, R,) | | EasyFinesse(P,; S) | | StandardFinesse(Py; S) | | BustedFinesse(P; §) |
| | |

West— #2 Y. Y.
(North— #Q) (North— #3)

| StandardFinesseTwo(P,; S) | | StandardFinesseThree(Ps; S) | | FinesseFour(P,; S) |
| |

| PlayCard(Py; S, Ry) | | PlayCard(Py; S, Ry) | | PlayCard(P; S, R,) | | PlayCard(P; S, R,) |
North— #3 East— #J South— #5 South— #Q

pdrd Ndu. LIVIDLU 441, U. Ol |V|ary|a|
Licensed under the Creative Commc
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Types of Planners
2. Domain-Independent

® In principle, a domain-independent planner
works 1n any planning domain

® Uses no domain-specific knowledge except
the definitions of the basic actions

Dana Nau: CMSC 421, U. of Maryland
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Types of Planners
2. Domain-lndependent

4t leve e | 40 42 l
® In practice, II..III .

¢ Not feasible to develop I I .I

domain-independent planners  sracy

that work in every possible
domain

® Make simplifying assumptions to
restrict the set of domains

& Classical planning

¢ Historical focus of most
automated-planning research
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Restrictive Assumptions

A0: Finite system:
¢ finitely many states, actions, events

A1: Fully observable: l Description of =

: Initial state
¢ the controller always 2’s current state > Planner
A2: Deterministic: Objectives
¢ cach action has only one outcome Execution status ‘ Plans
A3: Static (no exogenous events):
. ) : Controller
no changes but the controller’s actions

A4: Attainment goals: Observations T l Actions

¢ aset of goal states S,
A5: Sequential plans: System X
¢ aplan is a linearly ordered sequence T Events

of actions (a,, a,, ... a,)
A6: Implicit time:
¢ no time durations; linear sequence of instantaneous states
A7: Off-line planning:
¢ planner doesn’t know the execution status

23



Classical Planning (Chapters 2-9)

® C(lassical planning requires all eight restrictive assumptions

¢ Offline generation of action sequences for a deterministic, static,
finite system, with complete knowledge, attainment goals, and
implicit time
® Reduces to a search problem:
¢ Given (2, sy, S,)
» 8o 18 the 1nitial state, S, 1s a set of goal states

¢ Find a sequence of actions (a,, a,, ... a,) that produces
a sequence of state transitions (s, S, ..., S,)
such that s, 1s in S,

® Constraint-satisfaction problems also were search problems

¢ But there were special-purpose problem representations and
algorithms that were much faster than ordinary search algorithms

® Can do something similar for planning problems
¢ Several ways to do this

¢ [’ll discuss a few of the better-known ones

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

24



Problem Representation

® Scveral ways to represent classical planning domains

¢ The classical representation (or STRIPS representation)
1s the best known

® That’s what I’ll describe

Dana Nau: CMSC 421, U. of Maryland
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Symbols

® Start with a function-free first-order language

¢ Finitely many predicate names and constant symbols, infinitely many
variable symbols, but no function symbols

¢ Add a finite set of operator names
® c.g., symbols for the blocks world:
¢ Constant symbols: a, b, c, d, e, ... (names of blocks)

¢ Variable symbols: u, v, w, x, y, z, x{, Xy, ...

¢ Predicates: |_(Ij_|
ontable(x) - block x 1s on the table C
on(x,y) - block x 1s on block y 3 ‘ b ‘ ‘ : |
clear(x) - block x has nothing on it

holding(x) - the robot hand is holding block x
handempty - the robot hand isn’t holding anything

¢ Operator names: pickup, putdown, stack, unstack

Dana Nau: CMSC 421, U. of Maryland
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States

@ State: a set s of ground atoms representing what’s currently true

® Only finitely many ground atoms, so only finitely many possible
states

® Example:
{ontable(a), on(c,a), clear(c), I_(L-I
ontable(b), clear(b), holding(d),

C
ontable(e), clear(e)} _aw_EL

Dana Nau: CMSC 421, U. of Maryland
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Operators

® Operator: a triple (head, preconditions, effects)
¢ head: an operator name and a parameter list
» E.g., opname(x,, ..., X;)
» No two operators can have the same name
» Parameter list must include all of the operator’s variables
¢ preconditions: literals that must be true to use the operator
¢ cffects: literals that the operator will make true

® We’ll generally write operators in the following form:

¢ opname(x,, ..., X;)
» Precond: p,, p,, ..., P,
» Effects: e, e,, ..., e

n

Dana Nau: CMSC 421, U. of Maryland
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Blocks-World Operators

unstack(x,y)
Precond: on(x,y), clear(x), handempty
Effects: ~on(x,y), ~clear(x), ~handempty,
holding(x), clear(y)

stack(x,y)
Precond: holding(x), clear(y)
Effects: ~holding(x), ~clear(y),

on(x,y), clear(x), handempty

pickup(x)
Precond: ontable(x), clear(x), handempty
Effects: ~ontable(x), ~clear(x),

~handempty, holding(x)

putdown(x)
Precond: holding(x)

Effects: ~holding(x), ontable(x),
clear(x), handempty

Dana Nau: CMSC 421, U. of Maryland
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Actions and Plans

® Action: a ground instance (via substitution) of an operator

unstack(x,y)
Precond: on(x,y), clear(x), handempty
Effects: ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y)

unstack(c,a) A
Precond: on(c,a), clear(c), handempty @
Effects: ~on(c,a), ~clear(c), ~handempty,
holding(c), clear(a) Il

Dana Nau: CMSC 421, U. of Maryland
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Notation

® Lect S be aset of literals. Then
¢ 5" = {atoms that appear positively in S}
¢ 5 = {atoms that appear negatively in S}

® Lect a be an operator or action. Then
¢ precond” (a) = {atoms that appear positively in precond(a)}
¢ precond™ (a) = {atoms that appear negatively in precond(a)}
¢ cffects™ (a) = {atoms that appear positively in effects(a)}
¢ cffects™(a) = {atoms that appear negatively in effects(a)}

® Example:
unstack(x,y)
Precond: on(x,y), clear(x), handempty
Effects: ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y)

¢ cffects™ (unstack(x,y)) = {holding(x), clear(y)}
¢ cffects™ (unstack(x,y)) = {on(x,y), clear(x), handempty}

Dana Nau: CMSC 421, U. of Maryland
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Executability

® An action a is executable in s if s satisfies precond(a),

¢ i.c., if precond*(a) Cs and precond=(a) Ns=O

An operator o is applicable to s if there’s a ground instance a of o that is
executable in s

Example:
s = {ontable(a), on(c,a), clear(c), ontable(b), clear(b),handempty}

o = unstack(x,y)

a = unstack(c,a) C [ ]
a

unstack(x,y)
Precond: on(x,y), clear(x), handempty
Effects: ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y)
unstack(c,a)
Precond: on(c,a), clear(c), handempty
Effects: ~on(c,a), ~clear(c), ~handempty, holding(c), clear(a)

Dana Nau: CMSC 421, U. of Maryland
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Result of performing an action

® If ais executable in s, the result of performing it is
v(s,a) = (s — effects(a)) U effects™(a)
¢ Delete the negative effects, and add the positive ones

O s = {ontable(a), on(c,a), clear(c), ontable(b), clear(b), handempty}
® « = unstack(c,a) C ]
Precond: on(c,a), clear(c), handempty allb
Effects: ~on(c,a), ~clear(c), ~handempty,
holding(¢), clear(a)
® )(s,a) = {ontable(a), entesaj—elearte); ontable(b), clear(b), handempty
holding(c), clear(a)}

Il

[a][b] =
Dana Nau: CMSC 421, U. of Maryland
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Executability of Plans

® Plan: a sequence of actions & = (ay, ..., a,)

® Aplann=(ay, ..., a,)1s executable 1n the state s, 1f
» a, 1s executable 1n s, producing some state s, = y(sy,a,)
» a,1s executable 1n s, producing some state s, = y(s,,a,)
» ...

» a,1s executable in s, , producing some state s,= y(s, ,,a,)

n—1»
® In this case, we define y(s,m) = s,
® Example on next slide

cl

a ‘b‘

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/



s = {ontable(a), on(c,a), clear(c), ontable(b),clear(b), handempty} C

n = (unstack(c,a), putdown(c), pickup(b), stack(b,a)) S0 a ‘ b ‘

unstack(c,a)

Precond: on(c,a), clear(c), handempty
Effects: ~on(c,a), ~clear(c), ~handempty, holding(c), clear(a)

putdown(c)

Effects: ~holding(c), ontable(c), clear(c), handempty

Precond: holding(c) I_l_l
‘ a ‘ ‘ b ‘ ‘ C ‘

S2
pickup(b) {/L
Precond: ontable(b), clear(b), handempty =)
Effects: ~ontable(b), ~clear(b), ~handempty, holding(b) b
S3
a| |
stack(b,a)
Precond: holding(b), clear(a)
Effects: ~holding(b), ~clear(a), on(b,a), clear(b), handempty b

Dana Nau: CMSC 421, U. of Maryland
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Problems and Solutions

® Planning problem: a triple P = (O, s,, g)
¢ O 1s a set of operators
® 5, 1s the initial state - a set of atoms
¢ g the goal formula - a set of literals
® Every state that satisfies g 1s a goal state

® A plan w1s a solution for P=(0,s,,g) 1t
¢ 7 1s executable 1n s,

¢ the resulting state y (s, m) satisfies g

Dana Nau: CMSC 421, U. of Maryland
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Example

® O = {stack(x,y), unstack(x,y), pickup(x), putdown(x)}

® s,= {ontable(a), on(c,a), clear(c),
ontable(b), clear(b), handempty}

® ¢ = {on(a,b)}

® One of the solutions is

a ‘b‘

el

¢ 7 = (unstack(c,a), putdown(c), pickup(a), stack(a,b))

Dana Nau: CMSC 421, U. of Maryland
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Forward-Search Algorithms

® Go forward from the initial state a, " S . s,
® Breadth-first and best-first So &, TS
S -
¢ Sound.: if they return a plan, s >
then the plan is a solution a3 s,

¢ Complete: 1f a problem has a solution, then they will return one
¢ Usually not practical because they require too much memory

» Memory requirement is exponential in the length of the solution
® Depth-first search, greedy search

¢ More practical to use

¢ Worst-case memory requirement is linear in the length of the solution
¢ Sound but not complete

® But classical planning has only finitely many states

¢ Thus, can make depth-first search complete by doing loop-checking

Dana Nau: CMSC 421, U. of Maryland
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Branching Factor of Forward Search

do
initial state goal

® Forward search can have a very large branching factor
¢ pickup(a,), pickup(a,) , ..., pickup(as,)

® Thus forward-search can waste time trying lots of irrelevant actions
¢ Need a good heuristic to guide the search
¢ [’ll discuss one later

® But first, a very different kind of planning algorithm

Dana Nau: CMSC 421, U. of Maryland
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Graphplan

procedure Graphplan:
® fork=0,1,2, ...
o(Graph expansion: )
» create a “planning graph” that contains & “levels” relaxed
| Check whether the planning graph satisfies a necessary | Proplem
\(but insufficient) condition for plan existence )
¢ Ifit doeS, then Possib|e possible
» do solution extraction: literals - actions
In state s; in state s,

e backward search, ® ...0 — ® -
modified to consider ..
only the actions in ® — ® ...
the planning graph Y ) —

e 1f we find a solution, — -
then return it @ - — ®

Dana Nau: CMSC 421, U. of Maryland
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The Planning Graph

® Secarch space for a relaxed version of the planning problem

® Alternating layers of ground literals and actions

& At action-level i: all actions whose preconditions appear in state-level i—1

¢ At state-level i: all the effects of all the actions at action-level i

¢ Edges: preconditions and effects

state-level i-1

action-level i

state-level i

state-level O (the literals true in s,) \

preconditions

A maintenance action for a literal /.
It represents what happens if we
don’t change /.

Dana Nau: CMSC 421, U. of Maryland
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Example
® Due to Dan Weld (U. of Washington)

® Suppose you want to prepare dinner as a surprise for your sweetheart (who 1s
asleep)

s, = {garbage, cleanHands, quiet}
g = {dinner, present, - garbage}

Action Preconditions Effects

cook()  cleanHands dinner

wrap()  quiet present

carry()  none -~ garbage, —cleanHands
dolly()  nome -~ garbage, ~quiet

Also have the maintenance actions: one for each literal

Dana Nau: CMSC 421, U. of Maryland
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Example (continued)

® state-level O:

{all atoms in s,} U state-level O | action-level 1 | state-level 1
{negations of all atoms not in s,} garb "
S ar
® action-level 1: carry )
{all actions whose preconditions —1garb
are satisfied and non-mutex in s,} dolly
@ state-level I: cleantl L= cleant
fall effects of all of the \ S cleanH
actions in action-level 1} cook
quiet —— ] quiet
Action Preconditions Effects \ wrap 1 quiet
. quie
cook() cleanHands dinner
wrap() quiet present dinner
carry() none -~ garbage, —cleanHands present
dolly() none - garbage, —quiet
Also have the maintenance actions dinner dinner
— present — — present
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Mutual Exclusion

O O O

O O O Q O

o O 0 CO Q

O B—C I—O O B—7OC

o/ O O
Inconsistent Competing Inconsistent
Effects Interference Needs Support

® Two actions at the same action-level are mutex if

& [nconsistent effects. an effect of one negates an effect of the other

& [nterference: one deletes a precondition of the other

¢ Competing needs: they have mutually exclusive preconditions

® Otherwise they don’t interfere with each other
¢ Both may appear in a solution plan
® Two literals at the same state-level are mutex if

& Inconsistent support: one is the negation of the other
or all ways of achieving them are pairwise mutex
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Example (continued)

® Augment the graph to indicate mutexes :
, , . state-level O | action-level 1 | state-level 1
® carry is mutex with the maintenance
actlon. for garbage (inconsistent effects) garb . garb
® dolly is mutex with wrap \
¢ interference T1garb
® ~quiet 1s mutex with present

cleanH . cleanH

¢ inconsistent support

® cach of cook and wrap 1s mutex with TcleanH

a maintenance operation

quiet -quiet

Action _ Preconditions Effects
cook() cleanHands dinner
wrap() quiet  present

“1quiet

dinner

carry() none  —garbage, ~cleanHands
dolly() momne  -garbage, ~quiet

present

= dinner — = dinner

Also have the maintenance actions

= present —1 = present
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Example (continued)

® Check to see whether there’s a possible
solution

® Recall that the goal is
& {-garbage, dinner, present}

® Note that in state-level 1,

¢ All of them are there

¢ None are mutex with each other
Thus, there’s a chance that a plan exists
Try to find 1t

¢ Solution extraction

Dana Nau: CMSC 421, U. of Maryland
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state-level O | action-level 1 | state-level 1

garb . —— -garb

cleanH . . cleanH

“1cleanH

quiet -quiet

“1quiet

= dinner

= present —1 = present
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Solution Extraction

The set of goals we are

trying to achieve \ /

procedure Solution-extraction(g,;)

The level of the state S

A real action or a maintenance action

if /=0 then return the solution

for each literal /in g /
nondeterministically choose an action
to use in state s ; | to achieve / state-  action-  state-
if any pair of chosen actions are mutex 16_"61 level le\{el
then backtrack i-1 i :

. "_. — . '

g’ := {the preconditions of
the chosen actions}

Solution-extraction(g’, j—1) ® — @ -
. . e, . o
end Solution-extraction :1‘
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Example (continued)

® Two sets of actions for the goals at

state-level 1
® Neither of them works

¢ Both sets contain actions that are

mutex

Dana Nau: CMSC 421, U. of Maryland

state-level O

action-level 1

state-level 1

garb x garb
carr
q . \—>{Tgar
cleanH - et Cl@aNH
‘\ “1cleanH
|{ cook
quiet =~ ‘ — quiet
, “1quiet
Ginner)
present)
—dinner  — = dinner
= present — = present
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Recall what the algorithm does

procedure Graphplan:
® fork=0,1,2,...
& Graph expansion:
» create a “planning graph” that contains k& “levels”

¢ Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

¢ If it does, then
» do solution extraction:

e backward search,
modified to consider
only the actions in
the planning graph

e 1f we find a solution,
then return it
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Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

49



Example (continued)

state-level O | action-level 1 | state-level 1 | action-level 2 | state-level 2

® Go back and do garb garb garb
carr \
more graph ~garb ~garb
cXpansion do"y
cleanH . .\ cleanH .\ cleanH
® Generate another \j cleanHiMN——— \ \ WcleanH\
action-level cook cook
and another state-  quiet quiet quiet
level wrap wrap\ N\ . \
“Tquiet — Tquiet
dinner 3 \ \dinner
presen | \ present
= dinner — —dinner — = dinner
—present — - presen/ — — present
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Example (continued)

state-level O | action-level 1 | state-level 1 | action-level 2 | state-level 2

® Solution garb - garb s garb
extraction carr )
ST ar
® Twelve combinations dolly 19

¢ Two ways to
achieve present

at level 4 cleanH s cleanH s
¢ Three ways to (
: 1cleanHi=pie=
achieve —garb \
COOK
¢ Two ways to quiet ==  quiet™s=—_7
achieve dinner wrap )
“Tquiet

presentd)

b

— = dinner
1 / 1

— presen

= dinner

=1 present
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Example (continued)

state-level O

action-level 1 | state-level 1

action-level 2

state-level 2

Several of the

combinations look
OK at level 2

Here’s one of them

Dana Nau: CMSC 421, U. of Maryland
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garb garb m garb
carr carr
~garbl (=S (Cgar!
dolly dolly
cleanH cleanH \ \ cleanH\
\1 cIeanH T1cleanH
cook ‘ cook
quiet — - — quiet
wrap wra \
; ‘—K A Tquiet
. ‘ mner
presen A l present \
—dinner — = dinner —dinner
— present ] - presen/ — — present
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Example (continued)

® C(Call Solution-

state-level O | action-level 1 | state-level 1 | action-level 2 | state-level 2

Extraction

recursively at garb garb garb
carr ncarr

level 2 ( —1garh i ‘='¥

@® It succeeds dolly, ) dolly\

) cleanH '( .\ cleanHs= ’/ . ) cleanH
® Solution whose V \

parallel length TcleanHip | TcleanH
is 2 | ‘ { cook

quiet "‘ — quiet} e quiet
. "=‘ s 1quiet
T AR
presen A‘;

= dinner ] = dinner — —dinner
/ 1

—present — -1 presen = present
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Back to Forward Search

do
initial state goal

® Earlier, I said
¢ Forward search can have a very large branching factor

» pickup(a,), pickup(a,) , ..., pickup(as,,)
¢ Thus forward-search can waste time trying lots of irrelevant actions

» Need a heuristic to guide the search

® We can use planning graphs to compute such a heuristic

Dana Nau: CMSC 421, U. of Maryland
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Getting Heuristic Values from
a Planning Graph

® Recall how GraphPlan works:
loop
Graph expansion: this takes polynomial time

extend a “planning graph” forward from the initial state
until we have achieved a necessary (but insufficient) condition
for plan existence

this takes exponential time

Solution extraction:
search backward from the goal, looking for a correct plan
if we find one, then return it

repeat
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Using Planning Graphs to Compute h(s)

® In the graph, there are alternating ° : ! .
layers of ground literals and actions 9 ...0 —— ®

® The number of “action” layers 1s a lower
bound on the number of actions in the plan ® — ®

® Construct a planning graph, starting at s N | —

® As(s,g) = level of the first layer that — ..
“possibly achieves™ the goal ® — o

¢ Some ways to improve this, but
I’11 skip the details
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The FastForward Planner

® Use a heuristic function /(s) similar to As(s,g) /I\O
® Don’t want an A*-style search (takes too much memory)
® Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
S := the child of s for which h(s) is smallest
(i.e., the child we think is closest to a solution)
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Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 57



The FastForward Planner

® Use a heuristic function /(s) similar to As(s,g) /\D
® Don’t want an A*-style search (takes too much memory) ®

® Instead, use a greedy procedure: /
@

until we have a solution, do
expand the current state s
S := the child of s for which h(s) is smallest
(i.e., the child we think is closest to a solution)
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The FastForward Planner

® Use a heuristic function /(s) similar to As(s,g) /\D
® Don’t want an A*-style search (takes too much memory) ®

® Instead, use a greedy procedure: \'
@

until we have a solution, do
expand the current state s
S := the child of s for which h(s) is smallest
(i.e., the child we think is closest to a solution)
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The FastForward Planner

® Use a heuristic function /(s) similar to As(s,g) /\D
® Don’t want an A*-style search (takes too much memory) ®

® Instead, use a greedy procedure: \'
@

until we have a solution, do
expand the current state s
S := the child of s for which h(s) is smallest
(i.e., the child we think is closest to a solution)
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The FastForward Planner

® Instead, use a greedy procedure: \'
@

until we have a solution, do
expand the current state s
S := the child of s for which h(s) is smallest

(i.e., the child we think is closest to a solution) ®

® Problem: can get caught in local minima \.
& h(s")> h(s) for every successor s’ of s ©

¢ Escape by doing a breadth-first search until you find a node with lower
cost

® Problem: can hit a dead end - in this case, FF fails
® No guarantee on whether FF will find a solution, or how good a solution
¢ But FF works quite well on many classical planning problems
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International Planning Competitions

® International planning competitions in 1998, 2002, 2004, 2006, 2008

¢ Many of the planners in these competitions have incorporated ideas from
GraphPlan and FastForward

® Graphplan was developed in 1995
& Several years before the competitions started

® FastForward was introduced in the 2000 International Planning Competition
¢ It got an “outstanding performance” award

¢ Large variance in how good its plans were, but it found them very quickly
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Three Main Types of Planners

1. Domain-specific
2. Domain-independent
3. Configurable
» Domain-independent planning engine

» The mput includes information about how to plan efficiently in a given
problem domain

® [’ll now talk about a particular kind of configurable planner

Dana Nau: CMSC 421, U. of Maryland
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Motivation

® For some planning problems, we may already have ideas about good ways
to solve them
® Example: travel to a destination that’s far away:
¢ Domain-independent planner:
» many combinations vehicles and routes
¢ Experienced human: small number of “recipes”
e.g., flying:
1. buy ticket from local airport to remote airport
2. travel to local airport
3. fly to remote airport
4. travel to final destination
® How to get planning systems to use such recipes?
¢ General approach: Hierarchical Task Network (HTN) planning
¢ We’ll look at a simpler special case: Task-List Planning
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Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

64



Task-List Planning

® States and operators: same as in classical planning

® Instead of achieving a goal, we will want to accomplish a list of fasks
¢ Recursively decompose tasks into smaller and smaller subtasks
¢ At the bottom, actions that we know how to accomplish directly

® T7ask: an expression of the form #(uy,...,u,)
& t1s atask symbol, and each u; 1s a term

® Two kinds of task symbols (and tasks):
& primitive: tasks that we know how to execute directly
» task symbol is the head of an operator
& nonprimitive: tasks that must be decomposed into subtasks

» use methods (next slide)
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Methods

® Method: a 4-tuple m = (head, task, precond, subtasks)
¢ Jead: the method’s name, followed by list of variable symbols (x,,...,x,)

& task: a nonprimitive task

& precond: preconditions (literals)

& subtasks: a sequence of tasks (¢, ..

air-travel(x,y,u,v)
task: travel(x,y)

L)

precond: far(x,y), airport(x,u), airport(y,v)

subtasks: get-ticket(u,v), travel(x,u),
fly(u,v), travel(v,y)

air-travel(x,y,u,v

travel(x,))

Precond: far(x,y), airport(x,u), airport(y,v)

[ AN

Precond: ~far(x,y)

get-ticket (u,v) |[travel (x, u)|| fly (&,v)

travel (v,y) | get-taxi

ride-taxi(x,y)||pay-driver
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Domains, Problems, Solutions

® Task-list planning domain: methods, operators

® Task-list planning problem: methods, operators, initial state, initial
task list

® Solution: any executable plan nonprimitive task

that can be generated by @J@

recursively applying

¢ methods to precond
. o, \ R
nonprimitive tasks 7/ <
& operators to primitive task primitive task

rimitive tasks > }
p @ator inst@ @erator inst@
N\ N\

Sy | |precond| |effects| |s,| |precond| |effects| | s
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Example

Task: travel from UMD to UCLA

® Use air-travel method

® Use taxi-travel method for

some of the subtasks

® The other subtasks
(get-taxi, etc.)

travel(UMD,UCLA

air-travel(UMD,UCLA) >+~~~
.

are primitive

Precond: far(UMD,UCLA),
airport(UMD,BWI),
airport(LAX,UCLA)

/

\

__- honprimitive task

<+ -

/

\

N
>

oet-ticket (UMD, UCLA ) (travel (UMD,BWTI)

fly (BWILAX)

travel (LAX,UCLA)

< taxi-travel(UMD,BWI) >

¥

Precond: ~far(UMD,BWI)

»
»

/

_-method instance

@ravel(LAX,U@

'

Precond: ~far(LAX,UCLA)

[
>

get-taxi || ride-taxi (UMD,BWI)

pay-driver

get-taxi || ride-taxi (LAX,UCLA)

pay-driver
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Solving Task-List Planning Problems

® TFD(s,(z,...,1))
¢ 1f k=0 (1.e., no tasks) then return the empty plan
¢ clse if there 1s an action a such that head(a) = ¢, then

» 1f s satisfies precond(a) then

state s; task list T=(|t, |,t,,..
o return TED(Y(s, 1, )t 1)) s (Jtapt
: action|a
» else return failure
¢ clse state|y(s,a)|; task list T=(t,, ..
» A= {m : mis a method instance such that
task(m)=t,, and s satisfies precond(m)}
» 1f active 1s empty then return failure
» nondeterministically choose m in A4 task list T=( t,|,t,,
» letu,..., u; be m’s subtasks el nsmiee 7
» return TFD(s, (u,..., Ujs byy s 1)) v
task list T=(juy,...,u; |t,,
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® TFD(s,(¢,...,t))

¢ 1f k=0 (1.e., no tasks) then return the empty plan
¢ clse if there 1s an action a such that head(a) = ¢, then

Example

» 1f s satisfies precond(a) then
e return TED(y(s,?)),(%,,...,t;))

» else return failure

¢ clse

» A= {m : mis a method instance such that

» 1f active 1s empty then return failure
» nondeterministically choose m in A4

task(m)=t,, and s satisfies precond(m)}

» letu,..., u; be m’s subtasks
» return TFD(s, (u,..., Ujs byy s 1))

air-travel(x,y,u,v

Precond: far(x,y), airport(x,u), airport(y,v)

[

AN

S, :| far(UMD,UCLA),

task
list:

airport(UMD,BWI),
airport(UCLA,LAX)

(travel(UMD,UCLA))

apply
air-travel
method:

(get-ticket (UMD,UCLA)

travel (UMD,BWI)
fly (BWI,LAX)
travel (LAX,UCLA))

apply | far(UMD,UCLA),

get-

apply

taxi-travel

method:

airport(UMD,BWI),

ticket | airport(UCLA,LAX)
action:| ticket(UCLA,LAX)

(get-taxi
ride-taxi(UMD,BWI)
pay-driver
fly (BWI,LAX)
travel (LAX,UCLA))

Precond: ~far(x,y)

get-ticket (u,v)

travel (x, u)

fly (u,v)

travel (v,))

pet-taxi

ride-taxi(x,y)
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Increasing Expressivity

® Easy to generalize this beyond classical planning
¢ States can be arbitrary data structures

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East —3NT
On lead:  West at trick 3

East: #KJ74
West: #A2
Out: #QT98653

¢ Preconditions and effects can include
» logical inferences (e.g., Horn clauses)
» complex numeric computations

» interactions with other software packages
® c.g., SHOP and SHOP2

http://www.cs.umd.edu/projects/shop
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method travel-by-foot (a,x,))
precond: distance(z,y) < 2
task: travel(a, z, y)

subtasks: walk(a, z,y) Exam ple

method travel-by-taxi(a,x,y)
task: travel(a, z,y)
precond: cash(a) > 1.5+ 0.5 x distance(zx, y)
subtasks: (call-taxi(a,z), ride(a, z,y), pay-driver(a, z,y))

operator walk(a,x,y)
precond: location(a) =z @ >

effects: location(a) «— y

® Simple travel-planning domain
operator call-taxi(a, x) ¢ Go from one location to another
effects: location(tazxi) — x ¢ State = {values of variables}

operator ride-taxi(a,x,y)
precond: location(tazxi) = x, location(a) = x
effects: location(taxi) «— y, location(a) «— y

operator pay-driver(a,z,y)

precond: cash(a) > 1.5+ 0.5 x distance(z, y)
effects: cash(a) < cash(a) — 1.5 + 0.5 x distance(z,y) 72



Planning Problem:

| am at home, | have $20,
| want to go to a park 8 miles away

Initial task:

travel(me,home,park)

T —

home park

travel-by-foot
Precond: cash(me) > 1.50 + 0.50*distance(home,park)

Precond: distance(home,park) <2

1
< Precondition succeeds >
womposition into subtasks

yd
<Precondition fails >

/

~_
)

pay-driver(me,home,park)

call-taxi(me,home) @ ride(me,home,park) @
Initial’ Precolnd: | Precolnd: \ Precorl1d: Final ':
state \\\ Effects: ... ) \\\ Effects: ... \ Effects: ... State,,"
(5 ocaon(n) homs, casn) 20 dancethomeraty 8
(5. locaiontme-home, ocaion(a)- home,cashne) 20, Ganceomepary § 1 |/
(5= osaon(mey gk, loaion(a-park, cashme) 20, dsancethomepay s~
='f f = loationme)-park, ocation(in) park, cashine) 1430, dstanethome par)-$1_++
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Comparison to Classical Planners

® Advantages:

¢ Can encode “recipes” (standard ways do planning in a given
domain) as collections of methods and operators

» Helps the planning system do more-intelligent search - can
speed up planning by many orders of magnitude (e.g.,
polynomial time versus exponential time)

» Produces plans that correspond to how a human might solve
the problem

¢ Greater expressive power
» Preconditions and effects can be computational algorithms
® Disadvantages:
¢ More complicated than just writing classical operators

¢ The author needs knowledge about planning in the given domain
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SHOP2

® SHOP2:
¢ http://www.cs.umd.edu/projects/shop

¢ Algorithm is a generalized version of TFD

¢ Won an award in the AIPS-2002 Planning Competition
¢ Freeware, open source

¢ Downloaded more than 13,000 times

¢ Used 1n hundreds (thousands?) of projects worldwide
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