
Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Automated Planning

Dana S. Nau

CMSC 421, Spring 2010

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

3. 	
A systematic arrangement of elements
or important parts; a configuration or
outline: a seating plan; the plan of a
story.	

4. 	
A drawing or diagram made to scale
showing the structure or arrangement
of something.	

5.  A program or policy stipulating a
service or benefit: a pension plan.	

plan n.	

1. 	
A scheme, program, or method

worked out beforehand for the
accomplishment of an objective: a
plan of attack. 	

2. 	
A proposed or tentative project or
course of action: had no plans for the
evening. 	

Some Dictionary Definitions of “Plan”

  These two are closest to the
meaning used in AI

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Processes:

Opn A BC/WW Setup Runtime LN Description
001 A VMC1 2.00 0.00 01 Orient board
 02 Clamp board
 03 Establish datum point at bullseye (0.25, 1.00)
001 B VMC1 0.10 0.43 01 Install 0.30-diameter drill bit
 02 Rough drill at (1.25, -0.50) to depth 1.00
 03 Finish drill at (1.25, -0.50) to depth 1.00
001 C VMC1 0.10 0.77 01 Install 0.20-diameter drill bit
 02 Rough drill at (0.00, 4.88) to depth 1.00
 03 Finish drill at (0.00, 4.88) to depth 1.00
 [...]
001 T VMC1 2.20 1.20 01 Total time on VMC1
[...]
004 A VMC1 2.00 0.00 01 Orient board
 02 Clamp board
 03 Establish datum point at bullseye (0.25, 1.00)
004 B VMC1 0.10 0.34 01 Install 0.15-diameter side-milling tool
 02 Rough side-mill pocket at (-0.25, 1.25)
 length 0.40, width 0.30, depth 0.50
 03 Finish side-mill pocket at (-0.25, 1.25)
 length 0.40, width 0.30, depth 0.50
 04 Rough side-mill pocket at (-0.25, 3.00)
 length 0.40, width 0.30, depth 0.50
 05 Finish side-mill pocket at (-0.25, 3.00)
 length 0.40, width 0.30, depth 0.50
004 C VMC1 0.10 1.54 01 Install 0.08-diameter end-milling tool
 [...]
004 T VMC1 2.50 4.87 01 Total time on VMC1

005 A EC1 0.00 32.29 01 Pre-clean board (scrub and wash)
 02 Dry board in oven at 85 deg. F
005 B EC1 30.00 0.48 01 Setup
 02 Spread photoresist from 18000 RPM spinner
005 C EC1 30.00 2.00 01 Setup
 02 Photolithography of photoresist
 using phototool in "real.iges"
005 D EC1 30.00 20.00 01 Setup
 02 Etching of copper
005 T EC1 90.00 54.77 01 Total time on EC1

006 A MC1 30.00 4.57 01 Setup
 02 Prepare board for soldering
006 B MC1 30.00 0.29 01 Setup
 02 Screenprint solder stop on board
006 C MC1 30.00 7.50 01 Setup
 02 Deposit solder paste at (3.35,1.23) on board using nozzle
 [...]
 31 Deposit solder paste at (3.52,4.00) on board using nozzle
006 D MC1 0.00 5.71 01 Dry board in oven at 85 deg. F to solidify solder paste
006 T MC1 90.00 18.07 01 Total time on MC1
[...]
011 A TC1 0.00 35.00 01 Perform post-cap testing on board
011 B TC1 0.00 29.67 01 Perform final inspection of board
011 T TC1 0.00 64.67 01 Total time on TC1

999 T 319.70 403.37 01 Total time to manufacture

[a representation] of future ���
 behavior … usually a set of���
 actions, with temporal and ���
 other constraints on them,���
for execution by some agent���
or agents. - Austin Tate���
	
[MIT Encyclopedia of the	

	
Cognitive Sciences, 1999]	

A portion of a manufacturing process plan

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

  Sheet-metal bending machines - Amada Corporation
  Software to plan the sequence of bends

[Gupta and Bourne, J. Manufacturing Sci. and Engr., 1999]

Manufacturing

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

  Autonomous planning, scheduling, control

  NASA: JPL and Ames
  Remote Agent

Experiment (RAX)
  Deep Space 1

  Mars Exploration
Rover (MER)

Space Exploration

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

http://xkcd.com/695
  On January 26th, 2274 Mars days into the mission, NASA declared Spirit a

'stationary research station', expected to stay operational for several more months
until the dust buildup on its solar panels forces a final shutdown.

Continued
on the next
slide …

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

http://xkcd.com/695
  On January 26th, 2274 Mars days into the mission, NASA declared Spirit a

'stationary research station', expected to stay operational for several more months
until the dust buildup on its solar panels forces a final shutdown.

Continued
from the
previous
slide:

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

Outline
  Conceptual model for planning
  Restrictive assumptions to simplify the problem
  Classical planning

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

Source Material
  My lectures on AI planning are based partly on Russell & Norvig,

and partly on following book:

  M. Ghallab, D. Nau, and P. Traverso
Automated Planning: Theory and Practice
Morgan Kaufmann Publishers
May 2004
  Web site: http://www.laas.fr/planning

  For CMSC 421, you don’t need this book
  The lecture slides are self-contained

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

Conceptual Model
1. Environment

State transition system
 Σ = (S,A,E,γ)
S = {states}
A = {actions}
E = {exogenous events}
γ = state-transition function

System Σ

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

Example: The Blocks World
  Infinitely wide table, finite number of children’s blocks
  A robot hand that can pick up blocks and put them down
  A block can sit on the table or on another block
  Ignore where the blocks are located on the table
  Just consider

  whether each block is on the table, on another block, or being held
  whether each block is clear or covered by another block
  whether the robot hand is holding anything

  Example state of the world:

  For n blocks, the
number of states
is more than n!

c"
a" b" e"

d"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

Σ = (S,A,E,γ)

  S = {states}
  A = {actions}
  E = {exogenous events}
  State-transition function
γ: S x (A ∪ E) → 2S

  S = {s0, s1, s2, …, s22}

  A = {take c off of a,
 put c on the table,
 …}

  E = {}

  γ: see the arrows

State Transition
System

s1

s0
c"
a" b"

c"
a" b"

s5
c"
a"

b"

s3

s2
a" b"

c"a"
b"c"

…

…

…

s4 b"
a" c"

…

…

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

Observation function
h: S → O

Given observation
o in O, produces
action a in A

Conceptual Model
2. Controller

Controller

c"a"
b"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14

Omit unless
planning is online

Planning problem Planning problem Planning problem

Conceptual Model
3. Planner’s Input

Planner

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

Planning Problem
A planning problem includes:	

  A description of Σ	

  An initial state, e.g., s0	

  or a set of possible���
initial states (maybe with���
a probability distribution)	

  An objective, e.g.,	

  a goal state, e.g., s4	

  a set of goal states, e.g.,���

{all states in which b is on a}	

  a task to perform, e.g.,���

put all the blocks into a single stack	

  a “trajectory” of states	

  an objective function	

  …	

s1

s0
c"
a" b"

c"
a" b"

s5
c"
a"

b"

s3

s2
a" b"

c"a"
b"c"

…

…

…

s4 b"
a" c"

…

…

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

Instructions to
the controller

Conceptual Model
4. Planner’s Output

Planner

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

Plans
  Classical plan:���

a sequence of actions	

	
(take c off of a,���
 put c on the table,���
 take b off the table,���
 put b on a)	

  Policy:���
a partial function from S into A	

	
 {(s0, take c off of a),���
 (s1, put c on the table),���
 (s2, take b off the table),���
 (s3, put b on a)}	

s3

s2

s1

s0
c"
a" b"

c"
a" b"

a" b"

c"a"
b"

s4
b"
a" c"

take c off of a

put c on the table

c"

take b off the table

put b on a

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

Scheduler

Planning Versus Scheduling

  Scheduling
  Decide when and how to

perform a given set of actions
» Time constraints
» Resource constraints
» Objective functions

  Typically NP-complete

  Planning
  Decide what actions to use to achieve some set of objectives
  Can be much worse than NP-complete

» worst case is undecidable

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

Three Main Types of Planners

1. Domain-specific
2. Domain-independent
3. Configurable

  I’ll talk briefly about each

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

1. Domain-Specific Planners (Chapters 19-23)
  Made or tuned for

a specific domain
  Won’t work well (if

at all) in any other domain

  Most successful real-world
planning systems work this
way

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21

Types of Planners
2. Domain-Independent

  In principle, a domain-independent planner
works in any planning domain

  Uses no domain-specific knowledge except
the definitions of the basic actions

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 22

  In practice,
  Not feasible to develop

domain-independent planners
that work in every possible
domain

  Make simplifying assumptions to
restrict the set of domains
  Classical planning
  Historical focus of most

automated-planning research

Types of Planners
2. Domain-Independent

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

  A0: Finite system:
  finitely many states, actions, events

  A1: Fully observable:
  the controller always Σ’s current state

  A2: Deterministic:
  each action has only one outcome

  A3: Static (no exogenous events):
  no changes but the controller’s actions

  A4: Attainment goals:
  a set of goal states Sg

  A5: Sequential plans:
  a plan is a linearly ordered sequence

of actions (a1, a2, … an)
  A6: Implicit time:

  no time durations; linear sequence of instantaneous states
  A7: Off-line planning:

  planner doesn’t know the execution status

Restrictive Assumptions

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 24

  Classical planning requires all eight restrictive assumptions
  Offline generation of action sequences for a deterministic, static,

finite system, with complete knowledge, attainment goals, and
implicit time

  Reduces to a search problem:
  Given (Σ, s0, Sg)

»  s0 is the initial state, Sg is a set of goal states
  Find a sequence of actions (a1, a2, … an) that produces

a sequence of state transitions (s1, s2, …, sn)
such that sn is in Sg.

  Constraint-satisfaction problems also were search problems
  But there were special-purpose problem representations and

algorithms that were much faster than ordinary search algorithms
  Can do something similar for planning problems

  Several ways to do this
  I’ll discuss a few of the better-known ones

Classical Planning (Chapters 2-9)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 25

Problem Representation
  Several ways to represent classical planning domains

  The classical representation (or STRIPS representation)
is the best known

  That’s what I’ll describe

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 26

Symbols
  Start with a function-free first-order language

  Finitely many predicate names and constant symbols, infinitely many
variable symbols, but no function symbols

  Add a finite set of operator names
  e.g., symbols for the blocks world:

  Constant symbols: a, b, c, d, e, … (names of blocks)
  Variable symbols: u, v, w, x, y, z, x1, x2, …
  Predicates:

ontable(x) - block x is on the table
on(x,y) - block x is on block y
clear(x) - block x has nothing on it
holding(x) - the robot hand is holding block x
handempty - the robot hand isn’t holding anything

  Operator names: pickup, putdown, stack, unstack

c"
a" b" e"

d"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 27

States
  State: a set s of ground atoms representing what’s currently true
  Only finitely many ground atoms, so only finitely many possible

states

  Example:
 {ontable(a), on(c,a), clear(c),
 ontable(b), clear(b), holding(d),
 ontable(e), clear(e)}

c"
a" b" e"

d"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 28

Operators
  Operator: a triple (head, preconditions, effects)

  head: an operator name and a parameter list
» E.g., opname(x1, …, xk)
» No two operators can have the same name
» Parameter list must include all of the operator’s variables

  preconditions: literals that must be true to use the operator
  effects: literals that the operator will make true

  We’ll generally write operators in the following form:

  opname(x1, …, xk)
» Precond: p1, p2, …, pm
» Effects: e1, e2, …, en

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 29

unstack(x,y)
 Precond: on(x,y), clear(x), handempty
 Effects: ~on(x,y), ~clear(x), ~handempty,

 holding(x), clear(y)

stack(x,y)
 Precond: holding(x), clear(y)
 Effects: ~holding(x), ~clear(y),

 on(x,y), clear(x), handempty

pickup(x)
 Precond: ontable(x), clear(x), handempty
 Effects: ~ontable(x), ~clear(x),

 ~handempty, holding(x)

putdown(x)
 Precond: holding(x)
 Effects: ~holding(x), ontable(x),

 clear(x), handempty

Blocks-World Operators c"
a" b"

c"
a" b"

c"
a" b"

c"
a"

b"

c"
a" b"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 30

Actions and Plans
  Action: a ground instance (via substitution) of an operator

unstack(c,a)
 Precond: on(c,a), clear(c), handempty
 Effects: ~on(c,a), ~clear(c), ~handempty,

 holding(c), clear(a)

c"
a" b"

c"
a" b"

unstack(x,y)
 Precond: on(x,y), clear(x), handempty
 Effects: ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 31

Notation
  Let S be a set of literals. Then

  S+ = {atoms that appear positively in S}
  S– = {atoms that appear negatively in S}

  Let a be an operator or action. Then
  precond+

 (a) = {atoms that appear positively in precond(a)}
  precond–

 (a) = {atoms that appear negatively in precond(a)}
  effects+

 (a) = {atoms that appear positively in effects(a)}
  effects–

 (a) = {atoms that appear negatively in effects(a)}

  Example:
 unstack(x,y)
 Precond: on(x,y), clear(x), handempty
 Effects: ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y)

  effects+
 (unstack(x,y)) = {holding(x), clear(y)}

  effects–
 (unstack(x,y)) = {on(x,y), clear(x), handempty}

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 32

Executability
  An action a is executable in s if s satisfies precond(a),

  i.e., if precond+
 (a) ⊆ s and precond–

 (a) ∩ s = ∅
  An operator o is applicable to s if there’s a ground instance a of o that is

executable in s
  Example:
  s = {ontable(a), on(c,a), clear(c), ontable(b), clear(b),handempty}
  o = unstack(x,y)
  a = unstack(c,a)

unstack(x,y)
 Precond: on(x,y), clear(x), handempty
 Effects: ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y)

unstack(c,a)
 Precond: on(c,a), clear(c), handempty
 Effects: ~on(c,a), ~clear(c), ~handempty, holding(c), clear(a)

c"
a" b"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 33

Result of performing an action
  If a is executable in s, the result of performing it is

 γ(s,a) = (s – effects–(a)) ∪ effects+(a)
  Delete the negative effects, and add the positive ones

  s = {ontable(a), on(c,a), clear(c), ontable(b), clear(b), handempty}

  a = unstack(c,a)
 Precond: on(c,a), clear(c), handempty
 Effects: ~on(c,a), ~clear(c), ~handempty,

 holding(c), clear(a)

  γ(s,a) = {ontable(a), on(c,a), clear(c), ontable(b), clear(b), handempty,
 holding(c), clear(a)}

c"
a" b"

c"
a" b"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 34

Executability of Plans
  Plan: a sequence of actions π = (a1, …, an)
  A plan π = (a1, …, an) is executable in the state s0 if

» a1 is executable in s0, producing some state s1 = γ (s0,a1)
» a2 is executable in s1, producing some state s2 = γ (s1,a2)

» …
» an is executable in sn–1, producing some state sn= γ (sn–1,an)

  In this case, we define γ (s0,π) = sn
  Example on next slide

c"
a" b"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 35

s3

s2

s1

s0
c"
a" b"

c"

a" b"

a" b"

c"a"
b"

s4
b"
a" c"

c"

unstack(c,a)
 Precond: on(c,a), clear(c), handempty
 Effects: ~on(c,a), ~clear(c), ~handempty, holding(c), clear(a)

stack(b,a)
 Precond: holding(b), clear(a)
 Effects: ~holding(b), ~clear(a), on(b,a), clear(b), handempty

pickup(b)
 Precond: ontable(b), clear(b), handempty
 Effects: ~ontable(b), ~clear(b), ~handempty, holding(b)

putdown(c)
 Precond: holding(c)
 Effects: ~holding(c), ontable(c), clear(c), handempty

s = {ontable(a), on(c,a), clear(c), ontable(b),clear(b), handempty}
π = (unstack(c,a), putdown(c), pickup(b), stack(b,a))

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 36

Problems and Solutions
  Planning problem: a triple P = (O, s0, g)

  O is a set of operators
  s0 is the initial state - a set of atoms
  g the goal formula - a set of literals

  Every state that satisfies g is a goal state

  A plan π is a solution for P=(O,s0,g) if
  π is executable in s0

  the resulting state γ (s0,π) satisfies g

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 37

Example
  O = {stack(x,y), unstack(x,y), pickup(x), putdown(x)}

  s0 = {ontable(a), on(c,a), clear(c),
 ontable(b), clear(b), handempty}

  g = {on(a,b)}

  One of the solutions is
  π = (unstack(c,a), putdown(c), pickup(a), stack(a,b))

c"
a" b"

a"
b"

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 38

Forward-Search Algorithms
  Go forward from the initial state

  Breadth-first and best-first
  Sound: if they return a plan,

then the plan is a solution
  Complete: if a problem has a solution, then they will return one
  Usually not practical because they require too much memory

»  Memory requirement is exponential in the length of the solution
  Depth-first search, greedy search

  More practical to use
  Worst-case memory requirement is linear in the length of the solution
  Sound but not complete

  But classical planning has only finitely many states
  Thus, can make depth-first search complete by doing loop-checking

s0

s1

s2

s3

a1

a2

a3

s4

s5
sg

a4

a5 …

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 39

Branching Factor of Forward Search

  Forward search can have a very large branching factor
  pickup(a1), pickup(a2) , …, pickup(a500)

  Thus forward-search can waste time trying lots of irrelevant actions
  Need a good heuristic to guide the search
  I’ll discuss one later

  But first, a very different kind of planning algorithm

a3"

a1"
a2"

…"a1" a2" a500"a3"

initial state goal

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 40

Graphplan
procedure Graphplan:
  for k = 0, 1, 2, …

  Graph expansion:
» create a “planning graph” that contains k “levels”

  Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

  If it does, then
» do solution extraction:

•  backward search,
modified to consider
only the actions in
the planning graph

•  if we find a solution,
then return it

possible
literals
in state si

possible
actions
in state si

relaxed
problem

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 41

state-level i

effects
A maintenance action for a literal l.
It represents what happens if we
don’t change l.

state-level i-1

state-level 0 (the literals true in s0)

The Planning Graph
  Search space for a relaxed version of the planning problem
  Alternating layers of ground literals and actions

  At action-level i: all actions whose preconditions appear in state-level i–1
  At state-level i: all the effects of all the actions at action-level i
  Edges: preconditions and effects

action-level i

preconditions

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 42

Example
  Due to Dan Weld (U. of Washington)

  Suppose you want to prepare dinner as a surprise for your sweetheart (who is
asleep)

 s0 = {garbage, cleanHands, quiet}
 g = {dinner, present, ¬garbage}

 Action Preconditions Effects
 cook() cleanHands dinner
 wrap() quiet present
 carry() none ¬garbage, ¬cleanHands
 dolly() none ¬garbage, ¬quiet

Also have the maintenance actions: one for each literal

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 43

Example (continued)
  state-level 0:

{all atoms in s0} U
 {negations of all atoms not in s0}

  action-level 1:
{all actions whose preconditions
 are satisfied and non-mutex in s0}

  state-level 1:
{all effects of all of the
 actions in action-level 1}

Action Preconditions Effects
cook() cleanHands dinner
wrap() quiet present
carry() none ¬garbage, ¬cleanHands
dolly() none ¬garbage, ¬quiet

Also have the maintenance actions ¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 44

Mutual Exclusion

  Two actions at the same action-level are mutex if
  Inconsistent effects: an effect of one negates an effect of the other
  Interference: one deletes a precondition of the other
  Competing needs: they have mutually exclusive preconditions

  Otherwise they don’t interfere with each other
  Both may appear in a solution plan

  Two literals at the same state-level are mutex if
  Inconsistent support: one is the negation of the other,

or all ways of achieving them are pairwise mutex

Recursive
propagation
of mutexes

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 45

Example (continued)
  Augment the graph to indicate mutexes
  carry is mutex with the maintenance

action for garbage (inconsistent effects)
  dolly is mutex with wrap

  interference
  ~quiet is mutex with present

  inconsistent support
  each of cook and wrap is mutex with

a maintenance operation

Action Preconditions Effects
cook() cleanHands dinner
wrap() quiet present
carry() none ¬garbage, ¬cleanHands
dolly() none ¬garbage, ¬quiet

Also have the maintenance actions ¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 46

¬dinner

¬present

¬dinner

¬present

Example (continued)

  Check to see whether there’s a possible
solution

  Recall that the goal is
  {¬garbage, dinner, present}

  Note that in state-level 1,
  All of them are there
  None are mutex with each other

  Thus, there’s a chance that a plan exists
  Try to find it

  Solution extraction

state-level 0 state-level 1 action-level 1

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 47

Solution Extraction

procedure Solution-extraction(g,j)
if j=0 then return the solution
for each literal l in g

 nondeterministically choose an action
 to use in state s j–1 to achieve l

if any pair of chosen actions are mutex
 then backtrack

g’ := {the preconditions of
 the chosen actions}

Solution-extraction(g’, j–1)
end Solution-extraction

The level of the state sj
The set of goals we are
trying to achieve

state-
level
i-1

action-
level

i

state-
level

i

A real action or a maintenance action

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 48

Example (continued)

  Two sets of actions for the goals at
state-level 1

  Neither of them works
  Both sets contain actions that are

mutex

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 49

Recall what the algorithm does

procedure Graphplan:
  for k = 0, 1, 2, …

  Graph expansion:
»  create a “planning graph” that contains k “levels”

  Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

  If it does, then
»  do solution extraction:

•  backward search,
modified to consider
only the actions in
the planning graph

•  if we find a solution,
then return it

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 50

Example (continued)

  Go back and do
more graph
expansion

  Generate another
action-level
and another state-
level

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 51

Example (continued)

  Solution
extraction

  Twelve combinations
at level 4
  Three ways to

achieve ¬garb
  Two ways to

achieve dinner
  Two ways to

achieve present

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 52

Example (continued)

  Several of the
combinations look
OK at level 2

  Here’s one of them

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 53

Example (continued)
  Call Solution-

Extraction
recursively at
level 2

  It succeeds
  Solution whose

parallel length
is 2

¬dinner

¬present

¬dinner

¬present

¬dinner

¬present

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 54

Back to Forward Search

  Earlier, I said
  Forward search can have a very large branching factor

»  pickup(a1), pickup(a2) , …, pickup(a500)
  Thus forward-search can waste time trying lots of irrelevant actions

»  Need a heuristic to guide the search

  We can use planning graphs to compute such a heuristic

a3"

a1"
a2"

…"a1" a2" a500"a3"

initial state goal

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 55

Getting Heuristic Values from
a Planning Graph

  Recall how GraphPlan works:
loop

Graph expansion:
extend a “planning graph” forward from the initial state

until we have achieved a necessary (but insufficient) condition
for plan existence

Solution extraction:
search backward from the goal, looking for a correct plan
if we find one, then return it

repeat

this takes polynomial time

this takes exponential time

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 56

Using Planning Graphs to Compute h(s)

  In the graph, there are alternating
layers of ground literals and actions

  The number of “action” layers is a lower
bound on the number of actions in the plan

  Construct a planning graph, starting at s
  Δg(s,g) = level of the first layer that

 “possibly achieves” the goal
  Some ways to improve this, but

I’ll skip the details

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 57

The FastForward Planner

  Use a heuristic function h(s) similar to Δg(s,g)
  Don’t want an A*-style search (takes too much memory)
  Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest

 (i.e., the child we think is closest to a solution)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 58

The FastForward Planner

  Use a heuristic function h(s) similar to Δg(s,g)
  Don’t want an A*-style search (takes too much memory)
  Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest

 (i.e., the child we think is closest to a solution)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 59

The FastForward Planner

  Use a heuristic function h(s) similar to Δg(s,g)
  Don’t want an A*-style search (takes too much memory)
  Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest

 (i.e., the child we think is closest to a solution)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 60

The FastForward Planner

  Use a heuristic function h(s) similar to Δg(s,g)
  Don’t want an A*-style search (takes too much memory)
  Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest

 (i.e., the child we think is closest to a solution)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 61

The FastForward Planner

  Use a heuristic function h(s) similar to Δg(s,g)
  Don’t want an A*-style search (takes too much memory)
  Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest

 (i.e., the child we think is closest to a solution)

  Problem: can get caught in local minima
  h(s') > h(s) for every successor s' of s
  Escape by doing a breadth-first search until you find a node with lower

cost
  Problem: can hit a dead end - in this case, FF fails
  No guarantee on whether FF will find a solution, or how good a solution

  But FF works quite well on many classical planning problems

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 62

International Planning Competitions
  International planning competitions in 1998, 2002, 2004, 2006, 2008

  Many of the planners in these competitions have incorporated ideas from
GraphPlan and FastForward

  Graphplan was developed in 1995
  Several years before the competitions started

  FastForward was introduced in the 2000 International Planning Competition
  It got an “outstanding performance” award
  Large variance in how good its plans were, but it found them very quickly

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 63

Three Main Types of Planners

1. Domain-specific
2. Domain-independent
3. Configurable

»  Domain-independent planning engine
»  The input includes information about how to plan efficiently in a given

problem domain

  I’ll now talk about a particular kind of configurable planner

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 64

Motivation
  For some planning problems, we may already have ideas about good ways

to solve them
  Example: travel to a destination that’s far away:

  Domain-independent planner:
»  many combinations vehicles and routes

  Experienced human: small number of “recipes”
e.g., flying:

1.  buy ticket from local airport to remote airport
2.  travel to local airport
3.  fly to remote airport
4.  travel to final destination

  How to get planning systems to use such recipes?
  General approach: Hierarchical Task Network (HTN) planning
  We’ll look at a simpler special case: Task-List Planning

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 65

Task-List Planning
  States and operators: same as in classical planning
  Instead of achieving a goal, we will want to accomplish a list of tasks

  Recursively decompose tasks into smaller and smaller subtasks
  At the bottom, actions that we know how to accomplish directly

  Task: an expression of the form t(u1,…,un)
  t is a task symbol, and each ui is a term

  Two kinds of task symbols (and tasks):
  primitive: tasks that we know how to execute directly

»  task symbol is the head of an operator
  nonprimitive: tasks that must be decomposed into subtasks

»  use methods (next slide)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 66

Methods
  Method: a 4-tuple m = (head, task, precond, subtasks)

  head: the method’s name, followed by list of variable symbols (x1,…,xn)
  task: a nonprimitive task
  precond: preconditions (literals)
  subtasks: a sequence of tasks 〈t1, …, tk〉

air-travel(x,y,u,v)
 task: travel(x,y)
 precond: far(x,y), airport(x,u), airport(y,v)
 subtasks: get-ticket(u,v), travel(x,u),

 fly(u,v), travel(v,y) travel(x,y)

get-ticket (u,v) travel (x, u) fly (u,v) travel (v,y) get-taxi ride-taxi(x,y) pay-driver

Precond: far(x,y), airport(x,u), airport(y,v) Precond: ~far(x,y)

taxi-travel(x,y) air-travel(x,y,u,v)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 67

Domains, Problems, Solutions
  Task-list planning domain: methods, operators
  Task-list planning problem: methods, operators, initial state, initial

task list

  Solution: any executable plan
that can be generated by
recursively applying
  methods to

nonprimitive tasks
  operators to

primitive tasks

nonprimitive task

precond

method instance

s0 precond effects precond effects s1 s2

primitive task primitive task

operator instance operator instance

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 68

method instance

travel(UMD,UCLA)

get-ticket (UMD,UCLA) travel (UMD,BWI) fly (BWI,LAX) travel (LAX,UCLA)

nonprimitive task

Precond: far(UMD,UCLA),
airport(UMD,BWI),

airport(LAX,UCLA)

get-taxi ride-taxi (UMD,BWI) pay-driver

Precond: ~far(UMD,BWI)

get-taxi ride-taxi (LAX,UCLA) pay-driver

Precond: ~far(LAX,UCLA)

Example
Task: travel from UMD to UCLA
  Use air-travel method
  Use taxi-travel method for

some of the subtasks
  The other subtasks

(get-taxi, etc.)
are primitive

taxi-travel(UMD,BWI) taxi-travel(LAX,UCLA)

air-travel(UMD,UCLA)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 69

Solving Task-List Planning Problems
  TFD(s,(t1,…,tk))

  if k=0 (i.e., no tasks) then return the empty plan
  else if there is an action a such that head(a) = t1 then

»  if s satisfies precond(a) then
•  return TFD(γ(s,t1),(t2,…,tk))

»  else return failure
  else

»  A = {m : m is a method instance such that
 task(m)=t1, and s satisfies precond(m)}

»  if active is empty then return failure
»  nondeterministically choose m in A
»  let u1…, uj be m’s subtasks
»  return TFD(s, (u1…, uj, t2, …, tk))

state s; task list T=(t1 ,t2,…)

 action a

state γ(s,a) ; task list T=(t2, …)

task list T=(u1,…,uj ,t2,…)

 task list T=(t1 ,t2,…)

 method instance m

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 70

Example
  TFD(s,(t1,…,tk))

  if k=0 (i.e., no tasks) then return the empty plan
  else if there is an action a such that head(a) = t1 then

»  if s satisfies precond(a) then
•  return TFD(γ(s,t1),(t2,…,tk))

»  else return failure
  else

»  A = {m : m is a method instance such that
 task(m)=t1, and s satisfies precond(m)}

»  if active is empty then return failure
»  nondeterministically choose m in A
»  let u1…, uj be m’s subtasks
»  return TFD(s, (u1…, uj, t2, …, tk))

〈travel(UMD,UCLA)〉

get-ticket (u,v) travel (x, u) fly (u,v) travel (v,y) get-taxi ride-taxi(x,y) pay-driver

Precond: far(x,y), airport(x,u), airport(y,v) Precond: ~far(x,y)

s0 : far(UMD,UCLA),
airport(UMD,BWI),
airport(UCLA,LAX)

task
list:

〈get-ticket (UMD,UCLA)
travel (UMD,BWI)

fly (BWI,LAX)
travel (LAX,UCLA)〉

apply
get-
ticket
action:

far(UMD,UCLA),
airport(UMD,BWI),
airport(UCLA,LAX)
ticket(UCLA,LAX)

apply
air-travel
method:

〈get-taxi
ride-taxi(UMD,BWI)

pay-driver
fly (BWI,LAX)

travel (LAX,UCLA)〉

apply
taxi-travel
method:

air-travel(x,y,u,v) taxi-travel(x,y)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 71

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East – 3NT
On lead: West at trick 3 East: 	
♠KJ74	

West:	
♠A2	

Out: 	
♠QT98653	

Increasing Expressivity
  Easy to generalize this beyond classical planning

  States can be arbitrary data structures

  Preconditions and effects can include
»  logical inferences (e.g., Horn clauses)
» complex numeric computations
»  interactions with other software packages

  e.g., SHOP and SHOP2
!http://www.cs.umd.edu/projects/shop!

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 72

Example

  Simple travel-planning domain
  Go from one location to another
  State = {values of variables}

(a,x,y)

(a,x,y)

(a,x,y)

(a,x,y)

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 73

Precond: distance(home,park) ≤ 2 Precond: cash(me) ≥ 1.50 + 0.50*distance(home,park)

Initial task: travel(me,home,park)

Precondition succeeds

travel-by-foot travel-by-taxi

Precondition fails
Decomposition into subtasks

home" park"

Planning Problem: I am at home, I have $20, 
I want to go to a park 8 miles away"

 s1 = {location(me)=home, location(taxi)=home, cash(me)=20, distance(home,park)=8}

Initial
 state

 s0 = {location(me)=home, cash(me)=20, distance(home,park)=8}

call-taxi(me,home) ride(me,home,park) pay-driver(me,home,park)

Precond: …
Effects: …

Precond: …
Effects: …

Precond: …
Effects: …

 s2 = {location(me)=park, location(taxi)=park, cash(me)=20, distance(home,park)=8

 s3 = {location(me)=park, location(taxi)=park, cash(me)=14.50, distance(home,park)=8}

Final
state

 s1 s2 s3 s0

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 74

Comparison to Classical Planners
  Advantages:

  Can encode “recipes” (standard ways do planning in a given
domain) as collections of methods and operators

» Helps the planning system do more-intelligent search - can
speed up planning by many orders of magnitude (e.g.,
polynomial time versus exponential time)

»  Produces plans that correspond to how a human might solve
the problem

  Greater expressive power
»  Preconditions and effects can be computational algorithms

  Disadvantages:
  More complicated than just writing classical operators
  The author needs knowledge about planning in the given domain

Dana Nau: CMSC 421, U. of Maryland
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 75

SHOP2

  SHOP2:
  http://www.cs.umd.edu/projects/shop

  Algorithm is a generalized version of TFD
  Won an award in the AIPS-2002 Planning Competition
  Freeware, open source
  Downloaded more than 13,000 times
  Used in hundreds (thousands?) of projects worldwide

