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3. 	
A systematic arrangement of elements 
or important parts; a configuration or 
outline: a seating plan; the plan of a 
story.	


4. 	
A drawing or diagram made to scale 
showing the structure or arrangement 
of something.	


5.  A program or policy stipulating a 
service or benefit: a pension plan.	


plan n.	

1. 	
A scheme, program, or method 

worked out beforehand for the 
accomplishment of an objective: a 
plan of attack. 	


2. 	
A proposed or tentative project or 
course of action: had no plans for the 
evening. 	


Some Dictionary Definitions of “Plan” 

  These two are closest to the 
meaning used in AI 
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Processes:

Opn A BC/WW Setup Runtime  LN  Description
001 A  VMC1  2.00    0.00  01  Orient board
                           02  Clamp board
                           03  Establish datum point at bullseye (0.25, 1.00)
001 B  VMC1  0.10    0.43  01  Install 0.30-diameter drill bit
                           02  Rough drill at (1.25, -0.50) to depth 1.00
                           03  Finish drill at (1.25, -0.50) to depth 1.00
001 C  VMC1  0.10    0.77  01  Install 0.20-diameter drill bit
                           02  Rough drill at (0.00, 4.88) to depth 1.00
                           03  Finish drill at (0.00, 4.88) to depth 1.00
                           [...]
001 T  VMC1  2.20    1.20  01  Total time on VMC1
[...]              
004 A  VMC1  2.00    0.00  01  Orient board
                           02  Clamp board
                           03  Establish datum point at bullseye (0.25, 1.00)
004 B  VMC1  0.10    0.34  01  Install 0.15-diameter side-milling tool
                           02  Rough side-mill pocket at (-0.25, 1.25)
                               length 0.40, width 0.30, depth 0.50
                           03  Finish side-mill pocket at (-0.25, 1.25)
                               length 0.40, width 0.30, depth 0.50
                           04  Rough side-mill pocket at (-0.25, 3.00)
                               length 0.40, width 0.30, depth 0.50
                           05  Finish side-mill pocket at (-0.25, 3.00)
                               length 0.40, width 0.30, depth 0.50
004 C  VMC1  0.10    1.54  01  Install 0.08-diameter end-milling tool
                           [...]
004 T  VMC1  2.50    4.87  01  Total time on VMC1
                   
005 A   EC1  0.00   32.29  01  Pre-clean board (scrub and wash)
                           02  Dry board in oven at 85 deg. F
005 B   EC1 30.00    0.48  01  Setup
                           02  Spread photoresist from 18000 RPM spinner
005 C   EC1 30.00    2.00  01  Setup
                           02  Photolithography of photoresist
                               using phototool in "real.iges"
005 D   EC1 30.00   20.00  01  Setup
                           02  Etching of copper
005 T   EC1 90.00   54.77  01  Total time on EC1
                   
006 A   MC1 30.00    4.57  01  Setup
                           02  Prepare board for soldering
006 B   MC1 30.00    0.29  01  Setup
                           02  Screenprint solder stop on board
006 C   MC1 30.00    7.50  01  Setup
                           02  Deposit solder paste at (3.35,1.23) on board using nozzle
                           [...]
                           31  Deposit solder paste at (3.52,4.00) on board using nozzle
006 D   MC1  0.00    5.71  01  Dry board in oven at 85 deg. F to solidify solder paste
006 T   MC1 90.00   18.07  01  Total time on MC1
[...]              
011 A   TC1  0.00   35.00  01  Perform post-cap testing on board
011 B   TC1  0.00   29.67  01  Perform final inspection of board
011 T   TC1  0.00   64.67  01  Total time on TC1
                   
999 T      319.70  403.37  01  Total time to manufacture

[a representation] of future ���
 behavior … usually a set of���
 actions, with temporal and ���
 other constraints on them,���
for execution by some agent���
or agents.  - Austin Tate���
	
[MIT Encyclopedia of the	

	
Cognitive Sciences, 1999]	


A portion of a manufacturing process plan 
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  Sheet-metal bending machines - Amada Corporation 
  Software to plan the sequence of bends 

[Gupta and Bourne, J. Manufacturing Sci. and Engr., 1999] 

Manufacturing 
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  Autonomous planning, scheduling, control 

  NASA: JPL and Ames 
  Remote Agent  

Experiment (RAX) 
  Deep Space 1 

  Mars Exploration 
Rover (MER) 

Space Exploration 
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http://xkcd.com/695 
  On January 26th, 2274 Mars days into the mission, NASA declared Spirit a 

'stationary research station', expected to stay operational for several more months 
until the dust buildup on its solar panels forces a final shutdown. 

Continued 
on the next 
slide … 
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http://xkcd.com/695 
  On January 26th, 2274 Mars days into the mission, NASA declared Spirit a 

'stationary research station', expected to stay operational for several more months 
until the dust buildup on its solar panels forces a final shutdown. 

Continued 
from the 
previous 
slide: 
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Outline 
  Conceptual model for planning 
  Restrictive assumptions to simplify the problem 
  Classical planning 
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Source Material 
  My lectures on AI planning are based partly on Russell & Norvig, 

and partly on following book: 

  M. Ghallab, D. Nau, and P. Traverso 
Automated Planning: Theory and Practice 
Morgan Kaufmann Publishers 
May 2004 
  Web site:  http://www.laas.fr/planning 

  For CMSC 421, you don’t need this book 
  The lecture slides are self-contained 
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Conceptual Model 
1. Environment 

State transition system 
   Σ = (S,A,E,γ) 
S = {states} 
A = {actions} 
E = {exogenous events} 
γ = state-transition function 

System Σ 
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Example: The Blocks World 
  Infinitely wide table, finite number of children’s blocks 
  A robot hand that can pick up blocks and put them down 
  A block can sit on the table or on another block 
  Ignore where the blocks are located on the table 
  Just consider 

  whether each block is on the table, on another block, or being held 
  whether each block is clear or covered by another block 
  whether the robot hand is holding anything 

  Example state of the world: 

  For n blocks, the 
number of states 
is more than n! 

c"
a" b" e"

d"
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Σ = (S,A,E,γ) 

  S = {states} 
  A = {actions} 
  E = {exogenous events} 
  State-transition function 
γ: S x (A ∪ E) → 2S 

  S = {s0, s1, s2, …, s22} 

  A = {take c off of a, 
        put c on the table, 
        …} 

  E = {} 

   γ: see the arrows 

State Transition 
System 

s1 

s0 
c"
a" b"

c"
a" b"

s5 
c"
a"

b"

s3 

s2 
a" b"

c"a"
b"c"

… 

… 

… 

s4 b"
a" c"

… 

… 
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Observation function 
h: S → O 

Given observation 
o in O, produces 
action a in A 

Conceptual Model 
2. Controller 

Controller 

c"a"
b"
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Omit unless 
planning is online 

Planning problem Planning problem Planning problem 

Conceptual Model 
3. Planner’s Input 

Planner 
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Planning Problem 
A planning problem includes:	

  A description of Σ	

  An initial state, e.g., s0	


  or a set of possible���
initial states (maybe with���
a probability distribution)	


  An objective, e.g.,	

  a goal state, e.g., s4	

  a set of goal states, e.g.,���

{all states in which b is on a}	

  a task to perform, e.g.,���

put all the blocks into a single stack	

  a “trajectory” of states	

  an objective function	

  …	


s1 

s0 
c"
a" b"

c"
a" b"

s5 
c"
a"

b"

s3 

s2 
a" b"

c"a"
b"c"

… 

… 

… 

s4 b"
a" c"

… 

… 
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Instructions to 
the controller 

Conceptual Model 
4. Planner’s Output 

Planner 
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Plans 
  Classical plan:���

a sequence of actions	

	
(take c off of a,���
 put c on the table,���
 take b off the table,���
 put b on a)	


  Policy:���
a partial function from S into A	

	
 {(s0, take c off of a),���
   (s1, put c on the table),���
   (s2, take b off the table),���
   (s3, put b on a)}	


s3 

s2 

s1 

s0 
c"
a" b"

c"
a" b"

a" b"

c"a"
b"

s4 
b"
a" c"

take c off of a 

put c on the table 

c"

take b off the table 

put b on a 
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Scheduler 

Planning Versus Scheduling 

  Scheduling  
  Decide when and how to  

perform a given set of actions 
» Time constraints 
» Resource constraints 
» Objective functions 

  Typically NP-complete 

  Planning 
  Decide what actions to use to achieve some set of objectives 
  Can be much worse than NP-complete 

» worst case is undecidable 
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Three Main Types of Planners 

1.  Domain-specific 
2.  Domain-independent 
3.  Configurable 

  I’ll talk briefly about each 
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1. Domain-Specific Planners (Chapters 19-23) 
  Made or tuned for 

a specific domain 
  Won’t work well (if 

at all) in any other domain 

  Most successful real-world 
planning systems work this 
way 
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Types of Planners 
2. Domain-Independent 

  In principle, a domain-independent planner 
works in any planning domain 

  Uses no domain-specific knowledge except 
the definitions of the basic actions 
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  In practice, 
  Not feasible to develop 

domain-independent planners 
that work in every possible 
domain 

  Make simplifying assumptions to 
restrict the set of domains 
  Classical planning 
  Historical focus of most 

automated-planning research 

Types of Planners 
2. Domain-Independent 
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  A0: Finite system: 
  finitely many states, actions, events 

  A1: Fully observable: 
  the controller always Σ’s current state 

  A2: Deterministic: 
  each action has only one outcome 

  A3: Static (no exogenous events): 
  no changes but the controller’s actions 

  A4: Attainment goals:  
  a set of goal states Sg 

  A5: Sequential plans: 
  a plan is a linearly ordered sequence 

of actions (a1, a2, … an) 
  A6: Implicit time: 

  no time durations; linear sequence of instantaneous states 
  A7: Off-line planning:  

  planner doesn’t know the execution status 

Restrictive Assumptions 
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  Classical planning requires all eight restrictive assumptions 
  Offline generation of action sequences for a deterministic, static, 

finite system, with complete knowledge, attainment goals, and 
implicit time 

  Reduces to a search problem: 
  Given (Σ, s0, Sg) 

»  s0 is the initial state, Sg is a set of goal states 
  Find a sequence of actions (a1, a2, … an) that produces  

a sequence of state transitions (s1, s2, …, sn) 
such that sn is in Sg. 

  Constraint-satisfaction problems also were search problems 
  But there were special-purpose problem representations and 

algorithms that were much faster than ordinary search algorithms 
  Can do something similar for planning problems 

  Several ways to do this 
  I’ll discuss a few of the better-known ones 

Classical Planning (Chapters 2-9) 
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Problem Representation 
  Several ways to represent classical planning domains 

  The classical representation (or STRIPS representation) 
is the best known 

  That’s what I’ll describe 
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Symbols 
  Start with a function-free first-order language  

  Finitely many predicate names and constant symbols, infinitely many 
variable symbols, but no function symbols 

  Add a finite set of operator names 
  e.g., symbols for the blocks world: 

  Constant symbols: a, b, c, d, e, … (names of blocks) 
  Variable symbols: u, v, w, x, y, z, x1, x2, … 
  Predicates: 

ontable(x)  - block x is on the table 
on(x,y)  - block x is on block y 
clear(x)  - block x has nothing on it 
holding(x)  - the robot hand is holding block x 
handempty  - the robot hand isn’t holding anything 

  Operator names: pickup, putdown, stack, unstack 

c"
a" b" e"

d"
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States 
  State: a set s of ground atoms representing what’s currently true 
  Only finitely many ground atoms, so only finitely many possible 

states 

  Example: 
 {ontable(a), on(c,a), clear(c),  
  ontable(b), clear(b), holding(d), 
  ontable(e), clear(e)} 

c"
a" b" e"

d"
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Operators 
  Operator: a triple (head, preconditions, effects) 

  head: an operator name and a parameter list 
» E.g., opname(x1, …, xk) 
» No two operators can have the same name 
» Parameter list must include all of the operator’s variables 

  preconditions: literals that must be true to use the operator 
  effects: literals that the operator will make true 

  We’ll generally write operators in the following form: 

  opname(x1, …, xk) 
» Precond: p1, p2, …, pm 
» Effects: e1, e2, …, en 
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unstack(x,y) 
   Precond:  on(x,y), clear(x), handempty 
   Effects:  ~on(x,y), ~clear(x), ~handempty, 

                   holding(x), clear(y) 

stack(x,y) 
   Precond:   holding(x), clear(y) 
   Effects:   ~holding(x), ~clear(y), 

                    on(x,y), clear(x), handempty 

pickup(x) 
   Precond:  ontable(x), clear(x), handempty 
   Effects:  ~ontable(x), ~clear(x), 

                   ~handempty, holding(x) 

putdown(x) 
   Precond:   holding(x) 
   Effects:  ~holding(x), ontable(x), 

                   clear(x), handempty 

Blocks-World Operators c"
a" b"

c"
a" b"

c"
a" b"

c"
a"

b"

c"
a" b"
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Actions and Plans 
  Action: a ground instance (via substitution) of an operator 

unstack(c,a) 
   Precond:  on(c,a), clear(c), handempty 
   Effects:  ~on(c,a), ~clear(c), ~handempty, 

                   holding(c), clear(a) 

c"
a" b"

c"
a" b"

unstack(x,y) 
   Precond:  on(x,y), clear(x), handempty 
   Effects:  ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y) 
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Notation 
  Let S be a set of literals.  Then 

  S+ = {atoms that appear positively in S} 
  S– = {atoms that appear negatively in S} 

  Let a be an operator or action. Then 
  precond+

 (a) = {atoms that appear positively in precond(a)} 
  precond–

 (a) = {atoms that appear negatively in precond(a)} 
  effects+

 (a) = {atoms that appear positively in effects(a)} 
  effects–

 (a) = {atoms that appear negatively in effects(a)} 

  Example: 
  unstack(x,y) 
        Precond:  on(x,y), clear(x), handempty 
        Effects:  ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y) 

  effects+
 (unstack(x,y)) = {holding(x), clear(y)}  

  effects–
 (unstack(x,y)) = {on(x,y), clear(x), handempty} 
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Executability 
  An action a is executable in s if s satisfies precond(a), 

  i.e., if  precond+
 (a) ⊆ s  and  precond–

 (a) ∩ s = ∅ 
  An operator o is applicable to s if there’s a ground instance a of o that is 

executable in s 
  Example: 
  s = {ontable(a), on(c,a), clear(c), ontable(b), clear(b),handempty} 
  o = unstack(x,y) 
  a = unstack(c,a) 

unstack(x,y) 
   Precond:  on(x,y), clear(x), handempty 
   Effects:  ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y) 

unstack(c,a) 
   Precond:  on(c,a), clear(c), handempty 
   Effects:  ~on(c,a), ~clear(c), ~handempty, holding(c), clear(a) 

c"
a" b"
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Result of performing an action 
  If a is executable in s, the result of performing it is 

         γ(s,a) = (s – effects–(a)) ∪ effects+(a) 
  Delete the negative effects, and add the positive ones 

          s = {ontable(a), on(c,a), clear(c), ontable(b), clear(b), handempty} 

  a = unstack(c,a) 
     Precond:  on(c,a), clear(c), handempty 
     Effects:  ~on(c,a), ~clear(c), ~handempty, 

  holding(c), clear(a) 

  γ(s,a) = {ontable(a), on(c,a), clear(c), ontable(b), clear(b), handempty, 
       holding(c), clear(a)} 

c"
a" b"

c"
a" b"
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Executability of Plans 
  Plan: a sequence of actions π = (a1, …, an)  
  A plan π = (a1, …, an) is executable in the state s0 if 

» a1 is executable in s0, producing some state s1 = γ (s0,a1) 
» a2 is executable in s1, producing some state s2 = γ (s1,a2) 

» … 
» an is executable in sn–1, producing some state sn= γ (sn–1,an) 

  In this case, we define γ (s0,π) = sn 
  Example on next slide 

c"
a" b"
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s3 

s2 

s1 

s0 
c"
a" b"

c"

a" b"

a" b"

c"a"
b"

s4 
b"
a" c"

c"

unstack(c,a) 
   Precond:  on(c,a), clear(c), handempty 
   Effects:  ~on(c,a), ~clear(c), ~handempty, holding(c), clear(a) 

stack(b,a) 
   Precond:   holding(b), clear(a) 
   Effects:   ~holding(b), ~clear(a), on(b,a), clear(b), handempty 

pickup(b) 
   Precond:  ontable(b), clear(b), handempty 
   Effects:  ~ontable(b), ~clear(b), ~handempty, holding(b) 

putdown(c) 
   Precond:   holding(c) 
   Effects:  ~holding(c), ontable(c), clear(c), handempty 

s = {ontable(a), on(c,a), clear(c), ontable(b),clear(b), handempty} 
π = (unstack(c,a), putdown(c), pickup(b), stack(b,a)) 
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Problems and Solutions 
  Planning problem: a triple P = (O, s0, g) 

  O is a set of operators 
  s0 is the initial state - a set of atoms 
  g the goal formula - a set of literals 

  Every state that satisfies g is a goal state 

  A plan π is a solution for P=(O,s0,g) if 
   π is executable in s0 

   the resulting state γ (s0,π) satisfies g 
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Example 
  O = {stack(x,y), unstack(x,y), pickup(x), putdown(x)} 

  s0 = {ontable(a), on(c,a), clear(c),  
         ontable(b), clear(b), handempty} 

  g = {on(a,b)} 

  One of the solutions is 
   π = (unstack(c,a), putdown(c), pickup(a), stack(a,b)) 

c"
a" b"

a"
b"
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Forward-Search Algorithms 
  Go forward from the initial state 

  Breadth-first and best-first 
  Sound: if they return a plan, 

then the plan is a solution 
  Complete: if a problem has a solution, then they will return one 
  Usually not practical because they require too much memory 

»  Memory requirement is exponential in the length of the solution 
  Depth-first search, greedy search 

  More practical to use 
  Worst-case memory requirement is linear in the length of the solution 
  Sound but not complete 

  But classical planning has only finitely many states 
  Thus, can make depth-first search complete by doing loop-checking 

s0 

s1 

s2 

s3 

a1 

a2 

a3 

s4 

s5 
sg 

a4 

a5 … 
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Branching Factor of Forward Search 

  Forward search can have a very large branching factor 
  pickup(a1), pickup(a2) , …, pickup(a500) 

  Thus forward-search can waste time trying lots of irrelevant actions 
  Need a good heuristic to guide the search 
  I’ll discuss one later 

  But first, a very different kind of planning algorithm 

a3"

a1"
a2"

…"a1" a2" a500"a3"

initial state goal 
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Graphplan 
procedure Graphplan: 
  for k = 0, 1, 2, … 

  Graph expansion: 
» create a “planning graph” that contains k “levels” 

  Check whether the planning graph satisfies a necessary 
(but insufficient) condition for plan existence 

  If it does, then 
» do solution extraction: 

•  backward search, 
modified to consider 
only the actions in 
the planning graph 

•  if we find a solution, 
then return it 

possible 
literals 
in state si 

possible 
actions 
in state si 

relaxed 
problem 
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state-level i 

effects 
A maintenance action for a literal l. 
It represents what happens if we 
don’t change l. 

state-level i-1 

state-level 0 (the literals true in s0) 

The Planning Graph 
  Search space for a relaxed version of the planning problem 
  Alternating layers of ground literals and actions 

  At action-level i: all actions whose preconditions appear in state-level i–1 
  At state-level i: all the effects of all the actions at action-level i 
  Edges: preconditions and effects 

action-level i 

preconditions 
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Example 
  Due to Dan Weld (U. of Washington) 

  Suppose you want to prepare dinner as a surprise for your sweetheart (who is 
asleep) 

 s0 = {garbage, cleanHands, quiet} 
 g = {dinner, present, ¬garbage} 

 Action  Preconditions  Effects   
 cook()  cleanHands  dinner 
 wrap()  quiet   present 
 carry()  none   ¬garbage, ¬cleanHands 
 dolly()  none   ¬garbage, ¬quiet 

Also have the maintenance actions: one for each literal 
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Example (continued) 
  state-level 0: 

{all atoms in s0} U 
    {negations of all atoms not in s0} 

  action-level 1: 
{all actions whose preconditions 
     are satisfied and non-mutex in s0} 

  state-level 1: 
{all effects of all of the 
     actions in action-level 1} 

Action  Preconditions Effects   
cook()  cleanHands  dinner 
wrap()  quiet  present 
carry()  none  ¬garbage, ¬cleanHands 
dolly()  none  ¬garbage, ¬quiet 

Also have the maintenance actions ¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 
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Mutual Exclusion 

  Two actions at the same action-level are mutex if 
  Inconsistent effects: an effect of one negates an effect of the other 
  Interference: one deletes a precondition of the other 
  Competing needs: they have mutually exclusive preconditions 

  Otherwise they don’t interfere with each other 
  Both may appear in a solution plan 

  Two literals at the same state-level are mutex if 
  Inconsistent support: one is the negation of the other, 

or all ways of achieving them are pairwise mutex 

Recursive 
propagation 
of mutexes 
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Example (continued) 
  Augment the graph to indicate mutexes 
  carry is mutex with the maintenance 

action for garbage (inconsistent effects) 
  dolly is mutex with wrap  

  interference 
  ~quiet is mutex with present 

  inconsistent support 
  each of cook and wrap is mutex with 

a maintenance operation 

Action  Preconditions  Effects   
cook()  cleanHands  dinner 
wrap()  quiet  present 
carry()  none  ¬garbage, ¬cleanHands 
dolly()  none  ¬garbage, ¬quiet 

Also have the maintenance actions ¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 



Dana Nau: CMSC 421, U. of Maryland 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 46 

¬dinner 

¬present 

¬dinner 

¬present 

Example (continued) 

  Check to see whether there’s a possible 
solution 

  Recall that the goal is 
  {¬garbage, dinner, present} 

  Note that in state-level 1, 
  All of them are there 
  None are mutex with each other 

  Thus, there’s a chance that a plan exists 
  Try to find it 

  Solution extraction 

state-level 0 state-level 1 action-level 1 
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Solution Extraction 

procedure Solution-extraction(g,j) 
if j=0 then return the solution 
for each literal l in g 

 nondeterministically choose an action 
 to use in state s j–1 to achieve l 

if any pair of chosen actions are mutex 
 then backtrack 

g’ := {the preconditions of 
      the chosen actions} 

Solution-extraction(g’, j–1) 
end Solution-extraction 

The level of the state sj 
The set of goals we are 
trying to achieve 

state- 
level 
i-1 

action- 
level 

i 

state- 
level 

i 

A real action or a maintenance action 
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Example (continued) 

  Two sets of actions for the goals at 
state-level 1 

  Neither of them works 
  Both sets contain actions that are 

mutex 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 
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Recall what the algorithm does 

procedure Graphplan: 
  for k = 0, 1, 2, … 

  Graph expansion: 
»  create a “planning graph” that contains k “levels” 

  Check whether the planning graph satisfies a necessary 
(but insufficient) condition for plan existence 

  If it does, then 
»  do solution extraction: 

•  backward search, 
modified to consider 
only the actions in 
the planning graph 

•  if we find a solution, 
then return it 
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Example (continued) 

  Go back and do 
more graph 
expansion 

  Generate another 
action-level 
and another state-
level 

¬dinner 

¬present 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2 
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Example (continued) 

  Solution 
extraction 

  Twelve combinations 
at level 4 
  Three ways to 

achieve ¬garb 
  Two ways to 

achieve dinner 
  Two ways to 

achieve present 

¬dinner 

¬present 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2 
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Example (continued) 

  Several of the 
combinations look 
OK at level 2 

  Here’s one of them 

¬dinner 

¬present 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2 
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Example (continued) 
  Call Solution-

Extraction 
recursively at 
level 2 

  It succeeds 
  Solution whose 

parallel length 
is 2 

¬dinner 

¬present 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2 
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Back to Forward Search 

  Earlier, I said 
  Forward search can have a very large branching factor 

»  pickup(a1), pickup(a2) , …, pickup(a500) 
  Thus forward-search can waste time trying lots of irrelevant actions 

»  Need a heuristic to guide the search 

  We can use planning graphs to compute such a heuristic 

a3"

a1"
a2"

…"a1" a2" a500"a3"

initial state goal 
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Getting Heuristic Values from 
a Planning Graph 

  Recall how GraphPlan works: 
loop 

Graph expansion: 
extend a “planning graph” forward from the initial state 

until we have achieved a necessary (but insufficient) condition 
for plan existence 

Solution extraction: 
search backward from the goal, looking for a correct plan 
if we find one, then return it 

repeat 

this takes polynomial time 

this takes exponential time 
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Using Planning Graphs to Compute h(s) 

  In the graph, there are alternating 
layers of ground literals and actions 

  The number of “action” layers is a lower 
bound on the number of actions in the plan 

  Construct a planning graph, starting at s 
   Δg(s,g) = level of the first layer that 

 “possibly achieves” the goal 
  Some ways to improve this, but 

I’ll skip the details 



Dana Nau: CMSC 421, U. of Maryland 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 57 

The FastForward Planner 

  Use a heuristic function h(s) similar to Δg(s,g) 
  Don’t want an A*-style search (takes too much memory) 
  Instead, use a greedy procedure: 

until we have a solution, do 
expand the current state s 
s := the child of s for which h(s) is smallest 

 (i.e., the child we think is closest to a solution) 
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The FastForward Planner 

  Use a heuristic function h(s) similar to Δg(s,g) 
  Don’t want an A*-style search (takes too much memory) 
  Instead, use a greedy procedure: 

until we have a solution, do 
expand the current state s 
s := the child of s for which h(s) is smallest 

 (i.e., the child we think is closest to a solution) 
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The FastForward Planner 

  Use a heuristic function h(s) similar to Δg(s,g) 
  Don’t want an A*-style search (takes too much memory) 
  Instead, use a greedy procedure: 

until we have a solution, do 
expand the current state s 
s := the child of s for which h(s) is smallest 

 (i.e., the child we think is closest to a solution) 
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The FastForward Planner 

  Use a heuristic function h(s) similar to Δg(s,g) 
  Don’t want an A*-style search (takes too much memory) 
  Instead, use a greedy procedure: 

until we have a solution, do 
expand the current state s 
s := the child of s for which h(s) is smallest 

 (i.e., the child we think is closest to a solution) 
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The FastForward Planner 

  Use a heuristic function h(s) similar to Δg(s,g) 
  Don’t want an A*-style search (takes too much memory) 
  Instead, use a greedy procedure: 

until we have a solution, do 
expand the current state s 
s := the child of s for which h(s) is smallest 

 (i.e., the child we think is closest to a solution) 

  Problem: can get caught in local minima 
  h(s') > h(s) for every successor s' of s 
  Escape by doing a breadth-first search until you find a node with lower 

cost 
  Problem: can hit a dead end - in this case, FF fails 
  No guarantee on whether FF will find a solution, or how good a solution 

  But FF works quite well on many classical planning problems 
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International Planning Competitions 
  International planning competitions in 1998, 2002, 2004, 2006, 2008 

  Many of the planners in these competitions have incorporated ideas from 
GraphPlan and FastForward 

  Graphplan was developed in 1995 
  Several years before the competitions started 

  FastForward was introduced in the 2000 International Planning Competition 
  It got an “outstanding performance” award 
  Large variance in how good its plans were, but it found them very quickly 
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Three Main Types of Planners 

1.  Domain-specific 
2.  Domain-independent 
3.  Configurable 

»  Domain-independent planning engine 
»  The input includes information about how to plan efficiently in a given 

problem domain 

  I’ll now talk about a particular kind of configurable planner 
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Motivation 
  For some planning problems, we may already have ideas about good ways 

to solve them 
  Example: travel to a destination that’s far away: 

  Domain-independent planner: 
»  many combinations vehicles and routes 

  Experienced human: small number of “recipes” 
e.g., flying: 

1.   buy ticket from local airport to remote airport 
2.   travel to local airport 
3.   fly to remote airport 
4.   travel to final destination 

  How to get planning systems to use such recipes? 
  General approach: Hierarchical Task Network (HTN) planning 
  We’ll look at a simpler special case: Task-List Planning 



Dana Nau: CMSC 421, U. of Maryland 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 65 

Task-List Planning 
  States and operators: same as in classical planning 
  Instead of achieving a goal, we will want to accomplish a list of tasks 

  Recursively decompose tasks into smaller and smaller subtasks 
  At the bottom, actions that we know how to accomplish directly 

  Task: an expression of the form  t(u1,…,un) 
  t is a task symbol, and each ui is a term 

  Two kinds of task symbols (and tasks): 
  primitive: tasks that we know how to execute directly 

»  task symbol is the head of an operator 
  nonprimitive: tasks that must be decomposed into subtasks 

»  use methods (next slide) 
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Methods 
  Method: a 4-tuple m = (head, task, precond, subtasks) 

  head: the method’s name, followed by list of variable symbols (x1,…,xn)  
  task: a nonprimitive task 
  precond: preconditions (literals) 
  subtasks: a sequence of tasks 〈t1, …, tk〉  

air-travel(x,y,u,v) 
 task:  travel(x,y) 
 precond:  far(x,y), airport(x,u), airport(y,v) 
 subtasks:  get-ticket(u,v),  travel(x,u), 

 fly(u,v), travel(v,y) travel(x,y) 

get-ticket (u,v) travel (x, u) fly (u,v) travel (v,y) get-taxi ride-taxi(x,y) pay-driver 

Precond: far(x,y), airport(x,u), airport(y,v) Precond: ~far(x,y) 

taxi-travel(x,y) air-travel(x,y,u,v) 
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Domains, Problems, Solutions 
  Task-list planning domain: methods, operators 
  Task-list planning problem: methods, operators, initial state, initial 

task list 

  Solution: any executable plan 
that can be generated by 
recursively applying  
  methods to 

nonprimitive tasks 
  operators to 

primitive tasks 

nonprimitive task 

precond 

method instance 

s0 precond effects precond effects s1 s2 

primitive task primitive task 

operator instance operator instance 
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method instance 

travel(UMD,UCLA) 

get-ticket (UMD,UCLA) travel (UMD,BWI) fly (BWI,LAX) travel (LAX,UCLA) 

nonprimitive task 

Precond: far(UMD,UCLA),    
airport(UMD,BWI), 

airport(LAX,UCLA) 

get-taxi ride-taxi (UMD,BWI) pay-driver 

Precond: ~far(UMD,BWI) 

get-taxi ride-taxi (LAX,UCLA) pay-driver 

Precond: ~far(LAX,UCLA) 

Example 
Task: travel from UMD to UCLA 
  Use air-travel method 
  Use taxi-travel method for 

some of the subtasks 
  The other subtasks 

(get-taxi, etc.) 
are primitive 

taxi-travel(UMD,BWI) taxi-travel(LAX,UCLA) 

air-travel(UMD,UCLA) 
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Solving Task-List Planning Problems 
  TFD(s,(t1,…,tk)) 

  if k=0 (i.e., no tasks) then return the empty plan 
  else if there is an action a such that head(a) = t1 then 

»  if s satisfies precond(a) then  
•  return TFD(γ(s,t1),(t2,…,tk)) 

»  else return failure 
  else 

»  A = {m : m is a method instance such that 
    task(m)=t1, and s satisfies precond(m)} 

»  if active is empty then return failure 
»  nondeterministically choose m in A 
»  let u1…, uj be m’s subtasks 
»  return TFD(s, (u1…, uj, t2, …, tk)) 

state s; task list T=( t1 ,t2,…) 

                      action a 

state γ(s,a) ; task list T=(t2, …) 

task list T=( u1,…,uj ,t2,…) 

        task list T=( t1 ,t2,…) 

 method instance m 
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Example 
  TFD(s,(t1,…,tk)) 

  if k=0 (i.e., no tasks) then return the empty plan 
  else if there is an action a such that head(a) = t1 then 

»  if s satisfies precond(a) then 
•  return TFD(γ(s,t1),(t2,…,tk)) 

»  else return failure 
  else 

»  A = {m : m is a method instance such that 
    task(m)=t1, and s satisfies precond(m)} 

»  if active is empty then return failure 
»  nondeterministically choose m in A 
»  let u1…, uj be m’s subtasks 
»  return TFD(s, (u1…, uj, t2, …, tk)) 

〈travel(UMD,UCLA)〉 

get-ticket (u,v) travel (x, u) fly (u,v) travel (v,y) get-taxi ride-taxi(x,y) pay-driver 

Precond: far(x,y), airport(x,u), airport(y,v) Precond: ~far(x,y) 

s0 : far(UMD,UCLA), 
airport(UMD,BWI), 
airport(UCLA,LAX) 

task 
list: 

〈get-ticket (UMD,UCLA) 
travel (UMD,BWI) 

fly (BWI,LAX) 
travel (LAX,UCLA)〉 

apply 
get- 
ticket 
action: 

far(UMD,UCLA), 
airport(UMD,BWI), 
airport(UCLA,LAX) 
ticket(UCLA,LAX) 

apply 
air-travel 
method: 

〈get-taxi 
ride-taxi(UMD,BWI) 

pay-driver 
fly (BWI,LAX) 

travel (LAX,UCLA)〉 

apply 
taxi-travel 
method: 

air-travel(x,y,u,v) taxi-travel(x,y) 
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Us:  East declarer, West dummy 
Opponents: defenders, South & North 
Contract:  East – 3NT 
On lead:  West at trick 3 East: 	
♠KJ74	


West:	
♠A2	

Out: 	
♠QT98653	


Increasing Expressivity 
  Easy to generalize this beyond classical planning 

  States can be arbitrary data structures 

  Preconditions and effects can include 
»  logical inferences (e.g., Horn clauses) 
» complex numeric computations 
»  interactions with other software packages 

  e.g., SHOP and SHOP2 
!http://www.cs.umd.edu/projects/shop!
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Example 

  Simple travel-planning domain 
  Go from one location to another 
  State = {values of variables} 

(a,x,y) 

(a,x,y) 

(a,x,y) 

(a,x,y) 
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Precond:  distance(home,park) ≤ 2 Precond:  cash(me) ≥ 1.50 + 0.50*distance(home,park) 

Initial task: travel(me,home,park) 

Precondition succeeds 

travel-by-foot travel-by-taxi 

Precondition fails 
Decomposition into subtasks 

home" park"

Planning Problem: I am at home, I have $20, 
I want to go to a park 8 miles away"

 s1 = {location(me)=home, location(taxi)=home, cash(me)=20, distance(home,park)=8} 

Initial 
 state 

 s0 = {location(me)=home, cash(me)=20, distance(home,park)=8} 

call-taxi(me,home) ride(me,home,park) pay-driver(me,home,park) 

Precond: … 
Effects: … 

Precond: … 
Effects: … 

Precond: … 
Effects: … 

 s2 = {location(me)=park, location(taxi)=park, cash(me)=20, distance(home,park)=8 

 s3 = {location(me)=park, location(taxi)=park, cash(me)=14.50, distance(home,park)=8} 

Final  
state 

 s1   s2   s3   s0  
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Comparison to Classical Planners 
  Advantages: 

  Can encode “recipes” (standard ways do planning in a given 
domain) as collections of methods and operators 

» Helps the planning system do more-intelligent search - can 
speed up planning by many orders of magnitude (e.g., 
polynomial time versus exponential time) 

»  Produces plans that correspond to how a human might solve 
the problem 

  Greater expressive power 
»  Preconditions and effects can be computational algorithms 

  Disadvantages: 
  More complicated than just writing classical operators 
  The author needs knowledge about planning in the given domain 
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SHOP2 

  SHOP2:  
  http://www.cs.umd.edu/projects/shop 

  Algorithm is a generalized version of TFD 
  Won an award in the AIPS-2002 Planning Competition 
  Freeware, open source 
  Downloaded more than 13,000 times 
  Used in hundreds (thousands?) of projects worldwide 


