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3. 	

A systematic arrangement of elements 
or important parts; a configuration or 
outline: a seating plan; the plan of a 
story.	



4. 	

A drawing or diagram made to scale 
showing the structure or arrangement 
of something.	



5.  A program or policy stipulating a 
service or benefit: a pension plan.	



plan n.	


1. 	

A scheme, program, or method 

worked out beforehand for the 
accomplishment of an objective: a 
plan of attack. 	



2. 	

A proposed or tentative project or 
course of action: had no plans for the 
evening. 	



Some Dictionary Definitions of “Plan” 

  These two are closest to the 
meaning used in AI 
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Processes:

Opn A BC/WW Setup Runtime  LN  Description
001 A  VMC1  2.00    0.00  01  Orient board
                           02  Clamp board
                           03  Establish datum point at bullseye (0.25, 1.00)
001 B  VMC1  0.10    0.43  01  Install 0.30-diameter drill bit
                           02  Rough drill at (1.25, -0.50) to depth 1.00
                           03  Finish drill at (1.25, -0.50) to depth 1.00
001 C  VMC1  0.10    0.77  01  Install 0.20-diameter drill bit
                           02  Rough drill at (0.00, 4.88) to depth 1.00
                           03  Finish drill at (0.00, 4.88) to depth 1.00
                           [...]
001 T  VMC1  2.20    1.20  01  Total time on VMC1
[...]              
004 A  VMC1  2.00    0.00  01  Orient board
                           02  Clamp board
                           03  Establish datum point at bullseye (0.25, 1.00)
004 B  VMC1  0.10    0.34  01  Install 0.15-diameter side-milling tool
                           02  Rough side-mill pocket at (-0.25, 1.25)
                               length 0.40, width 0.30, depth 0.50
                           03  Finish side-mill pocket at (-0.25, 1.25)
                               length 0.40, width 0.30, depth 0.50
                           04  Rough side-mill pocket at (-0.25, 3.00)
                               length 0.40, width 0.30, depth 0.50
                           05  Finish side-mill pocket at (-0.25, 3.00)
                               length 0.40, width 0.30, depth 0.50
004 C  VMC1  0.10    1.54  01  Install 0.08-diameter end-milling tool
                           [...]
004 T  VMC1  2.50    4.87  01  Total time on VMC1
                   
005 A   EC1  0.00   32.29  01  Pre-clean board (scrub and wash)
                           02  Dry board in oven at 85 deg. F
005 B   EC1 30.00    0.48  01  Setup
                           02  Spread photoresist from 18000 RPM spinner
005 C   EC1 30.00    2.00  01  Setup
                           02  Photolithography of photoresist
                               using phototool in "real.iges"
005 D   EC1 30.00   20.00  01  Setup
                           02  Etching of copper
005 T   EC1 90.00   54.77  01  Total time on EC1
                   
006 A   MC1 30.00    4.57  01  Setup
                           02  Prepare board for soldering
006 B   MC1 30.00    0.29  01  Setup
                           02  Screenprint solder stop on board
006 C   MC1 30.00    7.50  01  Setup
                           02  Deposit solder paste at (3.35,1.23) on board using nozzle
                           [...]
                           31  Deposit solder paste at (3.52,4.00) on board using nozzle
006 D   MC1  0.00    5.71  01  Dry board in oven at 85 deg. F to solidify solder paste
006 T   MC1 90.00   18.07  01  Total time on MC1
[...]              
011 A   TC1  0.00   35.00  01  Perform post-cap testing on board
011 B   TC1  0.00   29.67  01  Perform final inspection of board
011 T   TC1  0.00   64.67  01  Total time on TC1
                   
999 T      319.70  403.37  01  Total time to manufacture

[a representation] of future ���
 behavior … usually a set of���
 actions, with temporal and ���
 other constraints on them,���
for execution by some agent���
or agents.  - Austin Tate���
	

[MIT Encyclopedia of the	


	

Cognitive Sciences, 1999]	



A portion of a manufacturing process plan 



Dana Nau: CMSC 421, U. of Maryland 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4 

  Sheet-metal bending machines - Amada Corporation 
  Software to plan the sequence of bends 

[Gupta and Bourne, J. Manufacturing Sci. and Engr., 1999] 

Manufacturing 
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  Autonomous planning, scheduling, control 

  NASA: JPL and Ames 
  Remote Agent  

Experiment (RAX) 
  Deep Space 1 

  Mars Exploration 
Rover (MER) 

Space Exploration 
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http://xkcd.com/695 
  On January 26th, 2274 Mars days into the mission, NASA declared Spirit a 

'stationary research station', expected to stay operational for several more months 
until the dust buildup on its solar panels forces a final shutdown. 

Continued 
on the next 
slide … 
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http://xkcd.com/695 
  On January 26th, 2274 Mars days into the mission, NASA declared Spirit a 

'stationary research station', expected to stay operational for several more months 
until the dust buildup on its solar panels forces a final shutdown. 

Continued 
from the 
previous 
slide: 
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Outline 
  Conceptual model for planning 
  Restrictive assumptions to simplify the problem 
  Classical planning 
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Source Material 
  My lectures on AI planning are based partly on Russell & Norvig, 

and partly on following book: 

  M. Ghallab, D. Nau, and P. Traverso 
Automated Planning: Theory and Practice 
Morgan Kaufmann Publishers 
May 2004 
  Web site:  http://www.laas.fr/planning 

  For CMSC 421, you don’t need this book 
  The lecture slides are self-contained 



Dana Nau: CMSC 421, U. of Maryland 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10 

Conceptual Model 
1. Environment 

State transition system 
   Σ = (S,A,E,γ) 
S = {states} 
A = {actions} 
E = {exogenous events} 
γ = state-transition function 

System Σ 
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Example: The Blocks World 
  Infinitely wide table, finite number of children’s blocks 
  A robot hand that can pick up blocks and put them down 
  A block can sit on the table or on another block 
  Ignore where the blocks are located on the table 
  Just consider 

  whether each block is on the table, on another block, or being held 
  whether each block is clear or covered by another block 
  whether the robot hand is holding anything 

  Example state of the world: 

  For n blocks, the 
number of states 
is more than n! 

c"
a" b" e"

d"
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Σ = (S,A,E,γ) 

  S = {states} 
  A = {actions} 
  E = {exogenous events} 
  State-transition function 
γ: S x (A ∪ E) → 2S 

  S = {s0, s1, s2, …, s22} 

  A = {take c off of a, 
        put c on the table, 
        …} 

  E = {} 

   γ: see the arrows 

State Transition 
System 

s1 

s0 
c"
a" b"

c"
a" b"

s5 
c"
a"

b"

s3 

s2 
a" b"

c"a"
b"c"

… 

… 

… 

s4 b"
a" c"

… 

… 



Dana Nau: CMSC 421, U. of Maryland 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13 

Observation function 
h: S → O 

Given observation 
o in O, produces 
action a in A 

Conceptual Model 
2. Controller 

Controller 

c"a"
b"
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Omit unless 
planning is online 

Planning problem Planning problem Planning problem 

Conceptual Model 
3. Planner’s Input 

Planner 
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Planning Problem 
A planning problem includes:	


  A description of Σ	


  An initial state, e.g., s0	



  or a set of possible���
initial states (maybe with���
a probability distribution)	



  An objective, e.g.,	


  a goal state, e.g., s4	


  a set of goal states, e.g.,���

{all states in which b is on a}	


  a task to perform, e.g.,���

put all the blocks into a single stack	


  a “trajectory” of states	


  an objective function	


  …	



s1 

s0 
c"
a" b"

c"
a" b"

s5 
c"
a"

b"

s3 

s2 
a" b"

c"a"
b"c"

… 

… 

… 

s4 b"
a" c"

… 

… 
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Instructions to 
the controller 

Conceptual Model 
4. Planner’s Output 

Planner 
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Plans 
  Classical plan:���

a sequence of actions	


	

(take c off of a,���
 put c on the table,���
 take b off the table,���
 put b on a)	



  Policy:���
a partial function from S into A	


	

 {(s0, take c off of a),���
   (s1, put c on the table),���
   (s2, take b off the table),���
   (s3, put b on a)}	



s3 

s2 

s1 

s0 
c"
a" b"

c"
a" b"

a" b"

c"a"
b"

s4 
b"
a" c"

take c off of a 

put c on the table 

c"

take b off the table 

put b on a 
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Scheduler 

Planning Versus Scheduling 

  Scheduling  
  Decide when and how to  

perform a given set of actions 
» Time constraints 
» Resource constraints 
» Objective functions 

  Typically NP-complete 

  Planning 
  Decide what actions to use to achieve some set of objectives 
  Can be much worse than NP-complete 

» worst case is undecidable 
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Three Main Types of Planners 

1.  Domain-specific 
2.  Domain-independent 
3.  Configurable 

  I’ll talk briefly about each 
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1. Domain-Specific Planners (Chapters 19-23) 
  Made or tuned for 

a specific domain 
  Won’t work well (if 

at all) in any other domain 

  Most successful real-world 
planning systems work this 
way 
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Types of Planners 
2. Domain-Independent 

  In principle, a domain-independent planner 
works in any planning domain 

  Uses no domain-specific knowledge except 
the definitions of the basic actions 
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  In practice, 
  Not feasible to develop 

domain-independent planners 
that work in every possible 
domain 

  Make simplifying assumptions to 
restrict the set of domains 
  Classical planning 
  Historical focus of most 

automated-planning research 

Types of Planners 
2. Domain-Independent 
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  A0: Finite system: 
  finitely many states, actions, events 

  A1: Fully observable: 
  the controller always Σ’s current state 

  A2: Deterministic: 
  each action has only one outcome 

  A3: Static (no exogenous events): 
  no changes but the controller’s actions 

  A4: Attainment goals:  
  a set of goal states Sg 

  A5: Sequential plans: 
  a plan is a linearly ordered sequence 

of actions (a1, a2, … an) 
  A6: Implicit time: 

  no time durations; linear sequence of instantaneous states 
  A7: Off-line planning:  

  planner doesn’t know the execution status 

Restrictive Assumptions 
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  Classical planning requires all eight restrictive assumptions 
  Offline generation of action sequences for a deterministic, static, 

finite system, with complete knowledge, attainment goals, and 
implicit time 

  Reduces to a search problem: 
  Given (Σ, s0, Sg) 

»  s0 is the initial state, Sg is a set of goal states 
  Find a sequence of actions (a1, a2, … an) that produces  

a sequence of state transitions (s1, s2, …, sn) 
such that sn is in Sg. 

  Constraint-satisfaction problems also were search problems 
  But there were special-purpose problem representations and 

algorithms that were much faster than ordinary search algorithms 
  Can do something similar for planning problems 

  Several ways to do this 
  I’ll discuss a few of the better-known ones 

Classical Planning (Chapters 2-9) 
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Problem Representation 
  Several ways to represent classical planning domains 

  The classical representation (or STRIPS representation) 
is the best known 

  That’s what I’ll describe 
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Symbols 
  Start with a function-free first-order language  

  Finitely many predicate names and constant symbols, infinitely many 
variable symbols, but no function symbols 

  Add a finite set of operator names 
  e.g., symbols for the blocks world: 

  Constant symbols: a, b, c, d, e, … (names of blocks) 
  Variable symbols: u, v, w, x, y, z, x1, x2, … 
  Predicates: 

ontable(x)  - block x is on the table 
on(x,y)  - block x is on block y 
clear(x)  - block x has nothing on it 
holding(x)  - the robot hand is holding block x 
handempty  - the robot hand isn’t holding anything 

  Operator names: pickup, putdown, stack, unstack 

c"
a" b" e"

d"



Dana Nau: CMSC 421, U. of Maryland 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 27 

States 
  State: a set s of ground atoms representing what’s currently true 
  Only finitely many ground atoms, so only finitely many possible 

states 

  Example: 
 {ontable(a), on(c,a), clear(c),  
  ontable(b), clear(b), holding(d), 
  ontable(e), clear(e)} 

c"
a" b" e"

d"
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Operators 
  Operator: a triple (head, preconditions, effects) 

  head: an operator name and a parameter list 
» E.g., opname(x1, …, xk) 
» No two operators can have the same name 
» Parameter list must include all of the operator’s variables 

  preconditions: literals that must be true to use the operator 
  effects: literals that the operator will make true 

  We’ll generally write operators in the following form: 

  opname(x1, …, xk) 
» Precond: p1, p2, …, pm 
» Effects: e1, e2, …, en 
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unstack(x,y) 
   Precond:  on(x,y), clear(x), handempty 
   Effects:  ~on(x,y), ~clear(x), ~handempty, 

                   holding(x), clear(y) 

stack(x,y) 
   Precond:   holding(x), clear(y) 
   Effects:   ~holding(x), ~clear(y), 

                    on(x,y), clear(x), handempty 

pickup(x) 
   Precond:  ontable(x), clear(x), handempty 
   Effects:  ~ontable(x), ~clear(x), 

                   ~handempty, holding(x) 

putdown(x) 
   Precond:   holding(x) 
   Effects:  ~holding(x), ontable(x), 

                   clear(x), handempty 

Blocks-World Operators c"
a" b"

c"
a" b"

c"
a" b"

c"
a"

b"

c"
a" b"
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Actions and Plans 
  Action: a ground instance (via substitution) of an operator 

unstack(c,a) 
   Precond:  on(c,a), clear(c), handempty 
   Effects:  ~on(c,a), ~clear(c), ~handempty, 

                   holding(c), clear(a) 

c"
a" b"

c"
a" b"

unstack(x,y) 
   Precond:  on(x,y), clear(x), handempty 
   Effects:  ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y) 
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Notation 
  Let S be a set of literals.  Then 

  S+ = {atoms that appear positively in S} 
  S– = {atoms that appear negatively in S} 

  Let a be an operator or action. Then 
  precond+

 (a) = {atoms that appear positively in precond(a)} 
  precond–

 (a) = {atoms that appear negatively in precond(a)} 
  effects+

 (a) = {atoms that appear positively in effects(a)} 
  effects–

 (a) = {atoms that appear negatively in effects(a)} 

  Example: 
  unstack(x,y) 
        Precond:  on(x,y), clear(x), handempty 
        Effects:  ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y) 

  effects+
 (unstack(x,y)) = {holding(x), clear(y)}  

  effects–
 (unstack(x,y)) = {on(x,y), clear(x), handempty} 



Dana Nau: CMSC 421, U. of Maryland 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 32 

Executability 
  An action a is executable in s if s satisfies precond(a), 

  i.e., if  precond+
 (a) ⊆ s  and  precond–

 (a) ∩ s = ∅ 
  An operator o is applicable to s if there’s a ground instance a of o that is 

executable in s 
  Example: 
  s = {ontable(a), on(c,a), clear(c), ontable(b), clear(b),handempty} 
  o = unstack(x,y) 
  a = unstack(c,a) 

unstack(x,y) 
   Precond:  on(x,y), clear(x), handempty 
   Effects:  ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y) 

unstack(c,a) 
   Precond:  on(c,a), clear(c), handempty 
   Effects:  ~on(c,a), ~clear(c), ~handempty, holding(c), clear(a) 

c"
a" b"
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Result of performing an action 
  If a is executable in s, the result of performing it is 

         γ(s,a) = (s – effects–(a)) ∪ effects+(a) 
  Delete the negative effects, and add the positive ones 

          s = {ontable(a), on(c,a), clear(c), ontable(b), clear(b), handempty} 

  a = unstack(c,a) 
     Precond:  on(c,a), clear(c), handempty 
     Effects:  ~on(c,a), ~clear(c), ~handempty, 

  holding(c), clear(a) 

  γ(s,a) = {ontable(a), on(c,a), clear(c), ontable(b), clear(b), handempty, 
       holding(c), clear(a)} 

c"
a" b"

c"
a" b"
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Executability of Plans 
  Plan: a sequence of actions π = (a1, …, an)  
  A plan π = (a1, …, an) is executable in the state s0 if 

» a1 is executable in s0, producing some state s1 = γ (s0,a1) 
» a2 is executable in s1, producing some state s2 = γ (s1,a2) 

» … 
» an is executable in sn–1, producing some state sn= γ (sn–1,an) 

  In this case, we define γ (s0,π) = sn 
  Example on next slide 

c"
a" b"
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s3 

s2 

s1 

s0 
c"
a" b"

c"

a" b"

a" b"

c"a"
b"

s4 
b"
a" c"

c"

unstack(c,a) 
   Precond:  on(c,a), clear(c), handempty 
   Effects:  ~on(c,a), ~clear(c), ~handempty, holding(c), clear(a) 

stack(b,a) 
   Precond:   holding(b), clear(a) 
   Effects:   ~holding(b), ~clear(a), on(b,a), clear(b), handempty 

pickup(b) 
   Precond:  ontable(b), clear(b), handempty 
   Effects:  ~ontable(b), ~clear(b), ~handempty, holding(b) 

putdown(c) 
   Precond:   holding(c) 
   Effects:  ~holding(c), ontable(c), clear(c), handempty 

s = {ontable(a), on(c,a), clear(c), ontable(b),clear(b), handempty} 
π = (unstack(c,a), putdown(c), pickup(b), stack(b,a)) 
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Problems and Solutions 
  Planning problem: a triple P = (O, s0, g) 

  O is a set of operators 
  s0 is the initial state - a set of atoms 
  g the goal formula - a set of literals 

  Every state that satisfies g is a goal state 

  A plan π is a solution for P=(O,s0,g) if 
   π is executable in s0 

   the resulting state γ (s0,π) satisfies g 
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Example 
  O = {stack(x,y), unstack(x,y), pickup(x), putdown(x)} 

  s0 = {ontable(a), on(c,a), clear(c),  
         ontable(b), clear(b), handempty} 

  g = {on(a,b)} 

  One of the solutions is 
   π = (unstack(c,a), putdown(c), pickup(a), stack(a,b)) 

c"
a" b"

a"
b"
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Forward-Search Algorithms 
  Go forward from the initial state 

  Breadth-first and best-first 
  Sound: if they return a plan, 

then the plan is a solution 
  Complete: if a problem has a solution, then they will return one 
  Usually not practical because they require too much memory 

»  Memory requirement is exponential in the length of the solution 
  Depth-first search, greedy search 

  More practical to use 
  Worst-case memory requirement is linear in the length of the solution 
  Sound but not complete 

  But classical planning has only finitely many states 
  Thus, can make depth-first search complete by doing loop-checking 

s0 

s1 

s2 

s3 

a1 

a2 

a3 

s4 

s5 
sg 

a4 

a5 … 
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Branching Factor of Forward Search 

  Forward search can have a very large branching factor 
  pickup(a1), pickup(a2) , …, pickup(a500) 

  Thus forward-search can waste time trying lots of irrelevant actions 
  Need a good heuristic to guide the search 
  I’ll discuss one later 

  But first, a very different kind of planning algorithm 

a3"

a1"
a2"

…"a1" a2" a500"a3"

initial state goal 
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Graphplan 
procedure Graphplan: 
  for k = 0, 1, 2, … 

  Graph expansion: 
» create a “planning graph” that contains k “levels” 

  Check whether the planning graph satisfies a necessary 
(but insufficient) condition for plan existence 

  If it does, then 
» do solution extraction: 

•  backward search, 
modified to consider 
only the actions in 
the planning graph 

•  if we find a solution, 
then return it 

possible 
literals 
in state si 

possible 
actions 
in state si 

relaxed 
problem 



Dana Nau: CMSC 421, U. of Maryland 
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 41 

state-level i 

effects 
A maintenance action for a literal l. 
It represents what happens if we 
don’t change l. 

state-level i-1 

state-level 0 (the literals true in s0) 

The Planning Graph 
  Search space for a relaxed version of the planning problem 
  Alternating layers of ground literals and actions 

  At action-level i: all actions whose preconditions appear in state-level i–1 
  At state-level i: all the effects of all the actions at action-level i 
  Edges: preconditions and effects 

action-level i 

preconditions 
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Example 
  Due to Dan Weld (U. of Washington) 

  Suppose you want to prepare dinner as a surprise for your sweetheart (who is 
asleep) 

 s0 = {garbage, cleanHands, quiet} 
 g = {dinner, present, ¬garbage} 

 Action  Preconditions  Effects   
 cook()  cleanHands  dinner 
 wrap()  quiet   present 
 carry()  none   ¬garbage, ¬cleanHands 
 dolly()  none   ¬garbage, ¬quiet 

Also have the maintenance actions: one for each literal 
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Example (continued) 
  state-level 0: 

{all atoms in s0} U 
    {negations of all atoms not in s0} 

  action-level 1: 
{all actions whose preconditions 
     are satisfied and non-mutex in s0} 

  state-level 1: 
{all effects of all of the 
     actions in action-level 1} 

Action  Preconditions Effects   
cook()  cleanHands  dinner 
wrap()  quiet  present 
carry()  none  ¬garbage, ¬cleanHands 
dolly()  none  ¬garbage, ¬quiet 

Also have the maintenance actions ¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 
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Mutual Exclusion 

  Two actions at the same action-level are mutex if 
  Inconsistent effects: an effect of one negates an effect of the other 
  Interference: one deletes a precondition of the other 
  Competing needs: they have mutually exclusive preconditions 

  Otherwise they don’t interfere with each other 
  Both may appear in a solution plan 

  Two literals at the same state-level are mutex if 
  Inconsistent support: one is the negation of the other, 

or all ways of achieving them are pairwise mutex 

Recursive 
propagation 
of mutexes 
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Example (continued) 
  Augment the graph to indicate mutexes 
  carry is mutex with the maintenance 

action for garbage (inconsistent effects) 
  dolly is mutex with wrap  

  interference 
  ~quiet is mutex with present 

  inconsistent support 
  each of cook and wrap is mutex with 

a maintenance operation 

Action  Preconditions  Effects   
cook()  cleanHands  dinner 
wrap()  quiet  present 
carry()  none  ¬garbage, ¬cleanHands 
dolly()  none  ¬garbage, ¬quiet 

Also have the maintenance actions ¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 
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¬dinner 

¬present 

¬dinner 

¬present 

Example (continued) 

  Check to see whether there’s a possible 
solution 

  Recall that the goal is 
  {¬garbage, dinner, present} 

  Note that in state-level 1, 
  All of them are there 
  None are mutex with each other 

  Thus, there’s a chance that a plan exists 
  Try to find it 

  Solution extraction 

state-level 0 state-level 1 action-level 1 
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Solution Extraction 

procedure Solution-extraction(g,j) 
if j=0 then return the solution 
for each literal l in g 

 nondeterministically choose an action 
 to use in state s j–1 to achieve l 

if any pair of chosen actions are mutex 
 then backtrack 

g’ := {the preconditions of 
      the chosen actions} 

Solution-extraction(g’, j–1) 
end Solution-extraction 

The level of the state sj 
The set of goals we are 
trying to achieve 

state- 
level 
i-1 

action- 
level 

i 

state- 
level 

i 

A real action or a maintenance action 
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Example (continued) 

  Two sets of actions for the goals at 
state-level 1 

  Neither of them works 
  Both sets contain actions that are 

mutex 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 
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Recall what the algorithm does 

procedure Graphplan: 
  for k = 0, 1, 2, … 

  Graph expansion: 
»  create a “planning graph” that contains k “levels” 

  Check whether the planning graph satisfies a necessary 
(but insufficient) condition for plan existence 

  If it does, then 
»  do solution extraction: 

•  backward search, 
modified to consider 
only the actions in 
the planning graph 

•  if we find a solution, 
then return it 
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Example (continued) 

  Go back and do 
more graph 
expansion 

  Generate another 
action-level 
and another state-
level 

¬dinner 

¬present 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2 
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Example (continued) 

  Solution 
extraction 

  Twelve combinations 
at level 4 
  Three ways to 

achieve ¬garb 
  Two ways to 

achieve dinner 
  Two ways to 

achieve present 

¬dinner 

¬present 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2 
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Example (continued) 

  Several of the 
combinations look 
OK at level 2 

  Here’s one of them 

¬dinner 

¬present 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2 
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Example (continued) 
  Call Solution-

Extraction 
recursively at 
level 2 

  It succeeds 
  Solution whose 

parallel length 
is 2 

¬dinner 

¬present 

¬dinner 

¬present 

¬dinner 

¬present 

state-level 0 state-level 1 action-level 1 state-level 2 action-level 2 
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Back to Forward Search 

  Earlier, I said 
  Forward search can have a very large branching factor 

»  pickup(a1), pickup(a2) , …, pickup(a500) 
  Thus forward-search can waste time trying lots of irrelevant actions 

»  Need a heuristic to guide the search 

  We can use planning graphs to compute such a heuristic 

a3"

a1"
a2"

…"a1" a2" a500"a3"

initial state goal 
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Getting Heuristic Values from 
a Planning Graph 

  Recall how GraphPlan works: 
loop 

Graph expansion: 
extend a “planning graph” forward from the initial state 

until we have achieved a necessary (but insufficient) condition 
for plan existence 

Solution extraction: 
search backward from the goal, looking for a correct plan 
if we find one, then return it 

repeat 

this takes polynomial time 

this takes exponential time 
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Using Planning Graphs to Compute h(s) 

  In the graph, there are alternating 
layers of ground literals and actions 

  The number of “action” layers is a lower 
bound on the number of actions in the plan 

  Construct a planning graph, starting at s 
   Δg(s,g) = level of the first layer that 

 “possibly achieves” the goal 
  Some ways to improve this, but 

I’ll skip the details 
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The FastForward Planner 

  Use a heuristic function h(s) similar to Δg(s,g) 
  Don’t want an A*-style search (takes too much memory) 
  Instead, use a greedy procedure: 

until we have a solution, do 
expand the current state s 
s := the child of s for which h(s) is smallest 

 (i.e., the child we think is closest to a solution) 
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The FastForward Planner 

  Use a heuristic function h(s) similar to Δg(s,g) 
  Don’t want an A*-style search (takes too much memory) 
  Instead, use a greedy procedure: 

until we have a solution, do 
expand the current state s 
s := the child of s for which h(s) is smallest 

 (i.e., the child we think is closest to a solution) 
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The FastForward Planner 

  Use a heuristic function h(s) similar to Δg(s,g) 
  Don’t want an A*-style search (takes too much memory) 
  Instead, use a greedy procedure: 

until we have a solution, do 
expand the current state s 
s := the child of s for which h(s) is smallest 

 (i.e., the child we think is closest to a solution) 
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The FastForward Planner 

  Use a heuristic function h(s) similar to Δg(s,g) 
  Don’t want an A*-style search (takes too much memory) 
  Instead, use a greedy procedure: 

until we have a solution, do 
expand the current state s 
s := the child of s for which h(s) is smallest 

 (i.e., the child we think is closest to a solution) 
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The FastForward Planner 

  Use a heuristic function h(s) similar to Δg(s,g) 
  Don’t want an A*-style search (takes too much memory) 
  Instead, use a greedy procedure: 

until we have a solution, do 
expand the current state s 
s := the child of s for which h(s) is smallest 

 (i.e., the child we think is closest to a solution) 

  Problem: can get caught in local minima 
  h(s') > h(s) for every successor s' of s 
  Escape by doing a breadth-first search until you find a node with lower 

cost 
  Problem: can hit a dead end - in this case, FF fails 
  No guarantee on whether FF will find a solution, or how good a solution 

  But FF works quite well on many classical planning problems 
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International Planning Competitions 
  International planning competitions in 1998, 2002, 2004, 2006, 2008 

  Many of the planners in these competitions have incorporated ideas from 
GraphPlan and FastForward 

  Graphplan was developed in 1995 
  Several years before the competitions started 

  FastForward was introduced in the 2000 International Planning Competition 
  It got an “outstanding performance” award 
  Large variance in how good its plans were, but it found them very quickly 
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Three Main Types of Planners 

1.  Domain-specific 
2.  Domain-independent 
3.  Configurable 

»  Domain-independent planning engine 
»  The input includes information about how to plan efficiently in a given 

problem domain 

  I’ll now talk about a particular kind of configurable planner 
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Motivation 
  For some planning problems, we may already have ideas about good ways 

to solve them 
  Example: travel to a destination that’s far away: 

  Domain-independent planner: 
»  many combinations vehicles and routes 

  Experienced human: small number of “recipes” 
e.g., flying: 

1.   buy ticket from local airport to remote airport 
2.   travel to local airport 
3.   fly to remote airport 
4.   travel to final destination 

  How to get planning systems to use such recipes? 
  General approach: Hierarchical Task Network (HTN) planning 
  We’ll look at a simpler special case: Task-List Planning 
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Task-List Planning 
  States and operators: same as in classical planning 
  Instead of achieving a goal, we will want to accomplish a list of tasks 

  Recursively decompose tasks into smaller and smaller subtasks 
  At the bottom, actions that we know how to accomplish directly 

  Task: an expression of the form  t(u1,…,un) 
  t is a task symbol, and each ui is a term 

  Two kinds of task symbols (and tasks): 
  primitive: tasks that we know how to execute directly 

»  task symbol is the head of an operator 
  nonprimitive: tasks that must be decomposed into subtasks 

»  use methods (next slide) 
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Methods 
  Method: a 4-tuple m = (head, task, precond, subtasks) 

  head: the method’s name, followed by list of variable symbols (x1,…,xn)  
  task: a nonprimitive task 
  precond: preconditions (literals) 
  subtasks: a sequence of tasks 〈t1, …, tk〉  

air-travel(x,y,u,v) 
 task:  travel(x,y) 
 precond:  far(x,y), airport(x,u), airport(y,v) 
 subtasks:  get-ticket(u,v),  travel(x,u), 

 fly(u,v), travel(v,y) travel(x,y) 

get-ticket (u,v) travel (x, u) fly (u,v) travel (v,y) get-taxi ride-taxi(x,y) pay-driver 

Precond: far(x,y), airport(x,u), airport(y,v) Precond: ~far(x,y) 

taxi-travel(x,y) air-travel(x,y,u,v) 
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Domains, Problems, Solutions 
  Task-list planning domain: methods, operators 
  Task-list planning problem: methods, operators, initial state, initial 

task list 

  Solution: any executable plan 
that can be generated by 
recursively applying  
  methods to 

nonprimitive tasks 
  operators to 

primitive tasks 

nonprimitive task 

precond 

method instance 

s0 precond effects precond effects s1 s2 

primitive task primitive task 

operator instance operator instance 
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method instance 

travel(UMD,UCLA) 

get-ticket (UMD,UCLA) travel (UMD,BWI) fly (BWI,LAX) travel (LAX,UCLA) 

nonprimitive task 

Precond: far(UMD,UCLA),    
airport(UMD,BWI), 

airport(LAX,UCLA) 

get-taxi ride-taxi (UMD,BWI) pay-driver 

Precond: ~far(UMD,BWI) 

get-taxi ride-taxi (LAX,UCLA) pay-driver 

Precond: ~far(LAX,UCLA) 

Example 
Task: travel from UMD to UCLA 
  Use air-travel method 
  Use taxi-travel method for 

some of the subtasks 
  The other subtasks 

(get-taxi, etc.) 
are primitive 

taxi-travel(UMD,BWI) taxi-travel(LAX,UCLA) 

air-travel(UMD,UCLA) 
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Solving Task-List Planning Problems 
  TFD(s,(t1,…,tk)) 

  if k=0 (i.e., no tasks) then return the empty plan 
  else if there is an action a such that head(a) = t1 then 

»  if s satisfies precond(a) then  
•  return TFD(γ(s,t1),(t2,…,tk)) 

»  else return failure 
  else 

»  A = {m : m is a method instance such that 
    task(m)=t1, and s satisfies precond(m)} 

»  if active is empty then return failure 
»  nondeterministically choose m in A 
»  let u1…, uj be m’s subtasks 
»  return TFD(s, (u1…, uj, t2, …, tk)) 

state s; task list T=( t1 ,t2,…) 

                      action a 

state γ(s,a) ; task list T=(t2, …) 

task list T=( u1,…,uj ,t2,…) 

        task list T=( t1 ,t2,…) 

 method instance m 
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Example 
  TFD(s,(t1,…,tk)) 

  if k=0 (i.e., no tasks) then return the empty plan 
  else if there is an action a such that head(a) = t1 then 

»  if s satisfies precond(a) then 
•  return TFD(γ(s,t1),(t2,…,tk)) 

»  else return failure 
  else 

»  A = {m : m is a method instance such that 
    task(m)=t1, and s satisfies precond(m)} 

»  if active is empty then return failure 
»  nondeterministically choose m in A 
»  let u1…, uj be m’s subtasks 
»  return TFD(s, (u1…, uj, t2, …, tk)) 

〈travel(UMD,UCLA)〉 

get-ticket (u,v) travel (x, u) fly (u,v) travel (v,y) get-taxi ride-taxi(x,y) pay-driver 

Precond: far(x,y), airport(x,u), airport(y,v) Precond: ~far(x,y) 

s0 : far(UMD,UCLA), 
airport(UMD,BWI), 
airport(UCLA,LAX) 

task 
list: 

〈get-ticket (UMD,UCLA) 
travel (UMD,BWI) 

fly (BWI,LAX) 
travel (LAX,UCLA)〉 

apply 
get- 
ticket 
action: 

far(UMD,UCLA), 
airport(UMD,BWI), 
airport(UCLA,LAX) 
ticket(UCLA,LAX) 

apply 
air-travel 
method: 

〈get-taxi 
ride-taxi(UMD,BWI) 

pay-driver 
fly (BWI,LAX) 

travel (LAX,UCLA)〉 

apply 
taxi-travel 
method: 

air-travel(x,y,u,v) taxi-travel(x,y) 
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Us:  East declarer, West dummy 
Opponents: defenders, South & North 
Contract:  East – 3NT 
On lead:  West at trick 3 East: 	

♠KJ74	



West:	

♠A2	


Out: 	

♠QT98653	



Increasing Expressivity 
  Easy to generalize this beyond classical planning 

  States can be arbitrary data structures 

  Preconditions and effects can include 
»  logical inferences (e.g., Horn clauses) 
» complex numeric computations 
»  interactions with other software packages 

  e.g., SHOP and SHOP2 
!http://www.cs.umd.edu/projects/shop!
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Example 

  Simple travel-planning domain 
  Go from one location to another 
  State = {values of variables} 

(a,x,y) 

(a,x,y) 

(a,x,y) 

(a,x,y) 
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Precond:  distance(home,park) ≤ 2 Precond:  cash(me) ≥ 1.50 + 0.50*distance(home,park) 

Initial task: travel(me,home,park) 

Precondition succeeds 

travel-by-foot travel-by-taxi 

Precondition fails 
Decomposition into subtasks 

home" park"

Planning Problem: I am at home, I have $20, 
I want to go to a park 8 miles away"

 s1 = {location(me)=home, location(taxi)=home, cash(me)=20, distance(home,park)=8} 

Initial 
 state 

 s0 = {location(me)=home, cash(me)=20, distance(home,park)=8} 

call-taxi(me,home) ride(me,home,park) pay-driver(me,home,park) 

Precond: … 
Effects: … 

Precond: … 
Effects: … 

Precond: … 
Effects: … 

 s2 = {location(me)=park, location(taxi)=park, cash(me)=20, distance(home,park)=8 

 s3 = {location(me)=park, location(taxi)=park, cash(me)=14.50, distance(home,park)=8} 

Final  
state 

 s1   s2   s3   s0  
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Comparison to Classical Planners 
  Advantages: 

  Can encode “recipes” (standard ways do planning in a given 
domain) as collections of methods and operators 

» Helps the planning system do more-intelligent search - can 
speed up planning by many orders of magnitude (e.g., 
polynomial time versus exponential time) 

»  Produces plans that correspond to how a human might solve 
the problem 

  Greater expressive power 
»  Preconditions and effects can be computational algorithms 

  Disadvantages: 
  More complicated than just writing classical operators 
  The author needs knowledge about planning in the given domain 
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SHOP2 

  SHOP2:  
  http://www.cs.umd.edu/projects/shop 

  Algorithm is a generalized version of TFD 
  Won an award in the AIPS-2002 Planning Competition 
  Freeware, open source 
  Downloaded more than 13,000 times 
  Used in hundreds (thousands?) of projects worldwide 


