
CMSC 421, Spring 2010: Project 3

Last updated April 28, 2010. The changes include the new due date and late date, the time-
limit argument for the start-game function, some examples of programming style, and
the URL of the control program.
• Due date/time: Noon on May 7
• Late date/time (5-point penalty): Noon on May 9

In Project 2, you wrote a program to return complete paths for racetrack games. But
in a real-life road race, there are many reasons why it isn’t feasible to compute a complete
path all at once. One of them is that the car is already moving, and will crash into a wall
unless we can decide our next move very quickly. Thus a somewhat more realistic model
would be to choose the first move quickly (e.g., within a fixed amount of time) and make
that move, then choose the second move quickly and make that move, and so forth. In this
project, you’ll write Lisp code to do that.

Functions to Write
1. Write a function (start-game boundary finish-line time-limit) that returns NIL.

The purpose of this function is to specify that a new racetrack game is starting on a
racetrack with boundary boundary and finish line finish-line.

2. Write a function (next-velocity state time-limit) that returns the velocity you
want the racecar to use next, given that its current state is state.

In both functions, time-limit is the maximum amount of CPU time available (i.e.,
start-game and next-velocity each should return within time-limit milliseconds).
I don’t intend to change the value of time-limit during a game, but I’ll use different values
of time-limit in different games.

How your functions work is up to you. The two main challenges are (1) figuring out
what move you think is best, and (2) doing so quickly. You’ll need to use your creativity
for this! If your program works well enough, you’ll get extra credit (see page 3).

One possibility would be to modify your code from Project 2 so that it periodically
checks to see how much CPU time has elapsed. When the elapsed time gets close to time-
limit, the algorithm could interrupt its search, try to figure out which of the possible next
states looks best based on the search it has done so far, and return that state.

Data Formats and Programming Style
The data formats (points, edges, velocities, states, paths, etc.) will be the same as in Project
2.

As usual, you should comment your code, indent it appropriately, and use good pro-
gramming style (e.g., as in Norvig’s Tutorial on Good Lisp Programming Style). Here are
a couple of examples:

1



Declare your variables. For Project 2, some of you never declared any of your variables.
If the test results that I sent you for Project 2 contained lots of messages like the following,
then you’re one of those people:
Warning: Free reference to undeclared variable FOO assumed special.

That’s bad programming style, for reasons that I hope are obvious (e.g., it can cause
name conflicts), and we’ll deduct points for it.

Destructive versus nondestructive operations. It’s OK to use destructive operators, if
you’re sure that they won’t have any bad side-effects. For example, in my code for Project
2, Lisp’s built-in sort function (which I used to reorder the fringe list) reordered the list
destructively. This was OK because it didn’t modify any of the nodes in the fringe—it just
changed the order in which they appeared.

As an example of a bad side-effect, suppose I call
(start-game boundary finish-line time-limit)

and suppose your code does something like (setf (first finish-line) ’garbage).
The bad side-effect is that this redirects a pointer in my copy of the finish line.1 I tested for
this kind of thing in Project 2 (everyone’s code passed the test!), and I’ll test for it again in
Project 3.

How to Measure CPU Time
There’s a built-in Lisp function (get-internal-run-time) that returns the current run-
ning time as an integer. The time usually is measured in milliseconds; but this may differ
from one Lisp implementation to another, and there is a built-in global variable called
internal-time-units-per-second to let you know what the time unit is. Thus, we
can use the following code to measure a function’s running time in milliseconds:

(defun run-time-in-ms ()
;; Divide by units-per-second to get seconds, then
;; then multiply by 1000 to get milliseconds.
(* 1000 (/ (get-internal-run-time)

internal-time-units-per-second)))

(defun running-time (func arglist)
;; measure the running time of func on arglist
(let ((start-time (run-time-in-ms)))

(apply func arglist)
(- (run-time-in-ms) start-time)))

By the way, the above code illustrates why Lisp’s representation of fractions is useful: the
time conversion in cumulative-time-in-ms has no roundoff error.

1In contrast, (setf (first (copy-tree finish-line)) ’garbage) would be OK, though I
can’t imagine why you’d ever want to do it.

2



Using Your Code to Play Racetrack
To play a racetrack game, a control program will call start-game once to set up the
game, and will call next-velocity repeatedly to find out what moves to make. The
objective is to reach the finish line without crashing, and with as few moves as possible.

Suppose t is the value of the time-limit parameter. Then the control program needs to
move the racecar once every t milliseconds.

• If start-game returns within t milliseconds, then the game starts normally. But if
it takes mt milliseconds where m > 1, then everything after the first t milliseconds
will count toward your total number of moves in the game. Since your racecar hasn’t
actually started moving yet, these moves will be at velocity (0, 0), i.e., the racecar will
stay at its initial location for dm− 1e moves.

• If next-velocity returns a new velocity within t milliseconds, then the next move
will be at the new velocity. But if next-velocity takes mt milliseconds where
m > 1, then the control program will need to move the racecar dm − 1e times at the
old velocity and then once at the new velocity. This will work as follows:

loop:

1. Let (x, y) be the racecar’s current location, (v, w) be its current velocity, and n
be the number of moves it has made so far.

2. Call next-velocity. Let (v′, w′) be the velocity that it returns, t′ be the
CPU time that it took, and m = dt′/te. Then the racecar has a sequence of m
moves to make: m − 1 moves at the old velocity (v, w), and one move at the
new velocity (v′, w′).

3. For i = 1 to m do the following:

– Add 1 to n, and perform the i’th move in the above sequence.

– If the racecar hit the boundary of the racetrack, then return failure.

– If the racecar reaches the finish line, then return n.

repeat

I’ve posted a simple version of the control program that you can use while developing your
code. It’s at

http://www.cs.umd.edu/users/nau/cmsc421/p3-control.lisp
When you submit your code, we’ll test it in several racecar games, using a more sophisti-
cated version of the control program.

Things to Think About
Running time. Allegro Common Lisp returns the running time in milliseconds; but
you shouldn’t expect it to be accurate to the millisecond. Every time I’ve called
(get-internal-run-time) in Allegro, the number of milliseconds has always been

3



a multiple of 10.

Safe and unsafe states. If the amount of time t available for your search is small, then
you might not be able to search ahead all the way to the finish line. In this case, how are
you going to decide which move is best? Among other things, you’ll want to avoid moving
to states that are unsafe; i.e., states from which a crash is inevitable. Here’s one possible
heuristic for deciding whether a state s is safe: if you start in state s and you decelerate the
car to a complete stop as quickly as you can, will the car hit the wall before it stops?

Whether to cache the state space. During a racetrack game, the next call to
next-velocitywill probably need to search some of the same space that you’re search-
ing during the current call to next-velocity. Thus, it seems like it might be possible
to cache some of the old state space (e.g., by storing it in some global variables) so that
you don’t need to regenerate it again. But unfortunately, I think it would be quite difficult
to get this to work correctly; and even if you get it working correctly, I don’t think it would
enable you to find significantly better solutions. Thus I don’t recommend it.

Extra Credit
We’ll compute a performance measure for each program as follows. The top ten programs
(i.e., the ones with the ten highest performance measures) will each get 10 points of extra
credit.

• Program p outperforms program q on game g if either p finishes successfully and q
doesn’t, or both programs finish successfully and p takes fewer moves than q.

• Programs p and q perform equally well on game g if they both finish successfully in the
same number of moves, or if neither finish successfully.

• Program p’s score on game g is the number of programs that it outperforms, plus 1/2
the number of programs that perform equally well to p.

• Program p’s performance measure is the sum of its scores on all of the games in our
test suite.

4


