Reachability Heuristics for Handling State Uncertainty

Daniel Bryce, Will Cushing
Subbarao Kambhampati

Joint with David E. Smith, NASA

[ICAPS 2004; AAAI 2005; UAI 2005]
Belief Space Search

- Partially known initial state
- Actions with non-deterministic effects
- Need to search in Belief Space
 - Belief States are sets of world states (2^S)
 - Represented as formulas over fluents (implemented as BDDs)

Acute need for effective search control
Using Multiple Graphs

- Same-world Mutexes
- Memory Intensive
- Heuristic Computation Can be costly

Unioning these graphs a priori would give much savings …
Using a Single, Labeled Graph

Labels signify possible worlds under which a literal holds

Action Labels: Conjunction of Labels of Supporting Literals

Literal Labels: Disjunction of Labels of Supporting Actions

Label Key:
- True
- $\neg Q \& \neg R$
- $\neg P \& \neg R$
- $\neg P \& \neg R$
- $\neg P \& \neg Q$

Heuristic Value = 5

- Memory Efficient
- Cheap Heuristics
- Scalable
- Extensible

Benefits from BDD’s
Relaxed Plan on Labeled Graph

The gray subgraph is the relaxed plan supporting \(G \)

Notice that two actions \(A_4 \) and \(A_5 \) are needed to Support \(G \)

Literal Labels: Disjunction of Labels Of Supporting Actions

Heuristic Value = 5

Label Key:
- True
- \(~Q \& ~R\)
- \(~P \& ~R\)
- \(~P \& ~Q\)
State Agnostic Graphs

- Labelled graphs handle "state uncertainty" using labels on the PG elements
- But the same idea can be used to handle "search uncertainty"
 - We can compute a labelled graph that gives us reachability information from any set of states— including the set of all reachable states
- Such state agnostic graphs do "all pairs shortest path" analysis (as against single source shortest path analysis done by normal PG).
Empirical Evaluation

Figure 3: Reachable-SAG (using SLUG) vs. PG (using PG_{LUG}), Belief-Space Problems

Conformant

Figure 5: Comparison of planners on conformant (left) and conditional (right) domains. Four domains appear in each plot. The conformant domains are Rovers(Rv1-Rv6), Logistics(L1-L5), Cube Center(C5-C13), and Ring(R2-R10). The conditional domains are Rovers(Rv1-Rv6), Logistics(L1-L5), Medical(M2-M14), and BTCS(B10-B80).
- PG Variations
 - Serial
 - Parallel
 - Temporal
 - Labelled
 - State Agnostic

- Propagation Methods
 - Level
 - Mutex
 - Cost
 - Label

Versatility of PG Heuristics

- Planning Problems
 - Classical
 - Resource/Temporal
 - Conformant/Conditional
 - Partial Satisfaction

- Planners
 - Regression
 - Progression
 - Partial Order
 - Graphplan-style