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An important way to learn new actions and behaviors is by observing others,

and several evolutionary games have been developed to investigate what learning

strategies work best and how they might have evolved. In this dissertation I present

an extensive set of mathematical and simulation results for Cultaptation, which is

one of the best-known such games.

I derive a formula for measuring a strategy’s expected reproductive success,

and provide algorithms to compute near-best-response strategies and near-Nash

equilibria. Some of these algorithms are too complex to run quickly on larger versions

of Cultaptation, so I also show how they can be approximated to be able to handle

larger games, while still exhibiting better performance than the current best-known

Cultaptation strategy for such games. Experimental studies provide strong evidence

for the following hypotheses:

1. The best strategies for Cultaptation and similar games are likely to be con-

ditional ones in which the choice of action at each round is conditioned on



the agent’s accumulated experience. Such strategies (or close approximations

of them) can be computed by doing a lookahead search that predicts how

each possible choice of action at the current round is likely to affect future

performance.

2. Such strategies are likely to prefer social learning most of the time, but will

have ways of quickly detecting structural shocks, so that they can switch

quickly to individual learning in order to learn how to respond to such shocks.

This conflicts with the conventional wisdom that successful social-learning

strategies are characterized by a high frequency of individual learning; and

agrees with recent experiments by others on human subjects that also challenge

the conventional wisdom.
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Chapter 1

Introduction

An important way to learn new actions and behaviors is social learning, i.e.,

learning by observing others. Some social-learning theorists believe this is how most

human behavior is learned [?], and it also is important for many other animal species

[?, ?, ?]. Such learning usually involves evaluating the outcomes of others’ actions,

rather than indiscriminate copying of others’ behavior [?, ?], but much is unknown

about what learning strategies work best and how they might have evolved.

For example, it seems natural to assume that communication has evolved due

to the inherent superiority of copying others’ success rather than learning on one’s

own via trial-and-error innovation. However, there has also been substantial work

questioning this intuition [?, ?, ?, ?, ?].

Several evolutionary games have been developed to investigate social learning

[?, ?, ?, ?]. One of the best-known is Cultaptation, a multi-agent social-learning

game developed by a consortium of European scientists [?] who sponsored an inter-

national tournament with a e10,000 prize.1 The rules of Cultaptation are rather

complicated (see Section ??), but can be summarized as follows:

• Each agent has three kinds of possible actions: innovation, observation, and

exploitation. These are highly simplified analogs of the following real-world

1NOTE: We are not affiliated with the tournament or with the Cultaptation
project.
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activities, respectively: spending time and resources to learn something new,

learning something by communicating with another agent, and exploiting the

learned knowledge.

• At each step of the game, each agent must choose one of the available actions.

How an agent does this constitutes the agent’s “social learning strategy.”

• Each action provides an immediate numeric payoff and/or information about

the payoffs of other actions at the current round of the game. This information

is not necessarily correct in subsequent rounds because the actions’ payoffs

may vary from one round to the next, and the way in which they may vary is

unknown to the agents in the game.2

• Each agent has a fixed probability of dying at each round. At each round,

each agent may also produce offspring, with a probability that depends on

how this agent’s average per-round payoff compares to the average per-round

payoffs of the other agents in the game.

The organizers of the tournament have conducted a thorough analysis of its

results that made many observations [?]; perhaps the most interesting result was that

the top-performing strategies in the tournament all relied on social learning almost

exclusively, performing individual learning only as a bootstrapping mechanism in the

2 For our analyses, we assume the payoffs at each round are determined by an
arbitrary function (which may be either deterministic or probabilistic), and we an-
alyze how strategies perform given various possible characteristics of that function.
In general, such characteristics would not be known to any Cultaptation agent—
but our objective is to examine the properties of strategies in various versions of
Cultaptation, not to develop a Cultaptation agent per se.
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first rounds of the game. This was considered surprising because prior theoretical

studies of social learning suggest that individual learning should play a prominent

role.

A second Cultaptation tournament began in February 2012, and the entries

are still being evaluated at the time of this writing.3 Unfortunately, one of the

inherent disadvantages of a tournament format is that its results provide evidence

that the winning contestants are superior to the other contestants; this does prove

whether the winning contestants use the best possible methods.

In this work, we attempt to address this problem by developing analytical

methods capable of analyzing evolutionary environments with social learning, and

using these methods to study Cultaptation to see what types of strategies are effec-

tive. We present the following results in this work:

First, we provide a strategy-generation algorithm that can construct a strategy

that is within any given error bound ε > 0 of a best response to a given set of

competing strategies (Section ??).

We then present the Cultaptation Strategy Learning Algorithm (CSLA), which

uses the strategy-generation algorithm in an iterative self-improvement loop to at-

tempt to find a strategy that is a near-best response to itself, and is therefore a

symmetric near-Nash equilibrium (Section ??). Finding such a strategy is desirable

because it should be able to perform well against any set of competing strategies

3This tournament carries a e25,000 prize and introduces a few new concepts
into the game, such as the ability for agents to improve actions they already know,
and proximity-based observation. This work does not deal with these additions,
although we may address them in future work.
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(i.e., any strategies it plays against in a tournament setting).

Finally, we provide experimental results outlining the generation of an ap-

proximate Nash equilibrium strategy, sself , in a small version of Cultaptation, and a

performance comparison (in the smaller environment) between sself and EVChooser,

a known good strategy from the Cultaptation tournament (Section ??).4 These ex-

periments show that sself is able to outperform EVChooser, and provide several

insights into the characteristics of good Cultaptation strategies. For example, the

experiments show that sself observes and exploits most of the time, but switches

quickly to innovation when a structural shock occurs, switching back to observation

and exploitation once it has learned how to respond to the shock. This conflicts

with the conventional wisdom [?, ?] that successful social-learning strategies are

characterized by a high frequency of innovation, but it helps to explain both the

results of the Cultaptation tournament [?] and some recent experimental results on

human subjects [?].

These results provide strong support for the following hypotheses about the

best strategies for Cultaptation and similar games: First, the best strategies are

likely to be conditional ones in which the choice of action at each round is conditioned

on the agent’s accumulated experience. Such strategies (or close approximations of

them) can be computed by doing a lookahead search that predicts how each possible

choice of action at the current round is likely to affect future performance. Second,

it is likely that the best strategies will observe and exploit most of the time, but will

4Further experiments, included in the supplemental material, demonstrate that these results

extend to the full-size game of Cultaptation as well.
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have ways of quickly detecting structural shocks, so that they can switch quickly to

innovation in order to learn how to respond to such shocks.

In addition to these insights about Cultaptation and social learning in gen-

eral, our work also shows how the analysis and algorithms outlined above could be

adapted to apply to future evolutionary games that, like Cultaptation, are signifi-

cantly more complex than classical evolutionary games. As researchers in the field

of evolutionary game theory continue to study more complex phenomena like social

learning, it is likely that these weaker assumptions will be needed more frequently,

and so techniques like the ones presented here will be necessary more often.
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Chapter 2

Background

2.1 Cultaptation Social-Learning Game

This section gives a more detailed description of the Cultaptation social learn-

ing game, adapted from the official description [?]. The game is a multi-agent

round-based game, where one action is chosen by each agent each round. There

are N agents playing the game, where N is a parameter to the game. No agent

knows of any other agent’s actions at any point in the game except through the

Obs action specified below. The actions available to each agent are innovation (Inv),

observation (Obs), and exploitation (X1, . . . ,XM , where M is a parameter to the

game). Each Inv and Obs action informs the agent what the utility would be for

one of the exploitation actions, and an agent may not use an exploitation action Xi

unless the agent has previously learned of it through an innovation or observation

action. Here are some details:

Exploitation. Each exploitation action Xi provides utility specific to that

action (e.g. X1 may provide utility 10 and X2 may provide utility 50). The utility

assigned to each action at the beginning of the game is drawn from a probability

distribution π, where π is a parameter to the game.

The utility provided by each exploitation action Xi may change on round r,

according to a probability cr. The function c is a parameter to the game, and
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specifies the probability of change for every round of the game. When the changes

occur, they are invisible to the agents playing the game until the agent interacts

with the changed action. For instance: if an action’s utility happens to change on

the same round it is exploited, the agent receives the new utility, and discovers the

change when the new utility is received. The new utility for a changed action is

determined via the distribution π.

Innovation. When an agent uses the Inv action, it provides no utility, but it

tells the agent the name and utility of some exploitation action Xi that is chosen

uniformly at random from the set of all exploitation actions about which the agent

has no information. If an agent already knows all of the exploitation actions, then

Inv is illegal. The agent receives no utility on any round where she chooses an Inv

action.

Observation. By performing an Obs action, an agent gets to observe the

action performed and utility received by some other agent who performed an ex-

ploitation action on the previous round. Agents receive no utility for Obs actions,

nor any information other than the action observed and its value: the agent being

observed, for instance, is unknown. If none of the other agents performed an ex-

ploitation action on the previous round, then there were no Xi actions to observe so

the observing agent receives no information. In some variants of the social learn-

ing game, agents receive information about more than one action when observing.

We do not treat such variants directly in this proposal, but it is straightforward to

extend my algorithms to take this difference into account.

Example 1. Consider two strategies: the innovate-once strategy (here-
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Round # 1 2 3 4 5 . . . k

I1’s action Inv X1 X1 X1 X1 . . . X1

I1’s utility 0 3 6 9 12 . . . 3(k − 1)

Per round 0 1.5 2 2.25 2.4 . . . 3k−1
k

I2O’s action Inv Inv Obs X3 X3 . . . X3

I2O’s utility 0 0 0 8 16 . . . 8(k − 3)

Per round 0 0 0 2 3.2 . . . 8k−3
k

Table 2.1: Action sequences from Example ??, and their utilities.

after I1), which innovates exactly once and exploits that innovated action
(whatever it is) for the rest of the game, and the innovate-twice-observe-
once strategy (hereafter I2O), which innovates twice, observes once, and
exploits the highest valued action of the actions discovered for the rest
of the game. For simplicity of exposition, suppose there are only four
exploitation actions: X1, X2, X3, and X4. The values for each of these
actions are drawn from a distribution; in this example we will assume
that they are chosen to be 3, 5, 8, and 5, respectively. For simplicity,
we will assume the probability of change is 0. Suppose there are two
agents: one I1 and one I2O. For the first action, I1 will innovate, which
we suppose gives I1 the value of action X1. On every sequential action,
I1 will choose action X1, exploiting the initial investment. If the agent
dies k rounds later, then the history of actions and utilities will be that
given in Table ??; giving a utility of 3(k − 1) and a per-round utility of
3k−1

k
.

In contrast, I2O will innovate, informing it of the utility of X3: 8, then
it will innovate again, informing it of the utility of X4: 5, and finally it
will observe. On the second round, I1 performed X1, and since these are
the only two agents, this was the only exploitation action performed.
Therefore, I2O’s observation action on the next round must report that
another agent got a utility of 3 from action X1 last round (if there were
multiple possibilities, one would be chosen uniformly at random). On
round 4, I2O then knows that actions X1, X3, and X4 have utilities of 3,
8, and 5, respectively. Since the probability of change is 0, the obvious
best action is X3, which I2O performs for the rest of her life. The utility
of I2O on round k is 8(k − 3), making the per-round utility 8k−3

k
. Note

that on rounds 2 to 4, I2O will have a worse per-round utility than I1,
while after round 4, the utility of I2O will be higher (this is important
because reproduction is tied to per-round utility, as I will show shortly).

Formally, everything that an agent α knows about each round can be described
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by an action-percept pair, (a, (m, v)), where a ∈ {Inv,Obs,X1, . . . ,XM} is the action

that α chose to perform, and (m, v) is the percept returned by the action. More

specifically, m ∈ {X1, . . . ,XM , ∅} is either an exploitation action or a null value, and

v is the utility observed or received. While a is chosen by the agent, m and v are

percepts the agent receives in response to that choice. If a is Inv or Obs, then v is the

utility of exploitation action m. If a is Obs and no agent performed an exploitation

action last round, then there is no exploitation action to be observed, hence m = ∅

and v = 0. If a is some Xi, then m will be the same Xi and v will be the utility the

agent receives for that action. The agent history for agent α is a sequence of such

action-percept pairs, hα = 〈(a1, (m1, v1)), . . . , (ak, (mk, vk))〉. As a special case, the

empty (initial) history is 〈〉.

Example 2. The history for I2O in Example ?? is:

hI2O = 〈(Inv, (X3, 8)), (Inv, (X4, 5)), (Obs, (X1, 3)), (X3, (X3, 8)), . . . 〉

To concatenate a new action-percept pair onto the end of a history, we use

the ◦ symbol. For example, hα ◦ (a, (m, v)) is the history hα concatenated with

the action-percept pair (a, (m, v)). Further, for hα = 〈p1, p2, . . . , pk〉, where each

pi is some action-percept pair, I let hα[i] = pi, and hα[i, . . . , j] be the subhistory

〈pi, . . . , pj〉.

Strategies. The Cultaptation game is ultimately a competition among strate-

gies. Here, a strategy is a function from histories to the set of possible actions:

s : hα 7→ m, where hα is a history of an agent using s and m is Inv, Obs or Xi for

some i. Since each strategy may depend on the entire history, the set of possible
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strategies is huge;1 but any particular Cultaptation game is a competition among

a much smaller set of strategies S, which we will call the set of available strategies.

For example, if there are n contestants, each of whom chooses a strategy to enter

into the game, then in this case,

S = {the strategies chosen by the contestants}. (2.1)

Each strategy in S may be used by many different agents, and the strategy profile

at each round of the game may change many times as the game progresses. When

an agent reproduces, it passes its strategy on to a newly created agent, with the per-

round utility of each agent determining its likelihood of reproduction. A strategy’s

success is measured by its average prevalence over the last quarter of the game [?].

The replication dynamics work as follows. On each round, each agent has a

2% chance of dying. Therefore, we also include a parameter d in my formulation

representing the probability of death (d defaults to 0.02). Upon death, an agent is

removed from the game and replaced by a new agent, whose strategy is chosen using

the reproduction and mutation mechanisms described below. Mutation happens 2%

of the time, and reproduction happens 98% of the time.

Reproduction. When reproduction occurs, the social learning strategy used

by the newborn agent is chosen from the strategies of agents currently alive with

a probability proportional to their per-round utility (the utility gained by an agent

1 The number of possible mixed strategies is, of course, infinite. But even if
we consider only pure strategies, the number is quite huge. For a 10,000-round
Cultaptation game of the type used in the Cultaptation tournament, a loose lower
bound on the number of pure strategies is 1009.4×1020155

[?]. In contrast, it has been
estimated [?] that the total number of atoms in the observable universe is only about
1078 to 1082.
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divided by the number of rounds the agent has lived). The agent with the highest

per-round utility is thus the most likely to propagate its strategy on reproduction.

Example 3. Again looking at the sequences of actions in Table ??, we
see that both agents would have equal chance of reproducing on round
1. However, on round 2 I1 has a per-round utility of 1.5, while I2O
has a per-round utility of 0, meaning I1 gets 100% of the reproductions
occurring on round 2. Round three is the same, but on round 4 I1 has
a per round utility of 2.25 and I2O has a per-round utility of 2. This
means that I1 gets 100 · 2.25/4.25 = 53% of the reproductions and I2O
gets 100 · 2/4.25 = 47% of the reproductions on round 4.

Mutation. In Cultaptation, mutation does not refer to changes in an agent’s

codebase (as in genetic programming). Instead, it means that the new agent’s strat-

egy s is chosen uniformly at random from the set of available strategies, regardless

of whether any agents used s on the previous round. For instance, if there were

a Cultaptation game pitting strategies I1 and I2O against one another, then a new

mutated agent would be equally likely to have either strategy I1 or I2O, even if there

were no living agents with strategy I1.

Game Types. In the Cultaptation tournament [?], two types of games were

played: pairwise games and melee games. A pairwise game was played with an

invading strategy and a defending strategy. The defending strategy began play with

a population of 100 agents, while the invading strategy began with none. Mutation

was also disabled for the first 100 rounds, to allow the defending strategy time to

begin earning utility. After 100 rounds, mutation was enabled and the invader had

the challenging task of establishing a foothold in a population consisting entirely

of agents using the defending strategy (most of whom would have had time to

find several high-payoff actions). Since the pairwise games provide a clear early-
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game advantage to the defender, they were typically played twice with the invader

and defender swapping roles on the second game. A melee game was played with n

strategies, for some n > 2. Initially, the population of 100 agents was evenly divided

between each strategy in the game. Mutation was disabled for the last quarter of

the game, so that it would not influence results when strategies had similar fitness.

Scoring. If we have k social learning strategies s1, . . . , sk playing Cultapta-

tion, then on any given round there will be some number nj of agents using strategy

sj, for 1 ≤ j ≤ k. Strategy sj’s score for the game is the average value of nj over

the final 2,500 rounds of the game. The strategy with the highest score is declared

the winner.

The only way an agent may affect nj is through reproduction. Carr et al.

[?] have demonstrated that any strategy maximizing an agent’s expected per-round

utility (explained in Section ??) will also maximize its reproduction. Therefore,

in this work we will focus on finding strategies with maximal expected per-round

utility.

2.2 Motivating Discussion

The purpose of this section is to explain the motivations for several aspects of

our work:

• Sections ?? and ?? give examples of types of strategies that seem like they

should work well at first glance, but can have unexpectedly bad consequences.

The existence of such situations motivate the algorithms described later in this
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proposal, which perform a game tree search in order to consider strategies’

long-term consequences.

• An important way of getting insight into a game is to examine its best-response

strategies; and this approach is at the heart of our formal analysis and game-

tree search algorithms. Section ?? explains some issues that are important for

finding best-response strategies in Cultaptation.

2.2.1 Innovation, Observation, and Structural Shocks

If we want to acquire a new action to exploit, then what is the best way of

doing it: to observe, or to innovate? At first glance, observing might seem to be

the best approach. If the other agents in the environment are competent, then it

is likely that they are exploiting actions that have high payoffs, hence we should

be able to acquire a better action by observing them than by innovating. This

suggests that an optimal agent will rely heavily on observation actions. However,

the following example shows that relying only on observation actions can lead to

disastrous consequences if there is a structural shock, i.e., a large change in the value

of an exploitation action.2

Example 4. Structural shocks: Figure ?? shows a Cultaptation
game in which all agents use the following strategy: each agent begins
with a single Obs action, followed by a single Inv action if the Obs action
returns ∅,3 in order to obtain an exploitation action Xi which the agent
will use in all subsequent rounds.

2 We have borrowed this term from the Economics literature, where it has an
analogous meaning (e.g., [?, ?]).

3 This will generally only happen on the first round of the game, before any agent
has obtained an exploitation action.
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Round X1 X2 X3 X4 A1 A2 A3

1 2 4 1 9 N/A N/A (Obs, (∅, ·))
2 2 4 1 9 N/A N/A (Inv, (X4, 9))
3 2 4 1 9 Birth N/A (X4, (·, 9))
4 5 4 1 9 (Obs, (X4, 9)) Birth (X4, (·, 9))
5 5 2 1 9 (X4, (·, 9)) (Obs, (X4, 9)) (X4, (·, 9))
6 1 2 1 9 (X4, (·, 9)) (X4, (·, 9)) (X4, (·, 9))
7 1 2 8 9 (X4, (·, 9)) (X4, (·, 9)) Death
8 1 2 8 1 (X4, (·, 1)) (X4, (·, 1)) N/A
...

...
...

...
...

...
...

...

Figure 2.1: An example of a game in which there is a large structural shock. The
columns for the exploitation actions Xi show their values at each round, and the
columns for agents A1–A3 show their histories. Note that by round 6, all agents
choose action X4, which has changed to a very low value. Since none of the agents
are innovating, none of them can find the newly optimal action X3.

Agent A3 acquires action X4 by doing an unsuccessful Obs followed by
an Inv; and A1 and A2 acquire X4 by observing A3. At first, X4 is far
better than the other exploitation actions, so all of the agents do well by
using it. On round 8, the action X4 changes to the lowest possible value,
but the agents continue to use it anyway. Furthermore, any time a new
agent is born, it will observe them using X4 and will start using it too.

This is a pathological case where the best action has disappeared and the

agents are in a sense “stuck” exploiting the suboptimal result. Their only way out

is if all agents die at once, so that one of the newly born agents is forced to innovate.

2.2.2 Innovation and Observation Versus Exploitation

One might also think that agents should perform all of their innovation and

observation actions first, so that they have as many options as possible when choos-

ing an action to exploit. However, as Raboin et al. [?] demonstrate, this intuition

is not always correct. Because the game selects which agents reproduce based on

average per-round utility, not total accumulated utility, it is frequently better for
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newborn agents to exploit one of the first actions it encounters, even if this action

has a mediocre payoff (e.g., exploiting an action with value 10 on the second round

of an agent’s life gives it as much per-round payoff as exploiting an action with value

50 on the tenth round). Once the agent has at least some per-round utility so that

it has a nonzero chance of reproducing, it can then begin searching for a high-valued

action to exploit for the rest of its lifetime.

2.2.3 Best-Response Strategies in Cultaptation

A widely used technique for getting insight about a game (e.g., see [?]) is to

look at the game’s best-response strategies. Given an agent α and a strategy profile

(i.e., an assignment of strategies to agents) s−α for the agents other than α, α’s best

response is a strategy sopt that maximizes α’s expected utility if the other agents

use the strategies in s−α.

In Cultaptation, it is more useful to consider a best response to the set of

available strategies S, rather than any particular strategy profile. This is because

the strategy profile will change many times during the course of the game, as agents

die and other agents are born to take their places.

IfG is a Cultaptation game (i.e., a set of values for game parameters such as the

number of agents, set of available actions, probability distribution over their payoffs;

see Section ?? for details), then for any agent α, any set of available strategies S,

and any history hα for α, there is a probability distribution πObs(a|hα,S) that gives

the probability of observing each action a, given S and hα. Given πObs and G, we
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can calculate the probability of each possible outcome for each action the agent

might take, which will allow us to determine the best response to S. To compute

πObs is not feasible except in general, but it is possible to compute approximations

of it in some special cases (e.g., cases in which all of the agents, or all of the agents

other than α, use the same strategy). That is the approach used in this work.
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Chapter 3

Related Work

In this section I will discuss related work on social learning and on computa-

tional techniques related to my own.

3.1 Social Learning

The Cultaptation social learning competition offers insight into open questions

in behavioral and cultural evolution. An analysis of the competition is provided by

Rendell et al. [?]. Of the strategies entered into the competition, those that per-

formed the best were those that greatly favored observation actions over innovation

actions, and the top performing strategy learned almost exclusively through observa-

tion. This was considered surprising, since several strong arguments have previously

been made for why social learning isn’t purely beneficial [?, ?]. However, this re-

sult is consistent with observations made during my own experiments, in which the

ε-best-response strategy rarely did innovation (see Section ??).

In previous work, Carr et al. showed how to compute optimal strategies for

a highly simplified versions of the Cultaptation social learning game [?]. Their

paper simplifies the game by completely removing the observation action—which

prevents the agents from interacting with each other in any way whatsoever, thereby

transforming the game into a single-agent game rather than a multi-agent game.
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Their model also assumes that exploitable actions cannot change value once they

have been learned, which overlooks a key part of the full social learning game.

Wisdom and Goldstone attempted to study social learning strategies using a

game similar to Cultaptation, but using humans rather than computer agents [?].

Their game environment consisted of a group of “creatures,” each of which had

some hidden utility. The agents’ objective was to select a subset of the creatures

to create a “team,” which was assigned a utility based on the creatures used to

create it. Agents had a series of rounds in which to modify their team, and on each

round they were allowed to see the teams chosen by other agents on the previous

round (and in some cases, the utility of the other agents’ teams), and the object

of the game was to maximize the utility of one’s team. In this game, the acts of

keeping a creature on one’s team, choosing a creature that another agent has used,

and choosing a creature no one has yet used correspond to exploitation, observation,

and innovation (respectively) in the Cultaptation game.

The successful strategies Wisdom and Goldstone saw are similar to those used

by the strategies found by my algorithm: they keep most of the creatures on their

team the same from round to round (which corresponds in Cultaptation to per-

forming mostly exploitation actions), and new creatures are mostly drawn from

other agents’ teams (which corresponds to preferring observation over innovation in

Cultaptation). However, Wisdom and Goldstone highlight these characteristics as

interesting because they run contrary to the conventional wisdom for social learning

strategies, which suggests that broader exploration should lead to better perfor-

mance, and therefore that successful strategies should innovate more often [?]. In
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this case, analyzing the strategies found by my algorithm allowed me to draw the

same conclusions about what works well. This gives more evidence that the conven-

tional wisdom on social learning [?, ?] may be mistaken.

How best to learn in a social environment is still considered a nontrivial prob-

lem. Barnard and Sibly show that if a large portion of the population is learning

only socially, and there are few information producers, then the utility of social

learning goes down [?]. Thus, indiscriminate observation is not always the best

strategy, and there are indeed situations where innovation is appropriate. Authors

such as Laland have attempted to produce simple models for determining when one

choice is preferable to the other [?]. Game theoretic approaches have also been used

to explore this subject, but it is still ongoing research [?, ?]. Giraldeau et al. offer

reasons why social information can become unreliable. Both biological factors, and

the limitations of observation, can significantly degrade the quality of information

learned socially [?].

Work by Nettle outlines the circumstances in which verbal communication

is evolutionarily adaptive, and why few species have developed the ability to use

language despite its apparent advantages [?]. Nettle uses a significantly simpler

model than the Cultaptation game, but provides insight that may be useful to

understanding social learning in general. In Nettle’s model, the population reaches

an equilibrium at a point where both individual and social learning occur. The

point of equilibrium is affected by the quality of observed information and the rate

of change of the environment.
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3.2 Related Computational Techniques

The restless bandit problem, a generalization of the stochastic multi-armed

bandit problem that accounts for probability of change, is cited as the basis for

the rules of the Cultaptation tournament [?]. The rules of the Cultaptation game

differ from the restless bandit problem by including other agents, making observation

actions possible and complicating the game significantly. I also show in Section ??

that maximizing total payoff, the goal of the restless bandit problem, is different

from maximizing expected per-round utility (EPRU) of an agent in the Cultaptation

tournament.

The restless bandit problem is known to be PSPACE -complete, meaning it

is difficult to compute optimal solutions for in practice [?, ?]. Multi-armed bandit

problems have previously been used to study the tradeoff between exploitation and

exploration in learning environments [?, ?].

As discussed later in Section ??, finding a best-response strategy in Cultap-

tation is basically equivalent to finding an optimal policy for a Markov Decision

Process. Consequently, my algorithm for finding near-best-response strategies has

several similarities to the approach used by Kearns et al. to find near-optimal poli-

cies for large MDPs [?]. Both algorithms use the discount factor of the MDP (which,

in the case of Cultaptation, is the probability of death d) and the desired accuracy

ε to create a horizon for their search, and the depth hα of this horizon depends on

the discount factor and the branching factor, but not on the size of the full state

space (unlike conventional MDP algorithms). Thus, both their algorithm and mine
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also have running time exponential in 1/ε and in the branching factor. However, the

algorithm provided by Kearns et al. was designed as an online algorithm, so it only

returns the near-optimal action for the state at the root of the search tree. Mine, on

the other hand, returns a strategy specifying which action the agent should take for

all states that can occur on the first hα rounds. This means that the exponential-

time algorithm only needs to run once to generate an entire strategy, rather than

once per agent per round in each game we simulate.

Many algorithms for optimal control of an MDP have been developed, however

they all have running time that grows linearly with the size of the state space of

the MDP. This makes them intractable for problems like Cultaptation, which have

exponentially large state spaces. Several approaches for near-optimal control, which

produces a policy within some ε of optimal, have been developed [?, ?, ?].
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Chapter 5

Strategy Generation Algorithms

This chapter describes the algorithms used to generate near-best response

strategies for Cultaptation, and presents experimental studies in which near-best

response strategies are tested against a known good strategy from the Cultaptation

tournament.

5.1 Finding an ε-Best Response Strategy

In this section I explain what it means for a strategy to be a best response or

near-best response in infinite Cultaptation, and I provide an algorithm for calculat-

ing a near-best response to S−α, the available strategies other than our own.

5.1.1 Problem Specification

Now that we have derived EPRU and proved that a strategy’s EPRU is directly

proportional to its score in an infinite Cultaptation game, we can determine how

each strategy in a given set of available strategies S will perform by evaluating the

EPRU of each strategy. Therefore, we can define a best-response strategy in terms

of EPRU, as follows.

Recall that in an infinite Cultaptation game (as defined in Section ??) there are

` players, each of whom selects a strategy to put into the set of available strategies
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S. Let S−α be the set of available strategies other than our own, i.e. S−α =

{s1, ..., sα−1, sα+1, ..., s`}. Strategy sopt is a best response to S−α if and only if for

any other strategy s′,

EPRU(sopt | G,S−α ∪ sopt) ≥ EPRU(s′ | G,S−α ∪ s′).

Computing sopt is not possible due to its prohibitively large size. However, we

can compute an ε-best-response strategy, i.e., a strategy s such that EPRU(s |G,S−α∪

s) is arbitrarily close to EPRU(sopt | G,S−α∪sopt). This problem can be stated for-

mally as follows: Given game parametersG, error bound ε > 0, and the set S of avail-

able strategies other than our own, find a strategy sα such that EPRU(sα | G,S−α∪

sα) is within ε of EPRU(sopt | G,S−α ∪ sopt).

5.1.2 Bounding EPRU

In games where 0 < d < 1, an agent could potentially live for any finite number

of rounds. However, since the agent’s probability of being alive on round r decreases

exponentially with r, the expected utility contributed by an agent’s actions in later

rounds is exponentially lower than the expected utility contributed by earlier rounds.

I will use this fact in deriving a bound on EPRUalt(s, hα | G,S) for a given strategy

and a history hα of length l.

Recall from Equations ?? and ?? that:

EVexp(r, v) = v

∞∑
i=r

1

i
(1− d)i−1 = v

(
ln d

d− 1
−

r−1∑
i=1

1

i
(1− d)i−1

)
(5.1)

where EVexp(r, v) is the expected contribution to EPRU made by exploiting an

action with value v on round r.
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Since we know how much any given exploit contributes to EPRU(sα | G,S) for

a given strategy sα, we can calculate G(l, v), the amount that exploiting the same

action on all rounds after l contributes to EPRU(sα | G,S), as follows:

G(l, v) =
∞∑

j=l+1

v
∞∑
n=j

1

n
(1− d)n−1 = v

∞∑
j=l+1

∞∑
n=j

1

n
(1− d)n−1

Expanding the summations yields:

G(l, v) = v

(
1

l + 1
(1− d)l +

2

l + 2
(1− d)l+1 + · · ·

)
= v

∞∑
n=l+1

n− l
n

(1− d)n−1

= v

(
∞∑

n=l+1

(1− d)n−1 −
∞∑

n=l+1

l

n
(1− d)n−1

)

= v

(
(1− d)l

d
−

∞∑
n=l+1

l

n
(1− d)n−1

)

Next, we pull l out of the summation and use (??) to obtain:

G(l, v) = v

(1− d)l

d
− l

(
ln d

d− 1
−

l∑
n=1

1

n
(1− d)n−1

)
︸ ︷︷ ︸

a

 (5.2)

Note that for 0 < d < 1, G(l, v) is finite. G(l, v) provides a closed form formula

for the eventual contribution of exploiting an action with value v at every round

after the lth round. Since the set V of possible action values is finite (see Section

??), let vmax = max(V ) be the largest of these values. Then G(l, vmax) is an upper

bound on the expected per-round utility achieved after round l (clearly no strategy

can do better than making an action with maximal value every action after action l).

I use this fact to bound the depth limited expected per-round utility computation.
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Theorem 1. Let vmax be the highest possible action utility for game parameters G,

and let S−α be the set of available strategies other than our own. Then for all l and

all strategies sα,

EPRUalt(sα, 〈〉 | G,S−α ∪ sα)− EPRUl
alt(sα, 〈〉 | G,S−α ∪ sα) ≤ G(l, vmax).

Proof. Since it is not possible for any strategy to gain more utility than vmax on

any round, this follows from the discussion above. 2

Theorem ?? states that G(l, vmax) is the highest possible contribution to the

total expected per-round utility (i.e., EPRUalt(sα, 〈〉 | G,S)) made by any strategy

sα after round l. Thus, if we are given an ε > 0 and we can find a value of k such

that G(k, vmax) ≥ ε, then we know that no strategy can earn more than ε expected

utility after round k. The next section will show how to find such a k.

5.1.3 Determining How Far to Search

In this section I show how to find a search depth k such that, for any given

ε > 0, no strategy can earn more than ε utility after round k. We first note a bound

on G(l, v):

Lemma 1. G(l, v) ≤ v(1− d)l/d.

Proof. The lemma follows from noting that part (a) of Equation ?? is greater

than or equal to zero, since ln d
d−1

=
∑∞

n=1
1
n
(1 − d)n−1 and l < ∞. Thus G(l, v) =

v( (1−d)l

d
− w) ≤ v (1−d)l

d
, since w is always non-negative. 2
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Now if we can find a k such that

ε = vmax(1− d)k/d,

then we can be certain that ε ≥ G(k, v). Solving for k in the above equation yields

k = log(1−d)

(
dε

vmax

)
, (5.3)

which has a solution for 0 < d < 1 and vmax > 0, both of which will always be true

in Cultaptation. This gives us the following theorem.

Theorem 2. Given ε > 0, set of available strategies S−α other than our own, and

game parameters G with maximal utility vmax, let k = log(1−d)

(
dε

vmax

)
. If sα has the

maximal value of EPRUk
alt(sα, ∅ | G,S−α∪sα), then sα is an ε-best response to S−α.

Proof. Let sopt be the strategy with the maximal value of EPRU(sopt |G,S−α∪sopt).

By Theorem ??, we know that sopt cannot earn more than ε expected utility on

rounds after k. Since sα earns the maximum EPRU possible in the first k rounds, it

follows that |EPRU(sopt | G,S−α ∪ sopt)−EPRU(sα | G,S−α ∪ sα)| ≤ ε. Therefore,

sα is an ε-best response. 2

5.1.4 Algorithm

I will now present my algorithm for computing the strategy s with the maximal

value of EPRUk
alt(s, ∅ | G,S−α ∪ s), and show how it can be used to compute an

ε-best response.

Algorithm ?? returns a 2-tuple with a partially specified strategy s and a

scalar U . Strategy s maximizes EPRUk
alt(s, hα | G,S−α ∪ s), and U is the value of
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Algorithm 1 Produce strategy s that maximizes EPRUk
alt(s, hα | G,S−α∪s), given

initial history hα, set of possible utility values V , and S−α, the set of available
strategies other than our own.

Strat(hα,k,V , S−α)

1: if k = 0 then
2: return 0
3: end if
4: Let Umax = 0
5: Let smax = null
6: for each action a ∈ {Inv,Obs,X1, . . . ,XM} do
7: Let Utemp = 0
8: Let stemp = 〈hα, a〉
9: for each action m ∈ {1, . . . ,M} do

10: for each value v ∈ V do
11: Let t = (a, (m, v))
12: Let p = P (hα ◦ t|hα, a,S−α)
13: if p > 0 then
14: Let {S ′, U ′} = Strat(hα ◦ t, k − 1, V,S−α)
15: stemp = stemp ∪ S ′
16: Utemp = Utemp + p (EVexp(|hα ◦ t|, U(t)) + U ′)
17: end if
18: end for
19: end for
20: if Utemp > Umax then
21: Umax = Utemp

22: smax = stemp

23: end if
24: end for
25: return {smax, Umax}

this expression.

The algorithm performs a depth-first search through the space of strategies

that start from the input history hα, stopping once it reaches a specified depth

k. Figure ?? provides an example of the kind of tree searched by this algorithm.

For each possible action a ∈ {Inv,Obs,X1, . . . ,XM} at hα, it computes the expected

per-round utility gained from performing a, and the utility of the best strategy

for each possible history h′α that could result from choosing a. It combines these
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quantities to get the total expected utility for a, and selects the action with the best

total expected utility, amax. It returns the strategy created by combining the policy

〈hα, amax〉 with the strategies for each possible h′α, and the utility for this strategy.

Seen another way, Strat(hα, k, V,S−α) computes EPRUk
alt(s, hα | G,S−α ∪ s)

for all possible strategies s, returning the strategy maximizing EPRUk
alt as well as

the maximal value of EPRUk
alt.

Proposition 1. Strat(hα, k, V,S−α) returns (s, U) such that

EPRUk
alt(s, hα | G,S−α ∪ s) = U = argmaxs′(EPRUk

alt(s
′, hα | G,S−α ∪ s′)).

A proof of this proposition is presented in [?].

We now have an algorithm capable of computing the strategy with maximal

expected utility over the first k rounds. Hence, in order to find an ε-best response

strategy we need only find the search depth k such that no strategy can earn more

than ε expected utility after round k, and then call the algorithm with that value

of k.

Theorem 3. Given ε > 0, available strategies other than our own S−α, and a set of

values V with maximum value vmax, let k = log(1−d)

(
dε

vmax

)
. Then Strat(∅, k, V,S−α)

returns (s, U) such that s is an ε-best response to S−α.

Proof. This follows from Theorem ?? and Proposition ??. 2

We also have the following.

Corollary 1. Given available strategies other than our own S−α and a set of values

V , let sk be the strategy returned by Strat(∅, k, V,S−α). Then limk→∞ sk is a best
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response to S−α.

Proof. Let sopt be a best response to S−α. By Lemma ?? and Theorem ??,

EPRU(sopt | G,S−α ∪ sopt)− EPRU(sk | G,S−α ∪ s) ≤ vmax(1− d)k/d.

Since limk→∞ vmax(1 − d)k/d = 0, it follows that limk→∞(EPRU(sopt | G,S−α ∪

sopt) − EPRU(sk | G,S−α ∪ sk)) = 0. Therefore, limk→∞ sk is a best response to

S−α. 2

5.1.5 Implementation

In this section I discuss modifications that improve the running time of Al-

gorithm ?? without any loss in accuracy. Section ?? discusses techniques for state

aggregation that cut the branching factor of the algorithm in half. Section ?? dis-

cusses the representation of πObs, and Section ?? discusses caching and pruning.

State Aggregation

If the pseudocode for Algorithm ?? were implemented verbatim, it would

search through each history that can be reached from the starting state. How-

ever, there is a significant amount of extraneous information in each history that

is not needed for any of the algorithm’s calculations. For example, the histories

hα = 〈(Inv, (1, 10))〉 and h′α = 〈(Inv, (2, 10))〉 both describe a situation where α inno-

vates once and obtains an action with value 10. The only difference between these

histories is the identifier assigned to the action, which does not impact any of the

calculations—yet the pseudocode must still search through each of these histories
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separately. We can eliminate this redundancy by using repertoires, rather than his-

tories, as the states for the algorithm to search through. A repertoire is a record of

what the agent knows about each of the actions it has learned, rather than a record

of everything that has happened to it.

Making this simple change allows Algorithm ?? to calculate the value of an

observation action by combining information it learns when exploring innovate and

exploit actions, rather than recursing again. This cuts the branching factor of the

search in half. The analysis and details involved in this change, as well as the proof

that the version of the algorithm using repertoires returns the same result as the

previous version, are included in Appendix B.

Running time analysis.

When Algorithm ?? considers a history hα, it makes one recursive call for each

possible action-percept pair (a, (m, v)) that can be executed at hα. There are 2M

such pairs for each history; if the agent knows how to exploit j actions, then it can

innovate any of the M − j actions it does not know, and it can observe any of the

M actions. Each of these actions can also have any of v values. Hence, the number

of recursive calls made by the algorithm each action is at most 2Mv. Since the

algorithm recurses to depth k, the running time for Algorithm ?? is O((2Mv)k).

With the state aggregation technique described above, we do not need to perform

additional recursions for observation actions. Hence, the number of recursive calls

made each action is at most Mv, and the total running time is O((Mv)k), which

improves upon the original running time by a factor of 2k.

Representing πObs
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For the formal proofs, I treated πObs as a black box that, when given the

agent’s history and round number, could tell us the exact probabilities of observing

each action on the current round. However, since there are an exponential number

of possible histories, storing πObs in this form would require an exponential amount

of space, which would severely limit the size of games for which we could compute

strategies. Algorithm ?? (introduced in Section ??) would also need to run a pro-

hibitively large number of simulations to get enough samples to generate a new πObs

of this type.

Therefore, as an approximation, my implementation assumes that πObs has a

similar structure to πInv, and remains constant throughout the agent’s lifetime. That

is, the πObs used in the experiments returns the probability of an action valued v

being observed. While this leads to some loss in accuracy, it is very easy to store

and compute. Further, we will see in the experimental results (particularly those

dealing with iterative computation in Section ??) that this form of πObs is still able

to produce good strategies.

Caching and Pruning

Since the implementation uses repertoires rather than histories to represent

the agent’s set of known actions, and since it is possible for two histories to produce

the same repertoire, the algorithm will sometimes encounter repertoires that it has

already evaluated. So that the algorithm will not have to waste time evaluating

them again, the implementation includes a cache which stores the EPRU of every

repertoire it has evaluated. When the algorithm encounters a repertoire whose

expected utility is needed, the implementation first checks the cache to see if the
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EPRU of the repertoire has been previously computed, and uses the computed value

if it exists. Caching is widely used in tree-search procedures, and is analogous to

the transposition tables in chess-playing algorithms [?].

I also use another well-known method for avoiding unnecessary evaluation

of states, namely branch-and-bound pruning [?, ?], which can be summarised as

follows. Before we compute the expected per-round utility of a given action, we

check to see if an upper bound on the EPRU of that action would be sufficient to

make the given action’s utility higher than the best previously computed action. In

many situations, the maximal utility that can be achieved for a given action will

in fact be less than the utility we know we can achieve via some other action, and

therefore we can skip the evaluation of that action (i.e., we can “prune” it from the

search tree).

There are no theoretical guarantees on runtime reduction using these tech-

niques, but we will see in Section ?? that the combination of pruning and caching

allows the algorithm to avoid evaluating significant portions of the state space in

the environments I tested.

5.2 Cultaptation Strategy Learning Algorithm

Until now I have assumed that Algorithm ?? has access to πObs, the distribu-

tion of observable actions, when it performs its calculations. While the algorithm

finds the near-best-response strategy given a particular πObs, agents playing the real

Cultaptation game are not given access to πObs beforehand, and even estimating
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what πObs looks like can be very difficult while playing the game due to the limited

amount of information each agent receives in its lifetime. It is also unclear how

exactly an agent’s own actions will affect πObs: by exploiting a particular action,

the agent is making that action observable to others who might then exploit it in

greater proportion than in the πObs used to compute the agent’s strategy.

To address these difficulties, I developed the Cultaptation Strategy Learning

Algorithm (CSLA), which uses a method for creating a strategy and a distribution

πObs simultaneously so that (i) πObs is the distribution created when all agents in a

Cultaptation game play the computed strategy and (ii) the computed strategy is a

near-best response for πObs (and other parameters).

This algorithm copes with the lack of information about πObs, and generates

an approximation of a strategy that is a best response to itself. At a high level,

the algorithm can be thought of as generating a series of strategies, each an ε-

best response to the one before it, and stopping when two successive strategies are

extremely similar. A more detailed description of this process follows.

The algorithm begins by assuming πObs = πInv. The algorithm then proceeds

iteratively; at each iteration it generates s, the ε-best response strategy to the current

πObs, then simulates a series of Cultaptation games in which s plays itself, and

extracts a new πObs from the actions exploited in these games.

At the end of each iteration, the algorithm compares s to sold, the strategy

produced by the previous iteration, using the stratDiff function. stratDiff(s, sold)

computes the probability that an agent using s would perform at least one different

action before dying than the same agent using sold. For instance, stratDiff(s, sold) =
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Algorithm 2 Produce an approximation of a strategy that is an ε-best response to
itself.
CSLA(πInv, τ, k)

1: Let πObs = πInv.
2: s = ∅.
3: repeat
4: Let sold = s.
5: Let V = {πInv, πObs}.
6: s = Strat(∅, k, V,S)
7: Simulate a series of Cultaptation games in which s plays itself, and action

utilities are initially drawn from πInv, recording all actions exploited in the
last quarter of this game.

8: Use records of exploited actions to generate a new distribution πObs (i.e.
πObs(v) = fraction of the time v was exploited in the records).

9: until stratDiff(s, sold) < τ
10: return s.

1.0 means that the two strategies will always perform at least one different action (i.e.

the actions they choose on the first round are different), while stratDiff(s, sold) = 0.0

means that s is identical to sold.

When stratDiff(s, sold) is found to be below some threshold τ , CSLA ter-

minates and returns s, the strategy computed by the last iteration. The formal

algorithm is presented as Algorithm ??.

Properties of the strategy. CSLA as presented here is a “best-effort”

algorithm in the following sense: If CSLA converges to a strategy s, we know that it

is an approximation of a symmetric Nash equilibrium strategy, but we do not know

(i) whether or not CSLA will converge for a given environment, or (ii) how close to

the true Nash equilibrium s is. The improved version of CSLA proposed in Chapter

5 will address these issues.

In my experimental studies (see Section ??), the strategies produced by CSLA

in any given game were all virtually identical, even when a random distribution
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(rather than πInv) was used to initialize πObs. This strongly suggests (though it

does not prove) that the strategy profile consisting of copies of sself is a symmetric

near-Nash equilibrium.

Furthermore, there is reason to believe that s is evolutionarily stable. Consider

an environment in which all agents use the strategy s, and suppose a small number

(say, one or two) other strategies are introduced as invaders. Because s was an

near-best response to the environment that existed before the opponent’s agents

are introduced, and because the introduction of one or two invaders will change this

environment only slightly, agents using s will still be using a strategy that is close to

the best response for the current environment, and they will also have some payoff

they have accumulated on previous rounds when their strategy was still an near-best

response. Thus, the invaders should have a difficult time establishing a foothold in

the population, hence should die out with high probability. This suggests (but does

not prove) that s is evolutionarily stable.1

5.2.1 Implementation Details

We have created a Java implementation of CSLA. Here I briefly discuss two

issues dealt with during implementation.

Representing πObs

My implementation of CSLA uses the same representation of πObs as my im-

plementation of Algorithm ?? does. In other words, it assumes πObs has the same

1 Among other things, a formal proof would require a way to calculate the payoffs
for s and any invading strategy. Accomplishing this is likely to be complicated, but
I hope to do it in my future research.
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form as πInv, and remains constant throughout the game. Ideally we would be able

to condition πObs on the agent’s history, but in practice this would require too much

space (since there are an exponential number of possible histories), and we would

need to run too many simulations in step 7 to get an accurate distribution for each

history.

Training

In the Machine Learning literature, the process of improving an agent’s perfor-

mance on a given task is often referred to as “training.” In Algorithm ??, strategy s

is trained by playing against itself in a series of simulated games in step 7. However,

in the implementation of CSLA the agents involved in the games in step 7 are a

parameter to the algorithm. This means that CSLA can also produce a strategy

that is trained by playing in an environment consisting of itself and one or more

given strategies. The intuition behind this approach is that a strategy trained by

playing against itself and strategy s′ may perform better when playing against s′

than a strategy trained against itself alone. I test this hypothesis experimentally, in

Section ??.

5.3 Experimental Results

In this section I present my experimental results.

Section ?? presents a series of experiments comparing two strategies generated

with my Cultaptation Strategy Learning Algorithm to a known good strategy used

in the international Cultaptation tournament. I find that the strategies generated

37



with CSLA are able to beat the known good strategy, even when the environment

is different than the one CSLA used to learn the strategies (Sections ?? and ??).

Finally, I perform an in-depth qualitative analysis of all three strategies and highlight

the differences in behavior that give my learned strategies an advantage (Section ??).

5.3.1 Experiments with the Cultaptation Strategy Learning Algo-

rithm

The objective of my second experiment was to examine the performance of

strategies produced by the Cultaptation Strategy Learning Algorithm (Algorithm ??

in Section ??), and the importance of the environment (see Section ??) used to train

these strategies. Specifically, I was interested in—

• examining whether the strategies produced with CSLA were capable of beating

a strategy that is known to do well;

• examining whether strategies produced by CSLA were able to perform well in

environments different from those they were trained in;

• comparing how well a strategy that is trained only against itself (i.e., all agents

in the simulated game in Step 7 of the CSLA algorithm use strategy s) can do

at repelling an invader, versus how well a strategy trained against the invader

(i.e. the invading strategy is included in the population of agents at Step 7)

can do at repelling the invader.
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For the previous experiments, I assumed the algorithm had an oracle for πObs.

For the rest of this section I will be running experimental simulations, so the oracle

will observe what the agents do in the simulations and construct πObs from this, as

described in Section ??.

For the known good strategy I used an algorithm called EVChooser, which

performs a few innovation and observation actions early in the game and uses the

results of these actions (along with a discount factor) to estimate the expected

value of innovating, observing, and exploiting, making the action with the highest

expected value. It placed 15th out of over 100 entries in the Cultaptation tournament

[?]. We chose EVChooser because (1) it has been shown to be a competitive strategy,

(2) its source code was readily available to me (unlike the other successful strategies

from the Cultaptation tournament), and (3) it could be tuned to perform well in

the Cultaptation environments I used (which, in order to accommodate CSLA’s

exponential running time, were much smaller than those used in the international

Cultaptation tournament).

For games as small as the ones in my experiments, I believe EVChooser is rep-

resentative of most of the high-performing strategies from the tournament. Nearly

all of the strategies described in the tournament report [?] spend some time trying to

figure out what the innovate and observe distributions look like, and afterwards use

some heuristic for choosing whether to innovate, observe, or exploit their best known

action on any given round. This heuristic often involves some type of expected-value

computation; for instance, the winning strategy discountmachine used a discount

factor to compare the utility gained by exploiting the current best-known action to
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the utility of possibly learning a better action and exploiting it on all future rounds,

which is exactly what EVChooser does.2 Unlike my CSLA algorithm, none of the

strategies in the tournament conducted lookahead search.

For this experiment, I used an environment where πInv was a uniform distribu-

tion over the actions {20, 40, 80, 160}, probability of change was 1%, and probability

of death was 25%. Due to the exponential running time of my strategy generating

algorithm, this is the largest environment (i.e., smallest probability of death, highest

number of actions and action values) for which the algorithm could compute full

strategies in a reasonable amount of time.

Convergence and Consistency of CSLA

As part of this work, I have developed a Java implementation of Algorithm ??

that allows one to specify the type of game to be used for the simulation in Step 7,

and created two strategies: sself and sEVC. The training process for both strategies

began with s0, the best-response to a random πObs distribution, and continued by

constructing a strategy si+1 as a best-response to the πObs generated by simulating

games involving si. When training sself the simulated games consisted solely of

agents using si, but while training sEVC they consisted of a population of agents

using si being invaded by EVChooser. In both cases, 100 games were simulated at

each step of the iteration, to limit the amount of noise in the πObs that was extracted

from the simulations.

2discountmachine differs from EVChooser largely because it modifies the expected
value of Observing using a machine-learned function that accounts for observe ac-
tions being unreliable and returning multiple actions, neither of which are possible
in my version of the game
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While there are no theoretical guarantees that the strategies produced by

Algorithm ?? will converge, the algorithm’s similarity to policy iteration [?] led me

to suspect that the they would converge. Also, since CSLA is greedy, i.e., it selects

the best response strategy at each step of the iteration, I was interested in seeing

whether the strategy it found represented a local maximum or a global one.

I designed a simple experiment to see how these issues would play out when

generating sself and sEVC: I modified the program to use a randomly-generated

distribution for the initial value of πObs, rather than always initially setting πObs =

πInv as is done in Algorithm ??, and I used this modified program to generate 100

alternate versions of sself and sEVC. I then compared these alternates to the original

sself and sEVC using stratDiff. In the case of sself , I found that all 100 alternate

versions were identical to the original. In the case of sEVC, I found that 58 alternate

versions were identical to the original, and the rest exhibited a stratDiff of no more

than 1.08×10−4. This means that an agent using an alternate version of sEVC would

choose all the same actions as one using the original sEVC at least 99.989% of the

time. This tells us that not only does CSLA converge for the environment I am

testing it in, it converges to the same strategy each time it is run. This suggests

that the algorithm is finding a globally-best solution for this environment, rather

than getting stuck in a local maximum.

Finally, to estimate how different sself and sEVC are, I ran stratDiff(sself , sEVC)

and found it to be 0.27. This means that training a strategy against an external,

fixed strategy in Algorithm ?? does produce significantly different results than train-

ing a strategy against itself. For a more in-depth look at where sself and sEVC differ,
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Table 5.1: Win percentages of sself and sEVC when playing against EVChooser over
10,000 games as both Defender and Invader.

Win percentage

Defending vs. EVChooser Invading vs. EVChooser

sself 70.65% 70.16%

sEVC 69.92% 69.92%

see Section ??.

Pairwise Competitions: sself vs. EVChooser and sEVC vs. EVChooser

I played both of the generated strategies, sself and sEVC, against EVChooser

for 20,000 games – in 10,000 games, the generated strategy was defending against

an invading population of EVChooser agents, and in 10,000 games the roles were

reversed, with the generated strategy invading and EVChooser defending. I recorded

the population of each strategy on every round, as well as the winner of every game.3

The populations in an individual game were extremely noisy, as seen in Figure ??(e),

however by averaging the populations over all 10,000 games we can see some trends

emerge. These average populations for each strategy in all four match-ups are

presented in Figure ??(a–d), while the win rates for each match-up are presented in

Table ??.

In Figure ?? we see that, on average, the strategies generated by Algorithm ??

control roughly 57% of the population for the majority of the game in all four match-

ups. Interestingly, both sself and sEVC are able to reach this point in roughly the

same amount of time whether they are invading or defending. It is also worth noting

3Recall that the winner of a Cultaptation game is the strategy with the highest
average population over the last quarter of the game.
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a) EVChooser invading sself b) sself invading EVChooser

c) EVChooser invading sEVC d) sEVC invading EVChooser

e) Population of sself at each round, in a single game against EVChooser

Figure 5.2: Average populations of both strategies for each round, in match-ups
between sself and EVChooser (parts a and b) and between sEVC and EVChooser
(parts c and d), over 10,000 games. From round 2000 onwards, sself or sEVC control
57% of the population on average, regardless of whether EVChooser was invading
or defending. Since mutation is enabled from round 100 onwards, populations in
an individual game (exhibited in part e) are highly mercurial and do not converge.
Therefore, we must run a large number of trials and average the results to get a
good idea of each strategy’s expected performance.
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Table 5.2: Percentage of games won (out of 10,000) by sself , sEVC, and EVChooser
in a melee contest between all three.

sself sEVC EVChooser

Melee win percentage 38.78% 37.38% 23.84%

that, even though I showed above that sself and sEVC have significant differences,

they performed almost identically against EVChooser in terms of population and

win percentages

Melee Competition: sself vs. sEVC vs. EVChooser

My next experiment was to run sself , sEVC, and EVChooser against one another

in a melee contest to see how the three strategies would interact in an environment

where none of them originally had the upper hand. All three strategies had an initial

population of 33 agents at the start of each game. I used the same πInv, probability of

change, and probability of death as in Experiment 2. Mutation was disabled for the

final 2,500 rounds of each melee game, as was done in the Cultaptation tournament

to allow the population to settle. I ran 10,000 games in this manner, and percentage

of wins for each strategy are shown in Table ??.

In the table we can see that sself has a slight edge over sEVC, and both these

strategies have a significant advantage over EVChooser. In fact, I observed that in

the first 100 rounds of most games (before mutation begins) EVChooser nearly died

out completely, although it is able to gain a foothold once mutation commences.

Mutation is also turned off after 7500 rounds in Cultaptation melee games; this

caused the population to quickly become dominated by one of the three strategies

in all 10,000 games played.
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Performance Analysis of sself , sEVC, and EVChooser

In the experiments in Section ??, we saw that the strategies found by CSLA

consistently outperform EVChooser in environments similar to the ones they were

trained in. In order to get a better idea of why this happens, I ran two experiments

to compare the performance of sself and EVChooser in more detail. The first was

designed to show the kinds of situations in which the two strategies chose different

actions, while the second was designed to show how well the two strategies were

able to spread good actions through their population.

Action Preferences

The objective of this experiment was to identify the kinds of situations in

which sself , sEVC, and EVChooser made different choices. To this end, I allowed sself

to play against itself for five games, in an environment identical to the one used for

the previous experiments in Section ?? (note that this is the same environment sself

was trained in). On each round, for each agent, I recorded the number of rounds

the agent had lived, the value of the best action in its repertoire,4 and whether

the agent chose to innovate, exploit, or observe on that round. Since there are 100

agents alive at any given time and each game lasts 10,000 rounds, this yielded a total

of five million samples. Figures ??(a), (d), and (g) show the observed probability

that sself would innovate, observe, or exploit (respectively) for its first ten rounds

and for each possible best action value. I then repeated this process for sEVC and

EVChooser, allowing each strategy to play against itself for five games and recording

4This could be 20, 40, 80, 160, or None if the agent had not yet discovered an
action
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a) sself innovates b) sEVC innovates c) EVChooser innovates

d) sself observes e) sEVC observes f) EVChooser observes

g) sself exploits h) sEVC exploits i) EVChooser exploits

Figure 5.3: The observed probability that sself , sEVC, and EVChooser will innovate,
observe, or exploit when they are a given number of rounds old (on the x-axis) and
with a given value of the best action in the agent’s repertoire. These results were
observed by allowing each strategy to play itself for five games of 10,000 rounds
each with 100 agents alive on each round, generating a total of 5,000,000 samples.
All graphs in this figure share the same legend, which is included in graph c) and
omitted elsewhere to save space.
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the same data. The results for sEVC and EVChooser may be found in Figures ??(b),

(e), and (h), and Figures ??(c), (f), and (i), respectively.

The most obvious difference among the three strategies is that EVChooser

almost never innovates,5 a property it shares with the strategies that did well in

the Cultaptation tournament [?]. On the other hand, sself and sEVC have conditions

under which they innovate and conditions under which they do not. For instance,

both sself and sEVC always innovate if their first action (which is always an ob-

servation) returns no action. Also, sEVC frequently innovates if it is stuck with the

worst action after several observes, and sself also innovates (although less frequently;

see next paragraph) in this case. Another sharp contrast between EVChooser and

the generated strategies is in their exploitation actions. EVChooser spends nearly

all of its time exploiting, even if it has a low-value action, and only observes with

significant probability on round two. On the other hand, sself and sEVC will be-

gin exploiting immediately if they have one of the two best actions, but otherwise

will spend several rounds observing or innovating to attempt to find a better one,

and the number of rounds they spend searching for a better action increases as the

quality of their best known action decreases.

The main difference between sself and sEVC that can be seen in Figure ?? is in

the way they handle being stuck with the lowest-value action after several rounds.

In these circumstances, sself prefers observation while sEVC prefers innovation. Here

we see the most obvious impact of the differing environments used to generate these

two strategies. sself prefers observation in these cases because it was trained in an

5EVChooser innovates 1% of the time on its first round.
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environment where all agents are willing to perform innovation. Therefore, if an

sself agent is stuck with a bad action for more than a few rounds it will continue to

observe other agents, since if a better action exists, it is likely that it has already

been innovated by another agent and is spreading through the population. On the

other hand, sEVC prefers innovation in these situations because it has been trained

with EVChooser occupying a significant portion of the population, and we have

seen that EVChooser almost never innovates. Therefore, if sEVC is stuck with a bad

action after several rounds, it will attempt to innovate to find a better one, since it

is less likely that another agent has already done so.

Spreading High-value Actions

The objective of this experiment was to measure the rate at which sself , sEVC,

and EVChooser were able to spread high-valued actions through their populations.

To measure this, I again played sself against itself in the same environment used

in the previous experiment (which I will refer to as the “normal” environment in

this section), and on each round I recorded the number of agents exploiting actions

with each of the four possible values (20, 40, 80, and 160). To account for the

noise introduced by changing action values, I ran 10,000 games and averaged the

results for each round. I then repeated this process, playing sEVC and EVChooser

against themselves. The results for sself , sEVC, and EVChooser may be found in

Figures ??(a), (c), and (e) respectively.

This experiment lets us see what the steady state for these strategies looks

like, and how quickly they are able to reach it. However, I am also interested in

seeing how they respond to structural shocks [?, ?] (i.e., how quickly the strategies
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a) sself in normal environment b) sself in shock enviornment

c) sEVC in normal environment d) sEVC in shock enviornment

e) EVChooser in normal environment f) EVChooser in shock enviornment

Figure 5.4: The average number of agents exploiting an action with value U in two
environments. The “normal” environment in parts a, c, and e shows how quickly
sself , sEVC, and EVChooser spread actions through their population under normal
circumstances when they control the entire population. The “shock” environment
in parts b, d, and f shows how quickly each strategy responds to periodic structural
shock. The “normal” environment is the same as in the rest of Section ??, and
the “shock” environment is similar except that actions with value 160 are forced to
change every 100th round and held constant all other rounds. Each data point is
an average over 10,000 games.
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are able to recover when a good, widely-used action changes values). To this end, I

created a “shock” environment, which is identical to the normal environment with

one modification: actions with value 160 have a probability of change equal to 0 ex-

cept on rounds divisible by 100, in which case they have probability of change equal

to 1. All other actions use the normal probability of change for this environment,

0.01. This modification creates a shock every 100 rounds, while still keeping the

expected number of changes the same for all actions. I then repeated the experi-

ment above with the shock environment, running 10,000 games for sself , sEVC, and

EVChooser and averaging the results, which are presented in Figures ??(b), (d),

and (f) respectively.

In Figure ?? we can see that sself and sEVC exhibit nearly identical performance

in both the normal and shock environments. In the normal environment, they are

able to reach their steady state in only a few rounds, and the steady state consists

of a roughly equal number of agents exploiting the best and second-best action.

In the shock environment, we see that sself and sEVC respond to external shock by

drastically increasing the number of agents exploiting the second-best action over

the course of a few rounds, and returning to their steady states at a roughly linear

rate over the next 100 rounds. The number of sself and sEVC agents exploiting the

two worst actions remains extremely low except for small spikes immediately after

each shock.

Compared to the generated strategies, EVChooser’s performance appears to

be less stable, and less robust to structural shock. In the normal environment,

we see that EVChooser takes hundreds of rounds to reach its steady state. While
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EVChooser’s steady state does include more agents exploiting the best action than

sself and sEVC, it also includes a significant number of agents exploiting the two

worst actions. In the shock environment, we see that changes to the best action

result in significant increases to the number of EVChooser agents exploiting the

other actions, including the two worst ones. We can also see that populations of

EVChooser agents take a lot longer to return to normal after an external shock

than populations of sself and sEVC. These results help us account for the superior

performance of sself and sEVC over EVChooser in previous experiments, and indicate

that there is plenty of room for improvement in EVChooser and strategies like it.
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Chapter 7

Conclusion

This dissertation has presented a variety of techniques for analyzing Cultap-

taiton, a complex evolutionary game designed to explore the phenomenon of social

learning. Furthermore, the work has demonstrated how to find strategies that are

provably good, and how to analyze such strategies to draw conclusions about how

good social learning strategies will operate. Thus, this work has advanced the state

of the art in two ways.

First, it provides theory and analysis that support many of the empirical

results found by the first Cultaptation tournament, and identifies some aspects of

the tournament results that are likely due to experimental error (e.g., the lack of

individual learning in any of the top-performing strategies). This helps strengthen

our understanding of social learning in general, and should help inform future studies

of this phenomenon.

Second, it demonstrates techniques that can be used to analyze evolutionary

games that are significantly more complex than classical evolutionary games, i.e.,

games that have a finite number of agents, rather than an infinitely large, well-mixed

population; games that last a finite, rather than infinite, number of generations; and

games that allow agents to live for multiple generations and condition their actions

on accumulated experience, rather than replacing the population every generation
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and preventing agents from accumulating experience in the first place. One of the

reasons Cultaptation is so complex is that early evolutionary models of social learn-

ing made very strong assumptions about social learning mechanics and strategies

[?, ?], and the conclusions drawn from studying such models generated a controver-

sial challenge to social learning’s role in evolutionary fitness that has taken decades

to fully address [?, ?, ?, ?]. As researchers in the field of evolutionary game theory

continue to study more complex phenomena like social learning, it is likely that

these weaker assumptions will be needed more frequently, and so techniques like the

ones presented here will be necessary more often.

In summary, this dissertation has provided the following contributions:

1. Analyzing strategies’ reproductive success. Given a Cultaptation

game G and a set S of available strategies for G, the work presents a formula for

approximating (to within any ε > 0) the expected per-round utility, EPRU(s | G,S),

of each strategy in S. The work shows that a strategy with maximal expected per-

round utility will have the highest expected frequency in the limit, independent

of the initial strategy profile. These results provide a basis for evaluating highly

complex strategies such as the ones described below.

Generalizability: These results can be generalized to other evolutionary games

in which agents live more than one generation, with a fixed probability of death at

each generation, and reproduction is done using the replicator dynamic.

2. Computing near-best-response strategies. The work provides a

strategy-generation algorithm that, given a Cultaptation game G and a set of avail-

able strategies S, can construct a strategy sα that is within ε of the a response to
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S.

Generalizability: The strategy-generation algorithm performs a finite-horizon

search, and is generalizable to other evolutionary games in which there is a fixed

upper bound on per-round utility and a nonzero lower bound on the probability of

death at each round.

3. Approximating symmetric Nash equilibria. The work provides

CSLA, an iterative self-improvement algorithm that uses the strategy-generation

algorithm in Section ?? to attempt to find a strategy sself that is a near-best re-

sponse in a Cultaptation game in which the other players are all using sself . Hence

a strategy profile composed entirely of instances of sself is a symmetric near-Nash

equilibrium.

Generalizability: An iterative self-improvement algorithm similar to CSLA

should be able to find a near-Nash equilibrium for any game in which the strategies

are complex enough that computing a best (or near-best) response is not feasible by

analyzing the strategies directly, but is feasible using information from a simulated

game between strategies in the profile. Games of this type will typically have a high

branching factor but relatively simple interactions between agents.

4. State aggregation. To make its algorithms fast enough for practical

experimentation, the work provides a state-aggregation technique that speeds them

up by an exponential factor without any loss in accuracy. The experimental re-

sults in Section ?? demonstrate the practical feasibility that this provides: in these

experiments, CSLA always converged in just a few iterations.

Generalizability: The state-aggregation technique is generalizable to other evo-
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lutionary games in which the utilities are Markovian.

5. Experimental results. In the experimental studies, the near-Nash equi-

libria produced by CSLA in any given game were all virtually identical, regardless

of the starting values that were used. That strongly suggests (though it does not

prove) that the strategy profile consisting of copies of sself approximates an optimal

Nash equilibrium, and possibly even a unique Nash equilibrium.

Consequently, sself ’s characteristics provide insights into the characteristics of

good Cultaptation strategies. For example, the experiments show that sself relies

primarily on observation and exploitation, but switches quickly to innovation when

a structural shock occurs, switching back to observation and exploitation once it has

learned how to respond to the shock. This conflicts with the conventional wisdom

[?, ?] that successful social-learning strategies are characterized by a high frequency

of innovation, but it helps to explain both the results of the Cultaptation tournament

[?] and some recent experimental results on human subjects [?].

6. Improvement on the best tournament strategy. While the algo-

rithms described above are fast enough for experimentation on smaller variants of

the Cultaptation game, they would be intractable for use on the more complex vari-

ant used in the Cultaptation tournament. The work shows two approaches that

can extend the above results to larger environments such as these. First, it shows

how the analysis and experimental results outlined above can be used to identify

potential problems in the best strategy from the Cultaptation tournament (i.e. dis-

countmachine). Second, it uses the formulae from the analysis to define a new

strategy, relaxedlookahead, that avoids such weaknesses. Experimental results verify
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that relaxedlookahead is capable of outperforming discountmachine in a variety of

environments similar to those used in the Cultaptation tournament, and provide an

in-depth analysis of the factors that allowed relaxedlookahead to perform better.

The analysis showed that refusing to innovate except as a bootstrapping mea-

sure (as discountmachine and all of the top-performing strategies from the tourna-

ment did) makes it much more difficult to recover from structural shocks, especially

in environments with low probability of change. Strategies that are willing to in-

novate when a structural shock is detected, as relaxedlookahead is, are able to

avoid this problem. The analysis also showed that heuristics instructing a strategy

to explore with some minimum frequency, like the one used by discountmachine,

are unnecessary, since relaxedlookahead exhibits emergent behavior in which it ex-

plores at intervals dependent upon the parameters of the environment, without being

specifically programmed to do so.

One possible avenue for future work would be to identify computationally

feasible techniques capable of approximating the Nash equilibrium strategy in these

larger versions of Cultaptation, preferably with provable bounds on the difference

between the performance of such techniques and the Nash equilibrium strategy.

In classical games, a regret minimizing strategy1 is typically not computationally

intensive and has been shown to have performance quite close to that of a Nash

strategy in several large classes of repeated games [?]. Therefore, it may be fruitful to

1in short, a regret minimizing strategy seeks to minimize the expected difference in payoff

between the result of its chosen action and the best possible result if it had selected a different

action.
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attempt to extend the concept of regret minimization to evolutionary game theory;

such an extension would need to account for the conceptual difference between payoff

in classical games and fitness in evolutionary games, perhaps involving an idea of

“lost fitness minimization,” in which the player compares the fitness gained by its

chosen action to the highest amount of fitness it would have obtained if it had

selected a different action.

7. Implications. These results provide strong support for the following

hypotheses about the best strategies for Cultaptation and similar games:

• What they are like, and how they can be computed. The best strategies are

likely to be conditional ones in which the choice of action at each round is

conditioned on the agent’s accumulated experience. Such strategies (or close

approximations of them) can be computed by doing a lookahead search that

predicts how each possible choice of action at the current round is likely to

affect future performance.

• How they are likely to behave. It is likely that the best strategies will observe

and exploit most of the time, but will have ways of quickly detecting structural

shocks, so that they can switch quickly to innovation in order to learn how to

respond to such shocks.
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