
AbstractTitle of Dissertation: Hierarchical Task Network Planning:Formalization, Analysis,and ImplementationKutluhan Erol, Doctor of Philosophy, 1995Dissertation directed by: Professor Dana S. NauDepartment of Computer ScienceAssociate Professor James HendlerDepartment of Computer SciencePlanning is a central activity in many areas including robotics, manufacturing, spacemission sequencing, and logistics. As the size and complexity of planning problems grow,there is great economic pressure to automate this process in order to reduce the cost ofplanning e�ort, and to improve the quality of produced plans.AI planning research has focused on general-purpose planning systems which can processthe speci�cations of an application domain and generate solutions to planning problems inthat domain. Unfortunately, there is a big gap between theoretical and application orientedwork in AI planning. The theoretical work has been mostly based on state-based planning,which has limited practical applications. The application-oriented work has been based onhierarchical task network (HTN) planning, which lacks a theoretical foundation. As a result,in spite of many years of research, building planning applications remains a formidable task.The goal of this dissertation is to facilitate building reliable and e�ective planning appli-cations. The methodology includes design of a mathematical framework for HTN planning,analysis of this framework, development of provably correct algorithms based on this analy-sis, and the implementation of these algorithms for further evaluation and exploration. Therepresentation, analyses, and algorithms described in this thesis will make it easier to applyHTN planning techniques e�ectively and correctly to planning applications. The precise andmathematical nature of the descriptions will also help teaching about HTN planning, willclarify misconceptions in the literature, and will stimulate further research.

Hierarchical Task Network Planning:Formalization, Analysis,and ImplementationbyKutluhan ErolDissertation submitted to the Faculty of the Graduate Schoolof The University of Maryland in partial ful�llmentof the requirements for the degree ofDoctor of Philosophy1995Advisory Committee:Professor Dana S. Nau, Chairman/AdvisorAssociate Professor James Hendler, Co-AdvisorProfessor John BarasAssociate Professor William GasarchAssociate Professor John HortyAssociate Professor V. S. Subrahmanian

c Copyright byKutluhan Erol1995

DedicationTo the memory of my father, who taught me to strive for the best, and to mygrandfather, who taught me to appreciate what I already have.

ii

AcknowledgementsI have been very fortunate to receive the support of many people who contributedto this dissertation in numerous ways.I owe so much to my family, particularly to my mother and sister, who supportedme with their love. I could not possibly go through the last few months, withoutDilek's support.I am grateful to Dr. Nau and Dr. Hendler, and other members of my defensecommittee for their guidance.I have extensively bene�ted from correspondences with several outstanding sci-entists. I would especially like to thank to Dr. Yang, Dr. Bylander, Dr. Kamb-hampati, Dr. Kundu, Dr. Lansky, Dr. McAllester, and Dr. Tate.I have had the best of o�ce mates. In spite of the misery of graduate school wehad a wonderful time together. Perhaps this is why we take so long to graduateand go away. I will always remember our endless debates with Brian, Bill (Ander-sen), and Bob (Kohout), and all the trips we went together. I will also rememberthe concerts with Bob Best, Brian, and other friends who occasionally joined us.Neither will I forget \co-miserating" together with Bill (Regli). They have mademe feel at home here, helped me improve my vocabulary and understanding ofAmerican culture. They attended to my practice talks, and gave me commentson my dissertation. Reiko particularly contributed much to my research. Dave�xed our Mac problems, and Sean showed us the wonders of Nextstep.I also thank Nancy Lindley, who manages to deal with all the problems of grad-uate students with extreme competence, and always a friendly smile. We don'ttell her often enough how much she means to us. We have Edna to thank forarranging everything in our research group. Only she could keep track of Jimand Dana. iii

My �rst years at Maryland would be miserable if it weren't for my dear friendsCengiz, Sedat, Cem, Kamil, Handan, Aydin and Vildan. Now they are scatteredall over the world, but many others have joined our circle, which is ourishingby the day. It breaks my heart, not to be able to name all of them here, butI cannot go without thanking my roommates Mehmet, Mustafa, and Selcuk foreverything we shared together.I have had many wonderful teachers along my studies, to whom I am deeplygrateful. I would especially like to recognize Olgun Kurtulus, Basri Bolatkan,Ahmet Agan, Zuhra Yildiz, and Erol Arkun.I have Dr. Haynes to thank for giving me a job at IAI Inc. to pursue my research,and the chance to work with all the people there.

iv

Table of ContentsSection PageList of Tables viiiList of Figures ix1 Introduction 11.1 Motivation : 11.2 Research Issues : 41.3 Approach : 41.3.1 Formalization : 41.3.2 Analysis : 51.3.3 Implementation : 51.4 Organization : 62 Related Work 72.1 The Early Years of AI Planning : 72.2 The Planning Systems in 1970's : 92.2.1 Planning Terminology : 102.2.2 Abstraction Hierarchies : 102.2.3 Relaxation of the Linearity Assumption : : : : : : : : : : : : : : : : : 112.2.4 Least Commitment : 112.2.5 Task Networks and Task Decomposition : : : : : : : : : : : : : : : : 122.2.6 Filter Conditions : 132.2.7 Critics : 142.3 Formalization and Analysis E�orts : 152.3.1 The STRIPS Representation : 152.3.2 State-based Planning Algorithms : 182.3.3 Complexity Analyses : 222.3.4 Abstraction Hierarchies : 262.3.5 Partial-order versus Total-order Planning : : : : : : : : : : : : : : : : 272.3.6 Task Networks and Task Decomposition : : : : : : : : : : : : : : : : 282.4 Discussion : 28v

3 HTN Formalism 303.1 An Overview of HTN planning : 303.2 Syntax for HTN Planning : 333.3 Model-Theoretic Semantics : 373.3.1 Semantic Structure : 373.3.2 Satisfaction : 393.4 Operational Semantics : 413.5 UMCP: A Provably Correct HTN Algorithm : : : : : : : : : : : : : : : : : : 443.6 Discussion : 463.6.1 Tasks and Task-decomposition : 463.6.2 High-Level E�ects : 493.6.3 Conditions : 503.6.4 Critics and Constraints : 514 Complexity of HTN Planning 524.1 Undecidability Results : 524.2 Decidability and Complexity Results : 534.3 Discussion : 555 Expressivity of HTN Planning 575.1 Expressivity De�nitions for Planning : 575.1.1 Complexity-based Expressivity : 575.1.2 Model-Theoretic Expressivity : 585.1.3 Operational Expressivity : 595.2 Expressivity: HTNs versus STRIPS Representation : : : : : : : : : : : : : : 605.2.1 Transformations from STRIPS to HTNs : : : : : : : : : : : : : : : : 605.2.2 Complexity-based Expressivity Results : : : : : : : : : : : : : : : : : 635.2.3 Model-Theoretic Expressivity Results : : : : : : : : : : : : : : : : : : 645.2.4 Operational Expressivity Results : 655.2.5 Discussion of Expressivity Results : 666 Algorithms used by the UMCP System 676.1 Re�nement Search in UMCP : 676.1.1 Properties of Re�nement in UMCP : : : : : : : : : : : : : : : : : : : 696.1.2 High-level Data Structures for UMCP : : : : : : : : : : : : : : : : : : 696.2 Task Expansion as Re�nement : 716.3 Constraint Re�nement in UMCP : 726.3.1 Overview of Constraint Re�nement in UMCP : : : : : : : : : : : : : 736.3.2 Constraint Selection in UMCP : 766.3.3 Constraint Enforcement in UMCP : 796.3.4 Constraint Propagation in UMCP : 816.3.5 Constraint Simpli�cation Phase : 816.3.6 Details of Constraint Evaluation and Enforcement : : : : : : : : : : : 82vi

6.4 Domain-Speci�c Critics : 846.5 Selection of Re�nement Strategy : 856.6 The UMCP Architecture : 866.6.1 Modules : 866.6.2 User Interface : 876.7 Discussion : 887 Examples 917.1 Writing Domain Speci�cations : 917.2 Case Study 1: UM Translog Domain : 957.2.1 Description : 957.2.2 A Sample Problem in UM Translog Domain : : : : : : : : : : : : : : 1027.3 Case Study 2: CNF Domain : 1177.3.1 Domain Speci�cation for the CNF Domain : : : : : : : : : : : : : : : 1177.3.2 A Sample Problem : 1197.3.3 Solving the Sample Problem with UMCP : : : : : : : : : : : : : : : : 1208 Conclusion 1228.1 Research Contributions : 1228.2 Future Research Directions : 1248.2.1 Improving Performance of HTN Planning : : : : : : : : : : : : : : : : 1248.2.2 Expanding Capabilities of HTN Planning : : : : : : : : : : : : : : : : 125A Proofs of Theorems 126B UM-Translog Domain Speci�cation 136B.1 Symbol Declarations : 136B.2 Actions : 137B.3 Methods : 141B.4 A Sample Problem : 151
vii

List of TablesNumber Page : : : :2.1 Decidability of State-based Planning. : 242.2 Complexity of Finite State-based planning. : : : : : : : : : : : : : : : : : : 242.3 Complexity of Propositional State-based planning. : : : : : : : : : : : : : : 244.1 Complexity of HTN Planning : 53

viii

List of FiguresNumber Page : : : :1.1 A General View of Domain-independent Planning : : : : : : : : : : : : : : 22.1 A sample blocks world problem. : 173.1 A task network : 313.2 A (simpli�ed) method for going from X to Y. : : : : : : : : : : : : : : : : : 313.3 The basic HTN Planning Procedure. : 323.4 A decomposition of the the task network in Fig. 3.1 : : : : : : : : : : : : : 323.5 Graphical representation of a task network. : : : : : : : : : : : : : : : : : : 353.6 Formal representation of the task network of Fig. 3.5. : : : : : : : : : : : : 363.7 UMCP: Universal Method-Composition Planner : : : : : : : : : : : : : : : 445.1 Graphical representation of a method for Transformation 1. : : : : : : : : : 615.2 A transformation from STRIPS to HTN Language : : : : : : : : : : : : : : 615.3 A second Transformation : 625.4 Form of Methods in Transformation 2. : 626.1 High-level Re�nement-Search in UMCP : 686.2 Search Tree for a Satis�ability Problem : 746.3 Constraint re�nement for Satis�ability Problem : : : : : : : : : : : : : : : 756.4 Data Flow Diagram of Constraint Re�nement in UMCP : : : : : : : : : : : 776.5 Constraint re�nement in UMCP : 786.6 Constraint Enforcement Diagram : 807.1 Steps of Domain Speci�cation in the HTN Language : : : : : : : : : : : : : 927.2 Location Type Hierarchy : 977.3 Top-level Task Hierarchy : 1017.4 Transport Paths : 102ix

Hierarchical Task Network Planning:Formalization, Analysis,and ImplementationKutluhan ErolDecember 25, 1995

This comment page is not part of the dissertation.Typeset by LaTEX using the dissertation style by Pablo A. Straub, University of Maryland.0

Chapter 1Introduction1.1 MotivationPlanning involves reasoning about actions in order to �nd a way of achieving desired behav-iors. It is an essential component of human intelligence, and it has a wide range of applica-tions in areas such as robotics, manufacturing, space mission sequencing, and logistics. Thesize and complexity of these applications are rapidly growing beyond the capabilities of thepeople responsible for planning. There is great economic pressure to automate this processin order to reduce the cost of planning e�ort, and to improve the quality of produced plans.Building one planning system for each application is not cost e�ective. Such a planningsystem is of little use beyond its speci�c application domain. It is very di�cult to maintainand modify such a planning system as the requirements of the application change. Further-more, building a reliable planning system is very demanding. Conventional programminglanguages such as C or Pascal do not provide any support for implementing complex planningapplications.Planning applications, although diverse in nature, share many common aspects. Thus,it is feasible to build general-purpose planning systems which can process the speci�cationsof an application domain and generate solutions to planning problems in that domain. Thisavenue of research is called domain-independent planning.Figure 1.1 shows a general view of domain-independent planning. Application expertsprepare a speci�cation of the application domain using a special planning language. Users ofthe planning system prepare speci�cations of planning problems that need to be solved. Ageneral-purpose planning system, built by planning researchers, processes the speci�cationsand produces solutions to those problems.Building domain-independent planning systems is very challenging. Such a system mustbe practical. It must produce high quality solutions in a timely fashion, and it must meetthe demands of planning applications. Domain independent planning systems must alsohave solid theoretical foundations. The language used for writing domain and problemspeci�cations must have a precise syntax and semantics. Without precise semantics, itis very di�cult, if not impossible, to develop correct and e�cient algorithms for solvingproblems written in that language. A precise syntax and semantics also facilitate writing1

Figure1.1:AGeneralViewofDomain-independentPlanning
2

correct domain speci�cations. Application experts and users only need to learn the syntaxand semantics of the language without having to learn the implementation details of complexplanning systems. Furthermore, the language must be su�ciently expressive to represent thedomain information necessary to solve problems in a reasonably wide range of applications.Unfortunately, the interaction between the theoretical work and the more pragmatic,application oriented work on AI planning has been limited.The theoretical work on domain-independent planning has been mostly on state-basedplanning1 that stemmed from STRIPS [24] planning system, with roots in situation calcu-lus [47]. The state-based planning paradigm has been deeply investigated. The representa-tion (i.e., the STRIPS language) has been precisely de�ned, and the aws in its semanticshave been corrected [47, 45]. Many algorithms for �nding plans have been developed andinvestigated [60, 15, 46, 10, 41, 54]. The computational complexity of solving planningproblems represented in the STRIPS language has been studied in detail [12, 15, 22].In spite of all this e�ort, state-based planning has been used mostly in the realm of simple\toy" domains, which were designed for research purposes only. The limitations of the typeof information about an application domain that can be encoded in the STRIPS language,the computational cost of �nding solutions, and the inadequacy of the mechanisms designedfor building more e�cient state-based planning systems prevent the transition to real worldapplications.The more pragmatic work on domain-independent planning has paid less attention toformal foundations, and instead focused directly on building planning systems. Out of thisresearch avenue was born a number of planning systems such as HACKER [63], NOAH [59],and NONLIN [64]. These systems established a new planning paradigm called hierarchicaltask network(HTN) planning.HTN planning introduced many powerful ideas such as tasks and task decomposition,partial order planning, and least commitment. HTN planning systems showed much promisein building planning applications. For example, DEVISER [69] was used to develop a proto-type for Voyager spacecraft mission sequencing, and SIPE [72] was used to build a prototypesystem for factory automation.Unfortunately, HTN planning systems could not be developed to the level of successfulsoftware products for planning applications. I contend this is due to the lack of an under-lying theoretical foundation. HTN planning techniques are heuristic in nature, and rathervaguely speci�ed. Descriptions of these techniques are buried deep down in the implemen-tation details of planning systems. As a result, HTN techniques are understood very little,and they cannot be reliably used to build planning applications. HTN planning techniquesare powerful, but they still need to be improved and extended in order to make them worke�ectively in a wide range of applications. The lack of a precise understanding of HTN plan-ning constructs impedes further research for improving them. Some of the ideas introduced1As explained in Section 2.2.1, the terms \state-based planning" and \STRIPS-style planning" are inter-changeably used to refer to planning techniques and algorithms which represent change in the world withSTRIPS operators, and which represent desired behaviors as attainment goals in the �nal state. Examplesare TWEAK, SNLP, and WARPLAN. 3

in HTN planning have been adapted to state-based planning and investigated within thatparadigm. However, the core ideas such as task networks and task decomposition, whichare largely responsible for the success of HTN planning systems over state based planningsystems, have been ignored as \e�ciency hacks".1.2 Research IssuesAs the complexity of planning applications increases, and the correctness and quality of pro-duced plans become more and more critical, there is a greater need for using formal methodsto develop and analyze planning systems. In spite of three decades of research, building plan-ning applications remains to be a formidable task. HTN planning techniques show promisein terms of exibility of representation and computational performance, however there are anumber of problems that need to be addressed:� Existing HTN languages do not have a precise semantics. As a result, writing speci�-cations for a planning problem using HTN constructs is so di�cult that it is consideredan art rather than a science. Even when a speci�cation is provided, there is no criteriafor verifying that it correctly represents the intended planning domain.� HTN planning systems are not very reliable. They do not provide any guaranteesthat the solutions they produce are correct, or that they can always �nd the solutions.Furthermore, without a precise semantics that provides the de�nition for the set ofsolutions to a given HTN problem, it is not possible to develop correct HTN planningalgorithms. Neither it is possible to evaluate existing algorithms for correctness.� HTN planning systems usually �nd plans faster than state-based planning systems.Nonetheless, the speed of HTN techniques must be signi�cantly improved to work wellwith real-world applications.1.3 ApproachThe focus of this dissertation is to correctly de�ne, analyze, and explicate features of thedesign of HTN planning systems. The goal of this research e�ort is to support the develop-ment of e�cient and correct HTN planning algorithms and to reduce the domain engineeringe�ort in correctly specifying application domains using HTN constructs. The approach forreaching this goal has involved three stages: formalization, analysis and implementation.1.3.1 FormalizationFormalization involves de�ning an HTN language together with the associated syntax andsemantics, as presented in Chapter 3. The semantics provide precise de�nitions of the mean-ings of HTN constructs, and facilitates their correct use in writing domain speci�cations. The4

semantics also provide a precise de�nition for the set of solutions to a given planning prob-lem. This de�nition provides a criterion for developing correct HTN planning algorithms.Chapter 3 contains the �rst provably correct HTN planning algorithm UMCP (UniversalMethod Composition Planner).This formal approach enforces the separation of the representation for planning problemsfrom the implementation details of particular planning systems that can process the repre-sentation. It gives guidelines for planning researchers in developing correct HTN planningsystems, and it reduces the domain engineering e�ort for preparing domain speci�cationsby isolating it from the idiosyncrasies of implementation. A mathematical model of HTNplanning also makes it amenable to the application of analytical tools.1.3.2 AnalysisAnalytical analyses can be very helpful in guiding the research e�orts for �nding e�cientplanning algorithms. They bring a deeper understanding of the domain speci�cation andplan generation processes, and uncover the factors that inuence the performance of HTNplanning systems. They also identify the bottlenecks and computational di�culties involvedin HTN planning.Chapter 4 contains a complexity analysis which determines the computational cost ofsolving HTN problems under various restrictions. This analysis reveals which aspects of theHTN problems are di�cult to handle, and where further research must be directed.Analysis can also be helpful in discovering the similarities and di�erences among di�er-ent planning paradigms. A better understanding of the relationship between two planningparadigms can facilitate adaptation of the results and techniques developed in one paradigmto the other.Chapter 5 contains several de�nitions of expressivity for planning languages, extendingthe previous work on knowledge representation languages [5]. Based on these de�nitions,the HTN language can be evaluated in terms of expressive power in comparison to theSTRIPS language, which is the de facto standard state-based planning language. This workproves that the HTN language is strictly more expressive than the STRIPS language. It alsoprovides two polynomial transformations from the STRIPS language to the HTN language.These transformations are used to transfer several results developed in state-based planningto HTN Planning.1.3.3 ImplementationThe analysis provides insights to the design of correct and e�cient HTN planning algorithms.Chapter 3 contains a provably correct but rather abstract HTN planning algorithm calledUMCP. Based on the insights from the analysis results, correct and e�cient algorithms aredesigned for each step of the abstract UMCP algorithm. As presented in Chapter 6, thesealgorithms have been implemented in the UMCP planning system for further exploration.The UMCP system serves as a testbed for experimenting with search control and commitment5

strategies in order to improve the performance of HTN planning systems.1.4 OrganizationThe layout of this dissertation reects the steps in the research approach. Chapter 2 exam-ines the issues introduced in Section 1.2 and presents a historical perspective to planning.Chapter 3 contains the de�nition of the HTN language and the associated semantics. Thischapter also presents the abstract UMCP algorithm, and its correctness proof. The com-plexity analysis of HTN planning is discussed in Chapter 4. Chapter 5 presents severalde�nitions for the expressivity of planning languages. Using these de�nitions and the com-plexity results from previous chapter, it investigates the similarities and di�erences betweenstate-based planning and HTN planning. Chapter 6 describes further re�nements of theUMCP algorithm, and present the implementation features of the resulting software archi-tecture. Chapter 7 explains how to write speci�cations for a planning domain using theHTN language. It contains several sample problem speci�cations, and descriptions of howUMCP solves those problems. Finally, Chapter 8 provides a global perspective to the workcontained in this dissertation, and points to future research directions for extending andimproving the HTN paradigm.

6

Chapter 2Related WorkThis chapter presents a historical perspective to AI planning literature in order to providea context within which the contributions of this dissertation can be evaluated. It is byno means intended as a comprehensive review of the literature, which can be found in thecollection of papers edited by Allen, Hendler, and Tate [2].The �rst section of this chapter describes the roots of classical AI planning. The secondsection contains a brief overview of some of the planning systems that evolved from theseroots. Section 3 discusses the theoretical work on planning. This section also presents theattempts to formalize the ideas that emerged from implementations of planning systems.Finally, Section 4 discusses where the work described in this dissertation �ts in, and how itrelates to the recent and current research e�orts.2.1 The Early Years of AI PlanningThe roots of classical AI planning lie in the discovery that �rst-order logic could be usedto represent change in the world, and hence automated �rst-order theorem provers couldbe directly employed to solve planning problems. This discovery led to the development ofsituation calculus [47]. The details of situation calculus can be found in most introductoryAI textbooks such as [52], but the general idea can be summarized as follows: atoms suchas p(x) that are normally used to represent static facts about the world are augmented byan extra term as in p(x; s) to state that the predicate p is true of term x in situation s.Actions are represented using function symbols in the following manner: let the functionsymbol fa denote an action a. The situation resulting from executing action a in situations is represented by fa(s). The e�ects of executing an action are described by axioms. Theseaxioms usually read as \if these conditions are true in a situation s, then those conditionswill be true in the situation resulting from the execution of action a in s." Desired behaviorsare represented as attainment goals, which are conditions (i.e., atoms) that are desired to betrue in the world.The planning problems can be posed as\Does there exist a situation which satis�es the goal conditions and which is alsoreachable from the initial situation?" 7

Situation calculus allows the representation of context-dependent e�ects of actions. Thatis, an action can have di�erent e�ects depending on the situation it is executed in. In returnfor this exibility, situation calculus requires explicit axiomatization of all the conditionsthat are not a�ected by each action, in addition to the conditions that are a�ected by it.The axioms which describe the conditions that are not a�ected by a given action are calledframe axioms. Frame axioms are usually of the form\Condition c will be true in the situation resulting from executing action a atsituation s, if c is already true in s, and action a does not make c false."Situation calculus requires a frame axiom for each action { condition pair. This givesrise to the frame problem: huge numbers of axioms are necessary for describing even simpletoy planning domains. Another disadvantage of situation calculus is performance related:general purpose theorem provers cannot exploit the structure of planning problems and thusthey are horrendously slow in solving planning problems.Both the representation and the performance issues were addressed in the STRIPS plan-ning system [24]. The frame problem was dealt with by the STRIPS assumption:Executing an action does not change the truth value of a condition unless thecondition is one of the e�ects of the action.This assumption is built into the STRIPS system, and hence, for each action only theconditions it changes need to be speci�ed. Each action is described as a STRIPS operator,which consists of a precondition list, an add list, and a delete list. The precondition listspeci�es the conditions under which the action is executable. The add list and delete list,respectively, specify the conditions that are going to become true and those that are goingto become false in the state resulting from the action execution. Context-dependent e�ectsare not allowed. The syntax used for encoding operators, and their associated semantics willbe referred to as the STRIPS language.The STRIPS algorithm uses precondition chaining for �nding solutions to planning prob-lems. STRIPS maintains a goal stack, which initially contains the goals in the planningproblem. At each iteration, STRIPS examines the goals on top of the stack, and choosesan operator which has e�ects that match one or more goal conditions that are not true inthe current state. If the preconditions of the operator are satis�ed in the current state, theoperator is applied to compute a new current state. Otherwise, the operator is added tothe working plan, and its preconditions are pushed onto the goal stack as new subgoals.Whenever no operator has a matching e�ect with the goals on top of the goal stack, thealgorithm backtracks. The STRIPS algorithm is heavily inuenced by GPS [51] (GeneralProblem Solver), whose operator choice is driven by minimizing the di�erence between thecurrent state and the goal state.The STRIPS algorithm deals with conjunctive goals of the form G1^G2 as follows: First�nd a plan that achievesG1 from the initial state, and then �nd a plan that achievesG2 fromthe �nal state of the previous plan. If it happens that the second plan undid the �rst goal,8

STRIPS tries to accomplishG2 �rst, and then G1. This procedure works well as long as thereare no interactions among the subplans for the goals. However, even very simple planningdomains contain nonserializable goals. These are goals for which there is no solution unlessthe plans for each goal are interleaved. The STRIPS system ignores nonserializable goals bymaking the linearity assumption [63]:Subgoals are independent and thus can be sequentially achieved in an arbitraryorder.The linearity assumption signi�cantly simpli�es devising algorithms for dealing with con-junctive goals. While constructing a solution, such algorithms keep the plan steps (actions)totally ordered, and new steps are added only to the beginning or to the end of the plan.However, planning algorithms based on the linearity assumption may fail to �nd a solution,even though there exists a solution. Thus they are not complete. A complete algorithmalways �nds a solution, whenever there exists a solution.The search space for the STRIPS language is large, because the number of possible statesis exponential in the number of atoms in the language. Even with the linearity assumption,the STRIPS system could solve only very small planning problems in any reasonable amountof time.2.2 The Planning Systems in 1970'sThe development of the STRIPS system initiated a huge body of research. In the followingyears many new planning systems were built. These systems tried to address the shortcom-ings of the STRIPS system. Some of them focused on improving the performance, and someof them focused on expanding the set of planning problems that can be correctly dealt with.Embedded in those systems were many powerful ideas, some of which are listed below:1. Abstraction hierarchies for improving performance,2. Relaxation of the linearity assumption for dealing with nonserializable goals,3. Task networks and task decomposition, for representing and solving complex problems,4. Partial-order planning for improving performance and dealing with nonserializablegoals,5. Least commitment strategies for improving performance,6. Filter conditions for reducing the size of the search space,7. \Critics" mechanism for dealing with interactions.All of these planning techniques will be discussed in detail, following some clari�cationsin the planning terminology. 9

2.2.1 Planning TerminologyThere is some confusion in planning terminology, perhaps because several planning systemshave introduced multiple techniques to the planning �eld simultaneously. In this section,I will de�ne the meanings of several terms as they are used in this dissertation to preventmisunderstandings.Most planning systems work iteratively, incrementally constructing the �nal plan. Theincomplete plan at each iteration is called the working plan. Initially the working plan isusually empty. Some planning systems, for convenience, choose to represent the initial stateand the goals as two special steps in the initial working plan.A planning system that keeps the steps in the working plan totally ordered is called atotal-order planner. A planning system that keeps the steps in the working plan partially-ordered is called a partial-order planner.Any planning system that makes the linearity assumption is called a linear planner. Aplanning system that does not rely on that assumption is called a nonlinear planner. Thelinearity assumption was de�ned in Section 2.1.Planning systems that use the STRIPS operators for representing actions and solve prob-lems which involve �nding a path from initial states to goal states are called state-based, orSTRIPS-style planners. It does not matter which techniques are used (total-order, partial or-der, regression, etc.) for producing the plan. Thus according to this de�nition, STRIPS [24],SNLP [46], and TWEAK [15] are state-based planners.A planning system that represents planning problems as task networks, and uses taskdecomposition to construct the �nal plan is called a hierarchical task network (HTN) planner.Sometimes these terms are used with di�erent meanings in the literature. The terms\state-based" and \linear" are often used to refer to total-order planners. The term \non-linear" is sometimes used to refer to partial-order or HTN planners. This type of usage ismisleading and thus it is avoided in this dissertation.2.2.2 Abstraction HierarchiesAbstraction hierarchies were introduced by Sacerdoti in 1974, in the ABSTRIPS system [60].Their purpose is to cope with the huge size of the search space and to reduce planning timeby focusing the planning e�ort on the most critical parts of the problem �rst. Each condition(i.e., predicate or proposition) in the planning domain is assigned a criticality level usingheuristic methods. Planning proceeds in levels, starting with the highest criticality level. Ateach level, all the conditions with lower criticality levels are ignored as details. The planfound in one level is used as a skeleton in �nding a plan in the next lower level iteratively,until the bottom level is reached, which produces the �nal plan.Abstraction hierarchies are given that name because of the abstraction resulting fromignoring some conditions, and the hierarchy consisting of the criticality levels. However,like the variable-ordering heuristics found in the constraint satisfaction literature [25, 50],abstraction hierarchies can also be perceived as a means of deciding which part of the problemto work on next. 10

2.2.3 Relaxation of the Linearity AssumptionPlanning algorithms based on the linearity assumption could not solve problems containingnonserializable goals. As discussed earlier, subplans for nonserializable goals need to beinterleaved. The planning systems of 1970's introduced several techniques for dealing withnonserializable goals.The HACKER [63] system was developed by Sussman in 1975 for manipulating a robotarm. HACKER deals with interacting subgoals using the criticsmechanism. This proceduralmechanism identi�es and patches conicts based on heuristic methods. HACKER storespatches that worked well, to be used later in similar problems. Thus it can be considered asthe ancestor of case-based planning systems [42, 40]. A case-based planner stores solutionsto previous planning problems in a case-base, and solves each new planning problem byadapting the solution of a similar old problem from the case-base.Another way of dealing with nonserializable goals is to keep the plan steps totally ordered,but to allow new steps to be inserted at any point in the plan. Warren [71] in 1974 andWaldinger [70] in 1977 took this approach and used goal regression and action regressiontechniques, respectively, for dealing with conjunctive goals. Their planning systems would�nd a plan for the �rst subgoal, and then modify that plan by inserting new steps as necessaryto achieve the next subgoal without undoing the previously achieved subgoals.HTN planning systems such as NOAH [59] and NONLIN [64] introduced partial-orderplanning, which facilitates handling nonserializable goals. In partial order planning, thedecision regarding where a new step should be added in the working plan is deferred. Plansteps are pairwise ordered only to the extend necessary to resolve conicts. Thus, subplansfor goals can be freely interleaved.Partial order planning requires signi�cantly more complicated algorithms than total orderplanning. The intermediate states in a plan cannot be constructed if the steps are not totallyordered, and thus it becomes di�cult to assess whether a condition is going to be true beforea given plan step. On the other hand, partial-order planning can provide gains in e�ciency,because the planner may not need to consider all possible orderings. The trade-o� betweentotal-order versus partial-order planning has been studied extensively in the last severalyears, albeit in the framework of state-based planning, instead of HTN planning. Thesestudies will be discussed in Section 2.3.5.Planning systems that do not depend on the linearity assumption are called nonlinearplanners. Since most of the nonlinear planners have also been partial-order planners, theterm \nonlinear" is often incorrectly used to refer to partial-order planners, and sometimesto refer to HTN planners.2.2.4 Least CommitmentPlanning systems, while re�ning a partial solution into a �nal plan, make several types ofdecisions: which actions to choose, how to order the steps in the plan, and how to (or hownot to) instantiate variables. The �rst generation of planning systems, usually made thedecisions regarding ordering and variables before the choice of actions. Such a planning11

system would immediately order each new step inserted to the plan with respect to theexisting steps, and instantiate all the variables in the new step. All possible orderings andvariable instantiations would be explored in a depth-�rst manner. This results in a verylarge branching factor, and it is rather ine�cient for many planning problems.In response to this situation, HTN planners such as NOAH [59] typically work by intro-ducing ordering and variable binding restrictions only when necessary to resolve conicts.This kind of strategy has been called least commitment. Least commitment strategy may re-duce amount of backtracking in a number of planning situations where a total-order plannerwould try and backtrack from many possible orderings.The MOLGEN [62] system developed by Ste�k in 1981 further enhanced least commit-ment for variable bindings. MOLGEN was designed to work in the area of experimentplanning for molecular biology. The choice of objects in those experiments are rather im-portant. MOLGEN uses constraint-based techniques to guide the search in �nding the rightvariable instantiations for the objects.The least-commitment strategies point to a more general problem of commitment: Ateach iteration, a planning system can make several types of commitment decisions, includingvariable bindings, orderings, and action selection. The order in which these commitments aremade has a large impact on the e�ciency of a planning system, and the question becomes howto choose the best type of commitment to make at each iteration. Any given commitmentstrategy may be e�cient in some application domains, and slow in some others. The approachtaken in this dissertation, as described in Section 6.3, is to provide a general commitmentmechanism which can be customized according to the needs of each planning application.2.2.5 Task Networks and Task DecompositionIn the early planning systems, the emphasis was on states. Actions were viewed only asa means for a�ecting state changes. HTN planning brought a very di�erent perspective,placing the emphasis on the activities to be planned for (i.e. the tasks) and the interactionsamong them. Planning proceeded by decomposing each task into simpler tasks and resolvingthe conicts among tasks iteratively, until a conict-free plan consisting of primitive taskscould be found.Task decomposition techniques were initially introduced in the NOAH [59] system devel-oped by Sacerdoti in the mid-1970's, and were enhanced in NONLIN [64] system designedby Tate in 1977. NOAH represented planning problems as partially ordered lists of tasks(hence the term \task network"). The information on how to decompose tasks was encodedprocedurally in the so called \soup code." NOAH used an improved version of critics, aheuristic procedural mechanism initially introduced by HACKER [63], to detect and resolveinteractions among tasks. Interactions were resolved mostly by placing ordering or variablebinding restrictions.NONLIN replaced the procedural soup code of NOAH with opschemas, which declara-tively represented how to decompose tasks. NONLIN also introduced two data structurescalled the TOME (table of multiple e�ects) and the GOST (goal structure) for keeping track12

of which tasks have a given e�ect, and also which tasks can inuence a given condition. Itemployed backtracking to recover from incorrect planning decisions. NOAH had no suchmechanism, and it would report failure in those cases.In the following years, the DEVISER [69] system developed by Vere in 1983 extended theNOAH and NONLIN systems to handle actions with durations and activities with temporalconstraints.The work on HTN planning was further advanced by SIPE [73], developed by Wilkinsin 1983. SIPE emphasizes resource management and also the interactions with the userof the planning system. SIPE employs a taxonomy for storing the features of objects inthe planning domain. The UMCP planning system, presented in Chapter 6, uses a similartechnique for representing the initial state of a planning problem.The O-PLAN [17] system designed in 1991 by Currie and Tate further extended theNONLIN framework to a more general plan creation and execution platform. O-PLANrepresents plans using several elaborate types of constraints. O-PLAN has introduced thetriangle model of activity to integrate automatic manipulation of plans with human interac-tion and information acquisition. Recently this system was enhanced further resulting in asystem called O-PLAN2 [65].Unlike state-based planners which rarely were used for practical applications, HTN plan-ners met with considerable success in building applications. NOAH was applied to mechan-ical engineers apprentice supervision, NONLIN was applied to electricity turbine overhaul,DEVISER was applied to Voyager spacecraft mission sequencing, and SIPE was applied toaircraft carrier mission planning [2].2.2.6 Filter ConditionsFilter conditions were introduced in NONLIN [64] as a mechanism to reduce the size of thesearch space by detecting and �ltering out undesirable solutions in early stages of planning.For example, consider a medical domain. Suppose a particular drug is administered only topatients with high fever. We would want to eliminate those plans that attempt to increasethe temperature of the patient so that the drug can be administered. Furthermore, we wouldlike to save the time the planner spends in trying to establish the high fever predicate. Such acondition is represented as a �lter condition, instead of a precondition. If the �lter conditionis not already true, NONLIN backtracks; it does not attempt to establish it.Evaluating �lter conditions is not a simple task, since in the early stages of planning, atask network might not contain enough detail to determine whether a �lter condition will betrue at a point in the task network. NONLIN took a conservative approach by evaluatingeach �lter condition as soon as it was introduced in a task network, and pruning those tasknetworks whose �lter conditions were not determined to be necessarily true. This approachreduces the search space considerably, but compromises completeness in situations where the�lter conditions are possibly but not necessarily true. The UMCP planning system imple-mented as part of this dissertation takes a di�erent approach that preserves completeness,as discussed in Chapter 6.3. 13

2.2.7 CriticsAnother important aspect of planning that is not addressed in current analytic e�orts is thegeneral use of critics. Historically speaking, critics were introduced into NOAH [59] as aprocedural, heuristic mechanism to identify and deal with several kinds of interactions (notjust deleted preconditions) among tasks in a task network. After each task decomposition,a set of critics are consulted so as to recognize interactions and resolve conicts. Thisapproach provides a more general framework for detecting interactions than is available inmost STRIPS-style planners. Based in part on Sussman's earlier work in HACKER [63],Sacerdoti [59] identi�ed three critics of general use:� Resolve Conicts. The conicts handled by this critic, later referred to as \deleted-condition" interactions, have received the bulk of the attention in the literature.� Use existing objects. This critic dealt with resources, rather than temporal orderingrelations.� Eliminate redundant preconditions. This critic identi�ed and utilized opportunities byrecognizing cases where a goal task was achieved inadvertently while achieving anothertask. When such opportunities were recognized, this critic would convert the alreadyachieved goal task into a \phantom" condition.In addition to the interactions handled by these critics, a number of other situations thatcan arise in planning have been identi�ed in the literature:� For his deviser system, Vere [69] has discussed temporal interactions between thetimes at which actions must occur.1 He has discussed temporal windowing and ananalysis thereof to eliminate possible reductions.� Wilkins' sipe system [73] has added a number of di�erent mechanisms for recognizingresource interactions and for allowing user preferences to be considered when makinga choice between reductions.� Yang, Nau, and Hendler [76] have introduced a general \action-precedence" interactionthat can be exploited in some planning situations.� Nau and Gupta [28] have identi�ed \enabling-condition" interactions as the culpritthat makes �nding optimal plans in the blocks-world domain to be NP-hard. Suchinteractions arise when a side-e�ect of achieving one goal is to make it easier to achieveanother goal.� To handle iteration in plans, Drummond [19] has proposed several extensions to theprocedural net, and an extension to Sacerdoti's resolve-conicts critic.1See also [18]. 14

� A number of special-purpose \domain-dependent" planning systems have identi�edinteractions occurring only in the particular domain for which the system is being de-veloped. Typically, special-purpose heuristics are introduced to exploit this knowledge.As can be seen, the many interactions which need to be handled during planning gobeyond the (relatively) well-understood deleted-condition interaction. To handle these inter-actions, implemented planning systems usually use critics or similar mechanisms. However,these mechanisms are procedural and heuristic in nature. To reason about the propertiesof such mechanisms, a general model of interactions and critics is clearly needed. One im-portant aspect of such a model is that it can help, in part, to unify \domain-independent"and \domain-dependent" planning systems: in many of the latter, the specialized knowledgecan be modeled as using a large set of special-purpose critics. The formal framework pre-sented in this dissertation in Chapter 3 provides just such a model. Chapter 6.3 presentsa way of implementing domain-independent critics that preserves soundness, completeness,and systematicity, based on that framework.2.3 Formalization and Analysis E�ortsThe 1980's brought formal approaches to planning. The semantics of the STRIPS languagewas freed of aws [45] and brought to its current standard form as presented in Section 2.3.1.A signi�cant amount of research e�ort went into attempts at formalizing and analyzing theideas buried inside the implementation details of the systems summarized in Section 2.2.Among those ideas, the abstraction hierarchies, the ways to relax the linearity assumption,partial and total-order planning have been studied quite well. There has been some work on�lter conditions and commitment strategies, but the rest of these ideas have been studiedvery little and mostly dismissed as mere \e�ciency hacks."This section contains a brief overview of some of the work on formalization and analysis.Note that almost all of these studies have been done in the framework of state-based planning,although many of the ideas originated in the context of HTN planning. Carrying those studiesback to the HTN framework is not a simple task, but it is signi�cantly facilitated by thework presented in this dissertation.2.3.1 The STRIPS RepresentationMost of the state-based planning systems use the STRIPS representation. HTN planningsystems also use variations of the STRIPS representation for describing the world and changein the world. Thus a good understanding of the STRIPS representation is very important.The STRIPS representation has gone through several changes. In the original STRIPSplanner [24], the planning operators' precondition lists, add lists, and delete lists were allowedto contain arbitrary well-formed formulas in �rst-order logic. However, there were a numberof problems with this formulation, such as the di�culty of providing a well-de�ned semanticsfor it [45]. Thus, in subsequent work, researchers have placed several restrictions on the15

nature of the planning operators [52]. Typically, the precondition lists, add lists and deletelists contain only atoms, and the goal is a conjunct of ground or existentially quanti�edatoms. This representation has become the de facto standard STRIPS representation, usedby most of the state-based planning systems [15, 46, 77]. The description of the STRIPSrepresentation below, which I developed jointly with Dr. Nau and Dr. Subrahmanian [22],is in accordance with this formulation.De�nition 1 Let L be any �rst-order language generated by �nitely many constant symbols,predicate symbols, and function symbols. Then a state is any �nite set of ground atoms inL.Intuitively, a state tells us which ground atoms are currently true: if a ground atom A is instate S, then A is true in state S, and if B =2 S, then B is false in state S. Thus, a state issimply an Herbrand interpretation for the language L, and hence each formula of �rst-orderlogic is either satis�ed or not satis�ed in S according to the usual �rst-order logic de�nitionof satisfaction.De�nition 2 Let L be an ordinary �rst-order language. Then a planning operator � is a4-tuple < Name(�);Pre(�);Add(�);Del(�) >, where1. Name(�) is a syntactic expression of the form �(X1; : : : ;Xn) where eachXi is a variablesymbol of L;2. Pre(�) is a �nite set of literals, called the precondition list of �, whose variables are allfrom the set fX1; : : : ;Xng;3. Add(�) and Del(�) are both �nite sets of atoms (possibly non-ground) whose variablesare taken from the set fX1; : : : ;Xng. Add(�) is called the add list of �, and Del(�) iscalled the delete list of �.Observe that negated atoms are allowed in the precondition list, but not in the add anddelete lists.When de�ning a planning operator �, often Name(�) will be clear from context. In suchcases, the name will be omitted.De�nition 3 A �rst-order planning domain (or simply a planning domain) is a �nite set ofplanning operators O.De�nition 4 A goal is a conjunction of atoms which is existentially closed (i.e., the variables,if any, are existentially quanti�ed).De�nition 5 A planning problem instance is a triple P = (S0;O; G), where S0 is the initialstate, O is a planning domain, and G is a goal.16

ab dc e(a) initial con�guration bcd(b) goal con�gurationFigure 2.1: A sample blocks world problem.Example 2.3.1 (Blocks World) Suppose we want to talk about a blocks-world planningdomain in which there are �ve blocks a; b; c; d; e, along with the \stack", \unstack", \pickup",and \putdown" operators used by Nilsson [52]. Suppose the initial con�guration is as shownin Fig. 2.1(a), and the goal is to have b on c on d, as shown in Fig. 2.1(b). Then the language,operators, planning domain, and planning problems are de�ned as follows:1. The language L will contain �ve constant symbols a; b; c; d; e, each representing (in-tuitively) the �ve blocks. L will contain no function symbols, and will contain thefollowing predicate symbols: \handempty" will be a propositional symbol (i.e. a 0-arypredicate symbol), \on" will be a binary predicate symbol, and \ontable", \clear", and\holding" will be unary predicate symbols. In addition, there will be a supply of vari-able symbols, say, X1;X2; : : : : Note that operator names, such as \stack", \unstack",etc., are not part of the language L.2. The \unstack" operator will be the following 4-tuple:Name(unstack) = unstack(X1;X2)Pre(unstack) = fon(X1;X2); clear(X1);handempty()gDel(unstack) = fon(X1;X2); clear(X1);handempty()gAdd(unstack) = fclear(X2);holding(X1)gThe \stack", \pickup", and \putdown" operators are de�ned analogously.3. The planning problem will be (S0;O; G), where S0, O and G are as follows:S0 = fclear(a); on(a; b); on(b; c); ontable(c); clear(d);on(d; e); ontable(e);handempty()g;O = fstack;unstack;pickup;putdowngG = fon(b; c); on(c; d)g:De�nition 6 Given an initial state S0, and a set of operators O, let � be an operator inO whose name is �(X1; : : : ;Xn), and � be a substitution that assigns ground terms to each17

Xi; 1 � i � n. Suppose that the following conditions hold for states S and S0:fA� : A is an atom in Pre(�)g � S;fB� : :B is a negated literal in Pre(�)g \ S = ;;S0 = (S � (Del(�)�)) [(Add(�)�) :Then it is said that � is �-executable in state S, resulting in state S0. This is denotedsymbolically as S �;�=) S 0:De�nition 7 Given a planning problem instance P = (S0;O; G), a plan that solves P is asequence �1�1; : : : ; �n�n of ground planning operators such thatS0 �1;�1=) S1 �2;�2=) S2 � � � �n;�n=) Sn (2.1)and G is satis�ed by Sn, i.e. there exists a ground instance of G that is true in Sn. Thelength of the above plan is n.Given a planning problem instance, one might be interested in any plan that solvesthis instance. Alternatively, one might be interested in the shortest plan that solves thisinstance. Both of these existence and optimality questions are formally de�ned below asdecision problems:De�nition 8 plan existence is the following problem:Given a planning problem instance P = (S0;O; G), does there exist a plan in Pthat achieves G?De�nition 9 plan length is the following problem:Given a planning problem instance P = (S0;O; G) and an integer k encoded inbinary, does there exist a plan in P of length k or less that achieves G?2.3.2 State-based Planning AlgorithmsOnce the representation issues in the STRIPS language were resolved, a number of prov-ably correct planning algorithms were developed. The most inuential algorithms amongthose have been TWEAK [15] by Chapman in 1987, SNLP [46] by McAllester in 1991, andUCPOP [54] by Penberthy and Weld in 1992. This section contains a brief overview of theseplanning algorithms. 18

2.3.2.1 TWEAKTWEAK [15] is the �rst provably correct partial-order planning algorithm. It works withincomplete plans, which are iteratively re�ned to a complete solution. An incomplete planin TWEAK consists of a set of plan steps. Each step is associated with an operator. Alongwith the incomplete plan, TWEAK maintains a partial order graph on the steps, and a list ofnoncodesignation constraints on the variables in the operators of the plan. Noncodesignationconstraints are of the form v 6= c, or v1 6= v2, stating that variable v cannot have value c, orvariables v1 and v2 cannot have the same value, respectively.At the heart of the TWEAK algorithm lies a de�nition called the modal truth criterionfor evaluating a condition when the steps of the plan are only partially ordered. The modaltruth criterion is de�ned as follows: [15]A proposition p is necessarily true in a situation s i� two conditions hold: thereis a situation t equal or necessarily previous to s in which p is necessarily as-serted; and for every step C possibly before s and every proposition q possiblycodesignating with p which C denies, there is a step W necessarily between Cand s which asserts r, a proposition such that r and p codesignate whenever pand q codesignate.The modal truth criterion roughly has the following meaning: for a condition p to betrue at a target situation s, there must be some step t before it that necessarily asserts it,and for any other step that may come between t and s and falsify the condition, there is acorresponding step W (referred to as a white night) that makes the condition true again.Planning in TWEAK starts with a null incomplete plan that has an initial step thatasserts the conditions true in the initial state, and a �nal step that has the plan goals aspreconditions. At each iteration TWEAK evaluates each precondition of every step in theplan using the modal truth criterion. If all the preconditions are necessarily true, then anytotal ordering of the incomplete plan consistent with the partial order has a ground instanceconsistent with the noncodesignation constraints on the variables.2 Each such ground in-stance is a solution to the planning problem. When TWEAK discovers that a preconditionis not necessarily true, it tries to make that condition true by adding a new step to the planor �nding an already existing step which has the desired e�ect (corresponding to the step tin the modal truth criterion). The threats from any step C which can deny the preconditionis resolved by placing ordering or variable binding restrictions.In evaluating a condition, the modal truth criterion assumes that the preconditions of allthe other steps are satis�ed. This does not cause a problem for TWEAK since it checks allthe preconditions before it halts with a solution. Kambhampati and Nau have investigatedthis issue in depth and provided alternative de�nitions to the modal truth criterion [38].2In order to ensure that there always exist a ground instantiation that satis�es the noncodesignationconstraints on variables, TWEAK assumes the application domain contains in�nitely many constant symbols.This assumption is relaxed in subsequent algorithms.19

In many ways TWEAK was an attempt at formalizing the ideas in the planners discussedin Section 2.2. It was very successful at providing a formal framework for partial orderplanning, and stimulated a lot of further research. However, it left out several importantideas such as task networks and task decomposition, which are studied in this dissertation.2.3.2.2 SNLPSNLP(Systematic Nonlinear Planner) was developed by McAllester in 1990 [46], in an e�ortto design an e�cient, provably correct planning algorithm. There was already a sound andcomplete planning algorithm TWEAK, described in the previous section; however, TWEAKperforms rather slowly on many planning problems.One reason TWEAK performs rather slowly is that it does not protect the conditions ithas previously established. Not protecting those conditions saves the time in bookkeepingfor recording and checking previously established conditions. On the other hand, each timeTWEAK establishes a condition, there is a possibility it will undo a previously establishedcondition, which will need to be reestablished. Reestablishing that condition can likewiseundo some other previously established conditions.As explained in Section 2.2, NONLIN employed specialized data-structures to record andprotect previously established conditions. The SNLP algorithm provided a formal version ofthese, which have been called causal links.The SNLP algorithm is fairly similar to the TWEAK algorithm. However, when a pre-condition p of a step s is established using a step t, SNLP records a causal link < t; p; s >, stating that p will remain true from the end of step t till the beginning of step s. Step tis called the establisher of condition p. All the steps in the plan are required not to threatenthe causal link. That is, each step is ordered either outside the interval between t and s, orits e�ects are made to noncodesignate with :p by adding noncodesignation constraints onthe variables. Every time a new step is inserted into the working plan, the same procedureis applied to make sure the new step cannot threaten any of the causal links.As a possible way for improving e�ciency, SNLP introduced the concept of systematicity:The set of solutions for the incomplete plans at every branch of the search treemust be mutually disjoint.Enforcing systematicity ensures each incomplete plan is investigated at most once, sincethere cannot be multiple paths leading to any incomplete plan in the search space. Enforcingsystematicity in a partial planner is somewhat tricky, as there are many ways of obtaininga given partial order. SNLP guarantees systematicity by utilizing positive threats: Given acausal link < t; p; s >, SNLP protects it not only from steps that may deny p, but it alsoprotects it from other steps that may assert p. This results in a unique establisher for everycondition, and the set of solutions at alternative branches of the search tree are disjoint, asthe establishers will be di�erent.Initially it was believed that SNLP would always work faster than TWEAK, but problemswhere TWEAK performs better were identi�ed later. In situations with multiple candidate20

steps that can serve as establishers, SNLP algorithm requires immediately committing to oneof the candidates. This commitment is sometimes premature, and thus a wrong candidatemay be selected which results in backtracking later on. SNLP also incurs signi�cant overheadwhile protecting the causal links. Tradeo�s between systematicity versus commitment wereinvestigated by Kambhampati in [36].TWEAK and SNLP represent two opposite extremes in protecting none versus all of theestablished conditions. In the following years, intermediate techniques, which protect onlysome of the previously established conditions, were developed [56, 61, 34].2.3.2.3 UCPOPUCPOP [54] is another sound and complete planning algorithm. It was designed by Weldand Henks in 1992. Rather than the STRIPS language, UCPOP is based on the ADLlanguage developed by Pednault [53] in his dissertation work. ADL is signi�cantly morecomplex than the STRIPS language, but in order to facilitate an e�cient implementation,it was considerably stripped down, and except for context-dependent e�ects (i.e., e�ectsthat may take place depending on the input situation) and quanti�cation over variables, theunderlying language of UCPOP is very similar to the STRIPS language.The UCPOP algorithm is similar to the SNLP algorithm in the aspects of establishingconditions using causal links and threat removal. In order to handle the context-dependente�ects and quanti�ers, UCPOP uses secondary preconditions. Two types of secondary pre-conditions are causation and preservation conditions. Causation conditions of an action awith respect to a proposition p refer to the conditions that must be true before a is executedso that a will assert p. Preservation conditions refer to the conditions that must be truebefore a is executed so that a will not make p false. Basically, the causation conditionsprovide the information about the possible ways a step can establish a condition, and thepreservation conditions provide the information about the possible ways threats from a givenstep can be removed.2.3.2.4 A Generic Planning AlgorithmIn addition to the planning algorithms described above, numerous other planning algorithmshave been devised for state-based planning. Thus it becomes important to make a compar-ative analysis of these algorithms to see which algorithms are suitable for a given planningapplication. To facilitate this comparison, Kambhampati, et. al. [37], have suggested ageneric planning algorithm into which the numerous planning algorithms can be cast.This generic algorithm is based on planning as re�nement search: Most planning algo-rithms work by re�ning incomplete plans to a �nal solution. Each incomplete plan standsfor the set of solutions it can be re�ned into. Thus planning becomes searching the space ofincomplete plans, pruning those whose set of solutions can be determined to be empty. Plan-ning algorithms mostly di�er in their re�nement strategies only. Having a generic algorithmallows researchers to compare and contrast these strategies and identify their features.21

Kambhampati, et. al., cast several well-known planning algorithms, as well as hybridcombinations of some planning algorithms into their generic algorithm. That way, theycould provide preliminary empirical evaluations of various re�nement strategies in terms ofthe structure of their search space, branching factors, overhead involved in performing eachtype of re�nement and the book keeping required.Although the re�nement strategies studied in this work are from state-based planning,the framework itself is general enough to capture the basic properties of HTN planningalgorithms at a very abstract level. This work has inuenced the high-level search algorithmused by the UMCP system presented in Chapter 6. However, as explained in that chapter,the re�nement strategies for HTN planning are rather di�erent.2.3.3 Complexity AnalysesThis section contains the complexity analyses of state-based planning. Complexity analysesdetermine how much computational resources are required in the worst case for solving aproblem.Decidable, or recursive problems are those that can be solved in �nite time by somealgorithms. Semidecidable, or recursively enumerable problems are those for which there isno algorithm that always terminates when the input problem has no solution. Semidecidableproblems are sometimes, informally referred to as undecidable problems.2.3.3.1 Chapman's Undecidability ResultsIn 1987, Chapman [15] did the �rst analysis of the decidability of state-based planning.His results have been very inuential in the planning community; however, there has beena certain amount of confusion about what Chapman's undecidability results actually say,because some of his assumptions are embedded in his proofs. This confusion has beenclari�ed by Erol, et. al [22], as explained in this section.Chapman's �rst undecidability theorem ([15, pp. 370{371]) says that all Turing ma-chines with their inputs may be encoded as planning problems in the TWEAK system, andhence planning is undecidable. To prove this theorem, Chapman makes use of the followingassumptions:1. the planning language is function-free;2. \an in�nite [but recursive] set of constants ti are used to represent the tape squares"[15, p. 371];3. the initial state is in�nite (but recursive). In particular, \there must be countablymany successor propositions to encode the topology of the tape (and also countablymany contents propositions to make all but �nitely many squares blank)" [15, p. 371].This theorem is not particularly strong, considering that planning problems seldomly,if ever, involve in�nite initial states. In fact, in his discussion of the First UndecidabilityTheorem [15, p. 344], Chapman says: 22

This result is weaker than it may appear : : : the proof uses an in�nite (thoughrecursive) initial state to model the connectivity of the tape. It may be that ifproblems are restricted to have �nite initial states, planning is decidable. (Thisis not obviously true though. There are in�nitely many constants, and an actioncan in e�ect \gensym" one by referring to a variable in its post-conditions thatis not mentioned in its preconditions.)The problem thus introduced was later solved, as will be presented in the followingsection.The statement of Chapman's second undecidability theorem is that \planning is unde-cidable even with a �nite initial state if the action representation is extended to representactions whose e�ects are a function of their input situations" [15, p. 373].The meaning of the phrase \e�ects are a function of their input situations" has causedsome confusion. Several researchers thought that Chapman meant operators with context-dependent e�ects, but an examination the proof of Chapman's theorem makes it clear he isreferring to operators that contain function symbols.2.3.3.2 Complexity Results for STRIPS-style PlanningI have done a complexity analysis of STRIPS-style planning, in collaboration with Dr. Nauand Dr. Subrahmanian [22]. That work serves to clarify some of Chapman's results andprovides a rather comprehensive study of how the complexity of STRIPS-style planning variesdepending on a number of conditions. The results are summarized in the Tables 2.1, 2.2, and2.3. Table 2.1 presents the cases where the planning language is allowed to have in�nitelymany ground terms, either by allowing function symbols, or by allowing in�nitely manyconstant symbols. Table 2.2 presents the cases where the planning language is restrictedto contain �nitely many ground terms (i.e., no function symbols, �nitely many constantsymbols). Finally, Table 2.3 presents the cases where the language is further restricted tobe propositional (i.e., all predicates are of arity 0, and thus contain no variables). None ofthe results in these tables are a�ected when the operators are allowed to contain context-dependent e�ects.The following is a brief explanation of the results in the complexity tables.The decidability results are shown in Table 2.1. If function symbols are allowed, thendetermining, in general, whether a plan exists is semidecidable. This is true even if wehave no delete lists and the precondition list of each operator contains at most one (non-negated) atom. If no function symbols are allowed and only �nitely many constant symbolsare allowed, then plan existence is decidable, regardless of the presence or absence of deletelists and/or negated preconditions.Even when function symbols are present, plan existence is decidable if the planningdomains being considered have no deletion lists, no negated atoms occur in the preconditionlist, and the domains satisfy certain acyclicity and boundedness properties.Whether the planning operators are �xed in advance or given as part of the input, andwhether or not they are allowed to have context-dependent e�ects, does not inuence these23

Table 2.1: Decidability of State-based Planning.Allow Allow in�- Allow in�- Allow delete lists Tellingfunction nitely many nite initial and/or negated whether asymbols? constants? states? preconditions? plan existsyes yes/no yes/no yes/no/no� semidecidableno no no decidableyes yes/no semidecidableno yes no yes semidecidableno decidableno yes/no yes/no decidable�No operator has more than one precondition.With acyclicity and boundedness restrictions.Table 2.2: Complexity of Finite State-based planning.How are Allow Allow ne- Telling Telling whetherthe opera- delete gated pre- whether a there is a plantors given? lists? conditions? plan exists of length � kgiven yes yes/no expspace-comp. n-exptime-comp.in the yes n-exptime-comp. n-exptime-comp.input no no exptime-comp. n-exptime-comp.no� pspace-complete pspace-completeyes yes/no pspace � pspace ��xed in yes np � np �advance no no p np �no� nlogspace np�No operator has more than one precondition.�With pspace- or np-completeness for some sets of operators.Table 2.3: Complexity of Propositional State-based planning.How are Allow Allow ne- Telling Telling whetherthe opera- delete gated pre- whether a there is a plantors given? lists? conditions? plan exists of length � kgiven yes yes/no pspace-complete� pspace-completein the yes np-complete� np-completeinput no no p � np-completeno�/no nlogspace-comp. np-complete�xed in yes/no yes/no constant constantadvance time time�No operator has more than one precondition.�Results due to Bylander [12]. 24

results.The complexity results are shown in Tables 2.2 and 2.3. When there are no functionsymbols and only �nitely many constant symbols (so that planning is decidable), the com-putational complexity varies from constant time to expspace-complete, depending on thefollowing conditions:� whether or not we allow delete lists and/or negative preconditions,� whether or not we restrict the predicates to be propositional (i.e., 0-ary),� whether we �x the planning operators in advance, or give them as part of the input.The presence or absence of operators with context-dependent e�ects does not inuencethese results.This work solved an open problem formulated by Chapman in [15]: is planning decidablewhen the language contains in�nitely many constants but the initial state is �nite. Thisproblem is decidable in the case where the planning operators have no negative preconditionsand no delete lists. If the planning operators are allowed to have negative preconditionsand/or delete lists, then the problem is semidecidable.Chapman's Second Undecidability Theorem states that \planning is undecidable evenwith a �nite initial situation if the action representation is extended to represent actionswhose e�ects are a function of their input situation" [15], i.e., if the language containsfunction symbols and in�nitely many constants. These results show that even with a numberof additional restrictions, planning is still undecidable.This work has also provided equivalence theorems relating de�nite logic programs toplanning with positive, deletion-free operators. This equivalence facilitates transportingmany results from logic programming to planning.Examination of the complexity results reveals several interesting properties:1. Comparing the complexity of plan existence in the propositional case (in whichall predicates are restricted to be 0-ary) with the datalog case (in which the pred-icates may have constants or variables as arguments, but no function symbols) re-veals a regular pattern. In most cases, the complexity in the datalog case is exactlyone level harder than the complexity in the corresponding propositional case. Wehave expspace-complete versus pspace-complete, n-exptime-complete versus np-complete, and exptime-complete versus polynomial.2. If delete lists are allowed, then plan existence is expspace-complete but planlength is only n-exptime-complete. Normally, one would not expect plan lengthto be easier than plan existence. In this case, it happens because the length of aplan can sometimes be doubly exponential in the length of the input. In plan lengthwe are given a bound k, encoded in binary, which con�nes us to plans of length at mostexponential in terms of the input. Hence in the worst case of plan length, �ndingthe plan is easier than in the worst case of plan existence.25

We do not observe the same anomaly in the propositional case, because the lengthsof the plans are at most exponential in the length of the input. Hence, giving anexponential bound on the length of the plan does not reduce the complexity of planlength. As a result, in the propositional case, both plan existence and planlength are pspace-complete.3. When the operator set is �xed in advance, any operator whose predicates are not allpropositions can be mapped into a set of operators whose predicates are all propo-sitions. Thus, planning with a �xed set of datalog operators has basically the samecomplexity as planning with propositional operators that are given as part of the input.4. plan length has the same complexity regardless of whether negated preconditionsare allowed. This is because what makes the problem hard is how to handle enabling-condition interactions, i.e., how to choose operators that achieve several subgoals inorder to minimize the overall length of the plan [29], and this task remains equallyhard regardless of whether negated preconditions are allowed.5. Delete lists are more powerful than negated preconditions. Thus, if the operators areallowed to have delete lists, then whether or not they have negated preconditions hasno e�ect on the complexity.Several other researchers have studied the complexity of STRIPS-style planning. Some ofBylander's results [12] have been displayed in Table 2.3 and indicated as such. Bylander hasalso studied average-case complexity of propositional STRIPS-style planning under variousassumptions as can be found in [14]. Backstrom has done a complexity analysis of a planningrepresentation equivalent to STRIPS representation with similar results [8].2.3.4 Abstraction HierarchiesAbstraction hierarchies were originally introduced in the ABSTRIPS [60] system, as de-scribed in Section 2.2. ABSTRIPS used heuristic methods in assigning criticality levels topredicates, to determine which of those conditions the planner should try to accomplish �rst.Knoblock [41] has developed an algorithm called ALPINE for assigning criticality levelsin such a way that during the planning process, establishing a condition (which possiblyrequires adding new steps to the plan) cannot clobber the previously established conditionswith higher criticality levels. This property is called the ordered monotonicity property.ALPINE assigns the criticality levels so that e�ects of any given action have the samelevel, and are of same or higher level than the preconditions of the same action. Thus,whenever a new action is inserted to the working plan to achieve a goal condition at thatcriticality level, the action does not have any e�ects or preconditions with higher criticalitylevel than the current level. Hence the abstraction hierarchies generated by ALPINE havethe ordered monotonicity property. Knoblock's experiments on several planning domains,including \Towers of Hanoi," has indicated that planning using such a hierarchy usuallyreduces planning time. However, recently, Backstrom [7] has shown that there exist planning26

problems for which abstraction hierarchies satisfying the ordered monotonicity property maywork poorly.Yang has also worked extensively on abstraction hierarchies, collaborating with a numberof researchers. Together with Tenenberg and Woods, Yang has developed ABTWEAK [77],a planning system that utilizes abstraction hierarchies like ABSTRIPS, but it uses TWEAKinstead of STRIPS as the underlying plan generator at each level. Yang and Bacchus haveidenti�ed several properties of abstraction hierarchies as potential indicators of how wellthey would perform [6]. Particularly,they have identi�ed the downward re�nement property,which basically states that any solution at an abstraction level can be re�ned to a �nalsolution, and thus no backtracking across abstraction levels is required. Yang and Bacchushave also studied how the performance of planning systems using abstraction hierarchiesare inuenced by protecting or not protecting the previously established conditions. Theirresults indicate that usually, protecting conditions established at the previous level, but notprotecting the conditions established at the current level gives better performance.Abstraction hierarchies, although related, are rather di�erent from task decompositionhierarchies. The similarity and di�erences among them are discussed in Section 3.6. In fact,as presented in Section 6.5, the UMCP planning system utilizes both of these techniques atthe same time.2.3.5 Partial-order versus Total-order PlanningThe �rst AI planning systems were total order planners; that is, these planners immediatelyordered each new step added to a plan with respect to all the other steps. In the followingyears, most of the planning systems, particularly HTN planning systems, were designed tobe partial order: Plan steps were kept partially ordered; new orderings were introduced onlyto resolve conicts among steps.Planning systems that used partial ordering were usually faster than total-order planningsystems, but it was not clear whether that was due to using partial order, or to some otherfeature.In recent years, several comparative studies of partial order versus total order planninghave been done.One of the �rst studies on partial versus total order planning was done by Minton et.al. [49]. They designed two planners called TO and UA. TO is a total order planner, whichorders each new step in a plan with respect to all the other steps. UA is designed exactly likeTO, except that UA orders a new step only with respect to those steps that has a commone�ect with the new step. All the steps that may interact are totally ordered in UA; thus itmakes more ordering commitments compared to other partial order planning systems. Onthe other hand, since all interacting steps are ordered, any condition that is possibly truein the plan is also necessarily true, which simpli�es planning considerably. Minton, et. al.have shown that UA's search space is never bigger than that of TO, and in some cases itcan be exponentially smaller than that of TO.Barrett and Weld have also studied partial order versus total order planning [10]. Their27

intuition was that, in some planning problems, a partial order planner like SNLP[46] caneasily �nd the correct order to achieve subgoals while doing conict resolution, where as atotal order planner may need to try many di�erent orderings before �nding the right one.Thus, they introduced the concept of laboriously serializable goals. Only a few orderingslead to a correct solution for this type of goal. Barrett and Weld designed several arti�cialplanning problems with laboriously serializable goals, and their experiment results corrob-orate the intuition that partial-order planners perform better than total-order planners insolving problems with this type of goals.In response to this study, Veloso et. al. [68], has introduced the concept of linkability.The degree of linkability in a problem refers to how much backtracking a causal link plannersuch as SNLP needs to do on the problem, because it has committed to the wrong step toestablish a condition. They compare the performance of SNLP to PRODIGY [11], which isa total-order planner, and show that SNLP performs much more slower than PRODIGY inseveral problems where goals are laboriously linkable.In recent years, several studies have been made on causal links, and the tradeo�s involvedin it [36, 56, 61, 34]. In general, preserving causal links reduces the redundancy in thesearch space, but increases the branching factor (i.e., the number of ways of establishing acondition). Using causal links may force the planner to commit to the wrong step as anestablisher, and cause backtracking.All these studies on partial versus total ordering has been done on state-based planners,and for good reason. In the HTN framework, total order planning is very restrictive: itprevents interleaving subtasks belonging to di�erent tasks. This issue is discussed in detailin Chapter 4.2.3.6 Task Networks and Task DecompositionVery few researchers have tried to integrate task decomposition to their models of planning.Kambhampati and Yang [33, 74] provided the initial steps towards developing a formal modelof HTN planning, which the work described in this dissertation has extensively bene�tedfrom. Barrett [9] and Young [78] have incorporated task decomposition techniques to theirplanning systems as a tool for increasing the speed of state-based planning. The general ideawas to encapsulate heuristic fast ways of accomplishing conditions via task decompositions.In that aspect, their approach is similar to that of MACROPS [23] developed by Fikes et.al. which used prede�ned sequences of operators (i.e. macros) to provide shortcuts in thesearch space.2.4 DiscussionAs presented throughout Section 2.3, extensive research e�ort has gone into formalizing andanalyzing the ideas embedded in planning systems. These studies provided a very goodunderstanding of state-based planning, but they did not cover many important aspects ofmore application-oriented planning systems, particularly task decomposition and critics. As28

I will explain in Chapter 3, the concepts of task networks and task decomposition bring atotally new dimension to planning, with a more powerful and natural representation, and abroader set of algorithmic concerns. This dissertation complements the previous studies byformalizing and analyzing the HTN planning techniques, and by introducing new, provablycorrect HTN planning algorithms.The formal framework of HTN planning, presented in Chapter 3, is based on the ideasembedded in NOAH, NONLIN and DEVISER planning systems, although many modi�ca-tions and extensions have been necessary to make the formal framework consistent, coherent,and comprehensive. This part of the dissertation is analogous to the work on the STRIPSlanguage to free it from semantic aws [45].The second part of the dissertation provides a complexity analysis of HTN planning togive insight into the algorithmic di�culties and bottlenecks, analogous to the complexityanalyses on state-based planning, described in Section 2.3.3. This part also contains anexpressivity analysis of the HTN language in comparison with the STRIPS language, whichproves that the HTN representation is strictly more powerful. This study is unique perhapsbecause there have not been many planning languages formalized to su�cient detail to becompared. In fact, part of this work involves developing the necessary mathematical toolsand de�nitions for comparing the expressivity of planning languages.The remaining chapters of the dissertation have focused on developing provably correct,e�cient planning algorithms for HTN planning, which is in some ways analogous to whatChapman [15] and McAllester [46] accomplished for state-based planning. First, an abstract,but provably correct planning algorithm is developed. Then detailed algorithms are devisedfor computing the steps of the abstract algorithm. This part of the work also involvesdesigning correct critics mechanisms for HTN planning, based on constraint satisfaction.Causal links introduced in SNLP [46] are modeled as a special type of constraint; they areemployed for establishing conditions and preserving systematicity.
29

Chapter 3HTN FormalismThis chapter presents the HTN formalism I have developed. The �rst section contains aninformal description of HTN planning, intended to give an intuitive feel for the formalismpresented in the subsequent sections. Section 3.2 describes the syntactic constructs of HTNplanning. The next two sections present the model-theoretic and operational semantics forthese syntactic constructs. Section 3.5 presents a provably correct HTN planning algorithm.Finally, Section 3.6 describes how various HTN concepts in previous HTN planning systemsare modelled in this framework.3.1 An Overview of HTN planningOne of the motivations for HTN planning was to close the gap between STRIPS-style plan-ning, and the operations-research techniques for project management and scheduling [64].As a result, there are some similarities between HTN planning and STRIPS-style planning,but also some signi�cant di�erences.HTN planning representations for actions and states of the world are similar to thoseused in STRIPS-style planning1, which was described in Section 2.3.1. Thus, each state ofthe world is represented by the set of atoms true in that state. Actions, which are calledprimitive tasks in the HTN terminology, are represented using STRIPS-style operators.The primary di�erence between HTN planners and STRIPS-style planners is in whatthey plan for, and how they plan for it. In STRIPS-style planning, the objective is to �nda sequence of actions that will bring the world to a state that satis�es certain conditions or\attainment goals." Planning usually proceeds by �nding operators that have the desirede�ects, and by making the preconditions of those operators into subgoals. In contrast, HTNplanners search for plans that accomplish task networks, which can include things other thanjust attainment goals; and they plan via task decomposition and conict resolution, whichshall be explained shortly.1The terms \STRIPS-style planning" and \state-based planning" are interchangeably used to refer toany planner (either total- or partial-order) in which the planning operators are STRIPS-style operators (i.e.,operators consisting of three lists of atoms: a precondition list, an add list, and a delete list). These atoms30

See a showGo(D.C., Las Vegas) %& &% Go(Las Vegas, D.C.)Get richFigure 3.1: A task networkGo(X,Y)+Rent-car! Drive(X,Y)Figure 3.2: A (simpli�ed) method for going from X to Y.A task network is a collection of tasks that need to be carried out, together with con-straints on the order in which tasks can be performed, the way variables are instantiated,and what literals must be true before or after each task is performed. For example, Fig-ure 3.1 contains a task network for a trip to Las Vegas. Unlike STRIPS-style planning, theconstraints may or may not contain conditions on what must be true in the �nal state.A task network that contains only primitive tasks is called a primitive task network.Such a network might occur, for example, in a scheduling problem. In this case, an HTNplanner would try to �nd a schedule (task ordering and variable bindings) that satis�es allthe constraints.In the more general case, a task network can contain non-primitive tasks, which theplanner needs to �gure out how to accomplish. Non-primitive tasks cannot be executeddirectly, because they represent activities that may involve performing several other tasks.For example the task of traveling to New York can be accomplished in several ways, such asying, driving or taking the train. Flying would involve tasks such as making reservations,going to the airport, buying ticket, boarding the plane; and ying would only work if certainconditions were satis�ed, such as availability of tickets, being at the airport on time, havingenough money for the ticket, and so forth.Ways of accomplishing non-primitive tasks are represented using constructs called meth-ods. A method is a syntactic construct of the form (�; d) where � is a non-primitive task,and d is a task network. It states that one way to accomplish the task � is to achieve allthe tasks in the task network d without violating the constraints in d. Figure 3.2 presents a(simpli�ed) method for accomplishing Go(X,Y).A number of di�erent systems that use heuristic algorithms have been devised for HTNplanning [64, 69, 73], and several recent papers have tried to provide general descriptions ofare normally assumed to contain no function symbols.31

1. Input a planning problem P.2. If P contains only primitive tasks, thenresolve the conicts in P and return the result.If the conicts cannot be resolved, return failure.3. Choose a non-primitive task t in P.4. Choose an expansion for t.5. Replace t with the expansion.6. Use critics to �nd the interactions among the tasks in P,and suggest ways to handle them.7. Apply one of the ways suggested in step 6.8. Go to step 2.Figure 3.3: The basic HTN Planning Procedure.See a showRent-car! drive(D.C., L.V.) %& &% Go(L.V., D.C.)Get richFigure 3.4: A decomposition of the the task network in Fig. 3.1these algorithms [74, 33]. Figure 3.3 presents the essence of these algorithms. As shown inthis �gure, HTN planning works by expanding tasks and resolving conicts iteratively, untila conict-free plan can be found that consists only of primitive tasks.Expanding each non-primitive task (steps 3{5) is done by �nding a method capable ofaccomplishing the non-primitive task, and replacing the non-primitive task with the tasknetwork produced by the method. For example, the task Go(D.C., Las Vegas) in the tasknetwork of Figure 3.1 can be expanded using the method in Figure 3.2, producing the tasknetwork in Figure 3.4.The task network produced in Step 5 may contain conicts caused by the interactionsamong tasks. For example, in Figure 3.4, if we use up all our money in order to rent thecar, we may not be able to see a show. The job of �nding and resolving such interactions isperformed by critics. As explained in Section 2.2.7, critics were introduced into NOAH [58]to identify and deal with several kinds of interactions (not just deleted preconditions) amongthe di�erent networks used to reduce each non-primitive operator. This is reected in Steps 6and 7 of Figure 3.3: after each reduction, a set of critics is checked so as to recognize andresolve interactions between this and any other reductions. Thus, critics provide a generalmechanism for detecting interactions early, so as to reduce the amount of backtracking.32

Section 6.3 contains a detailed description of how to detect and resolve interactions in HTNplanning in such a way to preserve soundness, completeness, and systematicity.In contrast to STRIPS-style attainment goals, task networks are much richer in structure.Any sequence of actions for which the attainment goals are true in the �nal state constitute aplan in the STRIPS paradigm. There is very little control over which actions can be used inthe plan, what must be true in the intermediate states, or in which order the goals must beaccomplished. This control can be exercised only by modeling the application domain at avery �ne granularity, duplicating many operators, and inventing many new preconditions forthem, on a per problem basis. On the other hand, HTN planning provides full control over theactions in a plan: only those actions that appear in the methods for the task (and methods forits subtasks) can be used. Restrictions on the task orderings or intermediate states can easilybe expressed using the HTN constraints. This expressivity of the HTN constructs can bevery useful in many application domains. For example, consider an automated manufacturingapplication. A process plan for producing a part usually involves many machining operationswith several constraints on the way these operations must be performed. Such a process plancan be represented as a method. It may be possible to represent this domain in the STRIPSparadigm; however, for a planner to be able to deduce the constraints from the domaindescription, the domain must be modelled at an unnecessarily detailed level (possibly tothe level of physical interactions, and chemical processes), which makes it computationallyprohibitive and unfeasible.3.2 Syntax for HTN PlanningA language L for HTN planning is a �rst-order language with some extensions.De�nition 10 The vocabulary of L is a tuple hV;C; P; F; T;Ni, where V is an in�nite set ofvariable symbols, C is a �nite set of constant symbols, P is a �nite set of predicate symbols,F is a �nite set of primitive-task symbols (denoting actions), T is a �nite set of compound-task symbols, and N is an in�nite set of symbols used for labeling tasks. All these sets ofsymbols are mutually disjoint.Note that the HTN language does not contain any function symbols. Function symbolswere introduced to planning in situation calculus to model actions. HTN planning usesprimitive tasks for this purpose. First order predicate logic includes function symbols, andcontains mechanisms for reasoning about them. However, planning systems seldom aspire toreason about functions. More often it is the case that the interpretation of any function is�xed and known in advance. Such a function can be modelled as a relation using a predicatesymbol, or by using procedural attachment (i.e., by providing a piece of code that actuallycomputes the function).Note also that the set of constant symbols is restricted to be �nite. Most planningapplications involve only a �nite number of objects that can be identi�ed and manipulated.When the application involves in�nite sets of objects such as numbers, these can be dealt33

with more e�ciently using procedural mechanisms instead of reasoning about them usingaxiomatic approaches.Most planning algorithms work with �nitely many constants. TWEAK [15] is a particularexception, which relies on the domain to contain in�nitely many constant symbols in orderto operate correctly. As was discussed in Section 2.2, TWEAK assumes the set of constantsto be in�nite so that a consistent ground instantiation of a partial plan can be computedin polynomial time. If the set of possible values for each variable is �nite, then �nding aconsistent ground instantiation is NP-complete. However, the price for this reduction in asingle step is very dear: as presented in Section 2.3.3, allowing in�nitely many constantsmakes planning undecidable!De�nition 11 A state is a list of ground atoms.The atoms appearing in that list are said to be true in that state and those that do notappear are false in that state. Thus the notion of states in HTN planning is the same as instate-based planning, which was presented in Section 2.3.1.De�nition 12 A primitive task has the form do[f(x1; : : : ; xk)], where f 2 F and x1; : : : ; xkare terms.Primitive tasks in HTN planning correspond to actions in STRIPS-style planning. E�ectsand preconditions of primitive tasks are declared using operators.De�nition 13 An operator has the form[operator f(v1; : : : ; vk):pre l1; : : : ; lm:post l01; : : : ; l0n]. f is a primitive task symbol, and l1; : : : ; lm are literals describing when f is executable.l01; : : : ; l0n are literals describing the e�ects of f , and v1; : : : ; vk are the variable symbolsappearing in the literals.Note that this syntax is slightly di�erent from that of STRIPS operators presented inSection 2.3.1. For syntactic convenience, atoms in the delete list are negated and mergedwith the atoms in the add list into a single postcondition list.De�nition 14 A plan is a sequence of ground primitive tasks.Up to this point, the syntax and the semantics of the constructs de�ned are very similarto those in STRIPS-style planning, which was described in Section 2.3.1. The di�erence ofHTN planning is in what we plan for. STRIPS-style planners plan for \attainment goals",which are conditions that must be made true in the world. Any plan that makes thoseconditions true in its �nal state is considered a valid solution, no matter which actions areused or what the intermediate states contain. HTN planners search for plans that accomplishmore complex behaviors, which are denoted as tasks and task networks.34

n1:achieve[clear(v1)]n2:achieve[clear(v2)] n3:do[move(v1; v3; v2)]@@@R����clear(v1)clear(v2):on(v1; v3)Figure 3.5: Graphical representation of a task network.De�nition 15 A goal task has the form achieve[l], where l is a literal. A compound taskhas the form perform[t(x1; : : : ; xk)], where t 2 T and x1; : : : ; xk are terms.Both goal tasks and compound tasks are referred to as non-primitive tasks.De�nition 16 A task network has the form [(n1 : �1) : : : (nm : �m); �]; where each �i is atask; each ni 2 N is a label for �i (to distinguish it from any other occurrences of �i inthe network); and � is a boolean formula constructed from atomic HTN constraints. � cancontain the usual logic connectives conjunction, disjunction, and negation.HTN planning has a rather rich set of atomic constraint types:� Variable binding constraints are of the form (v1 = c), (v1 = v2). v1; v2 2 V are variablesymbols, and c 2 C is a constant symbol.� Ordering constraints are usually of the form (n � n0) where n; n0 2 N . As to bedescribed precisely in the semantics part, such an expression denotes that the tasklabeled with n must �nish before the task labeled with n0 starts, thus all the subtasksin the decomposition of n must precede all the subtasks in the decomposition of n0.In the more general case, instead of individual node labels from N , ordering constraintscan contain node expressions of the form first[ni; nj; : : :] or last[ni; nj; : : :] to refer tothe task that starts �rst and to the task that ends last among a set of tasks, respectively.� State constraints are of the form (n; l), (l; n), and (n; l; n0), where v; v0 2 V , l is a literal,c 2 C. n and n0 can be either node labels in N , or they can be node expressions as wasdescribed in the previous paragraph. Intuitively (this will be formalized in Chapter 3.2,(n; l), (l; n) and (n; l; n0) mean that l must be true in the state immediately after n,immediately before n, and in all states between n and n0, respectively.� A special type of state constraint is (initially l). This constraint denotes that theliteral l must be true in the initial state.As an example, Fig. 3.6 gives a formal representation of the task network shown inFigure 3.5. In this blocks-world task network there are three tasks: clearing v1, clearing v2,and moving v1 to v2. The task network also includes the constraints that moving v1 must35

[(n1 : achieve[clear(v1)])(n2 : achieve[clear(v2)])(n3 : do[move(v1; v3; v2)])(n1 � n3) ^ (n2 � n3) ^ (n1; clear(v1); n3) ^ (n2; clear(v2); n3)^(on(v1; v3); n3) ^ :(v1 = v2) ^ :(v1 = v3) ^ :(v2 = v3)]Figure 3.6: Formal representation of the task network of Fig. 3.5.be done last, that v1 and v2 must remain clear until v1 is moved, that v1; v2; v3 are di�erentblocks, and that on(v1; v3) be true immediately before v1 is moved. Note that on(v1; v3)appears as a constraint, not as a goal task. The purpose of the constraint (on(v1; v3); n3) isto ensure that v3 is bound to the block under v1 immediately before the move. Representingon(v1; v3) as a goal task would mean moving v1 onto some block v3 before it is moved ontov2, which is not what is intended.De�nition 17 A task network containing only primitive tasks is called a primitive tasknetwork.De�nition 18 A method is a construct of the form (�; d) where � is a non-primitive task,and d is a task network.As de�ned formally in Section 3.2, this construct means that one way of accomplishing thetask � is to accomplish the task network d, i.e. to accomplish all the subtasks in the tasknetwork without violating the constraint formula of the task network. For example, a blocks-world method for achieving on(v1; v2) would look like (achieve(on(v1; v2)); d), where d is thetask network in Fig. 3.6.Every method for a goal task has the implicit constraint that the goal condition must be-come true in the end. Every goal task also has an implicitmethod of the form (achieve[l]; [(n :do[f]); (l; n)]) which contains only one dummy primitive task f with no e�ects, and the con-straint that the goal l is true immediately before do[f]. Thus, if the goal condition is alreadytrue, the goal task has an empty expansion.Each primitive task has exactly one operator for it, where as a non-primitive task canhave an arbitrary number of methods.De�nition 19 A planning domain D is a pair hOp;Mei, where Op is a list of operators,and Me is a list of methods.De�nition 20 A planning problem instance P is a triple hd; I;Di, where D is a planningdomain, I is the initial state, and d is the input task network to plan for.solves(�; d; I) is a syntactic construct which is used to mean that � is a plan for the tasknetwork d at state I.The language of P is the HTN language L generated by the constant, predicate, and tasksymbols appearing in P, along with an in�nite set of variables and an in�nite set of node36

labels. Thus, the set of constants, predicates and tasks are all part of the input to an HTNplanner.Next, let us de�ne some restrictions on HTN-planning problems. P is primitive if theinput task network d contains only primitive tasks. This corresponds to the case where theplanner is used only for scheduling. P is regular if all the task networks in the methods and dcontain at most one non-primitive task, and that non-primitive task is ordered with respectto all the other tasks in the network. Surprisingly, this class of HTN-planning problems isclosely related to STRIPS-style planning, as we shall see in Chapter 5. P is propositional ifno variables are allowed. P is totally ordered if all the tasks in any task network are totallyordered.De�nition 21 plan existence is the following problem: given P = hd; I;Di, is there aplan that solves P?3.3 Model-Theoretic Semantics3.3.1 Semantic StructureDe�nition 22 A semantic structure for HTN planning is a tripleM = hSM ;FM ;TM iThe subscript M is omitted whenever the model is clear from context. S, F , and T aredescribed below.S = 2fall ground atomsg is the set of states. Each state in S is a set, consisting of the atomstrue in that state. Any atom not appearing in a state is considered to be false in that state.A state corresponds to a \snapshot" instance of the world.F : FxC�xS ! S is a partial function for interpreting the actions. Given a primitivetask symbol from F , with ground parameters from C, and an input state, F tells us whichstate we would end up with, if we were to execute the action. For a given action, F mightbe unde�ned for some input states, namely those for which the action is not executable.Up to this point, the semantics for HTN planning coincides with the semantics forSTRIPS-style planning. Both involve states which are represented as sets of atoms, andactions (i.e. primitive tasks) which map one state to another state.HTN planning takes STRIPS-style planning one step further by introducing non-primitivetasks, and task networks.T : fground non-primitive tasksg ! 2fground primitive task networksg is a function that mapseach non-primitive task � to a (not necessarily �nite) set of ground primitive task networksT (�). Each primitive task network d in T (�) describes one way of accomplishing �.There are two restrictions on the way T () interprets a goal task achieve[l]. First, l mustbe true at the end of any task network in T (achieve[l]). Second, since an empty plan can be37

used to accomplish a goal task if the goal literal is already true, T (achieve[l]) must containa task network consisting of a single dummy task with the constraint that l is true.Modeling each non-primitive task as a set of primitive task networks may seem unneces-sarily complicated at �rst. The straightforward alternative would be to model each task asthe set of plans that achieve that task. While this alternative would work well for the attain-ment goals of STRIPS-style planning, such a model does not contain enough information forthe purpose of HTN planning. Ways of accomplishing non-primitive tasks cannot be identi-�ed by the conditions true in the �nal state. In HTN planning, each way of accomplishinga task must contain two types of information:1. The set of actions that must be executed to accomplish the task,2. The constraints on the way these actions must be executed. This information is neces-sary so that, when the planning problem involves accomplishing multiple tasks (mostplanning problems do), the actions needed to accomplish each task can be correctlycombined together without any harmful interactions.Both type of information is nicely encapsulated in a primitive task network.A non-primitive task networks is modeled as a set of primitive task networks, similar tothe way non-primitive tasks are modeled. A model does not need to interpret a task networkdirectly, the interpretation of the task network can be constructed from the interpretationsof its constituent tasks. For this purpose, T is extended to T as follows:� T (�) = f[(n : �); TRUE]g, if � is a ground primitive task. Thus, a ground primitivetask is mapped to a primitive task network containing only that primitive task.� T (�) = T (�), if � is a ground non-primitive task.� T (�) = S�0 is a ground instance of � T (�0), if � is a task containing variables.� T (d) = fdg, if d is a ground primitive task network.� Let d = [(n1 : �1) : : : (nm : �m); �] be a ground task network possibly containingnon-primitive tasks. ThenT (d) = fcompose(d1; : : : ; dm; �) j di 2 T (�i); i = 1 : : : mg:This de�nition follows the intuition that the set of solutions to a task network consistsof combinations of the solutions to the tasks in that task network.compose is de�ned as follows. Suppose, for i == 1::mdi = [(ni1 : �i1) : : : (niki : �iki); �i]. 38

Then2 compose(d1; : : : ; dm; �) = [(n11 : �11) : : : (nmkm : �mkm); �1 ^ : : : �m ^ �0];where �0 is obtained from � by making the following replacements:{ replace (ni < nj) with (last[ni1; : : : ; niki] < first[nj1; : : : ; njkj]), since all tasks inthe decomposition of ni must precede all tasks in the decomposition of nj;{ replace (l; ni) with (l; first[ni1; : : : ; niki]), since l needs to be true immediatelybefore the �rst task in the decomposition of ni;{ replace (ni; l) with (last[ni1; : : : ; niki]; l);{ replace (ni; l; nj) with (last[ni1; : : : ; niki]; l; first[nj1; : : : ; njkj]);{ everywhere that ni appears in � in a first[] or a last[] expression, replace it withni1; : : : ; niki .These replacements in the constraint formula of the original task network d are requiredbecause the node labels in the constraint formula are not meaningful once the associatedtasks are expanded. Thus any references to those node labels must be properly replacedwith the node labels in the expansion.� T (d) = Sd0 is a ground instance of d T (d0), if d is a task network containing variables.In subsequent sections and chapters, the bar in T is omitted, and only T is used instead.3.3.2 SatisfactionThis section describes how syntactic expressions such as operators and methods take truthvalues in a given model. We will use the phrases \: : : is true in modelM" and \: : : is satis�edby model M" interchangeably.A model M satis�es an operator o, if M interprets the primitive task associated withthe operator so that the primitive task is executable under the conditions speci�ed in thepreconditions of the operator, and has the e�ects speci�ed in the postconditions of theoperator. Thus:De�nition 23 An operator [operator f(v1; : : : ; vk) :pre l1 : : : lm :post l01 : : : l0n] is satis�ed bya modelM i� for any ground substitution � and any state s, FM has the following properties,where En; Ep are the sets of negative and positive literals in l01; : : : ; l0n, respectively:� if l1�; : : : ; lm� are true in s, then FM (f; v1�; : : : ; vk�; s) = (s� En�) [Ep�;� otherwise, FM(f; v1�; : : : ; vk�; s) is unde�ned.2The variables and node labels in each task network di must be renamed (standardized) so that nocommon variable or node label occurs. 39

Note that the de�nition of satisfaction for operators in the HTN paradigm and in theSTRIPS paradigm are very similar.In order to relate tasks in a primitive task networks to plans, a mapping is required, asde�ned below:De�nition 24 Let M be a model, d = [(n1 : �1) � � � (nm0 : �m0); �] be a ground primitivetask network, s0 be a state, and� = (f1(c11; : : : ; c1k1); : : : ; fm(cm1; : : : ; cmkm))be a plan executable at s0. Thus, si = FM(fi; ci1; : : : ; ciki; si�1) for i = 1 : : : m, whichare the intermediate states, are all well-de�ned. A matching � from d to � is de�ned tobe a one-to-one function from f1; : : : ;m0g to f1; : : : ;mg such that whenever �(i) = j, �i =do[fj(cj1; : : : ; cjkj)].Thus a matching provides a total ordering on the tasks.Now, let us de�ne the conditions under which a model M satis�essolves(�; d; s), that is, the conditions under which � is a plan that accomplishes the tasknetwork d starting at state s, in M . Let us �rst consider the case where d is primitive.De�nition 25 M satis�es solves(�; d; s) if m = m0, and there exists a one-to-one ontomatching � that makes the constraint formula � true. The constraint formula is evaluatedas follows:� (ci = cj) is true, if ci; cj are the same constant symbols;� first[ni; nj; : : :] evaluates to minf�(i); �(j); : : :g;� last[ni; nj; : : :] evaluates to maxf�(i); �(j); : : :g;� (ni � nj) is true if �(i) < �(j);� (l; ni) is true if l holds in s�(i)�1;� (ni; l) is true if l holds in s�(i);� (ni; l; nj) is true if l holds for all se, �(i) � e < �(j);� logical connectives :;^;_ are evaluated as in propositional logic.De�nition 26 Let d be a task network, possibly containing non-primitive tasks. A modelM satis�es solves(�; d; s) if for some task network d0 2 TM(d), M satis�es solves(�; d0; s).For a method (�; d) to be satis�ed by a given model, not only must any plan for d also bea plan for �, but in addition, any plan for a task network tn containing d must be a plan forthe task network obtained from tn by replacing d with �. To precisely explain this notion,we introduce the following de�nition: 40

De�nition 27 Given a modelM , two sets of ground primitive task networks TN and TN 0,TN is said to cover TN 0, i� for any state s, any plan � executable at s, and any d0 2 TN 0,the following property holds:Whenever there exists a matching � between d0 and � such that � at s satis�esthe constraint formula of d0, then there exists a d 2 TN such that for somematching �0 with the same range as �, � at s makes the constraint formula of dtrue.Intuitively, a set of task networks TN covers another set of task networks TN 0, if anytime part of a plan achieves a task network in TN 0, the same portion of the plan also achievesa task network in TN .De�nition 28 A method (�; d) is satis�ed by a model M , i� TM (�) covers TM (d).Thus, accomplishing d always accomplishes �, even in the presence of other tasks andconstraints. De�nitions for covering and the satis�ability of methods are a bit complicated,because the meaning of a task network not only involves a characterization of the plans thatsolves it in isolation, but also in the presence of other tasks and constraints.De�nition 29 A model M satis�es a planning domain D = hOp;Mei, if M satis�es alloperators in Op, and all methods in Me.3.4 Operational SemanticsA plan � solves a planning problem P = hd; I;Di if any model that satis�es D also satis�essolves(�; d; I). However, given a planning problem, how do we �nd plans that solve it?De�nition 30 Let d be a primitive task network containing only primitive tasks, and let Ibe the initial state. A plan � is a completion of d at I, denoted by � 2 comp(d; I;D), if �is executable (i.e. the preconditions of each action in � are satis�ed) and � corresponds toa total ordering of the primitive tasks in a ground instance of d that satis�es the constraintformula of d. Satisfaction of the constraint formula was de�ned in the previous section. Fornon-primitive task networks d, comp(d; I;D) is de�ned to be ;.De�nition 31 Let d be a non-primitive task network that contains a (non-primitive) node(n : �). Let m = (�0; d0) be a method, and � be the most general uni�er of � and �0. Wede�ne reduce(d; n;m) to be the task network obtained from d� by replacing (n : �)� with thetask nodes of d0�, modifying the constraint formula � of d0� into �0 (as we did for compose),and combining with the constraint formula of d0� with a conjunct.We denote the set of reductions of d by red(d; I;D). Reductions correspond to task de-composition. A plan � solves a primitive task network d at initial state I i� � 2 comp(d; I;D);a plan � solves a non-primitive task network d at initial state I i� � solves some reductiond0 2 red(d; I;D) at initial state I. 41

De�nition 32 The set of plans sol(d; I;D) that solves a planning problem instance P =<d; I;D > is de�ned iteratively as:sol1(d; I;D) = comp(d; I;D)soln+1(d; I;D) = soln(d; I;D) [Sd02red(d;I;D) soln(d0; I;D)sol(d; I;D) = [n<!soln(d; I;D)Intuitively, soln(d; I;D) is the set of plans that can be derived in n steps, and sol(d; I;D)is the set of plans that can be derived in any �nite number of steps.Section 3.3 has presented a model-theoretic semantics for HTN planning, and this sectionhas presented an operational, �xed-point semantics that provides a procedural characteri-zation of the set of solutions to planning problems. The next step is to show that themodel-theoretic semantics and operational semantics are equivalent, so that we can use themodel-theoretic semantics to get a precise understanding of HTN planning, and use the op-erational semantics to build sound and complete planning systems. The following theoremstates that sol(d; I;D) is indeed the set of plans that solves hd; I;Di.Theorem 1 (Equivalence Theorem) Given a task network d, an initial state I, and aplan �, � is in sol(d; I;D) if and only if any model that satis�es D also satis�es solves(�; d; I).Proof. [!]. Since sol(d; I;D) is de�ned recursively in terms of completions and reduc-tions, it su�ces to show that(a)Given any primitive task-network d, if � 2 comp(d; I;D), then any model that satisfyD also satis�es solves(�; d; I),(b) Given any model M which satis�es D, any two task networks d; d0 such that d0 2red(d; I;D), whenever M satis�es solves(�; d0; I), then it also satis�es solves(�; d; I).(a). Assume � 2 comp(d; I;D). Then, � is a totally ordered ground instance of d thatmakes the constraint formula true. LetM be any model that satis�es D. BecauseM satis�esthe operators, FM will project the intermediate states to be exactly the same as projectedin the completion. Furthermore, the constraint formula is evaluated in the same way bothfor �nding completions and for determining whether a model satis�es solves(�; d; I). Thus,given a primitive task network d, and a modelM that satis�es D, M satis�es solves(�; d; I)i� � 2 comp(d; I;D).(b). Let d0 be in red(d; I;D). Then there exists a method m, and a task node n in dsuch that d0 = reduce(d; n;m). Let M be a model that satis�es D, and also solves(�; d0; I).Without loss of generality, let's assume d;m; d0 have the following forms:d = [(n1 : �1) : : : (nk : �k) (n : �); �];m = (�; [(n01 : �01) : : : (n0j : �0j);]);d0 = [(n01 : �01) : : : (n0j : �0j) (n1 : �1) : : : (nk : �k); �0 ^]:42

Since M satis�es solves(�; d0; I), there existsd01 2 T (�01); : : : ; d0j 2 T (�0j); d1 2 T (�1); : : : ; dk 2 T (�k) such that � is a plan for compose(d1; : : : ; d0j ; d1; : : : ; dk; �0^).Thus, there exists a matching � between �and compose(d01; : : : ; d0j ; d1; : : : ; dk; �0^), such that the constraint formula of compose(d01; : : : ; d0j;),which correspond to the portion of the task network corresponding to the expansion of �,is satis�ed. From this fact and that M satis�es the method m, we conclude there exists ad00 2 T (�) and a matching �0 such that � makes the constraint formula of d00 true.Consider compose(d1; : : : ; dk; d00; �) 2 T (d). Construct a matching �00 by extending �0to d1; : : : ; dk (taking the same value as � for those places). � satis�es � and the constraintsof d1; : : : ; dk; d00. Thus M satis�es solves(�; d; I).[]. We will show that whenever � =2 sol(d; I;D), there exists a model M that satis�esD, but not solves(�; d; I).Here is how we construct M =< S;F ;T >:� S = 2fground atomsg.� F(f; c1 : : : ; ck; s) = (s�N�) [P�, whenever the operator for f is of the form(f(v1; : : : ; vk); l1; : : : ; lk), where � is the substitution fci=vij1 � i � kg, and N;P arethe sets of negative and positive literals in fl1; : : : ; lkg, respectively.� T (�) = fdjd is a ground instance of a primitive task-network obtained from � by a�nite number of reductionsg, for any non-primitive task �.When T is extended to cover task networks as de�ned in Section 3.2, we observe thatT (d) = fd0jd0is a ground instance of a primitive task-network obtained from d by a �nitenumber of reductionsg for any task network d.F is de�ned such that M satis�es all the operators in D. By de�nition of T , wheneverd0 2 red(d; I;D), T (d0) � T (d). Thus T (d) covers T (d0) and M satis�es all the methods inD. Given a primitive task network d, and a modelM that satis�es D,M satis�es solves(�; d; I)i� � 2 comp(d; I;D)Let d be a primitive task network such that � =2 sol(d; I;D). In that case, � =2comp(d; I;D), either. In part (a) of the proof, we showed that for any model that satis-�es the operators, comp(d; I;D) is exactly the set of plans that solves the primitive tasknetwork d. Thus we conclude M does not satisfy solves(�; d; I).Consider the alternative where d is a non-primitive task network such that � =2 sol(d; I;D).Assume M satis�es solves(�; d; I). Then there exists a primitive task network d0 2 T (d)such that � is a plan for d0. From part (a) of the proof, � must be in comp(d0; I;D). However,since T (d) contains only primitive task networks that can be obtained by a �nite number ofreductions from d, we conclude � 2 sol(d; I;D), which is a contradiction.43

procedure UMCP :1. Input a planning problem P = hd; I;Di.2. if d is primitive, thenIf comp(d; I;D) 6= ;, return a member of it.Otherwise return FAILURE.3. Pick a non-primitive task node (n : �) in d.4. Nondeterministically choose a method m for �.5. Set d := reduce(d; n;m).6. Set � := � (d; I;D).7. Nondeterministically set d := some element of �.8. Go to step 2.Figure 3.7: UMCP: Universal Method-Composition Planner3.5 UMCP: A Provably Correct HTN AlgorithmUsing the syntax and semantics developed in the previous section, the HTN planningprocedure presented in Figure 3.3 can be formalized. Figure 3.7 presents this planningalgorithm, called UMCP (for Universal Method-Composition Planner).It should be clear that UMCP mimics the de�nition of sol(d; I;D), except for Steps 6and 7 (which correspond to the critics). As discussed before, HTN planners typically usetheir critics for detecting and resolving interactions among tasks (expressed as constraints)in task networks at higher levels, before all subtasks have been reduced to primitive tasks.By eliminating some task orderings and variable bindings that lead to dead ends, critics helpprune the search space. In UMCP, this job is performed by the critic function � . � takesas input an initial state I, a task network d, and a planning domain D; and produces as itsoutput a set of task networks �. Each member of � is a candidate for resolving some3 ofthe conicts in d. Several restrictions are required on � to make sure it preserves soundness,completeness and systematicity:1. If d0 2 � (d; I;D) then sol(d0; I;D) � sol(d; I;D).Thus, any plan for d0 must be a plan for d ensuring soundness.2. If � 2 solk(d; I;D) for some k, then there exists d0 2 � (d; I;D) such that � 2solk(d0; I;D).Thus, whenever there is a plan for d, there is a plan for some member d0 of � (d; I;D).In addition, if the solution for d is no further than k expansions, so is the solutionfor d0. The latter condition ensures that � does not create in�nite loops by undoingprevious expansions.3It might be impossible or too costly to resolve some conicts at a given level, and thus handling thoseconicts can be postponed. 44

3. For any two di�erent task networks d1; d2 2 � (d; I;D), it must be the case thatsol(d1; I;D) \ sol(d2; I;D) = ;:Thus the set of solutions for each task network in � (d; I;D) are disjoint, in order topreserve systematicity. This condition does not need to be strictly enforced, as it doesnot a�ect the correctness of the planning algorithm. However, enforcing it may makethe planning algorithm more e�cient.In contrast to the abundance of well understood STRIPS-style planning algorithms (suchas [24, 15, 46, 35]), HTN planning algorithms have typically not been proven to be soundor complete. However, using the formalism presented in Sections 3.2 and 3.3, the soundnessand completeness of UMCP can be established.The soundness and completeness results follow directly from the equivalence theorem us-ing the fact that UMCP directly mimics sol(). The restrictions on the critic function ensurethat � does not introduce invalid solutions and that it does not eliminate valid solutions.Theorem 2 (Soundness) Whenever UMCP returns a plan, it achieves the input tasknetwork at the initial state with respect to all the models that satisfy the methods and theoperators.Proof. Assume that on input P =< d; I;D >, UMCP halts in n iterations, and returns �.Using induction on n, we prove that � 2 sol(d; I;D), and from the equivalence theorem weconclude that any model that satis�es D also satis�es solves(�; d; I).[Base case: n = 0.] d must be a primitive task network and � 2 comp(d; I;D). Thus,� 2 sol(d; I;D).[Induction Hypothesis] Assume for n < k if UMCP returns � in n iterations, then � 2sol(d; I;D).Suppose on input P =< d; I;D > UMCP halts in n = k iterations. and returns �. Thend is a non-primitive task network. Let d1 = reduce(d; n;m) be the value assigned to d atstep 5 of UMCPin the �rst iteration, and let d2 2 � (d1; I;D) be the value assigned to d atstep 7 of UMCPin the �rst iteration.On input P =< d2; I;D >, the planner halts in k � 1 steps and returns �. Thus, byinduction hypothesis, � 2 sol(d2; I;D). From restriction 1 on the critic function � () andfrom d2 2 � (d1; I;D) we conclude � 2 sol(d1; I;D). Since d1 2 red(d; I; calD), from thede�nition of sol() we conclude � 2 sol(d; I;D).Theorem 3 (Completeness) Whenever UMCP fails to �nd a plan, there is no plan thatachieves the input task network at the initial state with respect to all the models that satisfythe methods and the operators. 45

Proof. Assume � 2 sol(d; I;D). Let k be the minimum number of reductions needed toderive �; i.e. � 2 solk+1(d; I;D), but � =2 solk(d; I;D). We show that there exists a sequenceof non-deterministic choices such that the UMCP halts in k iterations and returns a plan.Proof by induction on k.[Base case: k = 0.] In that case � 2 comp(d; I;D), and UMCP �nds a plan in in step 2.[Induction Hypothesis] Assume whenever the number of reductions needed to derive � isless then j (i.e. k < j), there exists a sequence of non-deterministic choices for which UMCPreturns a plan in k iterations.Let � 2 sol((d; I;D), and suppose it takes exactly j reductions to derive �. Let (n : �) bethe node picked by UMCP in step 3 in the �rst iteration (Since this is not a non-deterministicchoice, the planner could pick any non-primitive node at that step.) Let m be the methodused for reducing (n : �) in the derivation. Let d1 = reduce(d; n;m). reduce() is de�ned inSection 3.2 such that the order of reductions does not matter; i.e. For a task network d thatcontains two non-primitive tasks n1; n2 with corresponding methods m1;m2,reduce(reduce(d; n1;m1); n2;m2) and reduce(reduce(d; n2;m2); n1;m1)are equal modulo variable and node label names. Thus, since we obtained d1 from d byreducing n with the same method used in the derivation, we conclude � 2 solj�1((d1; I;D).As � 2 solj�1((d1; I;D), by the second restriction on � (), there exists d2 2 � (d1; I;D)such that � 2 solj�1((d2; I;D). Let the planner non-deterministically choose d2 to assign tod at step 7 in the �rst iteration. By induction hypothesis, the planner will halt in j�1 moreiterations and return a plan.3.6 DiscussionThe syntax and semantics de�ned in this chapter can be used to explain a number of issuesthat are often discussed in the literature.3.6.1 Tasks and Task-decompositionThere appears to be some general confusion about the nature and role of tasks in HTNplanning. This seems largely due to the fact that HTN planning emerged, without a formaldescription, in implemented planning systems [58, 64]. Many ideas introduced in HTNplanning (such as nonlinearity, partial order planning, etc.) were formalized only as theywere adapted to STRIPS-style planning, and only within that context [15, 46, 49, 16, 35]. Thefollowing subsections discuss the view of tasks in this dissertation, and possible alternativeviews.3.6.1.1 A View of Tasks as JobsThe formalism described in this chapter views tasks as activities we need to plan, jobs thatneed to be accomplished. Each method tells us one way of achieving a task, and it also46

tells us under which conditions that way is going to succeed (as expressed in the constraintformula). The task decomposition refers to choosing a method for the task, and using it toachieve the task. For example, possible methods for the task of traveling to a city might beying (under the condition that airports are not closed due to bad weather), taking the train(under the condition that there is an available ticket), or renting a car (under the conditionthat I have a driver's license). Tasks and task networks provide a more natural and e�ectiveway of representing planning problems than STRIPS-style attainment goals. Lansky [44]has promoted this opinion for action-based planning in general.3.6.1.2 A View of Tasks as E�ciency HacksOne view of HTN planning totally discards compound tasks, and views methods for goaltasks as heuristic information on how to go about achieving the goals (i.e., which operator touse, in which order to achieve the preconditions of that operator). Although this is a perfectlycoherent view, it is rather restrictive and there is more to HTN planning, as demonstratedin Chapter 5, where the expressivity results are presented.3.6.1.3 A View of Tasks as Action AbstractionYang and Kambhampati [74, 33] have viewed tasks as high-level actions. High-level actionshave preconditions and e�ects, just as regular STRIPS operators; however, they can beexpanded into lower level actions. Planning proceeds iteratively: goals in the planningproblem are established using the highest-level actions �rst. Once the harmful interactionsamong those actions are resolved by adding proper ordering and variable binding restrictionsand causal links, the actions in the working plan are expanded. The iteration is repeateduntil all the actions are primitive and all the conicts are resolved.Each iteration of the procedure described above creates a layer of abstraction, in someways similar to the abstraction layers produced by ABSTRIPS [60]. Unlike the abstractionhierarchies of ABSTRIPS, which are based on preconditions, this type of abstraction is basedon actions. ABSTRIPS can provide e�ciency gains by reducing the number of precondi-tions that need to be considered at each level; this type of action hierarchies can providee�ciency gains by reducing the number of actions that need to be considered at each level.Furthermore, the expansions may provide heuristic information as to how the preconditionsor subactions must be ordered.This approach is appealing in many aspects; however, the distinction between high-levelactions and primitive actions are rather obscure and may cause confusion. Primitive actionsare atomic, and they always have the same e�ect on the world; high-level actions can bedecomposed into a number of primitive actions, and the e�ect of executing a high-levelaction depends not only on the methods chosen for doing decompositions, but also on theinterleavings with other actions. For example, consider the task of \round-trip to New York".The amount of money I have got after the trip depends on whether I ew or took a train,and also on my activities in New York (night clubs, etc).47

Good ABSTRIPS-style abstraction hierarchies can be automatically generated for state-based planning problems, as was discussed in Section 2.3.4. However, because of the di�-culties described above, it is rather di�cult to generate good action hierarchies for a givenstate-based planning problem. In particular, abstraction hierarchies only inuence the speedof a planner, but action hierarchies can a�ect the correctness of a planner, in addition to itse�ciency.Action hierarchy approach to planning may be considered as a more principled versionof the view of tasks and task decomposition as e�ciency hacks. Both views are considerablydi�erent from the view of HTN planning presented in this dissertation. Unlike high-level ac-tions, tasks are not \executed" for their e�ects in the world, but they are ends in themselves.In this aspect, tasks are more similar to STRIPS-style goals than STRIPS-style actions.3.6.1.4 Task Decomposition and Abstraction HierarchiesThe basic idea in abstraction hierarchies is to tell a planning system which part of theproblem to work on at each iteration, more particularly, which preconditions to establishand which preconditions to ignore at a given iteration. The same idea can also be appliedto HTN planning.Recall our previous discussion that tasks are similar to goals in certain aspects. An HTNplanner, at each iteration, needs to decide which task to expand next. This corresponds toStep 3 in the UMCP algorithm displayed in Figure 3.7. The choice of which task to expandnext can be made arbitrarily, but an intelligent choice will improve the performance of aplanning system signi�cantly.There is a clear need for algorithms that will process the domain speci�cations andassign criticality levels to tasks in such a way to improve performance. There is already aconsiderable body of work on generating good abstraction hierarchies in state-based planning,as discussed in Section 2.3.4, which can form a starting point.Chapter 5 shows that state-based planning problems are a special case of HTN problems.That chapter also contains a polynomial transformation from state-based planning problemsto HTN problems which maps each predicate to a goal task. I conjecture that if a givenabstraction hierarchy works well in a state-based planning problem, the same criticalityassignment will work well on a translation of this problem to HTN framework. Since theHTN framework is much more complex than state-based planning, the work on abstractionhierarchies must be signi�cantly extended to work well on all HTN planning problems.3.6.1.5 Distinctions among Tasks and Attainment GoalsHere are some more examples to further clarify the distinctions among di�erent types of tasksand STRIPS-style goals. Building a house requires many other tasks to be performed (layingthe foundation, building the walls, etc.), thus it is a compound task. It is di�erent from thegoal task of \having a house," since buying a house would achieve this goal task, but not thecompound task of building a house (the agent must build it himself). As another example,the compound task of making a round trip to New York cannot easily be expressed as a48

single goal task, because the initial and �nal states would be the same. Goal tasks are verysimilar to STRIPS-style goals. However, in STRIPS-style planning, any sequence of actionsthat make the goal expression true is a valid plan, where as in HTN planning, only thoseplans that can be derived via decompositions are considered as valid. This allows the user torule out certain undesirable sequences of actions that nonetheless make the goal expressiontrue. For example, consider the goal task of \being in New York", and suppose the planneris investigating the possibility of driving to accomplish this goal, and suppose that the agentdoes not have a driver's license. Even though learning how to drive and getting a driver'slicense might remedy the situation, the user can consider this solution unacceptable, andwhile writing down the methods for be-in(New York), add the constraint that the methodof driving succeeds only when the agent already has a driver's license.3.6.2 High-Level E�ectsTypically, HTN planners allow one to attach \high-level" e�ects to subtasks in methods,similar to the way we attach e�ects to primitive tasks using operators. Some HTN-plannerssuch as NONLIN assume that the high-level e�ects will be true immediately after the corre-sponding subtasks, even if they are not asserted by any primitive tasks. This is problematic:one can obtain the same sequence of primitive tasks with di�erent tasks and methods, andgiven high-level e�ects, the �nal state might depend on what particular task(s) the sequencewas intended for.Yang [74] addresses this problem by attaching high-level e�ects to tasks directly usingoperators. In addition, he requires that for each high-level e�ect l associated with a task �,every decomposition of � must contain a subtask with the e�ect l, which is not clobberedby any other subtask in the same decomposition. However, this solution does not precludethe possibility that l might be clobbered by actions in the decompositions of other tasks.In the framework presented in this dissertation, only primitive tasks can change the stateof the world; non-primitive tasks are not allowed to have direct e�ects. Instead, high-levele�ects are represented as constraints of the form (n; l) so that the planner veri�es thosee�ects to hold. Thus the previous problem can be avoided, but a planning system can stillbene�t from guiding search with high-level e�ects (one of the primary reasons they are oftenused in implemented planning systems).Another concern is what happens to a high-level e�ect when the task it is associatedwith gets expanded. The natural choice is to attach the high-level e�ect to the last task inthe expansion. However, the last task may be impossible to identify, if the task ordering inthe expansion is not su�ciently constrained. A similar problem arises when a task has acondition that needs to be true before the task, and the task gets expanded. In that type ofsituations, most planning systems take a rather arbitrary ad-hoc approach.The framework introduced in this dissertation speci�cally contains the forms first[n1; : : : ; nk]and last[n1; : : : ; nk] so that one can refer to the the �rst task that starts and the last taskthat ends among a set of tasks, respectively. Section 3.3 gives a precise description of how tomodify the constraint formula at task expansion to correctly handle all types of constraints,49

including those that represent high-level e�ects.3.6.3 ConditionsHTN planners often allow several types of conditions in methods. For instance NONLIN hasuse-when, supervised, and unsupervised conditions.Supervised conditions, similar to preconditions in STRIPS-style planning, are those thatthe planner needs to accomplish, thus in our framework, they appear as goal nodes in tasknetworks. In the task network shown in Fig. 3.5, the conditions clear(v1) and clear(v2)appear as goal tasks for that reason.Unsupervised conditions are conditions that are needed for achieving a task but supposedto be accomplished by some other part of the task network (or the initial state). For example,a load(package,vehicle) task in a transport logistics domain would require the package andvehicle to be at the same location, but it might be the responsibility of another task (e.g. avehicle dispatcher) to accomplish that condition. Thus, the load task must only verify thecondition to be true and it must not try to achieve the condition by task decompositions, orinsertions of new actions. In the HTN framework described in this dissertation, unsupervisedconditions are represented as state constraints so that an HTN planner will seek variablebindings/task orderings that would make those conditions true, but it will not try to establishthose conditions by inserting new actions or doing task decompositions. NONLIN ignoresthe unsupervised conditions until all tasks are expanded into primitive tasks, which is notalways an e�cient strategy. On the other hand, the UMCP planning system presented inChapter 6 tries to process unsupervised conditions at higher levels (if possible to do sowithout compromising correctness of the planner) to prune the search space.HTN planners employ �lter conditions (called use-when conditions in NONLIN) for decid-ing which methods to try for a task expansion and reduce the branching factor by eliminatingirrelevant methods. For example consider the task of going to New York, and the method ofaccomplishing it by driving. One condition necessary for this method to succeed is havinga driver's license. Although a driver's license can be obtained by learning how to drive andgoing through the paperwork, the user of the planner might consider this unacceptable, andin that case he would specify having a driver's license not as a goal task but as a �ltercondition , and the method of driving to New York would not be considered if the agentdoes not have a driver's license at the appropriate point in the plan.In [16], Collins and Pryor state that �lter conditions are ine�ective. They argue that�lter conditions do not help pruning the search space for partial order planners, becauseit is not possible to check whether they hold or not in an incomplete plan. They alsoempirically demonstrate that ignoring the �lter conditions until all the subgoals are achievedis quite ine�cient. Although their study of �lter conditions is in the context of STRIPSrepresentation, to a large extend it also applies to HTN planning. NONLIN, for instance,evaluates �lter conditions as soon as they are encountered, and unless it can establish thoseconditions to be necessarily true, it will backtrack. Thus, NONLIN sometimes backtracksover �lter conditions which would have been achieved by actions in later task expansions.50

Hence NONLIN is not complete. Although it might not always be possible to determinewhether a �lter condition is true in an incomplete plan, �lter conditions can still be used toprune the search space. Our framework represents �lter conditions as state constraints andplanning algorithms based on this framework can employ constraint satisfaction/propagationtechniques to prune inconsistent task networks. For example if a task network contains the�lter condition (l,n), and also another constraint (n1;:l; n2), one can deduce that n shouldbe either before n1, or after n2. Furthermore, some �lter conditions might not be a�ected bythe actions (e.g. conditions on the type of objects), and thus it su�ces to check the initialstate to evaluate those. This kind of �lter condition can also be very helpful in pruning thesearch space.Tate [65] also promotes the use of �lter conditions, but suggests this must be done verycarefully to work e�ciently, without compromising correctness.In summary, the HTN constraints provide a principled way of representing many kindsof conditions, and UMCP employs techniques for using them e�ectively without sacri�cingsoundness or completeness.3.6.4 Critics and ConstraintsOne attractive feature of HTN systems is that by using various sorts of critics, they canhandle many di�erent kinds of interactions, thus allowing the analysis of potential problemsin plans, and preventing later failure and backtracking. However, this mechanism has beenlittle explored in the formal literature, primarily due to the procedural nature of handlinginteractions between subtasks.The formalismdescribed in this chapter has identi�ed the conditions a critic function mustsatisfy in order to preserve soundness, completeness and systematicity. These conditions hasprovided the guidelines in devising correct critics mechanisms presented in Section 6.3.Designing a correct critic mechanism is rather challenging. HTN planning provides a largenumber of constraint types, and each type of constraint must be handled with care. Thechallenge is compounded by the fact that critics most of the time deal with non-primitivetask networks; they would not be of much use otherwise. In evaluating a constraint, allpossible re�nements of a task network must be considered, and preferably this must be donewithout explicitly enumerating all of those possible re�nements. Chapter 6 presents thedetails of how UMCP planning system meets these challenges.The constraint formula in a method for a task mostly serves to identify and resolve inter-actions from other tasks; however,another important use of constraints is encoding controlinformation. When the user encodes a domain, it might be known in advance that certainvariable bindings, task orderings etc. lead to dead ends. These can be eliminated by postingconstraints (in methods) so that the planner does not waste time deriving this information.This ability to encode known shortcuts and/or pitfalls was o�ered as a major motivation forthe move to procedural networks in NOAH [58].51

Chapter 4Complexity of HTN PlanningThe HTN formalism presented in Chapter 3 makes it possible to analyze the complexity ofHTN planning under a number of conditions:� whether the tasks in task networks are required to be totally ordered,� whether variables are allowed,� whether domain speci�cation is �xed in advance, or part of the input.� Whether non-primitive tasks are allowed, and whether they must be totally orderedwith respect to other tasks.Table 4.1 contains a summary of this analysis. The theorem statements and discussions ontheir implications appear in the following sections. The proofs of the theorems are presentedin the appendix.4.1 Undecidability ResultsIt is easy to see that HTN planning problems can simulate any context-free grammar byusing primitive tasks to emulate terminal symbols, compound tasks to emulate non-terminalsymbols, and methods to encode grammar rules. More interesting is the fact that HTN plan-ning problems can simulate any two context-free grammars, and constraints in the methodscan enforce the existence of a solution to the planning problem if and only if these two gram-mars have a common string in their corresponding languages. Whether the intersection ofthe languages of two context-free grammars is non-empty is a semi-decidable problem [32].Thus:Theorem 4 plan existence is strictly semi-decidable, even if P is restricted to be propo-sitional, and all the methods are restricted to be totally ordered and to contain at most twotasks. 52

Table 4.1: Complexity of HTN PlanningMust everyRestrictions on HTN be total- Are variables allowed?non-primitive tasks ly ordered? no yesno Undecidable� Undecidable��none yes in EXPTIME; in DEXPTIME;PSPACE-hard EXPSPACE-hard\regularity" (� 1non-primitive task, doesn't PSPACE- EXPSPACE-which must follow matter complete completeall primitive tasks)no non-primitive no NP-complete NP-completetasks yes Polynomial time NP-complete�Decidable with acyclicity restrictions.�Undecidable even when the planning domain is �xed in advance.In pspace when the planning domain is �xed in advance, andpspace-complete for some �xed planning domains.This result might seem surprising at �rst, since the state space (i.e., the number and sizeof states) is �nite. If the planning problem were that of �nding a path from the initial stateto a goal state (as in STRIPS-style planning), indeed it would be decidable, because, for thatproblem, whenever there is a plan, there is also a plan that does not go through any statetwice, and thus only a �nite number of plans need to be examined. On the other hand, HTNplanning can represent compound tasks accomplishing which might require going throughthe same state many times, which explains this result.Instead of encoding each context-free grammar rule as a separate method, it is possibleto encode these rules with predicates in the initial state, and to have a method containingvariables and constraints such that only those decompositions corresponding to the grammarrules encoded in the initial state are allowed. Hence, even when the domain description (i.e.,the set of operators and methods) is �xed in advance, it is possible to �nd planning domainsfor which planning is undecidable, as stated in the following theorem:Theorem 5 There are HTN planning domains that has only totally ordered methods eachwith at most two tasks, for which plan existence is strictly semi-decidable.4.2 Decidability and Complexity ResultsOne way to make plan existence decidable is to restrict the methods to be acyclic. In thatcase, each task can be expanded up to only a �nite depth, and thus the problem becomesdecidable. More formally, a k-level-mapping is de�ned to be a function level() from groundinstances of tasks to the set f0; : : : ; kg, such that for any method that can expand a ground53

task � to a task network containing a ground task �0, level(�) > level(�0). Furthermore,level(�) must be 0 for every primitive task �.Intuitively, level() assigns levels to each ground task, and makes sure that tasks can beexpanded into only lower level tasks, establishing an acyclic hierarchy. In this case, any taskcan be expanded to a depth of at most k. Therefore,Theorem 6 plan existence is decidable if P has a k-level-mapping for some integer k.Examples of such planning domains can be found in manufacturing, where the productis constructed by �rst constructing the components and then combining them together.Another way to make plan existence decidable is to restrict the interactions amongthe tasks. Restricting the task networks to be totally ordered limits the interactions thatcan occur between tasks. Tasks need to be achieved serially, one after the other; interleavingsubtasks for di�erent tasks is not possible. Thus interactions between the tasks are limitedto the input and output state of the tasks, and the \protection intervals", i.e the literalsthat need to be preserved, which are represented by state constraints of the form (n; l; n0).This constraint states that the literal l needs to remain true from the end of the task labeledwith n till the start of the task labeled with n0.Under the above restrictions, it is possible to create a table with an entry for eachtask, input/output state pair, and set of protected literals, that tells whether each task canbe accomplished starting at the corresponding input state and ending at the output statewithout evermaking the protected literals false. Using dynamic programming techniques, theentries in the table can be computed in double-exptime, or in exptime if the problem isfurther restricted to be propositional. Chapter 5 presents several polynomial transformationsfrom STRIPS-style planning problems to totally ordered HTN planning problems. Thesetransformations can be combined with the complexity results on STRIPS-style planningin [22, 12] to establish a lower bound on the complexity of totally-ordered HTN planning.Thus:Theorem 7 plan existence is expspace-hard and in double-exptime if P is restrictedto be totally ordered. plan existence is pspace-hard and in exptime if P is furtherrestricted to be propositional.Recall that in regular HTN planning problems, any task network {both the initial inputtask network, and those we obtain by expansions{ can contain at most one non-primitivetask. Thus, subtasks in the expansions of di�erent tasks cannot be interleaved, which issimilar to what happens in Theorem 7. But in Theorem 7, there could be several non-primitive tasks in a task network, and we needed to keep track of all of them (which iswhy a table was used). If the planning problem is regular, we only need to keep track of asingle non-primitive task, its input/�nal states, and the protected literals. Since the size of astate is at most exponential, the problem can be solved in exponential space. But even withregularity and several other restrictions, it is still possible to reduce the expspace-completeSTRIPS-style planning problem (described in [22]) to the HTN planning. Thus:54

Theorem 8 plan existence is expspace-complete if P is restricted to be regular. It isstill expspace-complete if P is further restricted to be totally ordered, with at most onenon-primitive task symbol in the planning language, and all task networks containing atmost two tasks.When the problem is further restricted to be propositional, the complexity goes downone level:Theorem 9 plan existence is pspace-complete ifP is restricted to be regular and propo-sitional. It is still pspace-complete if P is further restricted to be totally ordered, with atmost one non-primitive task symbol in the planning language, and all task networks con-taining at most two tasks.When the planning domainD is �xed in advance, the number of ground atoms and groundtasks is polynomial in the length of the input to the planner, and thus the complexity ofplanning with a �xed planning domain is no harder than the complexity of propositionalplanning. It is proven in [22] that there exists STRIPS-style planning domains for whichplanning is pspace-complete. Those domains can be transformed into regular HTN planningdomains for which planning is pspace-complete. Hence:Theorem 10 If P is restricted to be regular and D is �xed in advance, then plan exis-tence is in pspace. Furthermore, there exists �xed regular planning domains D for whichplan existence is pspace-complete.Suppose a planning problem is primitive, and either propositional or totally ordered.Then the problem's membership in NP is easy to see: nondeterministically guess a totalordering and variable binding (obviously of polynomial size), and then check whether theconstraint formula on the task network is satis�ed. Furthermore, unless the planning problemis restricted to be both totally-ordered and propositional, the constraint language can be usedto represent the satis�ability problem, and thus the problem is np-hard. Hence:Theorem 11 plan existence is np-complete ifP is restricted to be primitive, or primitiveand totally ordered, or primitive and propositional. However, plan existence can be solvedin polynomial time if P is restricted to be primitive, totally ordered, and propositional.4.3 DiscussionThe complexity results on HTN planning have been summarized in Table 4.1. These resultsshow how the complexity of solving HTN planning problems depend on various factors. Anumber of conclusions can be drawn from these results:1. HTN planning is undecidable under even a very severe set of constraints. In particular,it is undecidable even if no variables are allowed, as long as there is the possibility thata task network can contain two non-primitive tasks without specifying the order inwhich they must be performed. 55

2. In general, what restrictions are put on the non-primitive tasks has a bigger e�ecton complexity than whether or not we allow variables, or require tasks to be totallyordered.3. Placing restrictions either on non-primitive tasks or on the ordering of tasks makesplanning decidable. If either restriction is removed individually, planning remainsdecidable, but removing both simultaneously makes planning undecidable.4. If there are no restrictions on non-primitive tasks, then whether or not we require tasksto be totally ordered has a bigger e�ect (namely, decidability vs. undecidability) thanwhether or not we allow variables. But in the presence of restrictions on non-primitivetasks, whether or not we allow variables has a bigger e�ect than whether or not werequire tasks to be totally ordered.These results show that handling interactions among non-primitive tasks is the mostdi�cult part of HTN planning. In particular, if subtasks in the expansions for di�erenttasks can be interleaved, then planning is undecidable, even if no variables are allowed.Limiting the interactions among tasks signi�cantly reduces the complexity of planning. Forexample, preventing subtask interleavings by restricting task networks to be totally orderedmakes HTN planning to exptime. Limiting the interactions among subtasks by allowing atmost one non-primitive task in a task network further reduces the complexity to pspace.Complexity results must be interpreted cautiously. They are worst-case results. For in-stance, a problem is pspace-complete means that, any algorithm that solves this problemcorrectly will consume memory polynomial in the size of the input for some problem in-stances. Any given algorithm may consume much less memory for most problem instances.These worst case results show the computational requirements for solving the hardest prob-lem that can be represented in the HTN language. Most problems encountered by a planningsystem may not be among those hardest problems. Nonetheless, complexity results providevaluable insight into the structure of a problem and the associated algorithmic di�culties.The complexity analysis of HTN planning has guided the algorithm development describedin Chapter 6.
56

Chapter 5Expressivity of HTN PlanningPrior to the formalization of HTN planning described in Chapter 3, it was not clear whatkind of planning problems can be represented and solved via HTN planning. In particular,it has long been a topic of debate whether HTN planning is merely an \e�ciency hack"over STRIPS-style planning, or HTN planning is actually more expressive. This chapteraddresses these question formally.There is not a well established de�nition of expressivity for planning languages. It ispossible to de�ne expressivity based on model-theoretic semantics, operational semantics,and even on the computational complexity of problems that can be represented in the plan-ning language. Section 5.1 presents de�nitions of expressivity for each of those three cases,and Section 5.2 contains the theorems that HTN planning is strictly more expressive thanSTRIPS-style planning according to all three of them.5.1 Expressivity De�nitions for Planning5.1.1 Complexity-based ExpressivityOne criterion for evaluating the expressivity of a language is the computational complexityof solving problems represented in that language. One might ask: \How di�cult are themost di�cult problems that can be represented in this language?" If the set of problemsthat can be represented in a language L1 belongs to a higher complexity class than the setof problems that can be represented in another language L2, then L1 might be consideredmore expressive than L2. As computational complexity is measured in terms of the size ofthe input problem instance, it also means that L1 is more concise than L2.The theory of computational complexity [26] is based on transformations (also calledreductions) between sets of problem instances. A transformation � is a mapping from a setof problem instances P1 to a set of problem instances P2 such that any problem p1 2 P1 hasa solution i� � (p1) also has a solution. Transformations are required to be computable inpolynomial time when the two classes of problems at hand are decidable; otherwise trans-formations are simply required to be computable (i.e. computable in �nite time on a Turingmachine). 57

The following is a de�nition for complexity-based expressivity, which uses the notion oftransformations:De�nition 33 (Complexity-based Expressivity) A planning language L1 can be ex-pressed by a planning language L2, i� there exists a transformation from the set of probleminstances represented in L1 to those that can be represented in L2.When a planning language L1 can be expressed by a planning language L2, but not viceversa, then L2 is strictly more expressive than L1.Transformations can also be considered as translations between planning languages.Whenever there is a transformation from L1 to L2, a planner for L2 can solve problemsrepresented in L1 by �rst translating them into L2.5.1.2 Model-Theoretic ExpressivityBaader [5] has presented a model-theoretic de�nition of expressivity for knowledge represen-tation languages. The following is a description of Baader's de�nition of expressivity andhow it can be adapted for planning languages.Baader's notion of expressivity is based on the idea that if a language L1 can be expressedby another language L2, then for any set of sentences �1 in L1, there must be a correspondingset of sentences �2 in L2 with the same meaning. Baader captures \the same meaning" byrequiring the two set of sentences to have the same set of semantic models. Because L2might contain symbols not necessary for expressing L1, and the name of the symbols usedmust not make a di�erence, it su�ces for the set of models for �1 and the set of models for�2 be equivalent modulo a symbol translation function !.More formally, given a function ! from the set of symbols in L1 to the set of symbols inL2, two models M1 and M2 are de�ned to be equivalent module !, denoted as M1 =! M2i� for any symbol s in L1, M1(s) =M2(!(s)). In other words, for any symbol s 2 L1, s and!(s) must have the same interpretation.The equivalence between models can be extended to sets of models as follows: Two setsof modelsM1 andM2 are equivalent modulo a symbol translation function !, denoted byM1 =!M2, i� for any modelM1 2 M1, there exists a modelM2 2 M2 such thatM1 =! M2,and for any model M2 2 M2, there exists a model M1 2 M1 such that M1 =! M2.De�nition 34 A knowledge representation language L1 can be expressed by another knowl-edge representation language L2, i� there exists a function from the set of sentences in L1to the set of sentences in L2, and a symbol translation function ! from the set of symbolsin L1 to the set of symbols in L2 such that for any set of sentences � from L1, the set ofmodelsM1 satisfying � and the set of modelsM2 satisfying (�) are equivalent modulo !,i.e. M1 =!M2.Although the internal structures of the models for planning languages and knowledgerepresentation languages are di�erent, the same de�nition of expressivity can be used byproviding a de�nition for equivalence of HTN models:58

De�nition 35 Given two HTNmodelsM1;M2 for two HTN languages L1;L2, and a symboltranslation function ! from L1 to L2, M1 =! M2 i�1. For any ground primitive task �, any state s, and any ground literal l in L1, l is truein FM1(�; s) i� !(l) is true in FM2(!(�); !(s)).2. For any ground non-primitive task � in L1,!(TM1(�)) covers TM2(!(�)), and TM2(!(�)) covers !(TM1(�)).This de�nition states that when two HTN models are equivalent (modulo a symbol trans-lation function) then each primitive task symbol is interpreted to have the same e�ects re-gardless of the model, and each compound task symbol is mapped to an equivalent set ofprimitive task networks in each model. Recall that \covers" was de�ned in Section 3.3.Model-theoretic expressivity for planning languages can be formally de�ned as follows:De�nition 36 (Model-theoretic Expressivity) A planning language L1 can be expressedby a planning language L2, i� the following three conditions hold:1. There exists a symbol translation function ! from the set of symbols in L1 to the setof symbols in L2,2. There exists a function from the set of sentences in L1 to the set of sentences in L2,3. For any set of sentences �1 in L1, wheneverM1 is the set of all models that satisfy �1andM2 is the set of all models that satisfy (�2), it is the case thatM1 =!M2.Thus, a planning language L1 can be expressed by a planning language L2, if for any setof sentences in L1, there is a corresponding set of sentences in L2 with the same meaning(according to model-theoretic semantics).When a planning language L1 can be expressed by a planning language L2, but not viceversa, then L2 is strictly more expressive than L1.Note that, unlike complexity-based expressivity, model-theoretic expressivity does notput any restrictions on the computational cost of , or on the size of the output of interms of its input size. This yields to a stronger de�nition of expressivity. If L1 is moreexpressive than L2 according to the model-theoretic de�nition, it means there are conceptsrepresentable in L1 but not it L2; it is not merely that the translation is computationallyexpensive or unknown.5.1.3 Operational ExpressivityOne can argue that the meaning of a set of sentences in a language is captured betterby the set of minimal models, rather than the set of all models that satisfy that set ofsentences. After all, deductions are usually based on the set of minimal models; so is the setof solutions to planning problems represented in HTN language. The de�nition for model-theoretic expressivity can easily be modi�ed to accommodate that:59

De�nition 37 (Operational Expressivity) A planning language L1 can be expressed bya planning language L2, i� the following three conditions hold:1. There exists a symbol translation function ! from the set of symbols in L1 to the setof symbols in L2,2. There exists a function from the set of sentences in L1 to the set of sentences in L2,3. For any set of sentences �1 in L1, whenever M1 is the minimum model that satis�es�1, and M2 is the minimum model that satis�es (�1), it is the case that M1 =! M2.1Note that item 3 in the de�nition refers to the minimum model, rather than the set ofall models, as in the de�nition of model-theoretic expressivity.From the operational semantics point of view, this de�nition requires that for everyplanning problem expressed in L1, there exists a corresponding planning problem expressedin L2 and the set of solutions for both these problems are equivalent.5.2 Expressivity: HTNs versus STRIPS Representa-tionAlthough HTNs are more exible compared to STRIPS-style planning, it was generallybelieved that anything that can be done in HTN planning can be also done in STRIPS-styleplanning. Due to the lack of a formalism for HTN planning, such claims could not be provedor disproved until now.A comparison of HTN planning with STRIPS-style planning reveals that the HTN ap-proach provides all the concepts (states, actions, goals) that STRIPS has. Conversely,STRIPS-style planning lacks the concepts of constraints, compound tasks, task networksand task decomposition. Thus, HTN planning must be more expressive. For example, con-sider a compound task of making a round trip to New York. This task cannot easily beexpressed in state-based planing because the initial and �nal states would be the same. Thisintuition is going to be substantiated in the following sections.5.2.1 Transformations from STRIPS to HTNsAny planning domain encoded as a set of STRIPS operators can be transformed into an HTNplanning domain, in low-order polynomial time. Figure 5.2 shows one such transformation.This transformation follows the intuition that in order to make a literal true, one chooses anoperator that has the desired e�ect, achieves the preconditions of that operator, and thenexecutes it, as depicted in Figure 5.1. The HTN representation for the problem requires asmany operators as its STRIPS counterpart. In addition, it requires as many methods asthere are e�ects of operators. Thus the transformation is polynomial.60

n1achieve[pre1]n2achieve[pre2]nkachieve[prek] ndo[fo]@@@R����AAAAAUpre1pre2prekqqqqqqqFigure 5.1: Graphical representation of a method for Transformation 1.Transformation 11. Input a STRIPS problem < O; I;G >, where O is a set of STRIPSoperators, I;G are sets of atoms representing the initial state and the goal.2. For each operator o 2 O, declare a primitive task fo with the samepreconditions and e�ects as o.3. For each e�ect l of each operatoro = [PRE : pre1; pre2; : : : ; prek][POST : l1; l2; : : : ; lr] declare a method asdepicted above in Figure 5.1:(method l[(n1 : achieve[pre1]) : : : ; (nk : achieve[prek])(n : do[fo]);(ord n1 n) ^ : : : (ord nk n)^(between pre1 n1 n) ^ : : : (between prek nk n)]4. Declare I as the initial state.5. Let G = g1^; : : : ; gk. Declare input task network d as[(n1 : achieve[g1]) : : : ; (nk : achieve[gk])(n : do[dummy]);(ord n1 n) ^ : : : (ord nk n) ^ (between g1 n1 n) ^ : : : (between gk nk n)])Figure 5.2: A transformation from STRIPS-style planning to HTN planning61

Transformation 21. Input a STRIPS problem < O; I;G >, where O = fo1; : : : ; okg is a set ofSTRIPS operators, I;G are sets of atoms representing the initial state andthe goal.2. For each operator o 2 O, declare a primitive task fo with the samepreconditions and e�ects as o.3. Declare another primitive task nothing with no preconditions or e�ects.4. Declare a compound task t.5. Declare (method t [(n : do[nothing]) TRUE])6. For each primitive task fo declare(method t [(n1 : do[fo])(n2 : perform[t]) (ord n1 n2)])7. Let G = g1^; : : : ; gk. Declare input task network d as[(n : perform[t]) (after g1 n) ^ (after g2 n) ^ : : : (after gk n)]Figure 5.3: Another transformation from STRIPS-style planning to HTN planning.t! �t! fo1 tt! fo2 t...t! fok t:Figure 5.4: Form of Methods in Transformation 2.Note that this transformation will exclude solutions that contain redundant actions (i.e.actions that do not assert a goal or a precondition of some subsequent action). All STRIPS-style planning systems that do precondition chaining (e.g. TWEAK [15], SNLP [46]) excludesuch solutions. Nonetheless, it is possible to de�ne polynomial transformations such that anysequence of actions for which the �nal state satis�es the goal is a valid solution. Figure 5.3shows one such transformation.This transformation introduces a compound task t. A close examination of Steps 5 and 6in Figure 5.3 reveals that the methods for t look like context-free grammar rules as depictedin Figure 5.4.Hence t can be expanded into any sequence of actions, provided that the preconditionsare satis�ed in the intermediate states and the goal is satis�ed in the �nal state.1This de�nition refers to the minimum model instead of minimal models because in the HTN languagethe minimummodel is unique modulo symbol names and \covering", as described in Section 3.262

Note that this transformation produces only regular HTN problems, which has exactly thesame complexity as STRIPS-style planning. Thus, just as restricting context-free grammarsto be right linear produces regular sets, restricting HTN methods to be regular producesSTRIPS-style planning.5.2.2 Complexity-based Expressivity ResultsAs a consequence of the polynomial transformations from STRIPS-style planning to HTNplanning presented in the previous section, the following lemma can be stated:Lemma 1 There exists a polynomial transformation from the set of STRIPS-style plan-ning problem instances to the set of HTN planning problem instances such that for anySTRIPS-style planning problem instance P, P has a solution i� (P) also has a solution.The next question is whether there exists a transformation in the other direction, that iswhether it is possible to encode HTN planning problems as STRIPS-style planning problems.From Theorem 4, HTN planning with no function symbols (and thus only �nitely manyground terms) is semi-decidable. Even if the domain description D is required to be �xedin advance (i.e., not part of the input), Theorem 5 states that there are HTN planningdomains for which planning is semi-decidable. However, with no function symbols, STRIPS-style planning is decidable, regardless of whether or not the planning domain2 is �xed inadvance [22]. Thus:Lemma 2 There does not exist a computable function from the set of HTN planningproblem instances to the set of STRIPS-style planning problem instances such that for anyHTN-planning problem instance P, P has a solution i� (P) also has a solution.3From the de�nition of complexity-based expressivity and Lemmas 1 and 2, it immediatelyfollows thatTheorem 12 The HTN language is strictly more expressive than the STRIPS language withrespect to complexity-based expressivity.Showing whether a polynomial or computable transformation exists is one way of com-paring the expressivity of two languages. The lack of a computable transformation fromHTN planning to STRIPS-style planning means that for some planning problems, the prob-lem representation in STRIPS-style planning will be exponentially (or in some cases, evenin�nitely!) larger than in HTN planning.2Since STRIPS-style planning does not include methods, a STRIPS-style planning domain is simply aset of operators.3This lemma uses the standard assumption that the STRIPS operators do not contain function symbols,nor do the HTN operators. 63

5.2.3 Model-Theoretic Expressivity ResultsBefore proceeding to compare HTN planning and STRIPS-style planning according to model-theoretic expressivity, a formal semantics for STRIPS-style planning that is compatible withthe semantics for HTN planning is required.Semantics for STRIPSA semantic structure for STRIPS-style planning has the same form as a semantic structurefor HTN planning, with some restrictions. Thus it is a triple M = hSM ;FM ;TMi, where Sis the set of states, F interprets actions as state transitions, and T interprets non-primitivetasks as sets of ground primitive task networks, with the following restrictions:1. Since STRIPS representation lacks the notion of compound tasks, non-primitive tasksconsist of only goal tasks, and T is not de�ned for compound tasks.2. In STRIPS-style planning, any executable sequence of actions that make the goals trueis a valid plan, thus, given any goal task achieve[l], T maps achieve[l] to the set of allground sequences of actions, each with the (implicit) constraint that l is true in the�nal state.It is fairly easy to show that the STRIPS language can be expressed by the HTN language.It su�ces to present two functions and ! such that the corresponding translation preservesthe set of models.Since the HTN language does not require any extra symbols for expressing the STRIPSlanguage, the symbol translation function ! is de�ned to be the identity function. Thus theHTN representation is going to use exactly the same set of constants, predicates, and actions(primitive tasks) as its STRIPS counterpart.Given a set of STRIPS-style operators �, here is how we de�ne (�):� (�) contains exactly the same set of operators as �.� For each goal task achieve[l] and each action f , (�) contains the method(achieve[l]; [(n1 : do[f])(n2 : achieve[l]); (n1 � n2)])Note that the construction of is very similar to the methods de�ned for Transforma-tion 2 shown in Figure 5.3.Because there is an implicit method for each goal task stating it can be expanded to adummy task when the goal literal is already true, with the methods in (�), any goal taskcan be expanded to any sequence of actions. Such a sequence of actions would be a plan forthe goal task whenever all the actions are executable and the goal literal is true in the end ofthe plan. Thus, the methods precisely reect the restrictions on the models of STRIPS-styleplanning, and as a result � and (�) have exactly the same set of models. Thus64

Lemma 3 The STRIPS language can be expressed by the HTN language with respect tomodel-theoretic expressivity.The converse is not true. To prove that the STRIPS language is not as expressive as theHTN language, I am going to construct an HTN planning domain �, and show that theredoes not exist any STRIPS-style planning domain (i.e. set of STRIPS operators) with anequivalent set of models.Note that the set of plans for any STRIPS-style planning domain always forms a regularset: One can de�ne a �nite automata with the same states as the STRIPS domain, withstate transitions corresponding to the actions, and the goal states in the STRIPS domainwould be designated as the �nal states in the automata. On the other hand, the set ofplans for an HTN planning domain can be any arbitrary context-free set, including thosecontext-free sets that are not regular. Given any context-free grammar, one can declare onecompound task symbol for each non-terminal of the grammar, one primitive task symbol foreach terminal of the grammar, and for each grammar rule of the form X ! Y Z, one candeclare a method of the form (�X [(n1 : �Y)(n2 : �Z) (n1 � n2)]).Given an HTN planning domain � that corresponds to a context-free but not regulargrammar, � will have a minimummodel4 M such that TM will map compound task symbols(which correspond to the non-terminal symbols of the grammar) to sets of totally orderedprimitive task networks (or equivalently, to context-free sets of strings from the terminalsymbols of the grammar). Since TM maps compound tasks into context-free but not regularsets, no STRIPS-style planning domain can have a model equivalent to M . ThusLemma 4 The HTN language cannot be expressed by the STRIPS language with respect tomodel-theoretic expressivity.Thus, from Lemma 3 and Lemma 4Theorem 13 The HTN language is strictly more expressive than the STRIPS language withrespect to model-theoretic expressivity.5.2.4 Operational Expressivity ResultsAlthough the de�nition of expressivity based on operational semantics is quite di�erentfrom the de�nition of model-theoretic expressivity, it yields the same result: Since the setof solutions to an HTN planning problem can be any context-free set, whereas the set ofsolutions to a STRIPS-style planning problem always is a regular set, a proof similar tothat of Lemma 4 can be constructed to prove that HTN planning is strictly more expressiveaccording to this de�nition of expressivity. Thus,Theorem 14 HTN planning is strictly more expressive than STRIPS-style planning accord-ing to the de�nition of operational expressivity.4refer to the proof of Theorem 1 to see how to construct a minimummodel65

5.2.5 Discussion of Expressivity ResultsThe complexity-based expressivity results has shown that HTN constructs can representcomputationally more expensive problems than can be represented with STRIPS-operators.The modal-theoretic and operational expressivity results have shown that this is not onlydue to the conciseness of the HTN languages but also due to the richness of the semanticstructure and the structure of the solutions to HTN planning problems.The expressive power of HTN planning stems from two constructs:1. Planning problems are in the form of task networks, rather than conjunctive attainmentgoals,2. Compound tasks speci�ed by methods can represent complex planning jobs.Task networks contain multiple tasks and a constraint formula, which makes it easy torepresent complex scheduling problems and provides exibility|but if all tasks were eitherprimitive or goal (STRIPS-style) tasks, these could probably be expressed with STRIPS-stye operators (albeit clumsily and using an exponential number of operators/predicates).On the other hand, compound tasks and methods provide an abstract representation forsets of primitive task networks, similar to the way non-terminal symbols provide an abstractrepresentation for sets of strings in context-free grammars. This allows representing planningjobs that are too complicated to be encoded in STRIPS-representation.

66

Chapter 6Algorithms used by the UMCP SystemIn Section 3.5, I have presented a provably correct HTN planning algorithm called UMCP.This chapter contains the elaboration of this abstract algorithm into the UMCP planningsystem. Section 6.1 presents the high-level search algorithm and a conceptual view of thedata structures. Section 6.2 contains task expansion as a re�nement method. Section 6.3describes the constraint re�nement algorithms, which function as the domain-independentcritics of the UMCP system, and Section 6.4 explains how procedural domain informationcan be incorporated into UMCP as domain-speci�c critics. Finally, Section 6.7 provides aglobal perspective to the algorithms.The work described in this chapter is based on the formal framework presented in Chap-ter 3, which provides a characterization of the set of solutions to a given HTN planningproblem. The complexity analysis of HTN planning presented in Chapters 4 has inuencedthe design of these algorithms by pointing to the computational di�culties and bottlenecksinvolved in HTN planning. These algorithms have also bene�ted from the expressivity re-sults in Chapter 5, which uncovered the similarities and di�erences between STRIPS-styleplanning and HTN planning. As a result, these algorithms could draw upon the huge bodyof work on STRIPS-style planning, and contribute back to it.6.1 Re�nement Search in UMCPOne way of �nding solutions to HTN planning problems is to generate all possible expansionsof the input task network to primitive task networks, then generate all possible groundinstances (assignment of constants to variables) and total orderings of those primitive tasknetworks and �nally output those whose constraint formulae evaluate to true. However,considering the size of the search space, it is more appropriate to try to take advantage ofthe structure of the problem, and prune large chunks of the search space by eliminating inadvance some of the variable bindings, orderings or methods that would lead to dead-ends.To accomplish this UMCP uses a branch-and-bound approach [39].A task network can be thought of as an implicit representation for the set of solutionsfor that task network. UMCP works by re�ning a task network into a set of task networks,whose sets of solutions together make up the set of solutions for the original task network.67

1. Input a planning problem P =< d; I;D >.2. Initialize OPEN-LIST to contain only d.3. If OPEN-LIST is empty, thenhalt and return \NO SOLUTION."4. Pick and remove a task network tn from OPEN-LIST.5. If tn is completely re�ned into a solution thenhalt and return tn.6. Pick a re�nement strategy R for tn .7. Apply R to tn and insert the resulting set of tasknetworks into OPEN-LIST.8. Go to step 3.Figure 6.1: High-level Re�nement-Search in UMCPThose task networks whose set of solutions are determined to be empty are �ltered out. Inthis aspect, UMCP nicely �ts into the general re�nement search framework described in [37].Figure 6.1 contains a sketch of the high-level search algorithm of the UMCP system.This algorithm is a deterministic version of the UMCP algorithm presented in Section 3.5.Search is implemented by keeping an OPEN-LIST of task networks that are to be explored.Step 5 checks whether tn is a solution node: if all tasks in tn are primitive, the constraintformula consists of the atom TRUE, and the list of constraints that have been committed tobe made true but not yet made true is empty, then tn quali�es as a solution node.1 All taskorderings and variable assignments consistent with the auxiliary data structures associatedwith tn are plans for the original problem, and these plans can be easily enumerated. If tnis not a solution node, then it is re�ned by some re�nement strategy R, and the resultingtask networks are inserted back into the OPEN-LIST. Note that a re�nement strategy mayreturn an empty set of task networks, which means the given task network has no solution,and thus it is pruned from the search space.The non-deterministic UMCP algorithm described in Section 3.5 had steps for task ex-pansion, applying critics, and also for �nding completions. The deterministic version coversall of these steps as re�nement strategies. The three types of re�nement strategies used inUMCP are task expansion, constraint re�nement, and user-speci�c critics.Task expansion involves retrieving the set of methods associated with a non-primitivetask in tn, expanding tn by applying each method to the chosen task and returning theresulting set of task networks.User-speci�c critics is one of the places where UMCP can be tailored for speci�c domainsby providing a domain-speci�c re�nement strategy. UMCP can work without domain speci�ccritics, but if such a critic is available, it can be used to improve the performance of the1Constraints and the data structures will be discussed in detail shortly.68

planner.Constraint re�nement is UMCP's way of implementing domain-independent critics. It isone of the most important and the most complicated parts of the UMCP algorithms.6.1.1 Properties of Re�nement in UMCPAll re�nement strategies in UMCP are designed to preserve soundness, completeness, andsystematicity. The following is a list of conditions that need to be satis�ed to preserve thoseproperties:� Soundness: Any solution to any task network in R(tn) is also a solution for tn. Thusre�nement does not introduce invalid solutions.� Completeness: Any solution for tn is also a solution for some task network in R(tn).Thus re�nement does not eliminate any valid solutions.� Systematicity: The set of candidate solutions for each task network in R(tn) are mu-tually disjoint. Thus UMCP does not examine any candidate multiple times.Of those three properties, soundness is the most important for most planning applications,where the correctness of plans is critical.Completeness means the planner can always �nd any solution that exists. Completenessmight be critical in cases where any solution, even a slightly incorrect solution is preferable tono solution at all. Completeness may also a�ect the performance of a planner: An incompleteplanner may miss a simple solution and spend more time trying to �nd a complex one.The utility of systematicity is more debatable. Systematicity avoids redundancy in thesearch space, thus it was believed to improve the performance of planners; however, asdiscussed in [35], enforcing systematicity may incur extra overhead in book keeping, whichcan o�set the reduction in the size of the search space. Enforcing systematicity in there�nement algorithms used by UMCP does not seem to require signi�cant overhead, but itis a matter of further investigation and experimentation to verify this opinion.6.1.2 High-level Data Structures for UMCPThis section provides a conceptual overview of the high-level data structures used by UMCP.6.1.2.1 OPEN-LISTUMCP uses OPEN-LIST for its high-level search, which is a well known data structure inthe search literature [39]. Each new generated node in the search space is inserted to OPEN-LIST, until it is removed for further exploration. Several search strategies can be used indeciding which node to pick and remove from OPEN-LIST at each iteration of the search.The internal implementation of OPEN-LIST depends on this strategy. UMCP currentlyprovides the following search strategies: 69

� Breadth-�rst Search: The nodes are removed from the OPEN-LIST in the orderthey are inserted: �rst in, �rst out.� Depth-�rst Search: The nodes are removed from the OPEN-LIST in the reverseorder they are inserted: last in, �rst out.� Best-�rst Search: The nodes in the OPEN-LIST are ranked using a heuristic eval-uation function, and the one with the lowest rank is removed �rst. The evaluationfunction is provided by the user; it contains domain-speci�c information to guide thesearch. If for each node in the search space, the evaluation function always returnsa value less than or equal to the cost of the best solution that can be obtained fromthat node, then UMCP will �nd the optimum solution. It is possible to de�ne evalu-ation functions based on the domain-independent features of the nodes (e.g., numberof non-primitive tasks).6.1.2.2 Search NodesEach node in the search space is in the form of a task network, with additional data structuresto store plan decisions.The three types of decisions in HTN planning are the choice of method for each non-primitive task, the choice of constant to assign to each variable, and the orderings of tasks.Of those three, the choice of method is directly reected in the task network. When a task ina task network is expanded using a given method, the tasks in the method are added to thetask list, and the constraint formula of the method is combined with the constraint formulaof the original task network with a conjunct. Auxiliary data structures are required forrecording the ordering and variable binding decisions. Thus, along with each task network,UMCP keeps a list of possible values for each variable, and a partial order graph of tasknodes. Both of those structures will be referred to as commitment data structures, and theact of restricting the possible value for a given variable, or restricting the possible orderingsof the tasks will be referred to as making commitments, or simply commitments.Dealing with some constraints might not be possible at the current level of detail in atask network. For example, consider a planning problem that involves travelling. John needsto be in New York City by 5p.m. Until the task network representing the planning problemis su�ciently re�ned, that is, the decisions regarding the mode of transportation (y, drive,take the train, etc.) and which ight or train to take are made, it is not possible for theplanner to enforce that John is indeed going to be in New York City by 5p.m., simply bymaking more variable binding and ordering commitments. In those situations where it isnot possible to enforce a given constraint to become true by making more commitments, theconstraint is recorded in a list called the Promissory List (the list of constraints the plannerhas committed to make true, but has not done so yet), until such time that the task networkis su�ciently re�ned to enforce the constraint via further commitments. The constraintsin the promissory list do not simply lie dormant until they are ripe for processing. They70

inuence the planning decisions. For instance, if the time schedule is tight, the planner mightchoose ying over taking the train, although it is more expensive.Each search node contains the following data:� Task list: This is a list storing the tasks in the task network.� Constraint formula: It stores the constraint formula of the task network.� Partial-order Graph: It stores the ordering decisions on the tasks.� Possible-value list: This list has an entry for each variable, containing the set ofpossible values (i.e. constant symbols) it can be instantiated to.� Promissory List: This is the list of constraints the planner has committed to maketrue in this node, but these constraints are not enforced yet, via the commitmentsrecorded in possible-value list and partial-order graph.6.2 Task Expansion as Re�nementTask expansion involves retrieving the set of methods associated with a non-primitive task� in tn, expanding tn by applying each method to the chosen task � and returning theresulting set of task networks.The set of task networks generated from task expansion was de�ned to bered(tn; I;D) in the HTN formalism in Section 3.2, where I is the initial state, and D isthe domain description (i.e., the set of methods and the set of operators in the planningdomain). Section 3.2 has also precisely de�ned how to expand a task in a task networktn using a method m, denoted by reduce(tn; n;m), where n is the label of the task beingexpanded.The de�nition of reduce(tn; n;m) is used to implement the task expansions. The imple-mentation has additional steps to set the auxiliary data structures (i.e., the partial-ordergraph, the possible value list, and the promissory list) of the newly generated task networks.The values of the auxiliary data structures are copied from tn to the new task networks, andthen modi�ed as follows:� Partial-order graph: If a task was ordered before (respectively after) the expandedtask in the original task network, it must be ordered before (respectively after) all thesubtasks in the expansion.� Possible-value list: An entry must be made in the possible-value list for each newvariable introduced by the expansion. Each new variable must have the set of allconstant symbols as the initial set of possible values.� Promissory list: Section 3.2 describes how to modify a constraint that refers to thelabel of the expanded task. These modi�cations, which are used for the constraintformula, must also be applied to all the constraints in the promissory list.71

The above description of task expansion strictly follows the semantics of HTN planning,and thus preserves soundness and completeness. It also preserves systematicity to the extendthat if there are multiple ways to generate the same task network using a di�erent set ofmethods in expansions, then the generated task networks are considered distinct.For example, if the same method is declared multiple times for a given task, then the listof task networks generated by task expansion will have overlapping solutions. Although it ispossible to check whether two methods are equivalent modulo the names for variables andnode labels, it is computationally rather hard even to tell whether the two lists of tasks areequivalent, let alone their constraint formulae. Even if no task has two equivalent methods,it might still be possible to generate the same task network using di�erent methods.6.3 Constraint Re�nement in UMCPThis section presents the constraint handling mechanisms in the UMCP system. These mech-anisms serve as domain independent critics, and they are designed to preserve soundness,completeness, and systematicity.As was explained in Section 2.2.7, HTN planning systems [59, 64, 69] have used a mech-anism called critics to deal with interactions. Critics helped prune the search space bydetecting dead ends in advance and by resolving many types of conicts as soon as theyappeared. Due to the procedural, heuristic nature of critics, no guarantees could be madeon their correctness or performance. In fact there was no criterion of correctness that couldbe used to evaluate a critic function.The formal framework developed in Chapter 3 has provided a criterion for evaluating thecorrectness of critics. Section 3.5 presents three conditions a critic function must satisfy inorder to preserve soundness, completeness, and systematicity, respectively. That Section alsocontains a provably correct planning algorithm UMCP (shown in Figure 3.7). The UMCPalgorithm calls a critic function (Steps 6 and 7) at every iteration, with the assumption thatthe critic function will satisfy the conditions for correctness. This section deals with ways ofimplementing the critic function in such a way to satisfy the correctness conditions.My approach to handling interactions in HTN planning is based on an insight given bythe complexity analysis presented in Chapter 4: Each task in a task network introduces anumber of primitive tasks as its descendants through expansions. Each task also introducesa number of constraints through the methods used in those expansions. The interactionamong two tasks in a task network occur either because the constraints associated with onetask conicts with the constraints of the other task, or a descendant primitive task of onetask has an e�ect that conicts with the constraints associated with the other task. In brief,the interactions are based on constraints and the inuence of primitive tasks on constraints.Thus interaction detection and conict resolution can be viewed as a problem of constraintsatisfaction.The following sections describe in detail how UMCP deals with constraints.72

6.3.1 Overview of Constraint Re�nement in UMCPConstraint satisfaction in UMCP is complicated because HTN planning involves a rather richset of constraint types, and the constraint formula of a task network changes dynamically astasks are expanded. To provide a general view, constraint re�nement techniques of UMCPare �rst demonstrated on a simple problem of telling whether a given propositional formulais satis�able. Section 6.3.1.1 presents how to solve the satis�ability problem using re�nementsearch. Section 6.3.1.2 describes how this satis�ability algorithm can be extended to HTNplanning.6.3.1.1 An Algorithm for the Satis�ability ProblemThe satis�ability problem is de�ned as follows:Given a propositional boolean formula � constructed using the logical connectivesf^;_;:g from a set of propositions P = fp1; p2; : : : ; pkg, does there exists a truthassignment � : P ! fT;Fg such that � evaluates to true?The satis�ability problem can be solved using the following procedure: Each propositionhas two possible values, namely true and false. We choose a proposition from the formula,and create two branches in the search tree. In one branch, the proposition is assigned valuetrue, and in the other, the value false. In each branch the proposition can be replaced with itsassignment, and the formula can be simpli�ed accordingly. This procedure can be repeatedrecursively on every branch, until the formula in one branch evaluates to true, in which casethe initial formula is satis�able, or all branches terminate with value false, in which case theformula is not satis�able.For example, consider the boolean formulaF = :p1 ^ (p2 ^ :p3 _ p1) ^ (:p2 _ :p3)The corresponding search tree is depicted in Figure 6.2. The root of the search treeis a node containing the formula �, and the truth assignment �, which is initially empty.Children of any node in the tree can be thought of as re�nements of that node. Childrennever modify the truth assignments of their parent node, they only add more assignments.Any truth assignment that satis�es a node's formula also satisfy that of its parent. Anytruth assignment that satis�es a node's formula also satis�es the formula of exactly onechild. Thus, this type of re�nement preserves soundness, completeness, and systematicity.The re�nement algorithm presented in Figure 6.3 describes the procedure for generatingthe children of a given node in the search tree. This procedure has three phases: selection,enforcement, simpli�cation. Selection refers to choosing which proposition to work with �rst.This choice determines the shape of the search tree, and it inuences the number of nodesthat need to be explored. Enforcement refers to making further re�nements to the previousdecisions by recording the new truth assignment in each child node. Simpli�cation refersto reevaluating and simplifying the formula on each branch based on the new re�nements73

φ
θ

=
=

F

p T{(:)}1

φ
θ

= ¬
=

p

p F p T
3

1 2{(:)(:)}

φ
θ

=
=

F

p F p F{(:)(:)}1 2

φ
θ

=
=

T

p F p T p F{(:)(:)(:)}1 2 3

φ
θ

= ¬ ∧ ∧ ¬ ∨ ∧ ¬ ∨ ¬
=

p p p p p p1 2 3 1 2 3() ()

{}

φ
θ

= ∧ ¬ ∧ ¬ ∨ ¬
=

p p p p

p F
2 3 2 3

1

()

{(:)}

φ
θ

=
=

F

p F p T p T{(:)(:)(:)}1 2 3Figure 6.2: Search Tree for a Satis�ability Problem74

1. Input a node s =< �; � >2. [Selection] Pick a proposition p in �3. [Enforcement] Create two children nodes:s1 =< �; f(p : True)g [� >s2 =< �; f(p : False)g [� >4. [Simpli�cation] Simplify the constraint formula of each child nodebased on its truth assignment. Output those nodes whose formula doesnot evaluate to false.Figure 6.3: Constraint re�nement for Satis�ability Problemrecorded in truth assignments. Those nodes whose formula evaluate to false have no solution,and thus they can be terminated.One can think of several extensions to this algorithm. The formula may contain unitclauses. A unit clause is a literal (i.e. a proposition or its negation), combined with the restof the formula with a conjunct. For instance, the literal :p1 is a unit clause in the exampleabove. Only one branch needs to be created for a unit clause, because enforcing it to befalse will make the formula itself false. Thus it is a good idea to select unit clauses beforethe others. If the constraint formula contains multiple unit clauses, it makes sense to selectall of them, and enforce them together to avoid doing simpli�cation many times.In order to support the extensions described in the paragraph above, the selection phasemust return a more general form. Hence, the selection step is modi�ed to return a list of theform f (l11l12 : : : ; l1m);(l21l22 : : : ; l2m0)...(lk1lk2 : : : ; lkm0000) gThe enforcement phase, which receives this selection, creates k new nodes, and on ith nodeit enforces the literals li1li2 : : : lim0).For example, selection may return a single list of unit clauses in the format f(l1l2l3)g, orit may return a two lists, one list containing a single literal, the other its negation such asf(l1); (:l1)g.The selection must have two properties:� The selected lists of literals must be comprehensive to cover all possibilities and hencepreserve completeness. 75

� Each list of selected literals must be mutually inconsistent in the presence of previouslymade decisions so that the set of solutions on each branch are mutually exclusive, andsystematicity is preserved.Soundness is preserved by de�nition, as previously made truth assignments are not mod-i�ed in the generated nodes.A selection of the form f(l1); (:l1)g certainly satis�es both of the conditions above. Thisselection covers all possibilities, as l1 can have only two values, either true, or false. Further-more these two values are contradictory, so there cannot be any common solutions in thecorresponding subtrees of the search space.6.3.1.2 Phases of Constraint Re�nement in UMCPTask networks in HTN planning contain a boolean formula that must be satis�ed, just likethe boolean satis�ability problem discussed in the previous section.A constraint formula in a task network is quite more complicated than a propositionalformula; instead of propositions, the constraint formula is composed of several types of HTNconstraints on variable bindings, task orderings and conditions on intermediate states. Fur-thermore, HTN constraints interact with one another. For example, making the variablebinding constraint (v = a) true, automatically makes (v = b) false. State constraints areinuenced by the ordering and e�ects of tasks in the task network. Nonetheless, the satis�-ability algorithm in Figure 6.3 can be extended for constraint re�nement in HTN planning.The data ow of constraint re�nement in UMCP is shown in Figure 6.4. The constraintselection module determines the constraints to work on. Based on this selection, the con-straint enforcement module produces a set of task networks, each of which corresponds toone way of enforcing the selected constraints. The resulting task networks are piped to theconstraint propagation module, which for each task network attempts to enforce the con-straints in its promissory list. Those task networks are piped to the constraint simpli�cationmodule, which evaluates the constraint formula of each task network, and �lters the tasknetworks whose formula evaluates to false.The high-level algorithm for constraint re�nement in UMCP is shown in Figure 6.5. Thisalgorithm is an extension of the algorithm in Figure 6.3 for boolean satis�ability.The following sections describes the steps of constraint re�nement in UMCP.6.3.2 Constraint Selection in UMCPConstraint selection involves deciding which constraints to work on. Given a task network,constraint selection returns a set of constraint lists, which has the formf (c11c12 : : :);(c21c22 : : :)...(ck1ck2 : : :) g76

Figure6.4:DataFlowDiagramofConstraintRe�nementinUMCP
77

1. Input a task network tn2. [Constraint Selection]Make a selection of the formf(c11c12 : : :); (c21c22 : : :) : : : (ck1ck2 : : :)g3. [Enforcement]For i = 1 to k doProduce a task network for each way of adding morecommitments to tn to make (ci1ci2 : : :) TRUE.4. [Propagation]For each task network produced at enforcement phase do:Try to enforce every constraint in its promissory list to become true,until none of the constraints remaining in the promissory list can beenforced at the current level of detail in the task network.5. [Simpli�cation](a) Evaluate and simplify the constraint formula of eachtask network produced at the propagation phase.(b) Output those nodes whose formula does not evaluate to false.Figure 6.5: Constraint re�nement in UMCP
78

. This selection tells the planning system to re�ne the task network into k branches. Inthe �rst branch the task network is re�ned further by new commitments in such a way tomake all of the constraints (c11c12 : : : ; c1m) true. In general in branch i, the planner enforcesthe constraints (ci1ci2 : : :).The soundness of the planning system is not a�ected by how the selection is made.However, in order to preserve completeness, the selection must be such that any solution tothe original task network lies in at least one branch, and in order to preserve systematicity,the selection must be such that any solution to the original task network lies in at mostone branch. As long as these restrictions are observed, constraint selection only a�ects theperformance of the system.Many di�erent strategies can be employed to make the constraint selection, and it is amatter of further experimentation to �nd out which provides the best performance. Thestrategy used by the current version of UMCP is explained below:� If the constraint formula contains unit clauses, UMCP selects all of those. The unitclauses are ordered so that simpler types of constraints are handled before more com-plex ones: variable binding constraints �rst, initially constraints second, ordering con-straints next, and the state constraints last.� If the constraint formula does not contain unit clauses, UMCP chooses an arbitraryconstraint and its negation from the constraint formula.� If the constraint formula is TRUE, then UMCP chooses a constraint and its negation,in such a way that enforcing that constraint may simplify some of the constraints inthe promissory list.� If the constraint formula is TRUE and the promissory list is empty, then constraintre�nement is not appropriate.Note that this constraint selection strategy preserves soundness, completeness, and sys-tematicity.6.3.3 Constraint Enforcement in UMCPFor each type of constraint, UMCP has an algorithm to re�ne a task network and producea set of task networks for ways of making that constraint true. All possible ways of makingthe constraint true are considered, to preserve completeness.Details of these algorithms are described in Section 6.3.6. Constraint enforcement phaseuses these algorithms to produce its set of task networks according to the constraint selection,as shown in Figure 6.6.Suppose the constraint selection returns a set of constraint lists of the formf (c11c12 : : :);79

Figure6.6:ConstraintEnforcementDiagram 80

(c21c22 : : :)...(ck1ck2 : : :) g. Here is how constraint enforcement works on the �rst branch: It calls the enforcementfunction associated with the type of constraint c11 to produce a set of task networks for allpossible ways of making c11 true. Each of the resulting task networks are further re�ned bycalling the enforcement function associated with c12, and so on, until �nally a set of tasknetworks are produced for each possible way of making all (c11c12 : : :) true.The same procedure is applied to the rest of the branches, and the resulting task networksare passed to the constraint propagation phase.6.3.4 Constraint Propagation in UMCPRecall the discussion in Section 6.1.2.2 about promissory list. Some constraints that gothrough constraint enforcement phase cannot be made true by placing restrictions on taskorderings and variable bindings at the current level of detail in a task network. Thoseconstraints are merely recorded in the promissory list. The planner makes a promise to tryto establish these constraints in later iterations. Constraint propagation is the phase wherethis is done.Propagation phase receives a set of task networks from the constraint enforcement phase.For each of these task networks, the promissory list is examined to see if any of the constraintsin it can be enforced at the current level of detail in the task network. Those task networkswith no such constraint are passed along to the simpli�cation phase. If such a constraint isfound, that the constraint enforcement function associated with the type of that constraintis performed. The task networks resulting from this constraint enforcement are piped backto the constraint propagation phase.6.3.5 Constraint Simpli�cation PhaseConstraint simpli�cation is the �nal phase of constraint re�nement. UMCP contains evalua-tion and simpli�cation routines for every type of constraint, as described in the next section.These routines are used to evaluate and simplify the constraint formulae of the task networksproduced by the propagation phase. For instance, if part of a conjunct evaluates to true,that part is dropped, if it evaluates to false, the whole conjunct evaluates to false. Disjunctsare treated analogously. Those task networks whose constraint formulae evaluate to falseare pruned. Remaining task networks are output as the product of constraint re�nement.Sometimes it might not be possible to evaluate a constraint with the current level ofdetail present in a task network until further re�nement. In such cases, evaluation routinesof UMCP returns either the constraint itself, or a simpli�ed version of it.81

6.3.6 Details of Constraint Evaluation and EnforcementThis section describes how constraint evaluation and enforcement is done for each type ofconstraint. Enforcement always involves evaluating the constraint and it fails whenever theconstraint evaluates to false. This is omitted from the explanations below for brevity.6.3.6.1 Variable Binding ConstraintsRecall that, each task network contains a Possible value list, which contains the set ofpossible values for each variable in the task network. Possible-value list is examined toevaluate variable binding constraints, and possible values for variables are further restrictedto enforce variable binding constraints.Promissory list may contain variable binding constraints, and thus it is used in the eval-uation and enforcement of variable binding constraints. Only noncodesignation constraintsof the form not(v1 = v2) are stored in the promissory list. This type of constraints cannot behandled using the Possible value list, unless we instantiate one of the variables by creatinga new task network for each possible value it has. Rather than instantiating one of thevariables, this type of constraints are recorded in the promissory list, and they are enforcedwhen one of the variables get instantiated later on. The remaining types of variable bindingconstraints can be represented using the Possible-value list, and are never recorded in thepromissory list.Details for each form of variable binding constraint appears below.Type: (v = a)Evaluation: Return true if constant a is the only possible value for variable v; return falseif a is not a possible value for v; return (v = a) otherwise.Update: To make it true, set the possible value list for v to a, replace v with a throughoutthe task network. To make it false, remove a from the possible value list for v. If v has onlyone possible value left, then substitute that value for v throughout the task network. If vappears in noncodesignation constraints in the promissory list, then do further re�nementsto enforce those constraints.Type: (v1 = v2)Evaluation: Return true if both v1 and v2 have the same one possible value; return falseif they do not have any common possible values or if negation of the constraint is in thePromissory List; return the constraint itself otherwise.Update: To make it true, set the possible value list for v2 to the intersection of possiblevalues for v1 and v2, set the possible value list for v1 to v2, and replace v1 with v2 throughoutthe task network. If the intersection has only one possible value, then instantiate bothvariables to the value, and propagate the noncodesignation constraints in the promissorylist. To make it false, insert its negation in the Promissory List.82

6.3.6.2 Ordering ConstraintsOrdering constraints are handled by querying and modifying the partial order graph. Theyare of the form (node-expression � node-expression).A node-expression can be in either of the two forms: first[n1; n2; : : : ; nk], or last[n1; n2; : : : ; nk].Thus, a total of four types of ordering constraints need to be considered.2Let Ai = fni1; : : : ; nikg be lists of node labels for i = 0; 1. Recall that first[A0] andlast[A0] refer to the node which is ordered to be the �rst and the last among the nodes inthe expansion of nodes fn01; : : : ; n0kg, respectively.Let's de�ne Oi; Ii � Ai as the nodes that are not ordered after (respectively before) anynode in A0 [A1.Let's de�ne Bi; Ci � Ai as the nodes that are not ordered after (respectively before) somenode in Ai and are not ordered after(respectively before) all nodes in A(i+1)mod 2.Type: (first[A0] � first[A1])Evaluation: Return true if O1 is empty; return false if O0 is empty; return (first[O0] �first[O1]) otherwise.Update: If O0 contains a single primitive task put links from the node in O0 to each nodein O1 in the partial order graph; otherwise insert (first[O0] � first[O1]) into the PromissoryList.Type: (first[A0] � last[A1])Evaluation: Return false if B0 or C1 is empty; return true if some node in B0 is orderedbefore one in C1; otherwise return (first[B0] � last[C1]).Update: If both B0 and C1 contain single primitive tasks, put a link between them,otherwise insert (first[B0] � last[C1]) into the Promissory List.Evaluations and enforcements of (last[A0] � first[A1]) and (last[A0] � last[A1]) aredone analogously.6.3.6.3 State ConstraintsThe set of atoms in the initial state are stored in a discrimination tree for fast querying.Negative literals need not be stored due to the closed world assumption. Note that \:(initially l)" and \(initially :l)" have the same meaning.Type: (initially l)Evaluation: Return true if all ground instances of l that are consistent with possible valueslists in commitments are in initial state; return false if none of the ground instances of l thatare consistent with possible values lists are in initial state.Update: To make it true (false) do the following: If l has only one variable, restrict thatvariable to values for which l is true (false) in the initial state. If l contains k > 1 variables,for each combination of values for the �rst k�1 variables, output a task network by assigning2Ordering constraints which contain negation or refer to single node labels can be converted to one ofthose four forms. 83

those variables the corresponding constants, and restricting the value of the last variable soas to make l true (false) in the initial state. Combinations of values for which this is notpossible need not be considered. For example, in order to make (initially type[v,truck])true in transport logistics domain, it su�ces to restrict possible values for v to constants oftype truck.The state constraints of the form (l; n) are evaluated and enforced by computing thee�ectors. An e�ector of l is either (i) a primitive task with an e�ect that can unify withl or :l, (ii) the initial state, (iii) a compound task whose expansion might contain such aprimitive task, or (iv) a committed-to state constraint that is stored in the Promissory Listwhose literal can unify with l or :l. Those e�ectors that are ordered after n or shadowed by3some other e�ector of l are ignored. If all e�ectors of l are positive then (l; n) is true, if allare negative than it is false, otherwise it is unknown yet. Enforcement is delayed if some ofthe positive e�ectors are compound tasks, and the constraint is recorded in the PromissoryList. Otherwise for each positive e�ector e a new task network is created where e is theestablisher of l with added constraints (protect l e n)^ (protect :l e n)preventing any actionbetween e and n from denying or asserting l, respectively.Evaluating and/or updating constraints of the form (n; l) is delayed until n refers to asingle primitive task symbol. In that case (n; l) evaluates to true if the action labeled by nasserts l, it evaluates to false if that action denies l, otherwise it evaluates to (l; n).Constraints of the form (n; l; n0) are converted to (n0 � n)_[(n � n0)^(n; l)^(protect l n n0)]and handled as such.6.4 Domain-Speci�c CriticsDomain-speci�c critics is one of the places where domain-speci�c, procedural informationcan be used to enhance the capabilities and performance of UMCP.Given a planning application, it is desirable to be able to write a speci�cation of it usingthe declarative HTN planning constructs, and let an HTN planner like UMCP process thespeci�cation, and solve all the problems that arise in that application. Unfortunately, theworld is seldom so well behaved.There are types of knowledge best encoded using procedural means. Even when all theinformation related to a planning application can be declaratively speci�ed, HTN planningconstructs might be ill-equipped to represent and process some of this information. Forexample, consider planning applications involving automated manufacturing. A signi�cantportion of the information regarding tolerances, stress analysis and many other features isvery complex, and draws upon a huge body of research and experience in mechanical engi-neering. Even the declarative aspects of this type of applications usually involve geometricalreasoning on solid models. On the other hand, there are many aspects of the problem that3An e�ector x shadows an e�ector y if x is ordered between y and n, and whenever an e�ect of ycodesignates with l, so does an e�ect of x. 84

can be handled via HTN constructs, such as scheduling tools and machines, interactionsamong other resources and materials, choosing among process plans, etc.One possible approach is to try to come up with more general planning paradigms thatcan deal with more variety of information types compared to HTN planning; however, thereis a delicate balance: extending the expressive power of a declarative paradigm usuallymakes it computationally more expensive, sometimes to the extend of rendering it useless.In addition, there might already exist domain-speci�c techniques that handle many aspectsof the planning application e�ectively.UMCP's approach is to provide a way domain speci�c techniques can be incorporated tothe planner in order to increase the performance and the capabilities of the system. UMCPprovides an API for task networks and HTN re�nement routines to facilitate integrationof other code. Domain speci�c critics can be fully automated, or it may involve a humanoperator providing guidance to the system. There is no reason why other planning systemsbased on di�erent paradigms cannot be used as domain-speci�c critics. For example, using acase based planning system that can learn how to \criticize" task networks in a given domainworking in tandem with UMCP may be very bene�cial.UMCP only expects the domain-speci�c critics to input a task network, and output aset of task networks. It is the responsibility of the domain engineer to ensure that thedomain-speci�c critics satisfy the conditions for preserving soundness, completeness, andsystematicity.6.5 Selection of Re�nement StrategyThe previous sections have described the various re�nement strategies at the disposal ofUMCP. As shown in Figure 6.1, The high-level UMCP algorithm picks a re�nement strategyat each iteration. This choice, which determines the part of the problem to focus on, hasa big impact on the e�ciency of UMCP. Intuitively, one would �rst like to work �rst onthe most critical part, the part which is most likely to fail. For example, while planningfor a trip, one makes the ight arrangements before planning the trip to the airport so thatbacktracking caused by planning for a trip to an airport with no suitable ights can beavoided.How to choose a re�nement strategy at each iteration is called commitment stategies, aswas discussed in Section 2.2.4. UMCP supports this active area of research by providing atestbed where di�erent commitment strategies can be implemented and compared. UMCPalso provides a default commitment strategy as described below.If the constraint formula of tn contains any unit clauses, UMCP chooses those clausesfor constraint re�nement, as outlined in Section 6.3.2.If the constraint formula of tn does not contain any unit clauses, then UMCP arbitrarilypicks an atomic constraint from the constraint formula and sends that constraint and itsnegation to constraint re�nement.If the constraint formula is true, but tn has non-primitive tasks, then UMCP picks oneof these non-primitive tasks for task expansion. UMCP requires all the task symbols to85

be declared in advance, and those declarations can optionally specify a criticality level foreach non-primitive task, analogous to the criticality assignments used by the ABSTRIPSsystem [60]. That system was described in Section 2.2.2. UMCP chooses the non-primitivetask with the highest criticality level. Just as in ABSTRIPS, the criticality assignmentsin UMCP, provide valuable guidance in focusing the attention of the planner to the mostcritical part of the problem.If the constraint formula is true and tn is primitive, then UMCP picks an atomic con-straint (and its negation) for constraint re�nement in such a way to simplify the auxiliaryconstraints in the promissory list.If the promissory list is empty, the constraint formula is true, and the task networkis primitive, then the task network has already been re�ned to a solution, and no furtherre�nement is necessary.Notice that the default commitment strategy of UMCP never picks domain-speci�c critics,as it cannot have any information about when such a critic is applicable, or how often it mustbe invoked. When UMCP is customized for a domain and provided with a domain-speci�ccritic, the commitment strategy must be modi�ed accordingly.6.6 The UMCP Architecture6.6.1 ModulesUMCP system has been implemented using Allegro Common Lisp on a Sparc Workstation.It consists of several modules described below.Search module contains the high-level re�nement search routine of UMCP. Depth �rstsearch, breadth-�rst search, and best-�rst search are also implemented in this module.Heap module contains the implementation of a general purpose heap data structure(courtesy of William Andersen). It is used by the best �rst search module.Re�nementmodule contains the functions for choosing the re�nement strategy to apply ata each iteration, and then invoking the appropriate module to apply the selected re�nementstrategy.User-critics module is to be provided by the user to contain domain speci�c information.This information is used to improve the performance of UMCP.Expansion module implements the task expansion.Method module contains the functions for declaring, retrieving and instantiating meth-ods.Constraint module contains functions that implement the high-level algorithms for con-straint re�nement.The following four modules contain the functions for evaluating and enforcing variablebinding, ordering, initial-state constraints respectively: vb-bindings, ord-constraints, ini-tially, and state-constraints.State constraints are rather complicated, and they require support from several othermodules described below. 86

Aux module contains the functions for establishing state constraints, and dealing withauxiliary data structures in the task network.E�ectors module contains the routines which compute the necessary/possible contributorsor deniers to a given state constraint.Poss-e�ects-table module does a preprocessing of the domain speci�cation to determinethe set of predicates a given non-primitive task may inuence.Task network module de�ne the structure of task networks, and the basic operations onthem. Several major components are delegated to other modules described below.Formula module contains the functions on constraint formulae.Partial-order graph module contains the functions for querying and modifying the taskorderings.Poss-values module contains the functions for querying and modifying possible values foreach variable.The promissory list, which contains the constraints that cannot be enforced right away,is implemented using two modulesDisjoint module stores the noncodesignation constraints in the promissory list.Promissory module stores the state constraints.Symbol module contains the functions for de�ning the HTN language for an application.Thus it contains the functions for declaring predicates, variables, and other types of symbols.Util module contains miscellaneous support functions.6.6.2 User InterfaceThe planner is invoked using the command (search-for-plan <tn>). At each iteration,UMCP picks a task network from the openlist, chooses a re�nement strategy, does there�nement, and inserts the resulting task networks back to the openlist.UMCP presents the task network to be re�ned to the user as follows:A partial order graph is visually displayed to present the list of tasks, and also thecommitted orderings. Primitive tasks are written in lowercase letters, and non-primitivetasks are written in uppercase.Remaining components of the task network are displayed textually:� Name: UMCP names each task network it generates, by extending the name of theparent task network with a \-" and the order of the task network among its siblings.� Formula: is the constraint formula of the task network.� Variables: presents the set of possible values for each variable. It is in the form of anassociation list, where the keys are the variables in the task network.� Disjoint variables: is an association list that for each variable contains the list ofvariables it must noncodesignate.� Postponed ordering constraints: is a list of ordering constraints in the promissory list.87

� Postponed state constraints: is an association list of state constraints in the promissorylist. It is indexed by the predicates.� Re�nement Strategy: shows which re�nement strategy UMCP has chosen to re�ne thecurrent task network.The user may override UMCP's choice of re�nement strategy and pick another one, andinstruct UMCP to re�ne the current task network. Alternatively, the user can give the \go"command telling UMCP to run to completion.6.7 DiscussionCausal links are used by POCL planners such as SNLP [46] to establish preconditions andto detect threats. Causal links are also employed by UMCP in the form of special stateconstraints stored in the Promissory List. SNLP's threat removal process is similar to howUMCP handles those special constraints in its constraint propagation phase.[15] introduced the MTC (modal truth criterion) to tell whether a literal is true ata given point in a partially-ordered plan. In order to evaluate state constraints, UMCPuses an extended version of the MTC that also accounts for compound tasks. UMCP'sextended MTC algorithm runs in quadratic time|and it is directly applicable for computingChapman's MTC, for which the other known algorithms run in cubic time.NOAH [58] employs its resolve conicts critic to deal with deleted-condition interactions,which are explicitly represented by state constraints in UMCP. The constraint re�nementtechniques of UMCP guarantees these interactions will be handled without sacri�cing sound-ness or completeness.UMCP evaluates each constraint before trying to make it true, and skips those constraintsthat are already true, and hence it emulates NOAH's eliminate redundant preconditions critic.HTN planners often allow several types of conditions in methods. How to deal with thoseconditions has been a topic of debate.NONLIN [64] evaluates �lter conditions as soon as they are encountered, using the QA(Question Answering) mechanism. QA returns false unless it can verify those conditions tobe necessarily true, even if the conditions are possibly true. Thus, NONLIN often backtracksover �lter conditions which would have been achieved by actions in later task expansions orby more ordering and variable binding commitments. As a result, NONLIN may fail to �nda solution when a solution exists, or may miss a short and simple solution and do much morework to �nd a longer and more complicated solution.At �rst glance, the problems such as these might seem to argue against the use of �lterconditions: at one extreme, using �lter conditions immediately to prune the search spacesacri�ces completeness, and at the other extreme, postponing their use until the plan iscomplete (so as to preserve completeness) is ine�cient.44In fact, Collins and Pryor [16] have made a similar argument against �lter conditions in the context ofplanning with STRIPS-style operators. 88

Although the above argument is partially correct, it ignores a third possibility that liesbetween the two extremes. In general, to preserve completeness, a planner cannot use a�lter condition to prune the search space unless the �lter condition evaluates to \necessarilyfalse"|but this does not necessarily require that the task network has been expanded intoa primitive and totally-ordered plan. Instead, UMCP simply records the �lter conditions inthe Promissory List and prunes the task network only when one of them becomes necessarilyfalse.More speci�cally, UMCP handles �lter conditions and other constraints as follows:� Some instances of variable binding, ordering, and state constraints can be dealt withimmediately. For example, conditions (e.g., an object's type) that are not a�ected bythe actions are represented by constraints of the form (initially l). Such constraintscan be evaluated at any time by querying the initial state, and they can be committedto by appropriately restricting the possible values for the variables in l.5� Those constraints that cannot be dealt with immediately are stored in the PromissoryList, and are processed in the constraint propagation phases.Constraints in UMCP go through three stages: they �rst appear in constraint formula; thenpossibly in the Promissory List if they cannot be dealt with at the time they are selectedin constraint selection phase; and �nally they are reected in restrictions on possible valuesfor variables and task orderings. This three-stage approach facilitates dealing with thedisjunctions in the constraint formula, and by postponing its processing of some types ofconstraints, UMCP preserves completeness without sacri�cing e�ciency.Dealing with numerous types of interactions is an important aspect of planning systems.The work described in Chapter 3 has provided a formal framework for representing inter-actions and conicts via constraints, and in this paper we have introduced techniques forconstraint handling as a means for detecting interactions and resolving conicts. Those tech-niques preserve soundness, completeness, systematicity, and they have been implemented inUMCP, an HTN planning system.By instantiating the constraint selection strategy in di�erent ways, various commitmentstrategies discussed in the literature can be used by UMCP. For example, variable instanti-ation can be done before anything else (as in NONLIN), all primitive tasks can be totallyordered as soon as they appear in task networks, or task expansions can be deferred until allconicts have been resolved (least commitment). Currently, we are designing experimentsto empirically evaluate these techniques.The constraint-handling mechanisms of the UMCP system provide the capabilities ofmany domain-independent critics discussed in the literature, and UMCP's user-speci�c crit-ics module can be used to incorporate domain-speci�c critics as well. The modular and5SIPE [72] uses a \sort hierarchy" for this purpose, the only di�erence in UMCP is that UMCP allowsarbitrary boolean formulae constructed from all types of constraints, instead of a conjunct of constraints asin SIPE. 89

formal nature of UMCP makes it readily extensible. We are currently exploring ways of ex-tending UMCP's constraint-handling mechanism to handle numerical and complex temporalconstraints so that it can do deadline and resource management, and provide the capabilitiesof other domain-independent critics.

90

Chapter 7ExamplesThe previous chapters have presented the HTN language, and the UMCP planning systemthat solves problems speci�ed in that language. This chapter demonstrates how UMCP workson two sample domains. Section 7.1 briey explains how to write domain speci�cations inthe HTN language. Section 7.2 describes UM Translog, a benchmark domain for planningapplications, followed by a step-by-step trace of UMCP on a sample problem from thatdomain. Section 7.3 presents a special planning domain, which was constructed to prove theundecidability of HTN planning in the proof of Theorem 5. In this domain, plans correspondto the intersection of the two context-free grammars, whose rules are speci�ed in the initialstate. That section also contains a sample problem trace.7.1 Writing Domain Speci�cationsFor most planning applications, preparing a domain speci�cation is a challenging job.Unfortunately, it is the most neglected aspect of planning, and there is not an establishedsoftware-engineering methodology to guide this job. In this section, I will attempt to providea rudimentary approach to writing domain speci�cations in the HTN language. An outlineof this approach is depicted in Figure 7.1. Each step is explained below, together with theUMCP syntax. UMCP uses a slight variation of the HTN language, which is easier to typeon a computer terminal.The �rst step in writing speci�cations is to identify the objects in the application. Thetransport logistics domain presented in Section 7.2 has several packages such as package-1and package-2, several vehicles such as truck-1 and airplane-4. The domain engineermust invent names for the objects, and declare them. In the UMCP syntax, this declarationis of the form(constants <constant-symbol-1> <constant-symbol-2>...)The second step is to identify the relationships and properties among the objects. Forexample, the object truck-2 is of type truck. At any given time, it is located at somelocation. One may consider denoting these relations using two predicate symbols truck andat. In the UMCP syntax, predicates are declared using the form91

1. Identify the objects of interest in the application, and declare aconstant symbol for each object.2. Identify the properties of the objects, and the relationships amongthem, and declare a predicate symbol for each relation or property.3. Identify the actions that can be executed, and declare aprimitive-task symbol for each of them.4. Identify the jobs that need to be planned for, and declare acompound-task symbol for each of them.5. Operators and methods use variable symbols as place holders.Variable symbols must be declared as needed.6. For each action, determine the e�ects and applicability conditions,and declare it in the form of an operator.7. For each job, determine the possible ways of accomplishing it, anddeclare each possible way in the form of a method.8. Prepare test problems and run them on a planning system. Basedon the outcomes, revise the domain speci�cation as necessary.Figure 7.1: Steps of Domain Speci�cation in the HTN Language
92

(predicates <predicate-symbol-1> <predicate-symbol-2>...)Properties of objects themselves may have relations among them. For instance, inthe transport logistics domain, certain types of packages are compatible with only cer-tain types of vehicles. Packages of type produce can be carried with only vehicles oftype refrigerated. The HTN language (or any �rst order language) does not allow rea-soning about the properties of predicates. One solution around this problem is convert-ing some predicates into constant symbols. For example, the predicate refrigerated canbe declared as a constant instead, and refrigerated(truck-1) can be represented astype(truck-1, refrigerated), using a special type predicate. Now that vehicle typesand package types are denoted by constant symbols, we can introduce a compatibility predi-cate compatible(vehicle-type,package-type). This technique is used extensively in UMTranslog.The next two steps involve determining the actions and jobs in the domain, and declaringprimitive-task symbols and compound-task symbols for them, respectively. This is accom-plished using the declarations(primitive-tasks <primitive-task-symbol-1><primitive-task-symbol-2>...)(compound-tasks <compound-task-symbol-1><compound-task-symbol-2>...)Compound-task or predicate declarations can optionally specify a criticality level foreach symbol, which UMCP uses in determining what part of a task network to work onat each iteration. The syntax for specifying criticality level in a declaration is (<symbol><criticality-level>).Another type of symbols in the HTN language are the variables, which are used as placeholders in operators and methods. Variable symbols that appear in domain and problemspeci�cations are required to be declared in advance, using the form(variables <variable-1> <variable-2>...)The �nal two steps involve de�ning the primitive tasks using operators, and de�ning thenon-primitive tasks using methods. Primitive tasks are de�ned in terms of their e�ects andtheir applicability conditions using the format(operator <primitive-task-symbol>:pre (<literal-1> <literal-2>...):post(<literal-1> <literal-2>...)) A literal is written as 93

(<predicate-symbol> <term-1> <term-2> ...)Terms are either constant or variable symbols. For example, the load-package primitivetask in the UM Translog domain can be declared as follows:(variables p v l)(operator load-package(p v l):pre ((at-package p l) (at-vehicle v l)):post((at-package p v) (~at-package p l))) Methods are declared using the following syntax:(declare-method <non-primitive-task-symbol>:expansion((<node-label> <task-symbol> <term-1> <term-2>...)(<node-label> <task-symbol> <term-1> <term-2>...). . .):formula <constraint-formula>) A task symbol can be either a primitive-task, a compound task, or a predicate (possiblynegated). The syntax for the constraint formula is depicted below:formula ! Tformula ! 'Fformula ! atomic-constraintformula ! (not formula)formula ! (and formula-1 formula-2: : :)formula ! (or formula-1 formula-2: : :)Below is the format of atomic constraints:� Variable binding constraints are written as (veq term-1 term-2), where each term iseither a variable or a constant symbol.� Ordering constraints are written as (ord point-1 point-2). Each point is either asingle node label, or in one of the forms (first node-label node-label ...) and(last node-label node-label ...).� Constraints of type initially are written as (initially literal)94

� State constraints have one of the forms (before literal point)(after literal point), (between literal point-1 point-2).The following is a sample method declaration from the UM Translog domain:(variables vehicle location origin r ocity dcity)(declare-method AT-VEHICLE(vehicle location):expansion((n1 MOVE-VEHICLE vehicle origin location r)):formula(and(before (AT-VEHICLE vehicle origin) n1)(initially (TYPE vehicle TRUCK))(initially (IN-CITY origin ocity))(or(and ; same(veq r LOCAL-ROAD-ROUTE)(initially (IN-CITY location ocity)))(and ;different city(initially (IN-CITY location dcity))(initially (CONNECTS r ROAD-ROUTE ocity dcity)))))) This is a method for moving a vehicle to a given location. This particular method onlyworks for vehicles of type truck, under the condition that the location is either in the samecity as the vehicle, or it is in a city directly connected via a road route to the current citythe vehicle is located at.As seen in this example, it is possible to add comments to domain speci�cations usingthe LISP language syntax. The semicolon character \;" is the comment symbol. It instructsthe planner to ignore the rest of the line.7.2 Case Study 1: UM Translog Domain7.2.1 DescriptionThe empirical studies on planning systems and techniques have been mostly on simple toydomains. Two well known examples are \Blocks World" and \Towers of Hanoi." As plan-ning systems grow in sophistication and capabilities, however, there is a clear need forplanning benchmarks with matching complexity to evaluate those new features and ca-pabilities. UM Translog is a planning domain designed speci�cally for this purpose byAndrews, Kettler, and myself [4]. This section provides a brief description of the UM95

Translog domain from that paper. The full domain speci�cation is available online at:http://www.cs.umd.edu/projects/plus/UMT.UM Translog was inspired by the CMU Transport Logistics domain developed byManuelaVeloso [67]. UM Translog is also an abstract, toy planning domain, but compared to the CMUTransport domain, it is an order of magnitude larger in size (41 actions versus 6), numberof features and types of interactions. It provides a fairly rich set of entities, attributes,actions and conditions, which can be used to specify rather complex planning problems witha variety of plan interactions.In this domain, the planner is given one or more tasks, which typically involve the de-livery of a particular package to a destination. Our goal for UM Translog domain was tocreate a domain more complex than toy domains such as blocks world. To do this we mod-elled additional aspects of transport logistics not in the CMU Transport Logistics domain,and which we believed were somewhat realistic. These include the following features andrestrictions:� transport is by air, rail, or road� transport is intracity or intercity� several basic methods of transport are available including local transport via road,direct transport via a speci�c direct route, and \indirect" transport via a transportationhub� customer locations and transportation centers (airports and train stations) are groupedinto cities which are grouped into regions� intercity transport uses speci�c routes� transport via air or rail uses speci�c transportation centers (airports and train stations)� particular vehicles and packages have special (un)loading methods and actions� packages and vehicles have (sub)types which must be compatible� vehicles, equipment, routes, and transportation centers may be temporarily unavailable� certain cities may not allow hazardous packages to be transported through them7.2.1.1 ObjectsUM Translog objects include individual locations (cities, etc.), routes, vehicles, equipment,and packages. Each object has a primary type, speci�ed by the predicate type. Primaryobject types include location types, route types, vehicle types, equipment types, and packagetypes. Types are declared as constants rather than as predicates, because we would like tobe able to assert compatibility relations among vehicle types, package types and route types.96

As shown in Figure 7.2, location types are region, city, and city-location. Citylocation subtypes are tcenter (transport center) and not-tcenter (a city location thatis not a transport center). Transport center subtypes are airport and train-station.Non-transport center subtypes are clocation (customer location) and post-office.
region

location

tcenter not-tcenter

airport train-station

city-location city

clocation post-officeFigure 7.2: Location Type HierarchyRegions contain one or more cities speci�ed via the predicate in-region.Cities contain one or more city locations speci�ed via the predicate in-city. Some citiesare compatible with hazardous packages, speci�ed via the predicate pc-compatible.A city location is located in a speci�c city speci�ed via the predicate in-city.A transport center can be used for air/rail direct and indirect transport. Transportcenters can optionally be speci�ed as transport hubs via the hub predicate. Hub transportcenters can be used for indirect transport. Transport centers serve speci�c cities speci�ed viathe predicate serves. Thus air or rail travel from a speci�c city must use a transport centerthat serves that city. Hub transport centers serve speci�c regions, rather than cities. Trans-port centers can be available or not. For example, a particular airport may be temporarilyunavailable due to bad weather.Customer locations are generic locations (e.g., businesses, homes, etc.) within a city thatcan serve as the origin and destination of a package, as can transport centers. Each customerlocation is located in a city speci�ed via the predicate in-city.A post o�ce is similar to a customer location but can be used as the origin and destinationfor packages of type mail.Route types are road-route, rail-route, and air-route. Routes connect locations.Road routes connect two cities. All locations within a city are assumed to be connected byroads, and thus road routes are not speci�ed between individual city locations. Rail and airroutes connect airports and train stations, respectively. Routes have an origin, destination,and route type speci�ed via the predicate connects. Note that routes are directional: tra�cows from the origin to the destination. Routes have an availability status speci�ed via thepredicate available. For example, a particular road route may be temporarily unavailable97

due to construction.Primary vehicle types are truck, airplane, train, and traincar.Trucks and traincars have subtypes: a single physical subtype and an optional specialtysubtype. Physical truck/traincar subtypes are listed below with some examples:� regular: tractor-trailer truck, delivery van, boxcar, etc.� flatbed: atbed truck, atcar, etc.� tanker: tanker truck, tanker car, etc.� hopper: dump truck, hopper car, etc.� mail: mail truck, mail car, etc.� livestock: livestock truck, cattle car, etc.� auto: car carrier truck/traincarSpecialty truck/traincar subtypes are refrigerated and armored to carry produce typeof packages and valuable packages respectively. Specialty subtypes cannot be speci�ed if thetruck or traincar has a physical type of mail, livestock or auto. Vehicles of type train(i.e., train engines) unlike other types of vehicles, do not hold packages themselves but ratherhave attached traincars that hold packages.A vehicle's primary type determines its compatibility with particular routes. Vehicleshave a location and availability speci�ed via the predicates at-vehicle and available,respectively.Equipment types are plane-ramp and crane. Equipment of these types is used to loadplanes and atbed trucks/traincars, respectively. Equipment has a location, speci�ed viathe predicate at-equipment. The status of a plane ramp is described using the predicateramp-connected. The status of a crane is described using the predicate empty.Packages have type Package. Packages have subtypes: a single physical subtype and,optionally, one or more specialty subtypes. Physical package subtypes are listed below withsome examples:� regular : parcels, furniture, etc.� bulky : steel, lumber, etc.� liquid : water, petroleum, chemicals, etc.� granular : sand, ore, etc.� mail : letters sent through the postal service� livestock : cattle, etc. 98

� auto : automobilesSpecialty package subtypes are perishable for frozen food, etc.; hazardous for petroleum,nuclear waste, etc.; and valuable for money, weapons, etc. Specialty subtypes cannot bespeci�ed if the package has a physical subtype of mail, livestock, or auto.The physical subtype of a package must be compatible with the vehicle's primary typeand any physical subtype speci�ed for that vehicle. Packages with specialty subtype ofhazardous may be compatible with certain cities and incompatible with others. Hazardouspackages cannot originate nor pass through cities unless that city is compatible with haz-ardous packages (speci�ed via the predicate pc-compatible).Packages have a location and fees to be collected. Hazardous packages require a permitand warning signs, and valuable packages require insurance.7.2.1.2 ActionsThis section describes the symbols that denote actions in UM Translog domain. Most symbolnames are chosen to be self explanatory.Prior to carrying a package to its destination, fees should be collected, a special permitshould be obtained if the package is of type hazardous, the package should be insuredif it is of type valuable, and all these should be cancelled once the package is deliveredat its destination. These activities are denoted by the action symbols obtain-permit(p),collect-fees(p), collect-insurance(p), and deliver(p), where p is a variable symboldenoting a package.There are a number of actions for loading and unloading packages from/to vehicles,depending on the type of vehicle and package. In some cases, special equipment such ascranes need to be used for that purpose.Loading a regular package into a regular vehicle involves opening the door of the vehicle,putting the package in, and then closing the door, denoted by the actions open-door(v),load-package(p v l), close-door(v). Unloading a regular package involves the samesteps in reverse order, replacing load-package with unload-package(p v l). p is a variableof type package, v is a variable of type vehicle, and l is a variable of type location. l is usedto make sure the vehicle and the package are at the same location.Packages of type valuable can be carried only by vehicles of type armored, and require theadditional steps of posting a guard outside while loading, and posting a guard inside while intransportation and removing the guards afterwards are required. These are denoted by theprimitive tasks post-guard-outside(v), post-guard-inside(v), and remove-guard(v).Packages of type hazardous can be carried only with proper warning signs on the ve-hicle, and the vehicle must be decontaminated afterwards. These actions are denoted byaffix-warning-signs (v), remove-warning-signs (v), anddecontaminate-interior(v).Loading/unloading a truck or traincar of type atbed requires use of a crane denoted byc in the actionspick-up-package-ground(p c l), put-down-package-ground(p c l),99

pick-up-package-vehicle(p c v l), andput-down-package-vehicle(p c v l).Loading a truck or traincar of type hopper involves several actions:connect-chute(v), fill-hopper(p v l), and disconnect-chute(v). Unload is similar,simply replace empty-hopper(p v l) with fill-hopper(p v l).Loading/unloading vehicles of type tanker also involves several actions:connect-hose(v), disconnect-hose(v p), open-valve(v), close-valve(v), fill-tank(vp l), and empty-tank(v p l) in appropriate order.Loading packages of type livestock involves the actions lower-ramp(v),fill-trough(v), load-livestock(p v l), and raise-ramp(v). Unloading involves theactions lower-ramp(v), unload-livestock(p v l), raise-ramp(v),do-clean-interior(v), and unload-livestock(p v l).Loading/unloading packages of type cars involves the actions load-cars(p v l), andunload-cars(p v l). As in the case of livestock, the ramp of the vehicle needs to be loweredprior to loading/unloading, and the it should be raised immediately afterwards.Loading/unloading vehicles of type airplane requires a conveyor ramp (denoted by r) tobe connected and the door of the vehicle to be open prior to the operation, and the ramp to bedisconnected and the door to be closed afterwards. These activities are denoted by the actionsattach-conveyor-ramp(v r l), detach-conveyor-ramp(v r l), open-door(v),close-door(v),load-package(p v l), and load-package(p v l).A vehicle v can be moved from its current location ol to another location dl if thereis a route r of proper type between ol and dl, using the action move-vehicle(v ol dlr). Vehicles of type traincar do not move by themselves but are pulled by vehicles of typetrain instead. Thus a traincar goes wherever the train it is attached to goes. The actions toattach/detach traincars to trains are attach-train-car(t c l), and detach-train-car(tc l).In addition to those actions described above, UM Translog makes use of a dummy actioncalled do-nothing which has no preconditions or e�ects.7.2.1.3 TasksFigure 7.3 presents the organization of tasks and their subtasks, which are discussed below.AT-PACKAGE(package destination) This task requires transporting thepackage to its destination.TRANSPORT(package origin destination) Provided that the package is currently in theorigin location, this task involves picking up the package, carrying it to its destination, anddelivering it.PICKUP(package) This task involves collecting fees, handling insurance and hazardousmaterial permits. Insurance is required only for valuable packages, and permits are requiredonly for hazardous packages.CARRY(package origin destination) This is the task of actually moving the package fromits origin to its destination. This involves choosing a suitable path (a sequence of routes from100

at-package(?p ?d)

transport(?p ?o ?d)

pickup(?p ?o) carry(?p ?o ?d) deliver(?p ?d)

handle-insurance(?p) handle-hazardous(?p)

pickup(?p ?o)

collect-fees(?p)

carry-direct(?p ?o ?d)carry-between-
tcenters(?p ?o ?d)

carry-via-
hub(?p ?o ?d)

load-
vehicle(?p ?v ?o)

move-
vehicle(?v ?o ?d)

unload-
vehicle(?p ?v ?d)

Figure 7.3: Top-level Task Hierarchythe origin to the destination), and moving the package along that path via a series of carry-direct tasks. The diagram in Figure 7.4 shows the possible paths to transport a package.The origin can be either clocation1 (a customer location) or tcenter1 (a transport center),and similarly the destination can be either clocation2 or tcenter2. As seen in the diagram,a package can be carried directly if there is a direct route available, otherwise it has to gothrough one or two transportation centers and possibly a hb. Transport within a city istermed \local" transport. Transport via a direct route (i.e., not involving a hub) is termed\direct" transport. Transport via a hub is termed \indirect" transport.CARRY-DIRECT(package origin destination) This task involves picking a route connect-ing the origin and the destination, and choosing a vehicle that is compatible both with thepackage, and the route. Only those vehicles that are at the origin or one step away fromthe origin can be dispatched. The task is accomplished by moving that vehicle to the ori-gin, loading the package into the vehicle, moving the vehicle to the destination, and �nallyunloading the package.AT-VEHICLE(vehicle destination) If the vehicle is of type truck, plane, or train, it ismoved to the destination, provided there is a direct route available from the current location.The type of the route must be suitable for the type of vehicle. If the vehicle is a train-car, a101

hub

tcenter1 tcenter2

clocation1 clocation2Figure 7.4: Transport Pathstrain must be moved to the location of the train-car, the train-car must be attached to thetrain, the train must be moved to the destination, and then �nally, the train-car must bedetached. Naturally, when a vehicle moves, so does the packages it contains.LOAD/UNLOAD(package vehicle location)Loading and unloading involve issuing a sequence of actions to put the package into andout of the vehicle. The actions to be executed depend on the type of package and vehicle.In particular, valuable packages can be transported only with armored vehicles, and theyrequire guards posted outside while loading/unloading and guards inside, while in transit.Similarly, vehicles carrying hazardous packages need warning signs, which are removed afterthe package is unloaded and the vehicle is decontaminated.7.2.2 A Sample Problem in UM Translog DomainThe following illustrates the speci�cation of an actual domain problem to UMCP. Thissample problem involves delivering a regular, valuable package pkg-1 to a customer locationcity1-cl2. Initially the package is at city1-cl1. Full description of the problem appears inthe appendix.The initial state for UM Translog problems are usually rather large, because in additionto the problem speci�cation, it contains domain information regarding the compatibility ofvarious package types, vehicle types, and route types. It also contains all the geographicinformation regarding the cities, routes, transportation centers and customer locations.Here is how UMCP solves this problem:USER(13):USER(14): (search-for-plan in-tn)
N:
 AT-PACKAGE
 (PKG-1 CITY1-CL2)

N:
 AT-PACKAGE
 (PKG-1 CITY1-CL2) 102

Name: tnFormula: TVariables: NILDisjoint Variables: NILPostponed Orderings: NILPostponed State Constraints: NILRe�nement Strategy: (EXPAND N)This is the input task network. Since the constraint formula and all the auxiliary constraintsare empty, UMCP chooses to expand that task.
N:
 do-nothing
 ()

N:
 do-nothing
 ()

N:
 do-nothing
 ()Name: tn-1Formula: (BEFORE (AT-PACKAGE PKG-1 CITY1-CL2) (FIRST N))Variables: NILDisjoint Variables: NILPostponed Orderings: NILPostponed State Constraints: NILRe�nement Strategy: (re�ne-constraint ((BEFORE (AT-PACKAGE PKG-1 CITY1-CL2)(FIRST N))))One way of accomplishing AT-PACKAGE(PKG-1 CITY1-CL-2) is not to do anything, providedthat it is already there, as seen in the constraint formula. This node gets pruned when this constraintis enforced, since the package is in a di�erent location.
N1148:
 TRANSPORT
 (PKG-1 ?ORIGIN147 CITY1-CL2)

N1148:
 TRANSPORT
 (PKG-1 ?ORIGIN147 CITY1-CL2)

N1148:
 TRANSPORT
 (PKG-1 ?ORIGIN147 CITY1-CL2)

N1148:
 TRANSPORT
 (PKG-1 ?ORIGIN147 CITY1-CL2)Name: tn-2Formula: (AND (INITIALLY (AT-PACKAGE PKG-1 ?ORIGIN147)) (AFTER (AT-PACKAGEPKG-1 CITY1-CL2) (LAST N1148)))Variables: ((?ORIGIN147 all))Disjoint Variables: NILPostponed Orderings: NILPostponed State Constraints: NILRe�nement Strategy: (re�ne-constraint ((INITIALLY (AT-PACKAGE PKG-1 ?ORIGIN147))(AFTER (AT-PACKAGE PKG-1 CITY1-CL2) (LAST N1148))))Thus UMCP tries to transport the package, which involves �nding out its original location,denoted by the variable ?ORIGIN147. UMCP also needs to ensure the package will reach its desti-nation in the end, as speci�ed in the constraint formula.
N1148:
 TRANSPORT
 (PKG-1 CITY1-CL1 CITY1-CL2)

N1148:
 TRANSPORT
 (PKG-1 CITY1-CL1 CITY1-CL2)

N1148:
 TRANSPORT
 (PKG-1 CITY1-CL1 CITY1-CL2)

N1148:
 TRANSPORT
 (PKG-1 CITY1-CL1 CITY1-CL2)

N1148:
 TRANSPORT
 (PKG-1 CITY1-CL1 CITY1-CL2)Name: tn-2-1Formula: TVariables: ((?ORIGIN147 CITY1-CL1))Disjoint Variables: NIL 103

Postponed Orderings: NILPostponed State Constraints: ((AT-PACKAGE (AFTER (AT-PACKAGE PKG-1 CITY1-CL2) (LAST N1148))))Re�nement Strategy: (EXPAND N1148)UMCP has determined that the origin of the package is CITY1-CL1, as can be seen from the\variables" list. It has promised to have the package at its destination in the end, as can be seenin the postponed state constraints. It suggests to expand the transport task next.
N1149:
 PICKUP
 (PKG-1)

N2150:
 CARRY
 (PKG-1 CITY1-CL1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N2150:
 CARRY
 (PKG-1 CITY1-CL1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N2150:
 CARRY
 (PKG-1 CITY1-CL1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N2150:
 CARRY
 (PKG-1 CITY1-CL1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N2150:
 CARRY
 (PKG-1 CITY1-CL1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N2150:
 CARRY
 (PKG-1 CITY1-CL1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)Name: tn-2-1-1Formula: (AND (ORD (LAST N1149) (FIRST N2150)) (ORD (LAST N2150) (FIRST N3151)))Variables: ((?ORIGIN147 CITY1-CL1))Disjoint Variables: NILPostponed Orderings: NILPostponed State Constraints: ((AT-PACKAGE (AFTER (AT-PACKAGE PKG-1 CITY1-CL2) (LAST N3151 N2150 N1149))))Re�nement Strategy: (re�ne-constraint ((ORD (LAST N2150) (FIRST N3151)) (ORD(LAST N1149) (FIRST N2150))))

N1149:
 PICKUP
 (PKG-1)

N2150:
 CARRY
 (PKG-1 CITY1-CL1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N2150:
 CARRY
 (PKG-1 CITY1-CL1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N2150:
 CARRY
 (PKG-1 CITY1-CL1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N2150:
 CARRY
 (PKG-1 CITY1-CL1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N2150:
 CARRY
 (PKG-1 CITY1-CL1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N2150:
 CARRY
 (PKG-1 CITY1-CL1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N2150:
 CARRY
 (PKG-1 CITY1-CL1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)Name: tn-2-1-1-1Formula: TVariables: ((?ORIGIN147 CITY1-CL1))Disjoint Variables: NILPostponed Orderings: NILPostponed State Constraints: ((AT-PACKAGE (BEFORE (AT-PACKAGE PKG-1 CITY1-CL2) (LAST N3151))))Re�nement Strategy: (EXPAND N2150)Processing the constraints selected at the previous iteration has caused UMCP to order thetasks.Two iterations later... 104

N1149:
 PICKUP
 (PKG-1)

N4186:
 UNLOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N3185:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL2)

N2184:
 LOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL1)

N1183:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL1)

N1149:
 PICKUP
 (PKG-1)

N4186:
 UNLOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N3185:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL2)

N2184:
 LOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL1)

N1183:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL1)

N1149:
 PICKUP
 (PKG-1)

N4186:
 UNLOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N3185:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL2)

N2184:
 LOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL1)

N1183:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL1)

N1149:
 PICKUP
 (PKG-1)

N4186:
 UNLOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N3185:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL2)

N2184:
 LOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL1)

N1183:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL1)

N1149:
 PICKUP
 (PKG-1)

N4186:
 UNLOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N3185:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL2)

N2184:
 LOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL1)

N1183:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL1)

N1149:
 PICKUP
 (PKG-1)

N4186:
 UNLOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N3185:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL2)

N2184:
 LOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL1)

N1183:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL1)

N1149:
 PICKUP
 (PKG-1)

N4186:
 UNLOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N3185:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL2)

N2184:
 LOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL1)

N1183:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL1)

N1149:
 PICKUP
 (PKG-1)

N4186:
 UNLOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N3185:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL2)

N2184:
 LOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL1)

N1183:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL1)

N1149:
 PICKUP
 (PKG-1)

N4186:
 UNLOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N3185:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL2)

N2184:
 LOAD-TOP
 (PKG-1 ?VEHICLE176 CITY1-CL1)

N1183:
 AT-VEHICLE
 (?VEHICLE176 CITY1-CL1)Name: tn-2-1-1-1-1-1Formula:(AND (ORD (LAST N1183) (FIRST N2184)) (ORD (LAST N2184) (FIRST N3185))(ORD (LAST N3185) (FIRST N4186))(BEFORE (AT-PACKAGE PKG-1 CITY1-CL1) (FIRST N2184))(INITIALLY (TYPE PKG-1 ?PTYPE177))(BETWEEN (AT-VEHICLE ?VEHICLE176 CITY1-CL1) (LAST N1183) (FIRST N2184))(BETWEEN (AT-PACKAGE PKG-1 ?VEHICLE176) (LAST N2184) (FIRST N4186))(INITIALLY (AVAILABLE ?VEHICLE176))(INITIALLY (TYPE ?VEHICLE176 ?VTYPE178))(INITIALLY (PV-COMPATIBLE ?PTYPE177 ?VTYPE178))(OR (AND (INITIALLY (TYPE ?VEHICLE176 TRUCK))(INITIALLY (IN-CITY CITY1-CL1 ?OCITY179))(INITIALLY (IN-CITY CITY1-CL2 ?OCITY179)))(AND (INITIALLY (TYPE ?VEHICLE176 TRUCK))(INITIALLY (IN-CITY CITY1-CL1 ?OCITY179))(INITIALLY (IN-CITY CITY1-CL2 ?DCITY180))(INITIALLY (CONNECTS ?ROUTE182 ROAD-ROUTE ?OCITY179 ?DCITY180))(INITIALLY (AVAILABLE ?ROUTE182)))(AND (INITIALLY (:TYPE ?VEHICLE176 TRUCK))(INITIALLY (CONNECTS ?ROUTE182 ?RTYPE181 CITY1-CL1 CITY1-CL2))(INITIALLY (RV-COMPATIBLE ?RTYPE181 ?VHTYPE))(INITIALLY (TYPE ?VEHICLE176 ?VHTYPE))(INITIALLY (AVAILABLE ?ROUTE182)))))Variables: ((?VEHICLE176 all) (?PTYPE177 all) (?VTYPE178 all) (?OCITY179 all) (?DC-ITY180 all) (?RTYPE181 all) (?ROUTE182 all) (?ORIGIN147 CITY1-CL1))Disjoint Variables: NILPostponed Orderings: NILPostponed State Constraints: ((AT-PACKAGE (BEFORE (AT-PACKAGE PKG-1 CITY1-CL2) (LAST N3151))))Re�nement Strategy: (re�ne-constraint((INITIALLY (PV-COMPATIBLE ?PTYPE177 ?VTYPE178))(INITIALLY (TYPE ?VEHICLE176 ?VTYPE178))(INITIALLY (AVAILABLE ?VEHICLE176))(INITIALLY (TYPE PKG-1 ?PTYPE177))(ORD (LAST N3185) (FIRST N4186))(ORD (LAST N2184) (FIRST N3185))(ORD (LAST N1183) (FIRST N2184)) 105

(BEFORE (AT-PACKAGE PKG-1 CITY1-CL1) (FIRST N2184))(BETWEEN (AT-PACKAGE PKG-1 ?VEHICLE176) (LAST N2184) (FIRST N4186))(BETWEEN (AT-VEHICLE ?VEHICLE176 CITY1-CL1) (LAST N1183) (FIRST N2184))))At this stage the task networks start to get quite big. UMCP picks all the unit clauses in theconstraint formula for re�nement.
N1149:
 PICKUP
 (PKG-1)

N1183:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL1)

N2184:
 LOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL1)

N3185:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL2)

N4186:
 UNLOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N1183:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL1)

N2184:
 LOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL1)

N3185:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL2)

N4186:
 UNLOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N1183:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL1)

N2184:
 LOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL1)

N3185:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL2)

N4186:
 UNLOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N1183:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL1)

N2184:
 LOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL1)

N3185:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL2)

N4186:
 UNLOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N1183:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL1)

N2184:
 LOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL1)

N3185:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL2)

N4186:
 UNLOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N1183:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL1)

N2184:
 LOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL1)

N3185:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL2)

N4186:
 UNLOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N1183:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL1)

N2184:
 LOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL1)

N3185:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL2)

N4186:
 UNLOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N1183:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL1)

N2184:
 LOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL1)

N3185:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL2)

N4186:
 UNLOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N1183:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL1)

N2184:
 LOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL1)

N3185:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL2)

N4186:
 UNLOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)

N1149:
 PICKUP
 (PKG-1)

N1183:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL1)

N2184:
 LOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL1)

N3185:
 AT-VEHICLE
 (TRUCK-1 CITY1-CL2)

N4186:
 UNLOAD-TOP
 (PKG-1 TRUCK-1 CITY1-CL2)

N3151:
 deliver
 (PKG-1)Name: tn-2-1-1-1-1-1-1Formula: (OR (AND (INITIALLY (IN-CITY CITY1-CL1 ?OCITY179))(INITIALLY (IN-CITY CITY1-CL2 ?OCITY179)))(AND (INITIALLY (IN-CITY CITY1-CL1 ?OCITY179))(INITIALLY (IN-CITY CITY1-CL2 ?DCITY180))(INITIALLY (CONNECTS ?ROUTE182 ROAD-ROUTE ?OCITY179 ?DCITY180))(INITIALLY (AVAILABLE ?ROUTE182))))Variables: ((?ORIGIN147 CITY1-CL1) (?ROUTE182 all) (?RTYPE181 all) (?DCITY180 all)(?OCITY179 all) (?VTYPE178 ARMORED) (?PTYPE177 VALUABLE) (?VEHICLE176 TRUCK-1)) Disjoint Variables: NILPostponed Orderings: NIL 106

Postponed State Constraints: ((AT-VEHICLE (AFTER (AT-VEHICLE ?VEHICLE176CITY1-CL1) (LAST N1183)))(AT-PACKAGE (BEFORE (AT-PACKAGE PKG-1 CITY1-CL2) (LAST N3151))(AFTER (AT-PACKAGE PKG-1 ?VEHICLE176) (LAST N2184))))Re�nement Strategy: (re�ne-constraint ((INITIALLY (IN-CITY CITY1-CL1 ?OCITY179)))((NOT (INITIALLY (IN-CITY CITY1-CL1 ?OCITY179)))))UMCP has processed the constraints selected in the previous iteration, and determined the valuesof some of the variables. Since the constraint formula contains a disjunction, UMCP has picked anatomic constraint and its negation to work on further in separate branches.Many iterations later...

107

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

108

Name: tn-2-1-1-1-1-1-1-1-2-1-2-2-1-2-1-1-1-1-2-1-2-1-2-1-2-1-1-1-1-1-2-2-2-2-2-2-2-1-1Formula: (INITIALLY (TYPE PKG-1 VALUABLE))Variables: ((?ORIGIN147 CITY1-CL1) (?ROUTE182 all) (?RTYPE181 all) (?DCITY180all) (?OCITY179 CITY1) (?VTYPE178 ARMORED) (?PTYPE177 VALUABLE) (?VEHICLE176TRUCK-1) (?DCITY202 all) (?OCITY201 CITY1) (?ORIGIN200 CITY1-CL2) (?R199 LOCAL-ROAD-ROUTE) (?DCITY219 all) (?OCITY218 CITY1) (?ORIGIN217 CITY1-CL1) (?R216 LOCAL-ROAD-ROUTE))Disjoint Variables: NILPostponed Orderings: NILPostponed State Constraints:((AT-VEHICLE (AFTER (AT-VEHICLE TRUCK-1 CITY1-CL1) (LAST N1293))) (DOOR-OPEN(AFTER (DOOR-OPEN TRUCK-1) (LAST N1294)) (AFTER (DOOR-OPEN TRUCK-1) (LASTN1293))) (AT-PACKAGE (AFTER (AT-PACKAGE PKG-1 CITY1-CL1) (LAST N1293)) (AF-TER (AT-PACKAGE PKG-1 ?VEHICLE176) (LAST N295))))Re�nement Strategy: (re�ne-constraint ((INITIALLY (TYPE PKG-1 VALUABLE))))

109

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N3308:
 HANDLE-HAZARDOUS
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

110

Name: tn-2-1-1-1-1-1-1-1-2-1-2-2-1-2-1-1-1-1-2-1-2-1-2-1-2-1-1-1-1-1-2-2-2-2-2-2-2-1-1-1Formula: TVariables: ((?ORIGIN147 CITY1-CL1) (?ROUTE182 all) (?RTYPE181 all) (?DCITY180all) (?OCITY179 CITY1) (?VTYPE178 ARMORED) (?PTYPE177 VALUABLE) (?VEHICLE176TRUCK-1) (?DCITY202 all) (?OCITY201 CITY1) (?ORIGIN200 CITY1-CL2) (?R199 LOCAL-ROAD-ROUTE) (?DCITY219 all) (?OCITY218 CITY1) (?ORIGIN217 CITY1-CL1) (?R216 LOCAL-ROAD-ROUTE))Disjoint Variables: NILPostponed Orderings: NILPostponed State Constraints: NILRe�nement Strategy: (EXPAND N3308)

111

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1312:
 obtain-permit
 (PKG-1)

112

Name: tn-2-1-1-1-1-1-1-1-2-1-2-2-1-2-1-1-1-1-2-1-2-1-2-1-2-1-1-1-1-1-2-2-2-2-2-2-2-1-1-1-1Formula: (INITIALLY (TYPE PKG-1 HAZARDOUS) N1312)Variables: ((?ORIGIN147 CITY1-CL1) (?ROUTE182 all) (?RTYPE181 all) (?DCITY180all) (?OCITY179 CITY1) (?VTYPE178 ARMORED) (?PTYPE177 VALUABLE) (?VEHICLE176TRUCK-1) (?DCITY202 all) (?OCITY201 CITY1) (?ORIGIN200 CITY1-CL2) (?R199 LOCAL-ROAD-ROUTE) (?DCITY219 all) (?OCITY218 CITY1) (?ORIGIN217 CITY1-CL1) (?R216 LOCAL-ROAD-ROUTE))Disjoint Variables: NILPostponed Orderings: NILPostponed State Constraints: NILRe�nement Strategy: (re�ne-constraint ((INITIALLY (TYPE PKG-1 HAZARDOUS) N1312)))

113

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

N1310:
 collect-insurance
 (PKG-1)

N1203:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N232:
 do-nothing
 ()

N305:
 post-guard-outside
 (TRUCK-1)

N1293:
 open-door
 (TRUCK-1)

N2262:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1291:
 close-door
 (TRUCK-1)

N295:
 post-guard-inside
 (TRUCK-1)

N1220:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N304:
 post-guard-outside
 (TRUCK-1)

N1294:
 open-door
 (TRUCK-1)

N2289:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1292:
 close-door
 (TRUCK-1)

N234:
 do-nothing
 ()

N3151:
 deliver
 (PKG-1)

N1306:
 collect-fees
 (PKG-1)

N1311:
 do-nothing
 ()

114

Name: tn-2-1-1-1-1-1-1-1-2-1-2-2-1-2-1-1-1-1-2-1-2-1-2-1-2-1-1-1-1-1-2-2-2-2-2-2-2-1-1-1-2Formula: (INITIALLY (:TYPE PKG-1 HAZARDOUS))Variables: ((?ORIGIN147 CITY1-CL1) (?ROUTE182 all) (?RTYPE181 all) (?DCITY180all) (?OCITY179 CITY1) (?VTYPE178 ARMORED) (?PTYPE177 VALUABLE) (?VEHICLE176TRUCK-1) (?DCITY202 all) (?OCITY201 CITY1) (?ORIGIN200 CITY1-CL2) (?R199 LOCAL-ROAD-ROUTE) (?DCITY219 all) (?OCITY218 CITY1 all) (?ORIGIN217 CITY1-CL1) (?R216LOCAL-ROAD-ROUTE))Disjoint Variables: NILPostponed Orderings: NILPostponed State Constraints: NILRe�nement Strategy: (re�ne-constraint ((INITIALLY (:TYPE PKG-1 HAZARDOUS))))Here is one solution

115

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

N1163:
 collect-insurance
 (PKG-1)

N156:
 move-vehicle
 (TRUCK-1 CITY1-CL2 CITY1-CL1 LOCAL-ROAD-ROUTE)

N85:
 do-nothing
 ()

N158:
 post-guard-outside
 (TRUCK-1)

N1146:
 open-door
 (TRUCK-1)

N2115:
 load-package
 (PKG-1 TRUCK-1 CITY1-CL1)

N1144:
 close-door
 (TRUCK-1)

N148:
 post-guard-inside
 (TRUCK-1)

N173:
 move-vehicle
 (TRUCK-1 CITY1-CL1 CITY1-CL2 LOCAL-ROAD-ROUTE)

N157:
 post-guard-outside
 (TRUCK-1)

N1147:
 open-door
 (TRUCK-1)

N2142:
 unload-package
 (PKG-1 TRUCK-1 CITY1-CL2)

N1145:
 close-door
 (TRUCK-1)

N87:
 do-nothing
 ()

N34:
 deliver
 (PKG-1)

N1159:
 collect-fees
 (PKG-1)

N1164:
 do-nothing
 ()

116

Name: tn-2-1-1-1-1-1-1-1-2-1-2-2-1-2-1-1-1-1-2-1-2-1-2-1-2-1-1-1-1-1-2-2-2-2-2-2-2-1-1-1-2-1Formula: TVariables: ((?ORIGIN0 CITY1-CL1) (?ROUTE35 ALL) (?RTYPE34 ALL) (?DCITY33ALL) (?OCITY32 CITY1) (?VTYPE31 ARMORED) (?PTYPE30 VALUABLE) (?VEHICLE29TRUCK-1) (?DCITY55 ALL) (?OCITY54 CITY1) (?ORIGIN53 CITY1-CL2) (?R52 LOCAL-ROAD-ROUTE) (?DCITY72 ALL) (?OCITY71 CITY1) (?ORIGIN70 CITY1-CL1) (?R69 LOCAL-ROAD-ROUTE))Disjoint Variables: NILPostponed Orderings: NILPostponed State Constraints: NILSearch for more (y/n)? nUSER(15):In solving this problem, UMCP has generated 85 nodes, and expanded 63 nodes. Thedistance of the solution to the input node is 42 re�nements. As can be seen from the nameof the solution task network, UMCP deviated from the solution path 17 times, but theconstraint re�nement strategies detected dead-ends in very few steps, with an avarage of(63 � 42)=17 = 1:24 steps.7.3 Case Study 2: CNF DomainCNF domain is an arti�cial domain, which can be easily encoded in the HTN language, butimpossible to represent in the state-based planning framework.This domain is designed so that the rules for any two contextfree grammars can berepresented in the initial state, and the plans correspond to strings that are common to thelangugages generated by the corresponding grammars.This is the domain that was used in the proof of Theorem 5 to demonstrate that thereexists planning domains that can be encoded in the HTN language for which planning issemidecidable. A detailed explanation of this domain is presented in Appendix A, in theproof of Theorem 5.7.3.1 Domain Speci�cation for the CNF Domain(clear-domain)(constants a1 a2 b1 b2 S1 S2 Q1 Q2 dummy)Si and Qi are the nonterminal grammar symbols ai and bi are the terminal grammar symbols.dummy corresponds to the empty string.(variables v v1 v2)(predicates Pa Pb R turn)Proposition Pa and Pb are used to represent the terminal symbol contributed by the �rst gram-mar, to enforce the second grammar to contribute the same symbol. Proposition turn is used tomake sure each grammar contributes a terminal symbol alternatingly. Predicate R is used to encodegrammar rules.(primitive-tasks Fa1 Fa2 Fb1 Fb2) 117

(compound-tasks G)G has arity 1, its argument is a grammar symbol. If the argument ,is a terminal symbol, thenit expands to the corresponding primitive task. If it is a nonterminal symbol, then it can expandto any sequence of primitive tasks, which correspond to the strings that can be derived from thatnonterminal symbol.(operator Fa1():pre ((~turn)):post ((Pa)(turn)))\\(operator Fa2()\\:pre ((Pa))\\:post ((~Pa)(~turn)))\\(operator Fb1():pre ((~turn)):post ((Pb)(turn)))(operator Fb2():pre ((Pb)):post((~Pb)(~turn)))(declare-method G(v):expansion((n Fa1)):formula (veq v a1))(declare-method G(v):expansion((n Fa2)):formula (veq v a2))(declare-method G(v):expansion((n Fb1)):formula (veq v b1))(declare-method G(v):expansion((n Fb2)):formula (veq v b2))(declare-method G(v):expansion((n do-nothing)) 118

:formula (veq v dummy))(declare-method G(v):expansion((n1 G v1)(n2 G v2)):formula (and(ord n1 n2)(initially (R v v1 v2))))7.3.2 A Sample ProblemLet us de�ne two context-free languages, and ask UMCP to �nd a string that is common to both.The �rst language is fanbnjn � 0g. The corresponding grammar isS ! �S ! aQQ ! SbThe second language is f(ab)njn � 1g. The corresponding grammar isS ! abS ! aQQ ! bSBelow is the encoding of these two grammars in the initial state of the sample problem.(initially-true;grammar 1(R S1 dummy dummy)(R S1 a1 Q1)(R Q1 S1 b1);grammar 2(R S2 a2 b2)(R S2 a2 Q2)(R Q2 b2 S2))(setq g-tn (create-tn(after (~turn) (last n1 step1))(n1 G S1)(step1 G S2)))The input task network contains the tasks corresponding to the start symbols of the two context-free languages, and the constraint in the constraint formula ensures that the string generated byS1 and S2 has the same length. 119

7.3.3 Solving the Sample Problem with UMCPThe CNF domain, in spite of its simplicity, is much harder to plan than the UM Translog domain.UMCP �nds the solution string ab only after 113 node expansions.USER(13):USER(14): (search-for-plan g-tn)This is the initial problem:
N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:
 G
 (S2)

N1:
 G
 (S1)

STEP1:Name: tnFormula: (AFTER (TURN) (LAST N1 STEP1))Variables: NILDisjoint Variables: NILPostponed Orderings: NILPostponed State Constraints: NILRe�nement Strategy: (9 ((AFTER (TURN) (LAST N1 STEP1))))Here is the solution:
N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

N320:
 fa1
 ()

N334:
 do-nothing
 ()

N325:
 do-nothing
 ()

N290:
 fb1
 ()

N278:
 fb2
 ()

N301:
 fa2
 ()

Name: tn-1-6-2-6-1-6-1-4-1-3-1-2-1-6-1-1-1-5-1-5-1Formula: TVariables: ((V2303 DUMMY) (V1304 DUMMY) (V1167 A1) (V2166 Q1) (V1254 A2) (V2253B2) (V1264 S1) (V2263 B1)) 120

Disjoint Variables: NILPostponed Orderings: NILPostponed State Constraints: NIL

121

Chapter 8Conclusion8.1 Research ContributionsPlanning has a wide range of applications in areas such as robotics, manufacturing, spacemissions, and military force deployment. The size and complexity of these applications arerapidly growing beyond the capabilities of the people responsible for planning. There is greateconomic pressure to automate this process in order to reduce the cost of planning e�ort,and to improve the quality of produced plans.AI planning research has not yet met these challenges. Part of the reason, in my opinion,has been the gap between theoretical work and application-oriented work on planning. Lackof interaction between planning theory and practice has impeded progress in both.A signi�cant portion of the application-oriented work in planning has been based onHTN techniques. The fundamental contribution of this dissertation has been to provide atheoretical framework for HTN planning. The HTN framework consists of a formal HTNlanguage and the associated syntax and semantics. This framework facilitates learning aboutHTN planning, writing correct HTN problem speci�cations, developing correct HTN plan-ning algorithms, and also enables further analytical studies on HTN planning. Each of thesepoints will be explained in subsequent paragraphs.The HTN framework provides a precise, consistent and coherent meaning to each HTNconstruct. The HTN paradigm comes with many powerful concepts and constructs suchas compound tasks to model complex planning jobs, methods as a declarative constructto de�ne tasks, �lter conditions to weed out undesirable solutions and prune the searchspace. Previously, the meaning of these constructs were embedded in the implementationdetails of HTN planning systems, and their meanings varied depending on the planningsystem. For example, task expansions had the issue of what to do with high-level e�ects andconstraints associated with the expanded task. Planning systems usually made an arbitrarydecision to designate one of the tasks in the expansion to carry over the constraints fromthe expanded task. The HTN framework addresses this issue by introducing constructs thatmake it possible to refer to the beginning and end of a single task or a set of tasks. Thus theconstraints on an expanded task could be passed over to the set of tasks in the expansion.HTN constructs are powerful, but also complex. It is rather di�cult to learn those122

constructs by examining the source code for implemented planning systems, or even theiruser manuals. The HTN framework provides a mathematical model, which can be taughtindependent of the implementation features of complex planning systems. Although the HTNconstructs are complex, the concepts are quite intuitive. The preciseness, consistency andcoherency of the framework makes learning easier. The UMCP planning system complementsthe learning process by showing the HTN planning process in action. It (optionally) showswhat the planner does at every step, so that the HTN constructs can be better understood.The HTN framework has already made its way into an acclaimed AI text book, thanks toRussell and Norvig [57].Writing correct domain speci�cations is a very challenging job, particularly for largeapplications. It can be even more di�cult, if there are doubts about how the domain spec-i�cations are going to be interpreted by the planner. When the produced solutions areincorrect, it may take considerable e�ort to �nd out whether there is a mistake in the do-main speci�cations, or a bug in the planner code. For example, developing speci�cations forthe UM Translog Domain [4] involved several months of debugging both the NONLIN plan-ning system, and the domain speci�cation. Developing speci�cations for the same domainin the HTN language took little e�ort, even considering the experience from the same job onNONLIN. The HTN framework helps writing domain speci�cations by providing a precisemodel, where the entities in an application domain can be cast into.The operational semantics in the HTN framework facilitates developing correct algo-rithms for planning systems, by providing a speci�cation for the set of solutions to HTNproblems. It also gives a criterion for evaluating HTN algorithms for soundness and com-pleteness. The development of the UMCP planning system has been guided by the HTNframework, and thus it could be made sound and complete.Analytical tools can be a big asset in studying and improving HTN planning systems.The HTN framework has made it possible to use such tools to get a deeper understandingof HTN planning. The complexity and expressivity analyses presented in this dissertationserve to this purpose.This dissertation contains a complexity analysis of HTN planning, which brings a deepunderstanding of the factors that contribute to the computational cost of solving HTNproblems. This analysis reveals that handling interactions among subtasks, and particularlythose interactions resulting from state constraints are the most complex aspect of solvingHTN problems. Limiting those interactions { for instance by restricting all task networksto be totally ordered { signi�cantly reduces the complexity. The complexity of STRIPS-style planning is mostly inuenced by the size and structure of the state space. The HTNcomplexity analysis shows that the structure of compound tasks is a much more importantfactor compared to the state space, in the complexity of solving HTN problems. Particularlythose tasks which can be accomplished in in�nitely many ways (i.e., recursive tasks, whoseexpansions may contain themselves) are di�cult to deal with.The de�nitions developed to compare the expressivity of planning languages have beenused to investigate the similarities and di�erences between state-based planning and HTNplanning. This study enhances our understanding of both paradigms, and facilitates transfer123

of results from one paradigm to the other. It reveals that the relationship between state-based planning and HTN planning is akin to the relationship between regular languagesand context-free languages. The transformations from the STRIPS language to the HTNlanguage have been used to prove some of the complexity results on HTN planning.The de�nition of solutions to HTN planning problems, and the insights gained from theanalyses results have been used to develop a provably correct HTN algorithm, which havebeen implemented in the UMCP planning system. The UMCP planning system serves as atestbed for conducting experiments to investigate new ideas on HTN planning. It can alsobe a valuable education tool for teaching HTN planning.8.2 Future Research DirectionsThe current state of the art in planning research has not yet reached a level to accommodatethe demands of the planning applications. Developing fast, reliable planning systems thatwork well in planning applications is still a great challenge for planning researchers. HTNplanning paradigm is a signi�cant improvement over state-based planning. Nonetheless, itneeds to be extended and improved in several ways to meet the challenges from planningapplications, as outlined in the following sections.8.2.1 Improving Performance of HTN PlanningHTN planning constructs can represent rather complex planning problems. Solving thoseproblems in a reasonable amount of time is very di�cult. The UMCP planning systemmeets part of this challenge by providing ways domain-speci�c information can be utilizedto improve its performance. Two of these ways are user-speci�c critics and high-level searchheuristics. There are several other ways that need to be explored.The choice of commitment strategy is very critical in determining the structure of thesearch space and thus the overall performance of planning systems. A planner makingdecisions at the right order can be tremendously more e�cient than a planner making thesedecisions in an arbitrary order. There is already a signi�cant body of work in state-basedplanning framework on abstraction hierarchies. This work can be extended to the HTNframework, and it can provide good ways of deciding which task to expand �rst. Re�nementstrategies in HTN planning are numerous: a planner can either pick a task to expand, a listof constraints to enforce, or a domain-speci�c critic to call. There are many ways of choosinga re�nement strategy at each iteration. Deciding the order to expand tasks is a small partof it. There is a clear need for devising new commitment strategies and experimentation.Most probably, there will not be a commitment strategy that works well in all planningproblems. Controlled experiments with commitment strategies may serve to identify keyfeatures of planning problems, to help select the most e�cient commitment strategy for agiven problem.The structure of HTN planning as re�nement search is very suitable for parallel anddistributed implementations. Such implementations can enable us to solve larger planning124

problems.HTN planning can bene�t from case-based planning techniques to guide the high-levelsearch, to assess which branches in the search space are most likely to lead to solutions. Itmay also be possible to develop case-based reasoning techniques to act as domain-speci�ccritics. There has been some recent work on sound and complete plan reuse in the state-based planning framework. Ways of accomplishing the same on HTN planning can be veryhelpful in providing speed up.8.2.2 Expanding Capabilities of HTN PlanningIn order to keep the basic HTN framework simple and easy to understand, context-dependente�ects and quanti�ed conditions are not allowed in the action representation. Furthermore,actions with durations and probabilistic e�ects are not addressed in this dissertation. Ex-tending the representation for primitive tasks to cover these would be very useful.Planning systems situated in real-world applications need to interact with a number ofother software systems. For example, a planning systemmay need to access a ight databasefor schedules, or a geometric reasoner to analyze mechanical parts in a design. There isalready a considerable body of work on database community for integrating heterogeneousinformation sources. Providing the same capability for planning systems would be extremelyvaluable.In large scale planning applications, the planning domain may be so complicated that itmay be infeasible to implement a single centralized planning system with expertise in everyaspect of the problem. A distributed, agent-based approach may be more appropriate. Sucha system would be composed of a number of agents, each agent expert in a small part ofthe problem, and controlling a small subset of the resources. Resolving interactions amongagents and facilitating communication among agents is a critical part of such a system. TheHTN language can be developed further to be the communication medium among agents,and the HTN constraint-handling techniques may be developed further to resolve conictsamong agents.Classical AI planning systems usually work o�-line. This is not suitable for dynamicdomains with uncertainty, which require planning continuously and responding to unex-pected situations. In such domains new tasks arrive continuously, while some tasks are beingplanned, and yet some others are being executed. Carrying the HTN planning techniquesto an agent-based platform may also facilitate interleaving planning and execution.
125

Appendix AProofs of TheoremsTheorem 4 plan existence is strictly semi-decidable, even if P is restricted to bepropositional, to have at most two tasks in any task network, and to have only totallyordered methods.Proof.Membership: We can restate plan existence as 9k solk(d; I;D) 6= ;. Thus the problemis in �1.Hardness: Given two context-free grammars G1 and G2, whether L(G1) \ L(G2) is non-empty is an undecidable problem[32]. We de�ne a reduction from this problem to planexistence as follows:Without loss of generality, assume both G1 and G2 have the same binary alphabet �, andthey are in Chomsky normal form (at most two symbols at the right hand side of productionrules). Refer to [32] to see how any context-free grammar can be converted into this form.Similarly, assume that the sets of non terminals �1 and �2 for each grammar are disjoint; i.e.�1 \ �2 = ;. We also assume neither language contains the empty string. It is easy to checkwhether a CFG derives empty string. If both languages contain the empty string, then theirintersection is non-empty; we can simply return a simple HTN problem that has a solution.If one of the languages does not contain the empty string, it does not a�ect the intersectionto remove the empty string from the other language.It is quite easy to see that using methods we can simulate context-free grammars: Prim-itive task symbols mimic the terminals, compound task symbols mimic the non-terminals,and methods mimic the production rules. The di�culty is in making sure there is a stringproduced by both G1 and G2. We achieve this with the help of the constraints in methods.For each terminal a 2 �, we introduce a proposition pa. We also need another propositioncalled turn.Let the initial state I = fturng. 126

For each terminal a 2 �, we introduce two primitive tasks (one for each grammar) fa1and fa2 such that fa1 has the preconditions fturng and e�ects fpa;:turng; fa2 has thepreconditions fpa;:turng and e�ects f:pa; turng.Intuitively, fa1 produces pa, and fa2 consumes pa. The proposition turn ensures that weuse these primitive tasks alternately.For each non-terminal B in each grammar, we introduce a compound task symbol tB.For each production rule R : A! B1B2, we introduce a method(tA; [(n1 : �1)(n2 : �2) (n1 � n2)]), where �i = 8><>: perform[tBi] if Bi is a nonterminal;do[fa1] if Bi is a terminal a, and R is a production rule of G1;do[fa2] if Bi is a terminal a, and R is a production rule of G2.The input task network contains the three tasks perform[tS1], perform[tS2], and do[flast],where S1; S2 are the starting symbols of the grammars G1; G2 respectively, and flast is aprimitive task with no e�ects. The constraint formula states that tS1 � tlast, and tS2 � flast,and that turn needs to be true immediately before flast. The last condition ensures that thelast primitive task fpa belongs to G2.The task decompositions mimic the production rules of the grammars. The propositionturn ensures that each grammar contributes a primitive action to any plan alternatively, andthe conditions with propositions pa ensure that whenever G1 contributes a primitive taskfa1, G2 has to contribute fa2. Thus, there is a plan i� G1 and G2 have a common word intheir corresponding languages.Theorem 5 There are HTN planning domains that contain only totally ordered methodseach with at most two tasks, for which plan existence is strictly semi-decidable.Proof: We construct a planning domain D and show that planning in this domain is semi-decidable, using a reduction from the intersection of context-free grammars problem.Domain Description We use four primitive tasks fa1; fb1; fa2; fb2 (they are exactly thesame primitive tasks used in the previous proof), and another dummy primitive task fdummywith no e�ects or preconditions.We have three propositions pa; pb; turn, and a predicate R(X,Y,Z), used for expressingproduction rules of the form X ! Y Z.We declare the following four operators that specify the e�ects of those tasks:127

(operator fa1 (pre : turn) (post : pa;:turn))(operator fa2 (pre : :turn; pa) (post : :pa; turn))(operator fb1 (pre : turn) (post : pb;:turn))(operator fb2 (pre : :turn; pb) (post : :pb; turn))(operator fdummy (pre :) (post :))We use �ve compound tasks t(A1); t(A2); t(B1); t(B2); t(Dummy) which correspond toour primitive tasks.We declare �ve methods describing how those compound tasks expand to their corre-sponding primitive tasks:(t(v) [(n : do[fa1]) (v = A1)])(t(v) [(n : do[fb1]) (v = B1)])(t(v) [(n : do[fa2]) (v = A2)])(t(v) [(n : do[fb2]) (v = B2)])(t(v) [(n : do[fdummy]) (v = Dummy)])We use a predicate R(v; v1; v2) to encode grammar rules. We declare a �nal method :(t(v) [(n1 : perform[t(v1)])(n2 : perform[t(v2)]) (n1 � n2) ^ (n1; R(v; v1; v2))])Basicly, this method speci�es that a task t(X) can be expanded to t(Y)t(Z) i� there is aproduction rule of the form X ! Y Z. Thus we have a domain with 5 operators and 5methods.The reduction Given two context-free grammars, here is how we create the initial stateand the input task-network.Let Gi =< �;�i; Ri > i = 1; 2 be two context-free grammars. Without loss of gen-erality, assume � = fa; bg;�1 \ �2 = ;, the production rules are in Chomsky normalform (at most two symbols at right hand sides), and the grammars don't use the symbolsfA1; A2; B1; B2;DummygHere is the initial state:� For each production rule of the form X ! Y Z, we assert a predicate R(X;Y;Z).� For each production rule of the form X ! a from grammar i, we assert a predicateR(X;Ai;Dummy). We handle rules of the form X ! b, similarly.� Finally, we assert turn.The input task network to the planner contains the three tasks t(S1), t(S2), and fdummy,where S1; S2 are the starting symbols of the grammars G1; G2 respectively. The constraintformula states that both t(S1) and t(S2) precede fdummy , and that turn needs to be trueimmediately before flast. The last condition ensures that the last primitive task belongs toG2. 128

How it works: The construction is very similar to that of Theorem 4. In that construction,we introduced a method for each production rule. This time, we observe that all thosemethods had the same structure, so instead we use a single method with variables and anextra constraint R(X;Y;Z) that makes sure that we can expand t(X) to t(Y)t(Z) onlywhen we have the corresponding production rule. The sequence of actions t(Si) can expandto corresponds to the strings that can be derived from Si. The e�ects of the actions and theconditions on them ensure that in any �nal plan the actions from S1 and S2 alternate, andthat whenever S1 contributes an action, it has to be followed by the corresponding action inS2. Obviously, the reduction can be done in linear time.Theorem 6 plan existence is decidable if P has a k-level-mapping for some integer k.Proof. When there exists a k-level-mapping, no task can be expanded to a depth morethan k. Thus, whether a plan exists can be determined after a �nite number of expansions.Theorem 7 plan existence is expspace-hard and in double-exptime if P is re-stricted to be totally ordered. plan existence is pspace-hard and in exptime if P isfurther restricted to be propositional.Proof.Membership: Here, we present an algorithm that runs in double-exptime, and solvesthe problem. In the propositional case, the number of atoms, the number of states etc. wouldgo one level down, and thus, the same algorithm would solve the problem in exptime.The basic idea is this: for each ground task t, states sI ; sF , and set of ground literalsL = fl1; : : : ; lkg, we want to compute whether there exists a plan for t starting at sI andending at sF while protecting the literals in L (i.e. without making them false). We storeour partial results in a table with an entry for each tuple ht; sI; sF ; Li. An entry in the tablehas value either yes, no, or unknown.Here is the algorithm:1. Initialize all the entries in the table to unknown.2. For each sI ; sF ; L and ground primitive task fp, compute whether executing fp at sIresults in sF , and that all literals in L are true in both SI and sF . Insert the result inthe table.3. For each method ht; (n1 : �1) : : : (nk : �k); �i and the input task network do:� Replace each constraint of the form (ni; l; nj) with(ni; l; ni+1) ^ (ni+1; l; ni+2) ^ : : : ^ (nj�1; l; nj).129

(For simplicity, we assume the label of a node reects its position in the totalorder.)� Apply de Morgan's rule so that negations come before only atomic constraints.4. Go over all the entries ht; sI ; sF ; Li in the table with value unknown, doing the following:For all ground instances of methods for t ht; (n1 : �1) : : : (nk : �k); �i do:For all k + 1 tuples of states (s0; : : : ; sk) do:For all expansions �0 of � into conjuncts do:(a) for each conjunct of the form (ni; l) or (l; ni+1), checkwhether si satis�es l.(b) For each i � k, let L0i be the set of literals l such that (ni; l; ni+1) is aconjunct.Check whether the entry for hti; si�1; si; Lii is yes.(c) Check whether the variable binding constraints are satis�ed(d) If all checks are OK, enter yes to the table for ht; sI ; sF ; Li.5. If step 4 modi�ed the table, then goto step 4.6. For all ground instances h(n1 : �1) : : : (nk : �k); �i of the input task network doFor all k + 1 tuples of states (s0; : : : ; sk) doFor all expansions �0 of � into conjuncts do(a) for each conjunct of the form (ni; l) or (l; ni+1), check whether si satis�esl.(b) For each i � k, let L0i be the set of literals l such that (ni; l; ni+1) is aconjunct.Check whether the entry for hti; si�1; si; Lii is yes.(c) Check whether the variable binding constraints are satis�ed(d) If all checks are OK, halt with success; if not, halt with failure.The algorithm works bottom-up. For all ground tasks, state pairs and protection setsht; sI ; sF ; Li, it computes whether there exists a plan for t starting at sI and ending at sFthat does not violate the literals in L. When step 4 terminates without any modi�cation tothe table, the table contains all the answers. Thus in step 6, we can check whether the inputtask network can be achieved.The table has a doubly exponential number of entries (roughly the cube of the numberof states times number of ground tasks). Step 4 is executed at most a doubly exponentialnumber of times (when we make one modi�cation at each step). At each execution step 4goes over all the entries in the table, taking double exponential time. Processing each entrytakes double exponential time. The resultant time is the product of these, which is still130

double exponential. The rest of the steps in the algorithm obviously do not take more thandouble exponential time. Thus the algorithm runs in double exponential time.When we restrict the problem to be propositional, the number of states goes down fromdoubly exponential to exponential, and so does the size of table and the number of executionsin all the steps. Thus in propositional case, the algorithm runs in exponential time.Hardness: plan existence, restricted to totally ordered regular planning domains, is aspecial case of our problem. But in Theorems 8 and 9, we prove that under this restrictedversion of plan existence is expspace-hard (or pspace-hard in the propositional case).Thus the hardness follows.Theorem 8 plan existence is expspace-complete if P is restricted to be regular. Itis still expspace-complete if P is further restricted to be totally ordered, with at most onenon-primitive task symbol in the planning language, and all task networks containing atmost two tasks.Proof.Membership: It su�ces to present a nondeterministic algorithm that uses at most expo-nential space and solves the problem, as expspace=n-expspace, so that is what we willdo. Since all task networks will contain at most one non-primitive task, all we need to dois keep track of what atoms need to be true/false immediately before, immediately after,and along that single task. Since there are an exponential number of atoms, we can do thiswithin exponential space. Here is the algorithm:1. Let d be the input task network.2. If d contains only primitive tasks, thennon-deterministically guess a total-ordering and variable-binding.If it satis�es the constraint formula and the preconditions of the primitive tasks, thenhalt with success; if not, halt with failure.3. Non-deterministically, guess a total-ordering and variable-binding. The task networkwill be of the form[(n1 : do[f1]) : : : (nm : do[fm])(n : perform[t])(n01 : do[f 01]) : : : (n0u : do[f 0u])]with ordering n1 � n2 � : : : � nm � n � n01 � : : : � n0u.Note that t is the only non-primitive task in the network. Let si; s0i; st be the statesimmediately after fi; f 0i ; t, respectively.4. Eliminate all variable binding and task ordering constraints from the constraint formulausing the guess in step 3. 131

5. Replace any constraint of the form (ni; l; n0j) with (ni; l; nm) ^ (nm; l; n01) ^ (n01; l; n0j).6. Replace any constraint of the form (ni; l; nj) or (n0i; l; n0j) with (ni; l) ^ : : : ^ (nj�1; l)and (n0i; l) ^ : : : ^ (n0j�1; l), respectively.7. Process the constraint formula (using De Morgan's rule) so that negations apply toonly atomic constraints.8. Now the resultant constraint formula contains only conjuncts and disjuncts. For eachdisjunct, nondeterministically pick a component, obtaining a constraint formula con-taining only conjuncts.9. Compute all the intermediate states before n and verify that all constraints of the form(ni; l); (l; ni) are satis�ed. Remove these constraints from the constraint formula.10. For all the state constraints after n, use regression to determine what needs to be trueimmediately after n for those constraints to be satis�ed1.11. Set the initial state I to fm(fm�1(: : : f1(I) : : :)), i.e., the state that results from applyingall the primitive tasks before t.12. Now we can get rid of all the primitive tasks in the task network. The constraintformula contains only what needs to be true while we achieve t and what needs to betrue immediately after we achieve t.13. Nondeterministically, choose a method for t, expand it, and assign the resulting tasknetwork to d.14. Go to step 2.Hardness: In [22], we showed that plan existence problem in STRIPS representation isexpspace-complete. Here we de�ne a reduction from that problem.The plan existence problem in STRIPS representation is de�ned as \Given a set ofconstants, a set of predicates, a set of STRIPS operators, an initial state and a goal, is therea plan that achieves the goal?"Given such a problem, we transform it into an HTN planning problem as follows:We use the same set of constants and predicates. We will also have the same initialstate. For each STRIPS operator o, we de�ne a primitive task fo that has exactly the samepreconditions and postconditions as o. We also need an extra primitive task f� with noe�ects, that will be used as a dummy.We will need a single non-primitive task t that can be expanded to any executablesequence of actions. Thus we declare the following methods for t:1Here is how we do this. Consider the task (n0i : t0i) and the condition (n0i; l). When we regress thiscondition, we get TRUE if t0i asserts l, FALSE if t0i denies l, or (n0i�1; l) if t0i neither denies nor asserts l.This is what needs to be TRUE before t0i, for the condition to hold after t0i.132

� (t; [(n1 : f�); TRUE]);� for each STRIPS operator o(t; [(n1 : fo)(n2 : t); (n1 � n2)]):Finally, the input task network will be of the formh(n1 : t); (n1; g1) ^ (n1; g2) : : : ^ (n1; gk))i;where gi are the goals of the STRIPS problem.The resulting HTN problem satis�es all the restrictions of the theorem. A plan � solvesthe STRIPS plan existence problem instance i� � is a solution for the HTN planning probleminstance. Hence the reduction is correct. Obviously, the reduction is in polynomial time.Theorem 9 plan existence is pspace-complete if P is restricted to be regular andpropositional. It is still pspace-complete if P is further restricted to be totally ordered,with at most one non-primitive task symbol in the planning language, and all task networkscontaining at most two tasks.Proof.Membership: The algorithm we presented for the membership proof in Theorem 8 worksalso for the propositional case. In the propositional case we have only a linear number ofatoms, and as a result, the size of any state is polynomial. Thus the algorithm requires onlypolynomial space.Hardness: In [12, 22], it is shown that plan existence problem in STRIPS representationis pspace-complete if it is restricted to be propositional. The reduction from STRIPSstyle planning that we presented in the hardness proof of Theorem 8 also works for thepropositional case.Theorem 10 If P is restricted to be regular and D is �xed in advance, then planexistence is in pspace. Furthermore, there exists �xed regular HTN planning domains Dfor which plan existence is pspace-complete.Proof. When D is �xed in advance, the number of ground instances of predicates and taskswill be polynomial in the size of the input. Thus we can reduce it to propositional regularHTN-planning. As a direct consequence of Theorem 9, it is in pspace.In the proof of Theorem 5.17 in [22], we had presented a set of STRIPS operatorscontaining variables for which planning is pspace-complete. Applying the reduction de�nedin the hardness proof of Theorem 8 to this set of operators would give a regular HTN planningdomain (containing variables) with the same set of solutions and complexity as its STRIPScounterpart. 133

Theorem 11 plan existence is np-complete if P is restricted to be primitive, orprimitive and totally ordered, or primitive and propositional. However, plan existence isin polynomial time P is restricted to be primitive, totally ordered, and propositional.Proof. If P is primitive, propositional and totally ordered, we can compute whether anatomic constraint is satis�ed in linear time. In order to �nd a plan, all we need to do is tocheck whether the constraint formula is satis�ed, which can be done in polynomial time.Membership: Given a primitive task network, we can nondeterministically guess a totalordering and variable binding, and then we can verify that it satis�es the constraint formulain polynomial time. Thus the problem is always in np.Hardness: There are three cases:Case 1: Primitive and propositional.We de�ne a reduction from satis�ability problem as follows:Given a boolean formula, we de�ne a planning problem such that it uses the same set ofpropositions as the boolean formula. we have two primitive tasks for each proposition,one that deletes the proposition, and one that adds the proposition. The initial stateis empty. The input task network contains all the primitive tasks, and the constraintformula states that the boolean formula needs to be true in the �nal state.If there exists a total ordering that satis�es the constraint formula, the truth valuesof propositions in the �nal state would satisfy the boolean formula; if there is a truthassignment that satis�es the boolean formula, we can order the tasks such that if aproposition p is assigned true, then the primitive task that adds it is ordered after theprimitive task that deletes it (and vice versa), coming up with a plan that achieves thetask network.Obviously, the reduction can be done in linear time.Case 2: Primitive and totally ordered.Again, we de�ne a reduction from satis�ability problem.We will use two constant symbols t and f , standing for true and false, respectively.For each proposition p in the boolean formula, we will introduce a unary predicate P ,and a unary primitive task symbol Tp(vp) that has the e�ect P (vp).The initial state will be empty, and the input task network will contain one task foreach proposition, namely Tp(vp).We construct a formula F from the input boolean formula by replacing each propositionp with P (t). Our constraint formula will require F to be true in the �nal state.134

If there exists a truth assignment that satis�es the boolean formula, we can construct avariable binding such that vp is bound to t whenever p is assigned true, and vp is boundto f otherwise. This variable binding would make sure the constraints are satis�ed.If there exists a variable binding that achieves the task network, we construct thefollowing truth assignment that satis�es the boolean formula. We assign true to p i�vp is bound to t.Obviously, the reduction can be done in polynomial time.Case 3: Primitive.Both case 1 and case 2 are special cases of case 3, so hardness follows immediately.

135

Appendix BUM-Translog Domain Speci�cationB.1 Symbol Declarations;(VARIABLES?v ?p ?l ?c ?r ?ol ?dl ?t?package ?origin ?destination ?location ?region1 ?region2?hub ?ocity ?dcity ?city1 ?city2 ?cityh ?samecity ?tcenter?tcenter1 ?tcenter2 ?tt ?vehicle ?tc ?train ?ptype ?vtype ?route?r ?rtype ?vptype ?type1)(CONSTANTSair-route mail perishable refrigerated granular airplanearmored auto bulky cars city1 city1-cl1 city1-cl2 city1-ts1city1-ts2 city1-ap1 city1-ap2 city2 city2-cl1 city2-ap1city2-ts1 region1 region2 city3 city3-cl1 city3-ap1 city3-ts1region1-ap1 region1-ts1 rail-route-1 rail-route-2 rail-route-3rail-route-4 road-route-1 road-route-2 air-route-1 air-route-2air-route-3 air-route-4 ramp1a ramp1b ramp2 ramp3 ramp4road-route-i1547 road-route-i1548 pkg-1 truck-1 not-tcenternot-hub train-station tcenter hub not-hazardous not-traincarclocation tcenter airport train-station city region craneatbed hazardous hopper hub livestock liquid local-road-routeplane-ramp rail-route air-route regular road-route tankertrain traincar truck tcenter valuable)(PRIMITIVE-TASKSa�x-warning-signs attach-conveyor-rampattach-train-car close-door close-valve collect-feescollect-insurance connect-chute connect-hosedecontaminate-interior deliver detach-conveyor-rampdetach-train-car disconnect-chute disconnect-hosedo-clean-interior do-nothing empty-hopper empty-tank�ll-hopper �ll-tank �ll-trough load-cars load-livestockload-package lower-ramp move-vehicle obtain-permit open-dooropen-valve pick-up-package-ground pick-up-package-vehiclepost-guard-inside post-guard-outside put-down-package-groundput-down-package-vehicle raise-ramp remove-guardremove-warning-signs unload-cars unload-livestockunload-package)(PREDICATES(at-equipment 15) (at-package 100) (at-vehicle 40)available chute-connected clean-interior connectsdecontaminated-interior door-open empty fees-collectedguard-inside guard-outside have-permit hose-connected in-cityin-region insured pc-compatible pv-compatible ramp-availableramp-connected ramp-down rv-compatible serves trough-full typevalve-open warning-signs-a�xed)(COMPOUND-TASKS(carry 79) (carry-between-tcenters 75) (carry-direct 70)(carry-via-hub 78) handle-hazardous handle-insurance(load-top 25) (unload-top 25) (load-haz 22) (load-val 22) 136

(unload-haz 22) (unload-val 22) (load 20) pickup(transport 90)(unload 20));B.2 Actions;(operator open-door(?v):post((door-open ?v)))(operator close-door(?v):post((~door-open ?v)));|||||||||||||||||(operator load-package(?p ?v ?l):pre ((at-package ?p ?l)(at-vehicle ?v ?l)):post((at-package ?p ?v)(~at-package ?p ?l)))(operator unload-package(?p ?v ?l):pre ((at-package ?p ?v)(at-vehicle ?v ?l)):post((at-package ?p ?l)(~at-package ?p ?v)));|||||||||||||||||(operator pick-up-package-ground(?p ?c ?l):pre ((empty ?c)(at-equipment ?c ?l)(at-package ?p ?l)):post((at-package ?p ?c)(~empty ?c)(~at-package ?p ?l)))(operator put-down-package-ground(?p ?c ?l):pre ((at-equipment ?c ?l)(at-package ?p ?c)):post((empty ?c)(at-package ?p ?l)(~at-package ?p ?c)))(operator pick-up-package-vehicle(?p ?c ?v ?l):pre ((empty ?c)(at-equipment ?c ?l)(at-package ?p ?v)(at-vehicle ?v ?l)):post((at-package ?p ?c)(~empty ?c)(~at-package ?p ?v)))(operator put-down-package-vehicle(?p ?c ?v ?l):pre ((at-package ?p ?c)(at-equipment ?c ?l)(at-vehicle ?v ?l)):post((empty ?c) 137

(at-package ?p ?v)(~at-package ?p ?c)));|||||||||||||||||(operator connect-chute(?v):post((chute-connected ?v)))(operator disconnect-chute(?v):post((~chute-connected ?v)));|||||||||||||||||(operator �ll-hopper(?p ?v ?l):pre ((chute-connected ?v)(at-vehicle ?v ?l)(at-package ?p ?l)):post((at-package ?p ?v)(~at-package ?p ?l)))(operator empty-hopper(?p ?v ?l):pre ((chute-connected ?v)(at-vehicle ?v ?l)(at-package ?p ?v)):post((at-package ?p ?l)(~at-package ?p ?v)));|||||||||||||||||(operator raise-ramp(?v):post((~ramp-down ?v)))(operator lower-ramp(?v):post((ramp-down ?v)));|||||||||||||||||(operator �ll-trough(?v):post((trough-full ?v)));|||||||||||||||||(operator load-livestock(?p ?v ?l):pre ((at-package ?p ?l)(at-vehicle ?v ?l)(ramp-down ?v)):post((at-package ?p ?v)(~at-package ?p ?l)(~clean-interior ?v)))(operator unload-livestock(?p ?v ?l):pre ((at-package ?p ?v)(at-vehicle ?v ?l)(ramp-down ?v)):post((at-package ?p ?l)(~at-package ?p ?v)(~trough-full ?v)));|||||||||||||||||(operator do-clean-interior(?v):post((clean-interior ?v))) 138

;|||||||||||||||||(operator load-cars(?p ?v ?l):pre ((at-package ?p ?l)(at-vehicle ?v ?l)(ramp-down ?v)):post((at-package ?p ?v)(~at-package ?p ?l)))(operator unload-cars(?p ?v ?l):pre ((at-package ?p ?l)(at-vehicle ?v ?l)(ramp-down ?v)):post((at-package ?p ?l)(~at-package ?p ?v)));|||||||||||||||||(operator connect-hose(?v):post((hose-connected ?v)))(operator disconnect-hose(?v ?p):pre ((hose-connected ?v)):post((~hose-connected ?v)));|||||||||||||||||(operator open-valve(?v):post((valve-open ?v)))(operator close-valve(?v):post((~valve-open ?v)));|||||||||||||||||(operator �ll-tank(?v ?p ?l):pre ((hose-connected ?v)(valve-open ?v)(at-package ?p ?l)):post((at-package ?p ?v)(~at-package ?p ?l)))(operator empty-tank(?v ?p ?l):pre ((hose-connected ?v)(valve-open ?v)(at-package ?p ?v)):post((at-package ?p ?l)(~at-package ?p ?v)));|||||||||||||||||(operator move-vehicle(?v ?ol ?dl ?r):pre ((at-vehicle ?v ?ol)):post((at-vehicle ?v ?dl)(~at-vehicle ?v ?ol)));|||||||||||||||||(operator attach-train-car(?t ?c ?l):pre ((at-vehicle ?c ?l)(at-vehicle ?t ?l)):post((at-vehicle ?c ?t)(~at-vehicle ?c ?l)))(operator detach-train-car(?t ?c ?l):pre (139

(at-vehicle ?t ?l)(at-vehicle ?c ?t)):post((at-vehicle ?c ?l)(~at-vehicle ?c ?t)));|||||||||||||||||(operator attach-conveyor-ramp(?v ?r ?l):pre ((ramp-available ?r)(at-equipment ?r ?l)(at-vehicle ?v ?l)):post((ramp-connected ?r ?v)(~ramp-available ?r)))(operator detach-conveyor-ramp(?v ?r ?l):pre ((ramp-connected ?r ?v)(at-equipment ?r ?l)(at-vehicle ?v ?l)):post((ramp-available ?r)(~ramp-connected ?r ?v)));|||||||-(operator a�x-warning-signs (?v):post((warning-signs-a�xed ?v)))(operator remove-warning-signs (?v):post((~warning-signs-a�xed ?v)));|||||||-(operator post-guard-outside(?v):post((guard-outside ?v)(~guard-inside ?v)))(operator post-guard-inside(?v):post((guard-inside ?v)(~guard-outside ?v)))(operator remove-guard(?v):post((~guard-outside ?v)(~guard-inside ?v)));|||||||-(operator decontaminate-interior(?v):post((decontaminated-interior ?v)))(operator obtain-permit(?p):post((have-permit ?p)))(operator collect-fees(?p):post((fees-collected ?p)))(operator collect-insurance(?p):post((insured ?p)))(operator deliver(?p):post((~have-permit ?p)(~fees-collected ?p)(~insured ?p))); 140

B.3 Methods;(variables ?package?origin ?destination ?location?ocity ?dcity ?city1 ?city2 ?samecity?tcenter ?tcenter1 ?tcenter2 ?tt?region1 ?region2 ?hub?vehicle ?tc ?train?ptype ?vtype ?route ?r ?rtype ?vptype ?type1);;; top-level declare-method: used for top-level goal(declare-method AT-PACKAGE(?package ?destination):expansion ((n1 TRANSPORT ?package ?origin ?destination)):formula (and(initially (AT-PACKAGE ?package ?origin))(after (AT-PACKAGE ?package ?destination) n1)))(declare-method TRANSPORT(?package ?origin ?destination):expansion ((n1 PICKUP ?package)(n2 CARRY ?package ?origin ?destination)(n3 DELIVER ?package)):formula (and (ord n1 n2) (ord n2 n3)); :e�ects (; (n2 :delete (AT-PACKAGE ?package ?origin)); (n2 :assert (AT-PACKAGE ?package ?destination));));||||||||||; PICKUP DECLARE-METHODS;||||||||||(declare-method PICKUP(?package):expansion ((n1 COLLECT-FEES ?package)(n2 HANDLE-INSURANCE ?package)(n3 HANDLE-HAZARDOUS ?package)));||||||||||(declare-method HANDLE-INSURANCE(?package):expansion ((n1 COLLECT-INSURANCE ?package)):formula (initially (TYPE ?package VALUABLE)))(declare-method HANDLE-INSURANCE(?package):expansion ((n1 DO-NOTHING)):formula (initially (~TYPE ?package VALUABLE)));||||||||{(declare-method HANDLE-HAZARDOUS(?package):expansion ((n1 OBTAIN-PERMIT ?package)):formula (initially (TYPE ?package HAZARDOUS) n1))(declare-method HANDLE-HAZARDOUS(?package):expansion ((n1 DO-NOTHING)):formula (initially (~TYPE ?package HAZARDOUS)));||||||||{; CARRY DECLARE-METHODS - TOP LEVEL. ** THESE BIND TCENTERS **;||||||||{;;; top-level carry declare-method 1 141

(declare-method CARRY(?package ?origin ?destination):expansion ((n1 CARRY-DIRECT ?package ?origin ?destination)); :e�ects (; (n1 :delete (AT-PACKAGE ?package ?origin)); (n1 :assert (AT-PACKAGE ?package ?destination));));;; 2 carry:;;;?origin (tcenter, not hub) -> ?destination (tcenter, not hub)(declare-method CARRY(?package ?origin ?destination):expansion((n1 CARRY-VIA-HUB ?package ?origin ?destination)); :e�ects (; (n1 :delete (AT-PACKAGE ?package ?origin)); (n1 :assert (AT-PACKAGE ?package ?destination));):formula (and(initially (IN-CITY ?origin ?ocity))(initially (IN-CITY ?destination ?dcity))(not (veq ?ocity ?dcity))(initially (TYPE ?origin TCENTER))(initially (TYPE ?destination TCENTER))(initially (~TYPE ?origin HUB))(initially (~TYPE ?destination HUB))(initially (AVAILABLE ?origin))(initially (AVAILABLE ?destination))));;; 3 carry:;;;?origin (not tcenter) -> ?tcenter -> ?destination (tcenter)(declare-method CARRY(?package ?origin ?destination):expansion ((n0 CARRY-DIRECT ?package ?origin ?tcenter)(n1 CARRY-BETWEEN-TCENTERS?package ?tcenter ?destination)); :e�ects (; (s0 :delete (AT-PACKAGE ?package ?origin)); (s0 :assert (AT-PACKAGE ?package ?tcenter)); (n1 :delete (AT-PACKAGE ?package ?tcenter)); (n1 :assert (AT-PACKAGE ?package ?destination));):formula (and(ord n0 n1)(initially (~TYPE ?origin TCENTER))(initially (TYPE ?destination TCENTER))(initially (IN-CITY ?origin ?ocity))(initially (IN-CITY ?destination ?dcity))(not (veq ?ocity ?dcity))(initially (SERVES ?tcenter ?ocity))(initially (TYPE ?tcenter TCENTER))(not (veq ?tcenter ?destination))(initially (TYPE ?tcenter ?tt))(not (veq ?tt TCENTER))(initially (TYPE ?destination ?tt))(initially (AVAILABLE ?tcenter))(initially (AVAILABLE ?destination))));;; 4 carry:;;; ?origin (tcenter) -> ?tcenter -> ?destination (not tcenter)(declare-method CARRY(?package ?origin ?destination):expansion ((n1 CARRY-BETWEEN-TCENTERS ?package ?origin ?tcenter)(n2 CARRY-DIRECT ?package ?tcenter ?destination)); :e�ects (; (n1 :delete (AT-PACKAGE ?package ?origin)); (n1 :assert (AT-PACKAGE ?package ?tcenter)); (n2 :delete (AT-PACKAGE ?package ?tcenter)); (n2 :assert (AT-PACKAGE ?package ?destination));):formula (and(ord n1 n2)(initially (TYPE ?origin TCENTER))(initially (~TYPE ?destination TCENTER))(initially (IN-CITY ?origin ?ocity))(initially (IN-CITY ?destination ?dcity))(not (veq ?ocity ?dcity))(initially (SERVES ?tcenter ?dcity)) 142

(initially (TYPE ?tcenter TCENTER))(initially (TYPE ?tcenter ?tt))(not (veq ?tt TCENTER))(initially (TYPE ?origin ?tt))(not (veq ?tcenter ?origin))(initially (AVAILABLE ?origin))(initially (AVAILABLE ?tcenter))));;; carry:;; ?origin (not tcenter) ->;; ?tcenter1 -> ?tcenter2 -> ?destination (not tcenter)(declare-method CARRY(?package ?origin ?destination):expansion ((n0 CARRY-DIRECT ?package ?origin ?tcenter1)(n1 CARRY-BETWEEN-TCENTERS?package ?tcenter1 ?tcenter2)(n2 CARRY-DIRECT?package ?tcenter2 ?destination)); :e�ects (; (n1 :delete (AT-PACKAGE ?package ?tcenter1)); (n1 :assert (AT-PACKAGE ?package ?tcenter2)); (n0 :delete (AT-PACKAGE ?package ?origin)); (n0 :assert (AT-PACKAGE ?package ?tcenter1)); (n2 :assert (AT-PACKAGE ?package ?destination)); (n2 :delete (AT-PACKAGE ?package ?tcenter2))):formula (and(ord n0 n1)(ord n1 n2)(initially (~TYPE ?origin TCENTER))(initially (~TYPE ?destination TCENTER))(initially (IN-CITY ?origin ?ocity))(initially (IN-CITY ?destination ?dcity))(not (veq ?ocity ?dcity))(initially (SERVES ?tcenter1 ?ocity))(initially (SERVES ?tcenter2 ?dcity))(initially (TYPE ?tcenter1 TCENTER))(initially (TYPE ?tcenter1 ?tt))(not (veq ?tt TCENTER))(initially (TYPE ?tcenter2 ?tt))(initially (TYPE ?tcenter2 TCENTER))(initially (AVAILABLE ?tcenter1))(initially (AVAILABLE ?tcenter2))));||||||||{; CARRY DECLARE-METHODS - BETWEEN TCENTERS.;||||||||{;;; carry: ?tcenter1 -> ?tcenter2 where ?tcenter1 = ?tcenter2(declare-method CARRY-BETWEEN-TCENTERS(?package ?tcenter1 ?tcenter2):expansion ((n1 DO-NOTHING)); :e�ects (; (n1 :delete (AT-PACKAGE ?package ?tcenter1)); (n1 :assert (AT-PACKAGE ?package ?tcenter2))):formula (veq ?tcenter1 ?tcenter2));;; carry: ?tcenter1 -> ?tcenter2(declare-method CARRY-BETWEEN-TCENTERS(?package ?tcenter1 ?tcenter2):expansion ((n1 CARRY-DIRECT ?package ?tcenter1 ?tcenter2)); :e�ects (; (n1 :delete (AT-PACKAGE ?package ?tcenter1)); (n1 :assert (AT-PACKAGE ?package ?tcenter2))):formula (and(not (veq ?tcenter1 ?tcenter2))(initially (TYPE ?tcenter1 ?type1))(not (veq ?type1 TCENTER))(not (veq ?type1 HUB))(initially (TYPE ?tcenter2 ?type1))));;; carry: ?tcenter1 (not hub) -> ?tcenter2 (not hub)(declare-method CARRY-BETWEEN-TCENTERS(?package ?tcenter1 ?tcenter2):expansion ((n1 CARRY-VIA-HUB ?package ?tcenter1 ?tcenter2)); :e�ects (; (n1 :delete (AT-PACKAGE ?package ?tcenter1)); (n1 :assert (AT-PACKAGE ?package ?tcenter2))) 143

:formula (and(initially (~TYPE ?tcenter1 HUB))(initially (~TYPE ?tcenter2 HUB))(not (veq ?tcenter1 ?tcenter2))));;; carry: ?tcenter1 -> ?hub -> ?tcenter2.(declare-method CARRY-VIA-HUB(?package ?tcenter1 ?tcenter2):expansion ((n1 CARRY-DIRECT ?package ?tcenter1 ?hub)(n2 CARRY-DIRECT ?package ?hub ?tcenter2)); :e�ects (; (n1 :assert (AT-PACKAGE ?package ?hub)); (n1 :delete (AT-PACKAGE ?package ?tcenter1)); (n2 :assert (AT_PACKAGE ?package ?tcenter2)); (n2 :delete (AT-PACKAGE ?package ?tcenter1))):formula (and(ord n1 n2)(initially (~TYPE ?package HAZARDOUS))(initially (IN-CITY ?tcenter1 ?city1))(initially (IN-CITY ?tcenter2 ?city2))(initially (IN-REGION ?city1 ?region1))(initially (IN-REGION ?city2 ?region2))(initially (SERVES ?hub ?region1))(initially (SERVES ?hub ?region2))(initially (AVAILABLE ?hub))));;; carry: ?tcenter1 -> ?hub -> ?tcenter2.(declare-method CARRY-VIA-HUB(?package ?tcenter1 ?tcenter2):expansion ((n1 CARRY-DIRECT ?package ?tcenter1 ?hub)(n2 CARRY-DIRECT ?package ?hub ?tcenter2)); :e�ects (; (n1 :assert (AT-PACKAGE ?package ?hub)); (n1 :delete (AT-PACKAGE ?package ?tcenter1)); (n2 :assert (AT_PACKAGE ?package ?tcenter2)); (n2 :delete (AT-PACKAGE ?package ?tcenter1))):formula (and(ord n1 n2) (initially (TYPE ?package HAZARDOUS))(initially (PC-COMPATIBLE ?cityh HAZARDOUS))(initially (IN-CITY ?tcenter1 ?city1))(initially (IN-CITY ?tcenter2 ?city2))(initially (IN-REGION ?city1 ?region1))(initially (IN-REGION ?city2 ?region2))(initially (SERVES ?hub ?region1))(initially (SERVES ?hub ?region2))(initially (IN-CITY ?hub ?cityh))(initially (AVAILABLE ?hub))));||||||||{; CARRY DECLARE-METHODS - DIRECT.;||||||||{(declare-method CARRY-DIRECT(?package ?origin ?destination):expansion ((n1 AT-VEHICLE ?vehicle ?origin)(n2 LOAD-top ?package ?vehicle ?origin)(n3 AT-VEHICLE ?vehicle ?destination)(n4 UNLOAD-top ?package ?vehicle ?destination)):formula(and(ord n1 n2)(ord n2 n3)(ord n3 n4)(before (AT-PACKAGE ?package ?origin) n2)(initially (TYPE ?package ?ptype))(between (AT-VEHICLE ?vehicle ?origin) n1 n2)(between (AT-PACKAGE ?package ?vehicle) n2 n4)(initially (AVAILABLE ?vehicle))(initially (TYPE ?vehicle ?vtype))(initially (PV-COMPATIBLE ?ptype ?vtype))(or(and ; same city via truck(initially (TYPE ?vehicle TRUCK))(initially (IN-CITY ?origin ?ocity))(initially (IN-CITY ?destination ?ocity)))(and ;di� city via truck(initially (TYPE ?vehicle TRUCK)) 144

(initially (IN-CITY ?origin ?ocity))(initially (IN-CITY ?destination ?dcity))(initially (CONNECTS?route ROAD-ROUTE?ocity ?dcity))(initially (AVAILABLE ?route)))(and ;not truck(initially (~TYPE ?vehicle TRUCK))(initially (CONNECTS?route ?rtype?origin ?destination))(initially (RV-COMPATIBLE ?rtype ?vhtype))(initially (TYPE ?vehicle ?vhtype))(initially (AVAILABLE ?route))))));||||||||||{; MOVE VEHICLE DECLARE-METHODS;||||||||||{;;; move: ?origin -> ?location, via road(declare-method AT-VEHICLE(?vehicle ?location):expansion((n1 MOVE-VEHICLE ?vehicle ?origin ?location ?r)):formula (and(before (AT-VEHICLE ?vehicle ?origin) n1)(initially (TYPE ?vehicle TRUCK))(initially (IN-CITY ?origin ?ocity))(or(and ; same city(veq ?r LOCAL-ROAD-ROUTE)(initially (IN-CITY ?location ?ocity)))(and ;di�erent city(initially (IN-CITY ?location ?dcity))(initially (CONNECTS ?r ROAD-ROUTE ?ocity ?dcity))))));;; move: ?origin -> ?location(declare-method AT-VEHICLE(?vehicle ?location):expansion ((n1 MOVE-VEHICLE ?vehicle ?origin ?location ?r)) :formula (and(initially (~TYPE ?vehicle TRAINCAR))(before (AT-VEHICLE ?vehicle ?origin) n1)(initially (TYPE ?vehicle ?vtype))(initially (CONNECTS ?r ?rtype ?origin ?location))(initially (RV-COMPATIBLE ?rtype ?vtype))));||||||{; TRAIN CAR DECLARE-METHODS;||||||{;;; send train to pickup car, deliver it to destination, and detach it(declare-method AT-VEHICLE(?tc ?destination):expansion ((n1 AT-VEHICLE ?train ?origin)(n2 ATTACH-TRAIN-CAR ?train ?tc ?origin)(n3 AT-VEHICLE ?train ?destination)(n4 DETACH-TRAIN-CAR ?train ?tc ?destination)) :formula (and(ord n1 n2)(ord n2 n3)(ord n3 n4)(initially (TYPE ?tc TRAINCAR))(before (AT-VEHICLE ?tc ?origin) n2)(initially (CONNECTS ?r RAIL-ROUTE ?origin ?destination))(initially (TYPE ?train TRAIN))(between (AT-VEHICLE ?tc ?train) n2 n4)(between (AT-VEHICLE ?train ?origin) n1 n2)(between (AT-VEHICLE ?train ?destination) n3 n4))); ; 145

(variables ?p ?v ?l ?c ?r)(declare-method load-top (?p ?v ?l):expansion((n1 load-haz ?p ?v ?l)(n2 load-val ?p ?v ?l)):formula (ord n1 n2))(declare-method unload-top (?p ?v ?l):expansion((n1 unload-haz ?p ?v ?l)(n2 unload-val ?p ?v ?l)):formula (ord n2 n1))(declare-method load-haz (?p ?v ?l):expansion((n warning-signs-a�xed ?p ?v)):formula (initially (type ?p hazardous)))(declare-method load-haz (?p ?v ?l):expansion((n do-nothing)):formula (initially (~type ?p hazardous)))(declare-method unload-haz (?p ?v ?l):expansion((n1 decontaminated-interior ?v)(n2 ~warning-signs-a�xed ?v)):formula (and(initially (type ?p hazardous))(ord n1 n2)))(declare-method unload-haz (?p ?v ?l):expansion((n do-nothing)):formula (initially (~type ?p hazardous)))(declare-method load-val (?p ?v ?l):expansion((n do-nothing)):formula (initially (~type ?p valuable)))(declare-method unload-val (?p ?v ?l):expansion((n do-nothing)):formula (initially (~type ?p valuable)))(declare-method load-val (?p ?v ?l):expansion((n1 guard-outside ?v)(n2 load ?p ?v ?l)(n3 guard-inside ?v)):formula (and(ord n1 n2)(ord n2 n3)(initially (type ?p valuable))))(declare-method unload-val (?p ?v ?l):expansion((n1 guard-outside ?v)(n2 unload ?p ?v ?l)):formula (and(ord n1 n2)(initially (type ?p valuable)))) 146

;;; declare-method for loading REGULAR truck or traincar(declare-method load (?p ?v ?l):expansion ((n1 door-open ?v)(n2 load-package ?p ?v ?l)(n3 ~door-open ?v)):formula (and(ord n1 n2)(ord n2 n3) (initially (type ?v regular))(between (at-package ?p ?l) n1 n2)(between (at-package ?p ?v) n2 n3)(between (at-vehicle ?v ?l) n1 n3)(between (door-open ?v) n1 n3)));;; declare-method for unloading REGULAR truck or traincar(declare-method unload (?p ?v ?l):expansion ((n1 door-open ?v)(n2 unload-package ?p ?v ?l)(n3 ~door-open ?v)):formula (and(ord n1 n2)(ord n2 n3) (initially (type ?v regular))(before (at-package ?p ?v) n1)(before (at-vehicle ?v ?l) n1)(before (at-vehicle ?v ?l) n3)(before (at-package ?p ?v) n2)(between (door-open ?v) n1 n3)));;; |||||||||;;; declare-method for loading FLATBED truck or traincar(declare-method load (?p ?v ?l):expansion ((n1 pick-up-package-ground ?p ?c ?l)(n2 put-down-package-vehicle ?p ?c ?v ?l)):formula (and(ord n1 n2)(initially (type ?v atbed))(initially (type ?c crane))(before (empty ?c) n1)(before (at-package ?p ?l) n1)(before (at-equipment ?c ?l) n1)(between (at-package ?p ?c) n1 n2)(before (at-vehicle ?v ?l) n2)(between (at-equipment ?c ?l) n1 n2)));;; declare-method for unloading FLATBED truck or traincar(declare-method unload (?p ?v ?l):expansion ((n1 pick-up-package-vehicle ?p ?c ?v ?l)(n2 put-down-package-ground ?p ?c ?l)):formula (and(ord n1 n2)(initially (type ?v atbed))(before (at-package ?p ?v) n1)(before (at-vehicle ?v ?l) n1)(before (at-equipment ?c ?l) n1)(initially (type ?c crane))(before (empty ?c) n1)(between (at-package ?p ?c) n1 n2)(between (at-equipment ?c ?l) n1 n2)));;; declare-method for loading HOPPER truck or traincar(declare-method load (?p ?v ?l):expansion ((n1 chute-connected ?v)(n2 �ll-hopper ?p ?v ?l)(n3 ~chute-connected ?v)):formula (and(ord n1 n2) 147

(ord n2 n3) (initially (type ?v hopper))(before (at-package ?p ?l) n1)(before (at-vehicle ?v ?l) n1)(before (at-package ?p ?l) n2)(between (at-package ?p ?v) n2 n3)(before (at-vehicle ?v ?l) n3)(between (chute-connected ?v) n1 n3)));;; declare-method for unloading HOPPER truck or traincar(declare-method unload (?p ?v ?l):expansion ((n1 chute-connected ?v)(n2 empty-hopper ?p ?v ?l)(n3 ~chute-connected ?v)):formula (and(ord n1 n2)(ord n2 n3) (initially (type ?v hopper) n1)(before (at-package ?p ?v) n1)(before (at-vehicle ?v ?l) n1)(before (at-package ?p ?v) n2)(before (at-vehicle ?v ?l) n3)(between (chute-connected ?v) n1 n3)));;; declare-method for loading TANKER truck or traincar(declare-method load (?p ?v ?l):expansion ((n1 hose-connected ?v)(n2 valve-open ?v)(n3 �ll-tank ?v ?p ?l)(n4 ~valve-open ?v)(n5 ~hose-connected ?v)):formula (and(ord n1 n2)(ord n2 n3)(ord n3 n4)(ord n4 n5) (initially (type ?v tanker))(before (at-package ?p ?l) n1)(before (at-vehicle ?v ?l) n1)(before (at-package ?p ?l) n2)(between (at-package ?p ?v) n2 n3)(before (at-vehicle ?v ?l) n3)(between (hose-connected ?v) n1 n5)(between (valve-open ?v) n2 n4)));;; declare-method for unloading TANKER truck or traincar(declare-method unload (?p ?v ?l):expansion ((n1 hose-connected ?v)(n2 valve-open ?v)(n3 empty-tank ?v ?p ?l)(n4 ~valve-open ?v)(n5 ~hose-connected ?v)):formula (and(ord n1 n2)(ord n2 n3)(ord n3 n4)(ord n4 n5) (initially (type ?v tanker))(before (at-package ?p ?v) n1)(before (at-vehicle ?v ?l) n1)(between (at-package ?p ?v) n2 n3)(between (at-vehicle ?v ?l) n1 n5)(between (hose-connected ?v) n1 n5)(between (valve-open ?v) n2 n4)));;; declare-method for loading LIVESTOCK(declare-method load (?p ?v ?l):expansion ((n1 ramp-down ?v)(n2 trough-full ?v)(n3 load-livestock ?p ?v ?l) 148

(n4 ~ramp-down ?v)):formula (and(ord n1 n2)(ord n2 n3)(ord n3 n4)(initially (type ?v livestock))(initially (type ?p livestock))(before (at-package ?p ?l) n1)(before (at-vehicle ?v ?l) n1)(before (at-package ?p ?l) n2)(between (at-package ?p ?v) n3 n4)(before (at-vehicle ?v ?l) n4)(between (ramp-down ?v) n1 n3)(between (trough-full ?v) n2 n4)));;; declare-method for unloading LIVESTOCK(declare-method unload (?p ?v ?l):expansion ((n1 ramp-down ?v)(n2 unload-livestock ?p ?v ?l)(n3 clean-interior ?v)(n4 ~ramp-down ?v)):formula (and(ord n1 n2)(ord n2 n3)(ord n3 n4)(initially (type ?v livestock))(initially (type ?p livestock))(before (at-package ?p ?v) n1)(before (at-vehicle ?v ?l) n1)(before (at-package ?p ?v) n2)(before (at-vehicle ?v ?l) n4)(between (ramp-down ?v) n1 n3)));;; declare-method for loading AUTO truck or traincar with CARS(declare-method load (?p ?v ?l):expansion ((n1 ramp-down ?v)(n2 load-cars ?p ?v ?l)(n3 ~ramp-down ?v)):formula (and(ord n1 n2)(ord n2 n3) (initially (type ?v auto))(initially (type ?p cars))(before (at-package ?p ?l) n1)(before (at-vehicle ?v ?l) n1)(before (at-package ?p ?l) n2)(between (at-package ?p ?v) n2 n3)(before (at-vehicle ?v ?l) n3)(between (ramp-down ?v) n1 n3)));;; declare-method for unloading AUTO truck or traincar with CARS(declare-method unload (?p ?v ?l):expansion ((n1 ramp-down ?v)(n2 unload-cars ?p ?v ?l)(n3 ~ramp-down ?v)):formula (and(ord n1 n2)(ord n2 n3) (initially (type ?v auto))(initially (type ?p cars))(before (at-package ?p ?v) n1)(before (at-vehicle ?v ?l) n1)(before (at-package ?p ?v) n2)(before (at-vehicle ?v ?l) n3)(between (ramp-down ?v) n1 n3)));;; declare-method for loading AIRPLANE(declare-method load (?p ?v ?l):expansion ((n1 ramp-connected ?v ?r ?l) 149

(n2 door-open ?v)(n3 load-package ?p ?v ?l)(n4 ~door-open ?v)(n5 ~ramp-connected ?v ?r ?l)):formula (and(ord n1 n2)(ord n2 n3)(ord n3 n4)(ord n4 n5) (initially (type ?v airplane))(initially (type ?r plane-ramp))(before (ramp-available ?r) n1)(before (at-package ?p ?l) n1)(before (at-vehicle ?v ?l) n1)(before (at-equipment ?r ?l) n1)(before (at-package ?p ?l) n3)(between (at-package ?p ?v) n3 n5)(before (at-vehicle ?v ?l) n5)(between (ramp-connected ?r ?p) n1 n5)(between (door-open ?v) n2 n4)));;; declare-method for unloading AIRPLANE(declare-method unload (?p ?v ?l):expansion ((n1 ramp-connected ?v ?r ?l)(n2 door-open ?v)(n3 unload-package ?p ?v ?l)(n4 ~door-open ?v)(n5 ~ramp-connected ?r)):formula (and(ord n1 n2)(ord n2 n3)(ord n3 n4)(ord n4 n5) (initially (type ?v airplane))(initially (type ?r plane-ramp))(before (ramp-available ?r) n1)(before (at-package ?p ?v) n1)(before (at-vehicle ?v ?l) n1)(before (at-equipment ?r ?l) n1)(before (at-package ?p ?v) n3)(before (at-vehicle ?v ?l) n5)(between (ramp-connected ?r ?p) n1 n5)(between (door-open ?v) n2 n4)));;(declare-method door-open (?v):expansion ((n1 open-door ?v)))(declare-method ~door-open (?v):expansion ((n1 close-door ?v)));||||||||||||||{(declare-method chute-connected(?v):expansion((n1 connect-chute ?v)))(declare-method ~chute-connected(?v):expansion((n1 disconnect-chute ?v)));||||||||||||||{(declare-method hose-connected(?v):expansion((n1 connect-hose ?v)))(declare-method ~hose-connected(?v):expansion((n1 disconnect-hose ?v)));||||||||||||||{(declare-method valve-open(?v):expansion ((n1 open-valve ?v)))(declare-method ~valve-open(?v):expansion ((n1 close-valve ?v)));||||||||||||||{(declare-method ramp-down(?v):expansion((n1 lower-ramp ?v))) 150

(declare-method ~ramp-down(?v):expansion((n1 raise-ramp ?v)));||||||||||||||{(declare-method trough-full(?v):expansion((n �ll-trough ?v)));||||||||||||||{(declare-method clean-interior(?v):expansion((n do-clean-interior ?v)));||||||||||||||{(declare-method ramp-connected(?v ?r ?l):expansion((n attach-conveyor-ramp ?v ?r ?l)))(declare-method ~ramp-connected(?v ?r ?l):expansion((n detach-conveyor-ramp ?v ?r ?l)));||||||||||||||{(declare-method guard-outside(?v):expansion((n post-guard-outside ?v)))(declare-method ~guard-outside(?v):expansion((n remove-guard ?v)))(declare-method guard-inside(?v):expansion((n post-guard-inside ?v)));||||||||||||||{(declare-method warning-signs-a�xed (?v):expansion ((n a�x-warning-signs ?v)))(declare-method ~warning-signs-a�xed (?v):expansion ((n remove-warning-signs ?v)));||||||||||||||{;B.4 A Sample Problem;(initially-true(RV-COMPATIBLE AIR-ROUTE AIRPLANE)(RV-COMPATIBLE RAIL-ROUTE TRAINCAR)(RV-COMPATIBLE RAIL-ROUTE TRAIN)(RV-COMPATIBLE ROAD-ROUTE TRUCK)(PV-COMPATIBLE CARS AUTO)(PV-COMPATIBLE LIVESTOCK LIVESTOCK)(PV-COMPATIBLE MAIL AIRPLANE)(PV-COMPATIBLE MAIL MAIL)(PV-COMPATIBLE VALUABLE ARMORED)(PV-COMPATIBLE PERISHABLE REFRIGERATED)(PV-COMPATIBLE GRANULAR HOPPER)(PV-COMPATIBLE LIQUID TANKER)(PV-COMPATIBLE BULKY FLATBED)(PV-COMPATIBLE REGULAR AIRPLANE)(PV-COMPATIBLE REGULAR MAIL)(PV-COMPATIBLE REGULAR FLATBED)(PV-COMPATIBLE REGULAR REGULAR)(TYPE REGION1 REGION)(TYPE REGION2 REGION)(PC-COMPATIBLE CITY1 HAZARDOUS)(IN-REGION CITY1 REGION1)(TYPE CITY1 CITY)(TYPE CITY1-CL1 NOT-TCENTER)(IN-CITY CITY1-CL1 CITY1)(TYPE CITY1-CL1 CLOCATION)(TYPE CITY1-CL2 NOT-TCENTER)(IN-CITY CITY1-CL2 CITY1)(TYPE CITY1-CL2 CLOCATION)(SERVES CITY1-TS1 CITY1)(TYPE CITY1-TS1 NOT-HUB)(AVAILABLE CITY1-TS1)(TYPE CITY1-TS1 TCENTER)(IN-CITY CITY1-TS1 CITY1)(TYPE CITY1-TS1 TRAIN-STATION) 151

(SERVES CITY1-TS2 CITY1)(TYPE CITY1-TS2 NOT-HUB)(AVAILABLE CITY1-TS2)(TYPE CITY1-TS2 TCENTER)(IN-CITY CITY1-TS2 CITY1)(TYPE CITY1-TS2 TRAIN-STATION)(SERVES CITY1-AP1 CITY1)(TYPE CITY1-AP1 NOT-HUB)(AVAILABLE CITY1-AP1)(TYPE CITY1-AP1 TCENTER)(IN-CITY CITY1-AP1 CITY1)(TYPE CITY1-AP1 AIRPORT)(SERVES CITY1-AP2 CITY1)(TYPE CITY1-AP2 NOT-HUB)(AVAILABLE CITY1-AP2)(TYPE CITY1-AP2 TCENTER)(IN-CITY CITY1-AP2 CITY1)(TYPE CITY1-AP2 AIRPORT)(PC-COMPATIBLE CITY2 HAZARDOUS)(IN-REGION CITY2 REGION2) (TYPE CITY2 CITY)(TYPE CITY2-CL1 NOT-TCENTER)(IN-CITY CITY2-CL1 CITY2)(TYPE CITY2-CL1 CLOCATION)(SERVES CITY2-AP1 CITY2)(TYPE CITY2-AP1 NOT-HUB)(AVAILABLE CITY2-AP1)(TYPE CITY2-AP1 TCENTER)(IN-CITY CITY2-AP1 CITY2)(TYPE CITY2-AP1 AIRPORT)(SERVES CITY2-TS1 CITY2)(TYPE CITY2-TS1 NOT-HUB)(AVAILABLE CITY2-TS1)(TYPE CITY2-TS1 TCENTER)(IN-CITY CITY2-TS1 CITY2)(TYPE CITY2-TS1 TRAIN-STATION)(PC-COMPATIBLE CITY3 HAZARDOUS)(IN-REGION CITY3 REGION1)(TYPE CITY3 CITY)(TYPE CITY3-CL1 NOT-TCENTER)(IN-CITY CITY3-CL1 CITY3)(TYPE CITY3-CL1 CLOCATION)(SERVES CITY3-AP1 CITY3)(TYPE CITY3-AP1 NOT-HUB)(AVAILABLE CITY3-AP1)(TYPE CITY3-AP1 TCENTER)(IN-CITY CITY3-AP1 CITY3)(TYPE CITY3-AP1 AIRPORT)(SERVES CITY3-TS1 CITY3)(TYPE CITY3-TS1 NOT-HUB)(AVAILABLE CITY3-TS1)(TYPE CITY3-TS1 TCENTER)(IN-CITY CITY3-TS1 CITY3)(TYPE CITY3-TS1 TRAIN-STATION)(SERVES REGION1-AP1 REGION1)(TYPE REGION1-AP1 HUB)(AVAILABLE REGION1-AP1)(TYPE REGION1-AP1 TCENTER)(IN-CITY REGION1-AP1 CITY2)(TYPE REGION1-AP1 AIRPORT)(SERVES REGION1-TS1 REGION1)(TYPE REGION1-TS1 HUB)(AVAILABLE REGION1-TS1)(TYPE REGION1-TS1 TCENTER)(IN-CITY REGION1-TS1 CITY3)(TYPE REGION1-TS1 TRAIN-STATION)(AVAILABLE ROAD-ROUTE-1)(CONNECTS ROAD-ROUTE-1 ROAD-ROUTE CITY3 CITY1)(CONNECTS ROAD-ROUTE-1 ROAD-ROUTE CITY1 CITY3)(AVAILABLE ROAD-ROUTE-2)(CONNECTS ROAD-ROUTE-2 ROAD-ROUTE CITY3 CITY2)(CONNECTS ROAD-ROUTE-2 ROAD-ROUTE CITY2 CITY3)(AVAILABLE AIR-ROUTE-1)(CONNECTS AIR-ROUTE-1 AIR-ROUTE CITY2-AP1 CITY1-AP1)(CONNECTS AIR-ROUTE-1 AIR-ROUTE CITY1-AP1 CITY2-AP1)(AVAILABLE AIR-ROUTE-2)(CONNECTS AIR-ROUTE-2 AIR-ROUTE REGION1-AP1 CITY1-AP1)(CONNECTS AIR-ROUTE-2 AIR-ROUTE CITY1-AP1 REGION1-AP1)(AVAILABLE AIR-ROUTE-3)(CONNECTS AIR-ROUTE-3 AIR-ROUTE REGION1-AP1 CITY3-AP1)(CONNECTS AIR-ROUTE-3 AIR-ROUTE CITY3-AP1 REGION1-AP1)(AVAILABLE AIR-ROUTE-4)(CONNECTS AIR-ROUTE-4 AIR-ROUTE CITY1-AP2 CITY1-AP1)(CONNECTS AIR-ROUTE-4 AIR-ROUTE CITY1-AP1 CITY1-AP2)(AVAILABLE RAIL-ROUTE-1)(CONNECTS RAIL-ROUTE-1 RAIL-ROUTE CITY1-TS2 CITY1-TS1)(CONNECTS RAIL-ROUTE-1 RAIL-ROUTE CITY1-TS1 CITY1-TS2)(AVAILABLE RAIL-ROUTE-2) 152

(CONNECTS RAIL-ROUTE-2 RAIL-ROUTE CITY2-TS1 CITY1-TS1)(CONNECTS RAIL-ROUTE-2 RAIL-ROUTE CITY1-TS1 CITY2-TS1)(AVAILABLE RAIL-ROUTE-3)(CONNECTS RAIL-ROUTE-3 RAIL-ROUTE REGION1-TS1 CITY1-TS1)(CONNECTS RAIL-ROUTE-3 RAIL-ROUTE CITY1-TS1 REGION1-TS1)(AVAILABLE RAIL-ROUTE-4)(CONNECTS RAIL-ROUTE-4 RAIL-ROUTE REGION1-TS1 CITY3-TS1)(CONNECTS RAIL-ROUTE-4 RAIL-ROUTE CITY3-TS1 REGION1-TS1)(RAMP-AVAILABLE RAMP1A)(AVAILABLE RAMP1A)(AT-EQUIPMENT RAMP1A CITY1-AP1)(TYPE RAMP1A PLANE-RAMP)(RAMP-AVAILABLE RAMP1B)(AVAILABLE RAMP1B)(AT-EQUIPMENT RAMP1B CITY1-AP2)(TYPE RAMP1B PLANE-RAMP)(RAMP-AVAILABLE RAMP2)(AVAILABLE RAMP2)(AT-EQUIPMENT RAMP2 CITY3-AP1)(TYPE RAMP2 PLANE-RAMP)(RAMP-AVAILABLE RAMP3)(AVAILABLE RAMP3)(AT-EQUIPMENT RAMP3 CITY2-AP1)(TYPE RAMP3 PLANE-RAMP)(RAMP-AVAILABLE RAMP4)(AVAILABLE RAMP4)(AT-EQUIPMENT RAMP4 REGION1-AP1)(TYPE RAMP4 PLANE-RAMP)(AVAILABLE ROAD-ROUTE-I1547)(CONNECTS ROAD-ROUTE-I1547 ROAD-ROUTE CITY2 CITY1)(AVAILABLE ROAD-ROUTE-I1548)(CONNECTS ROAD-ROUTE-I1548 ROAD-ROUTE CITY1 CITY2)(AT-PACKAGE PKG-1 CITY1-CL1);;(TYPE PKG-1 NOT-HAZARDOUS)(TYPE PKG-1 VALUABLE)(TYPE PKG-1 REGULAR)(GUARD-INSIDE TRUCK-1)(AVAILABLE TRUCK-1)(TYPE TRUCK-1 NOT-TRAINCAR)(AT-VEHICLE TRUCK-1 CITY1-CL2)(TYPE TRUCK-1 ARMORED)(TYPE TRUCK-1 REGULAR)(TYPE TRUCK-1 TRUCK));sample input task network(setq in-tn (create-tn T (n at-package PKG-1 CITY1-CL2)));
153

Bibliography[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of ComputerAlgorithms. Addison-Wesley, 1976.[2] J. Allen, J. Hendler, and A. Tate. Readings in Planning. Morgan Kaufman, 1990.[3] James Allen, Henry Kautz, Richard Pelavin, and Josh Tenenberg. Reasoning aboutPlans. Morgan-Kaufmann, 1991.[4] Scott Andrews, Brian Kettler, Kutluhan Erol, and Jaes Hendler. UM Translog: Aplanning domain for the development and benchmarkingof planning systems. Techni-cal Report CS-TR-3487, University of Maryland at College Park, Dept. of ComputerScience, 1995.[5] F. Baader. A formal de�nition for expressive power of knowledge representation lan-guages. In 9th European Conference on Arti�cial Intelligence, Stockholm, Sweden,August 1990.[6] F. Bacchus and Q. Yang. Downward re�nement, and the e�ciency of hiearchical problemsolving. Arti�cial Intelligence, Vol. 71, 1994.[7] C. Backstrom and P. Jonsson. Planning with abstraction hierarchies can be exponen-tially less e�cient. In Proc. IJCAI-95, Montreal, 1995.[8] Christer Backstrom and Inger Klein. Planning in polynomial time: the sas-pubs class.Computational Intelligence, pages pp. 181{197, 1991.[9] A. Barrett. Frugal task decomposition. Technical Report Unpublished manuscript,Computer Science Dept., University of Washington, Seattle, Washington, June 1995.[10] A. Barrett and D. Weld. Partial order planning. Technical Report TR 92-05-01, Com-puter Science Dept., University of Washington, Seattle, Washington, June 1992.[11] J. Blythe, O. Etzioni, Y. Gil, R. Joseph, A. Perez, S. Reilly, M. Veloso, and X. Wang.Prodigy 4.0: The manual and tutorial. Technical report, School of Computer Science,Carnegie Melon University, Pittsburg, Pennsylvenia, 1992.[12] T. Bylander. Complexity results for planning. In IJCAI-91, pages 274{279, 1991.154

[13] T. Bylander. Complexity results for extended planning. In First Internat. Conf. AIPlanning Systems, 1992.[14] T. Bylander. An avarage-case analysis of planning. In AAAI-93, pages 480{485, 1993.[15] David Chapman. Planning for conjunctive goals. Arti�cial Intelligence, 32:333{378,1987.[16] Gregg Collins and Louise Pryor. Achieving the functionality of �lter conditions in apartial order planner. In AAAI-92, pages 375|380, 1992.[17] K. Currie and A. Tate. O-plan: the open planning architecture. Arti�cial Intelligence,November 1991.[18] Thomas Dean. Time map maintenance. Technical Report TR 289, Yale University, NewHaven, Connecticut, October 1983.[19] M. E. Drummond. Re�ning and extending the procedural net. In James Allen, JamesHendler, and Austin Tate, editors, Readings in Planning, pages 667{674. Morgan Kauf-man, 1990.[20] Kutluhan Erol, James Hendler, and Dana Nau. Complexity results for hierarchical task-network planning. Annals of Mathematics and Arti�cial Intelligence, (CS-TR-3240,UMIACS-TR-94-32), 1994.[21] Kutluhan Erol, James Hendler, and Dana Nau. Semantics for hierarchical task networkplanning. Technical Report CS-TR-3239, UMIACS-TR-94-31, Computer Science Dept.,University of Maryland, College Park, Maryland, March 1994.[22] Kutluhan Erol, Dana Nau, and V. S. Subrahmanian. Complexity, decidability andundecidability results for domain-independent planning. Arti�cial Intelligence, 1995.To appear.[23] R. E. Fikes, P. E. Hart, and N. J. Nilsson. Learning and executing generalized robotplans. In James Allen, James Hendler, and Austin Tate, editors, Readings in Planning,pages 189{206. Morgan Kaufman, 1990.[24] R. E. Fikes and N. J. Nilsson. Strips: a new approach to the application of theoremproving to problem solving. Arti�cial Intelligence, 2(3/4):189{208, 1971.[25] E. C. Freuder and A. K. Mackworth. Special volume on constraint-based reasoning.Arti�cial Intelligence, 58, 1992.[26] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to theTheory of NP-Completeness. W. H. Freeman and Company, 1979.155

[27] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundationfor Computer Science. Addison-Wesley, 1989.[28] Naresh Gupta and Dana S. Nau. On the complexity of blocks-world planning. Arti�cialIntelligence, bf 5 :2-3:223{254, 1992.[29] Naresh Gupta and Dana S. Nau. On the complexity of blocks-world planning. Arti�cialIntelligence, 2-3:223{254, 1992.[30] Steven Hanks and Daniel S. Weld. Systematic adaptation for case-based planning. InFirst Internat. Conf. AI Planning Systems, pages 96{105, June 1992.[31] James Hendler. AI Planning Systems. Morgan Kaufmann Publishing, Palo Alto, CA.To appear.[32] Hopcroft and Ullman. Introduction to Automata Theory, Languages and Computation.Addison-Wesley Publishing Company Inc., 1979.[33] Subbara Kambhampati and James. Hendler. A validation structure based theory ofplan modi�cation and reuse. Arti�cial Intelligence, May 1992.[34] Subbarao Kambhampati. Characterizing multi-contributor causal structures for plan-ning. In First Internat. Conf. AI Planning Systems, Tempe, Arizona, June 1992.[35] Subbarao Kambhampati. On the utility of systematicity: understanding trade-o�s be-tween redundancy and commitment in partial-ordering planning. Technical report, Ari-zona State University, Tempe, Arizona, December 1992.[36] Subbarao Kambhampati. On the utility of systematicity: Understanding tradeo�s be-tween redundancy and commitment in partial-order planning. In IJCAI-93, Chambery,France, 1993.[37] Subbarao Kambhampati, Craig A. Knoblock, and Qiang Yang. Planning as re�nementsearch: A uni�ed framework for evaluating design tradeo�s in partial order planning.Arti�cial Intelligence, To appear. To appear.[38] Subbarao Kambhampati and Dana S. Nau. On the nature and role of modal truthcriteria in planning. Arti�cial Intelligence, 1994.[39] Laveen Kanal and V. Kumar. Search in Arti�cial Intelligence. Springer-Verlag, 1988.[40] Brian. P. Kettler. Case-based planning with a massively parallel memory. Technicalreport, Dept. of Computer Science, University of Maryland,College Park, College Park,MD., 1995. In Preparation.[41] Craig A. Knoblock. An analysis of abstrips. In Proceedings of the �rst Internationalconference on AI Planning Systems, pages 126{135, 1992.156

[42] Janet Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers, 1993.[43] Amy L. Lansky. A representation of parallel activity based on events, structure, andcausality. In M. George� and A. Lansky, editors, Reasoning About Actions and Plans,pages 123{160. Morgan Kaufmann, 1987.[44] AmyL. Lansky. Localized event-based reasoning for multiagent domains. ComputationalIntelligence Journal, 1988.[45] Vladimir Lifschitz. On the semantics of strips. In James Allen, James Hendler, andAustin Tate, editors, Readings in Planning, pages 523{531. Morgan Kaufman, 1990.[46] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In AAAI-91, 1991.[47] J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint ofarti�cial intelligence. Machine Intelligence, bf 4:463{502, 1969.[48] D. McDermott. Flexibility and e�ciency in a computer program for designing circuits.Technical Report TR-40, Massachusetts Institute of Technology, 1977.[49] S. Minton, J. Bresna, and M. Drummond. Commitment strategies in planning. InIJCAI-91, 1991.[50] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing conicts: a heuristicrepair method for constraint satisfaction and scheduling problems. Arti�cial Intelligence,December 1992.[51] A. Newell and J. A. Simon. Gps, a program that simulates human thought. In E. A.Feigenbaum and J. Feldman, editors, Computers and Thought, pages 279{293. R. Old-enbourg KG, 1963, 1963.[52] N. Nilsson. Principles of Arti�cial Intelligence. Morgan-Kaufmann, 1980.[53] Edwin P. D. Pednault. Synthesizing plans that contain actions with context-dependente�ects. Computational Intelligence, bf 4:356{372, 1988.[54] J.S. Penberthy and D.S. Weld. Ucpop: A sound, complete, partial order planner foradl. In Proceedings of the Third International Conference on Knowledge Representationand Reasoning, October 1992.[55] M. A. Peot. Conditional nonlinear planning. In First Internat. Conf. AI PlanningSystems, pages 189{197, 1992.[56] M. A. Peot and D. Smith. Threat removal strategies for partial-order planning. InAAAI-93, pages 492{499, Washington D.C., 1993.[57] Stuart Russell and Peter Norvig. Arti�cial Intelligence: A Modern Approach. Prentice-Hall, 1995. 157

[58] E. D. Sacerdoti. A Structure for Plans and Behaviour. Elsevier-North Holland, 1977.[59] E. D. Sacerdoti. The nonlinear nature of plans. In James Allen, James Hendler, andAustin Tate, editors, Readings in Planning, pages 162{170. Morgan Kaufman, 1990.[60] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. In James Allen, JamesHendler, and Austin Tate, editors, Readings in Planning, pages 98{109. Morgan Kauf-man, 1990.[61] D. Smit and M. A. Peot. Postponing threads in partial-order planning. In AAAI-93,pages 500{506, Washington D.C., 1993.[62] Mark Ste�k. lanning with constriants. In James Allen, James Hendler, and AustinTate, editors, Readings in Planning, pages 171{185. Morgan Kaufman, 1990.[63] G.J. Sussman. A Computational Model of Skill Acquisition. American Elsevie, 1975.[64] A. Tate. Generating project networks. In James Allen, James Hendler, and AustinTate, editors, Readings in Planning, pages 291|296. Morgan Kaufman, 1990.[65] A. Tate, B. Drabble, and J. Dalton. The use of condition types to restrict search in anai planner. In AAAI-94, pages 1129{1134, 1994.[66] A. Tate, J. Hendler, and D. Drummond. Ai planning: Systems and techniques. AIMagazine, UMIACS-TR-90-21, CS-TR-2408:61{77, 1990.[67] Manuela Veloso. Learning by analogical reasoning in general problem solving. Technicalreport, Carnegie Mellon University, School of Computer Science, 1992.[68] Manuela Veloso and Jim Blythe. Linkability: Examining causal link commitments inpartial-order planning. In Second Internat. Conf. AI Planning Systems, Chicago, 1994.[69] S. A. Vere. Planning in time: Windows and durations for activities and goals. IEEETransactions on Pattern Analysis and Machine Intelligence, PAMI-5(3):246{247, 1983.[70] R. Waldinger. Achieving sevaral goals simultaneously. In James Allen, James Hendler,and Austin Tate, editors, Readings in Planning, pages 118|139. Morgan Kaufman,1990.[71] D. H. D. Warren. Extract for apic studies in data processing. In James Allen, JamesHendler, and Austin Tate, editors, Readings in Planning, pages 140{153. Morgan Kauf-man, 1990.[72] D. Wilkins. Practical Planning: Extending the classical AI planning paradigm. Morgan-Kaufmann, 1988. 158

[73] D. E. Wilkins. Domain-independent planning: Representation and plan generation. InJames Allen, James Hendler, and Austin Tate, editors, Readings in Planning, pages319{335. Morgan Kaufman, 1990.[74] Q. Yang. Formalizing planning knowledge for hierarchical planning. ComputationalIntelligence, 6:12{2, 1990.[75] Q. Yang. Understanding the essence of nonlinear planning. Technical report, ComputerScience Department, University of Waterloo, 1991.[76] Q. Yang, D. S. Nau, and J. Hendler. Merging separately generated plans with restrictedinteractions. Computational Intelligence, February 1993.[77] Q. Yang, J. Tenenberg, and S. Woods. Abstraction in nonlinear planning. TechnicalReport TR CS-91-65, University of Waterloo, Dept. of Computer Science, 1991.[78] R. M. Young, M. E. Pollack, and J. D. Moore. Decomposition and causality in partial-order planning. In Second Internat. Conf. AI Planning Systems, Chicago, 1994.

159

