
ABSTRACT

Title of dissertation: PLANNING UNDER UNCERTAINTY:
MOVING FORWARD

Ugur Kuter, Doctor of Philosophy, 2006

Dissertation directed by: Professor Dana Nau
Department of Computer Science

Reasoning about uncertainty is an essential component of many real-world plan-

ning problems, such as robotic and space applications, military operations planning, air

and ground traffic control, and manufacturing systems. Planning under uncertainty fo-

cuses on how to generate plans that will be executed in environments where actions have

nondeterministic effects (i.e., actions may have more than one possible outcome) and the

states of the world are not always fully observable. The two predominant approaches for

planning under uncertainty are based on Markov Decision Processes (MDPs) and Sym-

bolic Model Checking. Despite the recent advances in these approaches, the problem

of how to plan under uncertainty is still very hard: the planning algorithms must reason

about more than one possible execution path in the world, and the sizes of the solution

plans may grow exponentially. In planning environments that do not admit full observ-

ability, the complexity of planning increases by an additional exponential factor since the

planner does not know the exact states of the world, and therefore, it must reason over the

set of all states that it believes to be in.

1

This dissertation describes a suite of new planning algorithms for planning under

uncertainty with the assumption of full observability. The new algorithms are much more

efficient than the previous techniques; in some cases, they find solutions exponentially

faster than the previous ones. In particular, our contributions are as follows:

• A method to take any forward-chaining classical planning algorithm, and systemati-

cally generalize it to work for planning in nondeterministic planning domains, where

the likelihood of the possible outcomes of the actions are not known. In our experi-

ments, ND-SHOP2, a generalization of the Hierarchical Task Network (HTN) planner

SHOP2 [NAI+03], could find solutions in nondeterministic planning domains about

two to three orders of magnitude faster than MBP [BCP+01], which uses symbolic

model-checking techniques based on Binary Decision Diagrams (BDDs) [Bry92], and

which was one of the best previous planners for such domains.

• A way, called “Forward State-Space Splitting (FS3),” to take the search control (i.e.,

pruning) technique of any forward-chaining classical planner, such as TLPlan [BK00],

TALplanner [KD01], and SHOP2 [NAI+03], and combine it with BDDs. The result

of this combination is a suite of new planning algorithms for nondeterministic planning

domains. In our experiments, FS3
SHOP2, one of the new algorithms that combines HTNs

as in ND-SHOP2 with BDDs as in MBP, was never dominated by either MBP or

ND-SHOP2: FS3
SHOP2 could easily deal with problem sizes that neither MBP nor

ND-SHOP2 could scale up to, and furthermore, it could solve problems about two or

three orders of magnitude faster than the other two.

• A way to incorporate the pruning technique of a forward-chaining classical planner into

2

the previous algorithms developed for planning with MDPs. The modified algorithms

in our experiments were about 10,000 times faster than the original ones on the largest

problems the original ones could solve. On another set of problems that were more

than 14,000 times larger than the original algorithms could solve, the modified ones

took only about 1/3 second.

The new planning techniques described here have good potential to be applicable

to other research areas as well. In particular, this dissertation describes such potentials in

Reinforcement Learning, Hybrid Systems Control, and Planning with Temporal Uncer-

tainty. Finally, the closing remarks include a discussion on the challenges of using search

control in planning under uncertainty and some possible ways to address those challenges.

3

PLANNING UNDER UNCERTAINTY: MOVING FORWARD

by

Ugur Kuter

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Commmittee:

Professor Dana Nau, Chair/Advisor
Professor Steve Marcus, Dean’s Representative
Professor James Hendler
Professor Michael Fu
Professor Atif Memon

c© Copyright by

Ugur Kuter

2006

To my love, Ferla — for pushing me forward in all those uncertain times

ii

Acknowledgments

First and foremost, I would like to express my gratitude and uncountable number

of thanks to my advisor, Professor Dana Nau, for giving me an invaluable opportunity

to work on challenging and extremely interesting projects over the past years. He took a

stubborn granite block and carved it out to what Ugur Kuter is today, with his never-lasting

patience, understanding, generosity, kindness, and compassion. He is a true master and it

was a privilege to be able to be his apprentice during my doctoral training. The experience

I had under his supervision will guide me throughout my career and my life.

I express special thanks to Professors Paolo Traverso and Marco Pistore for inviting

me to Trento, Italy for an internship and for giving me the opportunity to work there on

an important part of this dissertation. They have been unbelievably understanding to my

mistakes and helpful in developing my ideas, which constitute an important portion of

this dissertation.

I also thank to Professors Jürgen Dix, Michael Fu, Steve Marcus, James Hendler,

and John Lemmer, with whom I had the most-rewarding opportunity to work and learn

from them regarding research and life.

Finally, I thank to my wife, Ferla, for always being there during all the difficult

times of my life in the past 5-6 years. Her strength and her ability to tell me how to pick

myself up whenever I fell down always made my life much easier than it would have

been, and it will always be so. I also thank to my parents, Güher and Figen Kuter, for

iii

their never-ending support to me in pursuing my goals in life.

In the past years, this research has been supported in part by the following grants:

NSF grant IIS0412812, Air Force Research Laboratory F30602-00-2-0505, Naval Re-

search Laboratory N00173021G005, DARPA’s REAL initiative, Army Research Labora-

tory DAAL0197K0135, University of Maryland Institute of Systems Research seed fund-

ing, and the FIRB-MIUR project RBNE0195k5, “Knowledge Level Automated Software

Engineering.” The opinions expressed in this paper are those of the author and do not

necessarily reflect the opinions of the funders.

iv

TABLE OF CONTENTS

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Planning in Artificial Intelligence, Traditionally 1
1.2 Uncertainty Happens! . 2
1.3 Motivation and Contributions . 5

1.3.1 Forward Planning in Nondeterministic Planning Domains 7
1.3.2 Forward State-Space Splitting in Nondeterministic Domains . . . 8
1.3.3 Forward Planning with Markov Decision Processes (MDPs) . . . 9

1.4 A Note on Planning Forward, Forward, and Forward 10

2 Preliminaries 13
2.1 Classical Planning . 13
2.2 Search Control in Planning . 16

2.2.1 Domain-Independent Search Control 16
2.2.2 Domain-Specific Search Control 18

2.3 Planning under Uncertainty . 23
2.3.1 Planning based on Markov Decision Processes (MDPs) 24
2.3.2 Planning as Model Checking . 29

2.4 Binary Decision Diagrams (BDDs) in Planning 37

3 Forward-Chaining Planning in Nondeterministic Planning Domains 40
3.1 Deterministic vs. Nondeterministic Planning Problems 41
3.2 FCP: An Abstract Procedure for Forward-Chaining Planning 43

3.2.1 Instances of FCP . 45
3.3 ND-FCP: Nondeterminized FCP . 52
3.4 Instances of ND-FCP . 56

3.4.1 ND-TLPlan . 57
3.4.2 ND-TALplanner . 59
3.4.3 ND-SHOP2 . 60
3.4.4 ND-HSP . 64

3.5 Formal Properties of the Nondeterminization Technique 66
3.6 Experimental Evaluation . 71

3.6.1 Nondeterministic Blocks World 72
3.6.2 Robot Navigation . 75

3.7 A Complexity Analysis on the Experimental Results 78

v

4 Forward State-Space Splitting in Nondeterministic Domains 84
4.1 ND-FCP vs. Planning with BDDs . 85
4.2 ND-FCP + BDDs = Forward State-Space Splitting (FS3) 90
4.3 Weak, Strong, and Strong-Cyclic Planning with FS3 94
4.4 Symbolic Model-Checking Primitives in FS3 97
4.5 Formal Properties . 100
4.6 Examples . 102

4.6.1 FS3 with Control Rules . 102
4.6.2 FS3 with Hierarchical Task Networks 104

4.7 Experimental Evaluation . 107

5 Forward-Chaining Planning with MDPs 115
5.1 Forward-Chaining MDP Planners . 116
5.2 Modifying MDP Planners with Search Control 119

5.2.1 Forward-VITLPlan . 121
5.2.2 RTDPSHOP2 . 122

5.3 Formal Properties of the Modification Technique 124
5.4 Experimental Evaluation . 127

5.4.1 Probabilistic Blocks World . 128
5.4.2 Probabilistic Robot Navigation 131

6 Related Work 134
6.1 Planning in MDPs . 134
6.2 Planning in Nondeterministic Domains 142

7 Closing Remarks 147
7.1 Conclusions . 147
7.2 Future Work . 150

7.2.1 Reinforcement Learning . 150
7.2.2 Hybrid Systems and Control . 151
7.2.3 Planning under Temporal Uncertainty 152

7.3 Challenges of Using Search Control under Uncertainty 154

A Proofs of the Theorems 157
A.1 Proofs for Chapter 3 . 157
A.2 Proofs for Chapter 4 . 164
A.3 Proofs for Chapter 5 . 170

Bibliography 173

vi

LIST OF TABLES

4.1 Comparisons between ND-SHOP2 and MBP on CHAIN problems, with
increasing number n of rooms. 86

4.2 Comparisons between ND-SHOP2 and MBP on larger CHAIN prob-
lems, with increasing number n of rooms. In this table, “−” shows
the cases where the policy representations in ND-SHOP2 required more
memory than that was available. 87

4.3 Average running times (in sec.’s) of MBP, ND-SHOP2, and FS3
SHOP2

on Hunter-Prey problems with increasing number of preys and increasing
grid size. 114

5.1 Running times using h0 on Robot-Navigation problems with one kid door.
p is the number of packages. Each data point is the average of 20 prob-
lems. 132

5.2 Running times using hmin on Robot-Navigation problems with one kid
door. p is the number of packages. Each data point is the average of 20
problems. 132

5.3 Running times using hmin on Simplified Robot-Navigation problems, with
no kid doors. p is the number of packages. Each data point is the average
of 20 problems. 133

vii

LIST OF FIGURES

2.1 An abstract forward-chaining procedure for state-space search in classical
planning. In the initial call of the procedure, π is the empty plan and s is
the initial state. 15

2.2 An unstack action in the Blocks World domain, with blocks. 19

2.3 A task-decomposition method that describes the search-control informa-
tion for SHOP2 in the Blocks World domain. 22

2.4 The Value Iteration algorithm. In the procedure above, S is the state
space in an MDP planning problem. 27

2.5 The Real-Time Dynamic Programming, RTDP, procedure. 28

2.6 The StrongPlan algorithm for generating strong solutions in nondeter-
ministic planning domains. 34

2.7 The StrongCyclicPlan algorithm for generating strong-cyclic solutions
in nondeterministic planning domains. 35

2.8 A BDD representation of the propositional formula (p1 ∧ p2) ∨ ¬p3. The
solid arrows represent the case where a proposition pi is TRUE and the
dotted arrows represents the case where pi is FALSE. 37

3.1 A nondeterministic unstack action in a nondeterministic version of Blocks
World with 3 blocks. 42

3.2 An abstract version of a forward-chaining classical planning algorithm.
In the initial call of the procedure, π is the empty plan, s is the initial
state, and χ is the initial search-control information. 43

3.3 The TLPlan planning algorithm. In the initial call, π is the empty plan, s
is the initial state, and χ is the initial temporal-logic formula. 47

3.4 The TALplanner planning algorithm. In the initial call, π is the empty
plan, Ns is the TAL formula that describes the initial state s, NG is the
TAL formula that describes the goal states G, andNχ is the TAL formula
that describes the initial search-control formula. 48

3.5 The SHOP2 planning algorithm. In the initial call, π is the empty plan,
s is the initial state, w is the initial task network. and M is the set of
available task-decomposition methods. 50

viii

3.6 ND-FCP, the nondeterminization of FCP for finding strong-cyclic so-
lutions for nondeterministic planning problems. In the initial call of the
procedure, π is the empty policy, solved is the empty set, OPEN is a set
of pairs of the form (s, χ) where s is an initial state and χ is the initial
search-control information. The underlines indicate how the coding from
FCP is embedded in ND-FCP. 54

3.7 ND-TLPlan, the nondeterminization of TLPlan for finding strong-cyclic
solutions for nondeterministic planning problems. The underlines indi-
cate how the coding from TLPlan is embedded in ND-TLPlan. 57

3.8 ND-TALplanner, the nondeterminization of TALplanner for finding strong-
cyclic solutions for nondeterministic planning problems. Initially, OPEN
is the set of pairs of the form (Ns,Nχ), where Ns is the TAL formula
describing an initial state and Nχ is the TAL formula that encodes the
search-control information χ. The underlines indicate how the coding
from TALplanner is embedded in ND-TALplanner. 60

3.9 ND-SHOP2, the nondeterminization of SHOP2. In the initial call, OPEN
is the set of pairs of the form (s, w,M) where s is an initial state, w is
the initial task network, and M is the set of available HTN methods. The
underlines indicate the code inherited from the SHOP2 planning algorithm. 61

3.10 The task-decomposition method that describes the search-control infor-
mation for ND-SHOP2 in the nondeterministic Blocks World domain. . . 63

3.11 The task-decomposition method for the failure-recovery task for the un-
stack primitive task in the nondeterministic Blocks World domain. 64

3.12 Average running times of ND-SHOP2 and MBP in the first version of
the nondeterministic Blocks World domain, as a function of the number
of blocks. 73

3.13 Average running times of ND-SHOP2 and MBP in the second version of
the nondeterministic Blocks World domain, as a function of the number
of blocks. 74

3.14 The average running times of ND-SHOP2 and MBP on Robot-Navigation
problems as a function of the number of packages, when the number of
kid-doors in the domain is fixed to 7. 76

3.15 The average running times of ND-SHOP2 and MBP on Robot-Navigation
problems as a function of the number of kid-doors, when the number of
packages in the domain is fixed to 5. 78

ix

4.1 Average running times in sec.’s for MBP and ND-SHOP2 in the Hunter-
Prey domain as a function of the grid size, with one prey. ND-SHOP2
was not able to solve planning problems in grids larger than 10× 10 due
to memory-overflow problems. 88

4.2 Average running times in sec.’s for MBP and ND-SHOP2 in the Hunter-
Prey domain as a function of the number of preys, with a fixed 4 × 4
grid. 89

4.3 FS3, an abstract planning procedure that use search-control information
to focus the search for generating solutions in nondeterministic domains.
In the initial call of the procedure, π is the empty policy and OPEN is
the set that contains the pair (S0, χ) where S0 is the set of initial states
and χ0 is the initial search-control information. 91

4.4 The Compute-Successors procedure. 93

4.5 FS3
TLPlan, an instance of the abstract FS3 procedure that uses search-

control rules as in ND-TLPlan. In the initial call of the algorithm, π
is the empty policy and OPEN is the set that contains only the initial
situation (S0, χ0). 103

4.6 The Control procedure. 103

4.7 FS3
SHOP2, an instance of the abstract FS3 procedure that uses HTNs as in

ND-SHOP2. In the initial call of the algorithm, π is the empty policy
and OPEN is the set that contains only the initial situation (S0, χ0). . . 105

4.8 The Decompose procedure. 106

4.9 Average running times (in sec.’s) of FS3
SHOP2, ND-SHOP2, and MBP in

the Hunter-Prey domain as a function of the grid size, with one prey. . . . 109

4.10 Average running times (in sec.’s) for FS3
SHOP2 and MBP on larger prob-

lems in the Hunter-Prey domain as a function of the grid size, with one
prey. 110

4.11 Average running times (in sec.’s) of ND-SHOP2, FS3
SHOP2 and MBP on

problems in the Hunter-Prey domain as a function of the number of preys,
with a 4 × 4 grid. MBP was not able to solve planning problems with 5
and 6 preys within 40 minutes. 112

5.1 Forward-VI, a forward-chaining version of Value Iteration. 116

5.2 Forward-VITLPlan, the enhanced version of Forward-VI with TLPlan’s
control rules. 122

x

5.3 The modified RTDP algorithm that incorporates search control as in SHOP2.123

5.4 Running times for PBW using h0, plotted on a semi-log scale. With 6
blocks (b = 6), the modified algorithms are about 10,000 times as fast as
the original ones. Each data point is the average of 20 problems. 129

5.5 Running times for PBW using hmin, plotted on a semi-log scale. Like
before, when b = 6 the modified algorithms are about 10,000 times as
fast as the original ones. Each data point is the average of 20 problems. . 130

xi

Chapter 1

Introduction

1.1 Planning in Artificial Intelligence, Traditionally

Traditional Artificial Intelligence (AI) planning, also known as classical planning,

requires several restrictive assumptions to be made in the formulations of planning prob-

lems. In this view, the environment must contain finitely many objects, and configurations

of those objects describe the states of the environment. A classical planner always knows

what is true and what is false in a state of the world. Planner’s actions have deterministic

outcomes; i.e., when executed, an action has a single and an instantaneous effect on the

state of the world. Furthermore, the planner’s actions are the only cause of change in the

world. Thus, the world evolves in discrete and deterministic time steps when a plan (i.e.,

a sequence of deterministic actions) is executed.

Even under the above restricting assumptions, planning is a hard problem [ENS95].

Over the years, great strides have been made in order to develop efficient techniques for

planning. Particularly successful are the techniques that have the ability to use search-

control information, i.e., auxiliary information that a planner uses during planning in or-

der to guide the planning process. In past international AI planning competitions, planners

that can use search-control information consistently worked in most planning domains,

solved the most planning problems, and solved them fastest [Bac01, FL02].

1

Despite these recent advances in classical planning, planning algorithms developed

for classical planning problems have not found much applicability in real-world planning

problems. The next section overviews some of the reasons why.

1.2 Uncertainty Happens!

Uncertainty happens in the world. When executed, actions may fail to produce

their intended outcomes, and/or exogenous events may happen and change the state of

the world. Furthermore, the world is not always fully observable to the system executing

a plan. Reasoning about such sources of uncertainty is an essential component of many

real-world planning problems, such as robotic and space applications, military operations

planning, air and ground traffic control, and manufacturing systems. Unfortunately, such

applications have characteristics that violate all or most of the restrictive assumptions of

classical planning mentioned in the previous section, and as a result, classical planning

has been usually limited to simple and toy planning problems.

Classical planning has been extended for reasoning about several forms of uncer-

tainty in real-world planning problems. One of the most widely studied such exten-

sions has been the assumption of nondeterminism: in nondeterministic planning envi-

ronments, actions may have more than one possible outcome when they are executed

in the world, and a planner does not know which of those outcomes will actually oc-

cur. The nondeterministic outcomes of the actions are used to model possible action

failures and/or the effects of exogenous events. Sometimes the planner knows the like-

lihood of possible action outcomes, in which case, probability distributions over the

2

possible outcomes of actions are used as a model of uncertainty. In these cases, the

primary approach is based on Markov Decision Processes (MDPs); see [BDH99] for

an excellent survey of this approach. In MDP planning problems, the objective is to

find a policy (i.e., a plan expressed as a function that tells which action to perform

in each state) that optimizes a utility function. The two basic algorithms for solving

MDPs are Value Iteration and Policy Iteration [Ber05]. Other MDP planning techniques

have been developed over the years, including factorized MDPs [PPS+02, BDG00], ab-

straction techniques [DB97, LK02, GK03, DKKN95, HS94], approximation techniques

[DKKN93, CKL94, Die00, GKP01b, GKP01a, SP01], symbolic approaches to first order

MDPs [BRP01], the use of decision trees and diagrams [HSAHB99, BDG00], generalized

linear functions [KP99, KP00, GKP01b], adaptations of heuristic search [HZ98, BL99],

and adaptations of greedy search [BG00, BG01b].

There are many real-world planning problems, however, in which probability distri-

butions over the possible outcomes of actions are not available. Examples include appli-

cations such as the control of trains and railway stations [CGM+97, CGM+98, CPS+99,

CCP+99], and the control of spacecrafts [ACGT01, ACG+01]. In such complex applica-

tions, it is very hard to assess the probability distributions either because of the lack of

sufficient data to compute those distributions, or because the probabilities are irrelevant

since the objective is to guarantee some outcome rather than to make that outcome prob-

able. In either case, the existing planners generate plans that guarantee to achieve some

property, when they are executed.

The predominant approach in planning with non-probabilistic models of nondeter-

minism has been planning as model checking [CPRT03, JVB01, JVB03, Rin02, BCRT01,

3

PBT01, DPT02]. This approach models the state space basically as a nondeterminis-

tic finite-state machine; thus it is like an MDP except that no probabilities are attached

to the state transitions, and the objective is to make sure that some property holds in

all or some execution paths induced by the state transitions, rather than to optimize a

utility function. Solutions to nondeterministic planning problems are classified as weak

(at least one execution path will satisfy the goal property), strong (all execution paths

will satisfy the goal), and strong-cyclic (all “fair” execution paths will satisfy goals)

[CRT98a, CRT98b, DTV99]. [CPRT03] gives a full formal account and an extensive

experimental evaluation of planning for these three kinds of solutions.

All of the planning techniques mentioned above are based on the hypothesis that

the system that executes the plans (or policies) generated by these techniques can observe

the complete state of the world during execution. Under this assumption, the planning

systems use complete information about the world states while deciding which action

must be planned for which state. There have been some attempts to relax this assump-

tion. An extreme case is planning with null observability, where no state information is

available about the world [WAS98, SW98]. A more realistic assumption is, perhaps, the

partial-observability hypothesis: in this case, the system that is responsible for executing

that plan interacts with the world through observations that provide partial information

about the world state, and it attempts to execute the action specified by the plan based on

those observations. The same observation may occur in more than one state of the world;

thus, the planning algorithms must reason with sets of states in order to generate plans

that work over observations. This exponentially increases the search spaces of planning

algorithms, which are already huge even under the assumption of full observability.

4

MDP planning has been extended to the partial-observability case via Partially-

Observable MDPs (or POMDPs, for short) [Son78, BG00, CKL94, KLC98, PB00, PB01,

Kar01, BDH99]. POMDP planning can be seen as searching over a space of belief states.

In its general form, a belief state is defined by a probability distribution over its member

states, and planning is done via transformations of these probability distributions. How-

ever, this formulation makes the POMDP planning very hard: the number of belief states

is huge and in most cases, it may not be finite. As a result, POMDP planning algorithms

can only solve very simple and toy planning problems, and they cannot scale up to com-

plex ones. Among the few planning algorithms that have demonstrated some practicality

are GPT [BG01a] and PTLplan [Kar01].

Planning as model checking has also been extended to deal with partial observabil-

ity [BCRT01, BCRT06]. In these works, belief states are defined as a classes of states

that represent common observations, and they are compactly implemented by using Bi-

nary Decision Diagrams (BDDs) [Bry92]. Planning is done by performing a heuristic

search over an AND-OR graph that represents the belief-state space. It has been demon-

strated in [BCRT06] that this approach outperformed two other planning algorithms de-

veloped for partially-observable nondeterministic domains; namely GPT [BG01a] and

BBSP [Rin05].

1.3 Motivation and Contributions

Even under the full-observability hypothesis, planning under uncertainty is a hard

problem. In order to generate solution plans (i.e., policies), existing planning algorithms

5

need to reason about all or most of possible execution paths. This requires exploring all

or most of the state space, and the state space can be huge even in some toy planning

problems. However, in many planning problems, most of the state space is irrelevant to

the solutions for those planning problems, and therefore, can be avoided in the planner’s

search effort. The inability of the planners to avoid those irrelevant portions of the state

space yields their exponential-time behavior in most of the planning domains.

In classical planning domains, on the other hand, many ways have been developed

to improve the efficiency of planners by preventing them from visiting unpromising states.

This work has been especially successful in forward-chaining planners, such as HSP

[BG99], FF [HN01], TLPlan [BK00], TALplanner [KD01], and SHOP2 [NAI+03].

These planners know the current state at all times during planning, which facilitates the

use of some powerful pruning techniques. In particular, planners such as TLPlan [BK00],

TALplanner [KD01], and SHOP2 [NAI+03] can use very effective pruning techniques

since these planners consist of a domain-independent search engine that can make use of

domain-specific (but problem-independent) search-control knowledge.

The above observations are the basis of the research described here. In partic-

ular, this dissertation describes how to take the forward-chaining based planning tech-

niques originally developed for classical planning, and systematically generalize those

techniques for planning under uncertainty in fully-observable planning domains. The

generalizations have produced very efficient new planning algorithms compared to the

previous techniques developed for planning under uncertainty. The following sections

summarize the contributions of this research.

6

1.3.1 Forward Planning in Nondeterministic Planning Domains

Chapter 3 describes a method to take any forward-chaining planning algorithm de-

veloped for classical (i.e., deterministic) planning domains, and systematically generalize

it to work in planning domains where actions may have nondeterministic outcomes but no

probabilities and utilities associated with them. Section 3.2 first describes an abstract pro-

cedure, called FCP, for forward-chaining planning in deterministic domains, and shows

that most of the existing forward planners are instances of this abstract procedure. Then,

Section 3.3 generalizes FCP to a new abstract planning procedure, called ND-FCP, that

has the following property: If a planner P can be described as an instance of FCP, then

there is a corresponding instance of ND-FCP that is a “nondeterminization” of P for

finding solutions to planning problems in nondeterministic domains. As examples, Sec-

tion 3.4 provides nondeterminizations of HSP, TLPlan, SHOP2, TALplanner, and the

Solve-EBW algorithm described in [GN92].

Section 3.5 presents theorems showing that the generalization technique preserves

the correctness properties of the original forward planners. These theorems also show

that, under certain conditions, the complexity of the generalized algorithms finding solu-

tions to nondeterministic planning problems are polynomially bounded by those of their

original classical versions. In a special case, if the original planning algorithm generates

solutions in polynomial time for classical planning problems, then the nondeterminization

of that algorithm generates solutions for nondeterministic versions of those problems also

in polynomial time.

Section 3.6 presents an experimental evaluation that involves a comparison between

7

a nondeterminized version of SHOP2, called ND-SHOP2, and the well known MBP

planner [BCP+01], in two different planning domains. The experimental results show

MBP’s CPU time growing exponentially in the size of the problems, confirming the re-

sults in [PBT01], and ND-SHOP2’s CPU time growing only polynomially. A complex-

ity analysis confirms the experimental results for ND-SHOP2: its running time grows at

O(n5), where n is the size of the problem.

1.3.2 Forward State-Space Splitting in Nondeterministic Domains

Many of the generalized planning algorithms mentioned above are very effective

in pruning the search space during planning by using the domain-specific search-control

information provided to them. However, if there is no such search-control information

available or the available search-control information does not provide effective prun-

ing, the performance of the generalized algorithms such as ND-SHOP2 substantially

degrades since those algorithms explore one state at a time during their forward search.

On the other hand, planners like MBP are built on symbolic model checking techniques,

which enables them to work with abstract collections of states by transforming one such

collection into another. This approach has been demonstrated to be very effective in some

nondeterministic planning domains, where it efficiently generates solutions without using

any search-control information. Therefore, it makes sense to combine the advantages of

this approach with those of the planner-generalization method described in the previous

section.

Chapter 4 describes Forward State-Space Splitting (FS3), a way to combine the

8

pruning technique of any forward-chaining classical planning algorithm, such as TLPlan,

SHOP2, and TALplanner, with symbolic model-checking techniques that are based on

Binary Decision Diagrams (BDDs). The result of this combination is a suite of new plan-

ning algorithms for nondeterministic planning domains. Section 4.5 presents theorems on

the correctness, completeness, and termination properties of FS3. Section 4.7 describes

an experimental evaluation of an instance of FS3, called FS3
SHOP2, that combines Hier-

archical Task Network (HTN) decomposition techniques as in ND-SHOP2 with BDD-

based representations of planning domains as in MBP. FS3
SHOP2 was never dominated by

either of MBP or ND-SHOP2, could easily deal with problem sizes that neither the MBP

or ND-SHOP2 could scale up to, and furthermore, could solve problems about two or

three orders of magnitude faster than the other two.

1.3.3 Forward Planning with Markov Decision Processes (MDPs)

Planning algorithms for MDPs typically have large efficiency problems due to the

need to explore all or most of the state space, as discussed previously. Chapter 5 focuses

on a way to improve the efficiency of planning on MDPs by adapting the pruning tech-

niques used in forward-chaining classical planners, such as TLPlan and TALplanner in

which the search-control knowledge consists of pruning rules written in temporal logic,

and HTN planners such as SIPE-2 [Wil90], O-Plan [CT91], and SHOP2 [NAI+03], in

which the search-control knowledge consists of HTN task-decomposition templates.

Chapter 5 describes how to modify any forward-chaining MDP planning algorithm,

by incorporating into it the search-control algorithm from any forward-chaining plan-

9

ner. Section 5.2 presents two examples of the new enhanced MDP planning algorithms

that have been produced by the modification technique; that is, an enhanced version of

the well-known Value Iteration algorithm [Ber05] using the search control rules as in

TLPlan and an enhanced RTDP algorithm [BG00, BG03] that uses task decomposition

techniques as in SHOP2.

Section 5.3 describes conditions under which the enhanced MDP planning algo-

rithms are guaranteed to find optimal answers, and conditions under which they can do

so exponentially faster than the original ones. The experimental results presented in Sec-

tion 5.4 demonstrate that the enhanced algorithms running exponentially faster than the

original ones. On the largest problems the original algorithms could solve, the modified

ones ran about 10,000 times faster. In only about 1/3 second, the modified algorithms

could solve problems whose state spaces were more than 14,000 times larger.

1.4 A Note on Planning Forward, Forward, and Forward

Previous techniques to planning under uncertainty usually focused on general ways

of solving planning problems in uncertain environments. Although these techniques have

been very useful for understanding the characteristics of planning problems under uncer-

tainty, their practicality has been limited to simple planning problems since they are not

able to solve the planning problems efficiently and they cannot scale to large problems.

This dissertation, in its entirety, deals with a new approach for planning under un-

certainty; that is, it develops new planning algorithms for uncertain environments by tak-

ing a class of classical planning techniques and generalizing them to work for planning

10

under uncertainty. The particular focus here is on those classical planning techniques

that do forward-chaining search, where the search starts from the initial states of a plan-

ning problem and continues toward the goal states. The planners that perform forward-

chaining search know the current state of the world at all times during that search, which

enables them to exploit effective and expressive search control techniques based on the

information from the state of the world.

The rationale behind using search control in classical planning is the observation

that not all possible execution paths in a planning domain are relevant to the solutions

of a planning problem in that domain, and therefore, those irrelevant execution paths can

be eliminated during planning. The most popular way of eliminating irrelevant execution

paths is to specify what to do and/or what not to do in a planning domain in order to

generate solutions. The classical planning algorithms that have the ability to use such

search-control information have been the most successful, and they have been demon-

strated to solve complex and large classical planning problems.

Many planning problems in uncertain environments share the above property with

classical planning problems. That is, although planning algorithms must examine more

than one execution path in order to generate solutions in uncertain environments, most

of the possible execution paths are irrelevant to those solutions. As a result, most of the

techniques developed for search control in classical planning, when generalized to work

in uncertain environments, provide the same sort of efficiency improvements for planning

under uncertainty as they have done in classical planning. This dissertation describes

several ways to do such generalizations.

The approach taken in this dissertation is not limited to planning under uncertainty.

11

In that regard, this dissertation concludes by describing ways on how to do similar gener-

alizations of classical search-control techniques to work for synthesizing controllers for

hybrid systems, reinforcement learning, and planning under temporal uncertainty.

12

Chapter 2

Preliminaries

2.1 Classical Planning

Classical planning is usually formalized by starting with the definition of a first-

order language L and augmenting this language with additional symbols and expressions

[GNT04]. In the language L, we have a finite number of predicate and constant symbols,

and no function symbols, i.e., every term is either a variable symbol or a constant symbol.

We use the standard definitions for logical atoms and literals.

A state is a set (i.e., a conjunction) of ground atoms in L. Intuitively, a state de-

scribes the atoms that are true in the world. Here, we use the well-known closed-world

assumption that any logical atom that is not specified by a state is assumed to be false in

that state of the world. A state s satisfies a positive ground atom l (i.e., a ground atom), if

l ∈ s. Otherwise, s does not satisfy l. Similarly, a state s satisfies a negative literal ¬l if

l 6∈ s. Otherwise, s satisfies ¬l.

A planning operator is an expression of the form o = (h pre del add). h is an

expression of the form op(x1, . . . , xk) such that op is an operator symbol and xi are logical

terms. pre, the preconditions of the planning operator o, is a set (i.e., a conjunction)

of literals. del and add, the delete-list and the add-list of o, are sets of logical atoms.

Intuitively, the delete-list of o describes the set of atoms to be deleted from the state of

13

the world if the operator o is applied in that state. Similarly, the add-list of o describes the

atoms to be added in the current state of the world. An action is an ground instance of a

planning operator.

A classical planning domain description (or a classical planning domain, for short)

is a deterministic state-transition system Σ = (S, A, γ) where S and A are the finite sets

of states and the actions, respectively, and γ, the state-transition function, is a function

defined as

γ : S × A→ 2S,

such that given a state s ∈ S and action a ∈ A, |γ(s, a)| ≤ 1. Note that this formalizes

the determinism assumption of classical planning that each action has only one possible

outcome. If γ(s, a) = ∅ then we say that the action a is not applicable in the state s. A

plan in a classical planning domain is a sequence of actions 〈a0, a1, a2, . . . , ak〉 such that,

when executed in a state s0, γ(si, ai) = {si+1} for each i = 0 . . . k.

A classical planning problem description (or a classical planning problem, for

short) in a domain Σ = (S, G, γ) is a tuple P = (Σ, s0, G) where s0 ∈ S is the ini-

tial state and G ⊆ S is the set of goal states. A solution is a plan π such that, when

executed in the initial state s0, π reaches to a goal state sk+1 ∈ G.

State-space search is one of the basic methods for generating solution plans for

classical planning problems. In this method, the search space is a subset of the state space

– i.e., the search space is a subset of all possible states in a classical planning domain –,

and it is usually generated either by a forward-chaining or by a backward-chaining search,

both can be characterized as a form of the well-known backtracking search [HS78].

14

Procedure FCS(s,G, π)
if s ∈ G then return(π)
applicable← {(s, a) | a is an action and γ(s, a) 6= ∅}
if applicable = ∅ then return(FAILURE)
nondeterministically choose (s, a) ∈ applicable

return(FCS(γ(s, a), G, π ∪ {(s, a)}))

Figure 2.1: An abstract forward-chaining procedure for state-space search in classical

planning. In the initial call of the procedure, π is the empty plan and s is the initial state.

In forward state-space search, the search process starts with the initial state of a

classical planning problem and continues by successively generating successor states by

applying actions in the current state until the goal state is generated. Figure 2.1 shows an

abstract procedure FCS that describes this search process. In the current state s, FCS first

generates the set of all actions applicable in s and then chooses one of those actions, say

a, nondeterministically and continues the search process from the successor state γ(s, a).

In FCS, backtracking occurs when there is no action applicable to the current state

s – i.e. applicable = ∅ in the Figure 2.1. In this case, the algorithm backtracks to the

previous state and explores another search branch by choosing another action applicable

in that state – if any.

Backward-chaining state space planning is similar to the forward version described

above, except that the search process starts at a goal state and uses the inverse state-

transition function γ−1 in order to generate the predecessor state of a state given an action

– i.e. γ−1(s′, a) = s, if γ(s, a) = s′. The search continues until the initial state is

generated in this manner. A backward search procedure has a similar backtracking point

compared to its forward counterpart: the procedure backtracks when there is no action

that can generate the current state when applied in some other state.

15

2.2 Search Control in Planning

Some of the most impressive recent advances in classical planning are based on

the use of heuristics for organizing the search space and controlling the planning process.

Sometimes the heuristics are domain-independent, i.e., intended for use in many differ-

ent planning domains, and sometimes they are domain-specific, i.e., tailored to a specific

problem domain. Domain-independent heuristics specify general problem-solving princi-

ples that work in every planning domain the heuristic functions are used. Domain-specific

heuristics, on the other hand, specify search-control knowledge specialized for a particu-

lar planning domain and does not usually provide any benefits in another.

The trade-off between using domain-independent and domain-specific heuristics is

the straightforward one: flexibility vs. efficiency. Although domain-independent heuris-

tics are much more flexible for they can be used in many planning domains, the latter

provides much more effective search-control in the particular domains they are designed

for. As a result, the planning algorithms that are able to use domain-specific heuristics

solve the planning problems much more efficiently than the ones that exploit domain-

independent heuristics, and they can scale up to larger planning problems than the others.

The subsequent sections present an overview of the existing domain-independent

and domain-specific heuristic techniques developed for classical planning.

2.2.1 Domain-Independent Search Control

Probably the most successful and therefore the most popular way of generating

domain-independent heuristics is based on problem relaxation techniques. Problem re-

16

laxation involves ruling out some of the constraints from the definition of the planning

problems in a domain in order to create “relaxed” versions of those problems. The plan-

ning algorithms, then, solve these relaxed problems and use their solutions as heuristic

information for controlling their search in the original ones. This approach have been

very successful in many algorithms for classical planning, including the works reported

in [BF97, Koe99, KS98a, KS98b, BG99, HG00, HBG05].

A popular technique to derive heuristics from relaxed versions of planning prob-

lems is the use of planning graphs, i.e., data structures that compactly represent the set of

solutions to a relaxed planning problem. The planning algorithms that use this technique

generate a planning graph for the input planning problem by performing a forward search

from the initial states toward the goal states, while ignoring the constraints on the possible

interactions of actions in the plans. Then, the algorithms use the planning graph generated

in this way to constrain their search for solutions for the original planning problem. Plan-

ning graphs were first introduced as tools to guide the planning process in the GraphPlan

algorithm [BF97], and their success led to the development of many successors, including

IPP [Koe99], BlackBox [KS98a, KS98b], and AltAlt [NKN02].

Reachability analysis based on generating distance (or cost) estimates in relaxed

versions of planning problems is another way of deriving domain-independent heuristics

in classical planning [BG99, HN01, NK01, YS02]. The planning algorithms that use this

approach usually perform a forward or backward sweep of the search space induced by

a relaxed version of a planning problem generated by ignoring the negative effects of

actions (i.e., by ignoring the action effects that delete some information from the state of

the world) and/or by assuming some independence properties over action preconditions.

17

Such processing of the search spaces of planning problems are similar to finding shortest-

paths over graphs [CLRS01], and they enable the planners to compute the estimates for

distances or costs of states and/or atoms to the goals of the relaxed planning problem.

Those estimates are then used to guide the order in which the planners visit nodes in the

search space of the original planning problem.

Planning graphs and distance-based reachability analysis can be combined to pro-

vide better heuristics for solving classical planning problems. The FF planner [HN01]

and its successors are good examples for this hybrid approach that has been successful in

a large number of planning domains as demonstrated in past several international planning

competitions [Bac01, FL02].

2.2.2 Domain-Specific Search Control

When domain-specific heuristics are used, sometimes the planners themselves are

domain-specific, i.e., they work only in a particular domain such as process planning

[HSMN96] or the game “Bridge” [SNT98]. In other cases, the planner consists of a

domain-independent planning engine (which is usually a forward-chaining state-space

search engine), plus a language for writing domain-specific problem-solving knowledge.

In some cases, the language for writing domain-specific search-control knowl-

edge is based on modal temporal logic formulas (e.g., TLPlan [BK00] and TALplanner

[KD01]). These formulas specify some properties of the solution plans for the input plan-

ning problem that should and/or should not hold during the execution of those plans. In

other words, they specify acceptable behaviors of sequences of action (i.e., plans) gener-

18

a b
c

a b

c
UNSTACK

Figure 2.2: An unstack action in the Blocks World domain, with blocks.

ated in a planning domain. For example, a search-control formula may require a condition

be ALWAYS hold in every state that is generated during the execution of a plan. Another

may require a condition be EVENTUALLY hold in some state that is to be generated dur-

ing execution. Finally, a formula may require a condition be hold in the NEXT state that

arises by applying an action in the current state. Such search-control formulas are used

by TLPlan and TALplanner to control their search during planning by avoiding action

sequences that do not satisfy a given search-control formula.

For example, consider the well known Blocks World planning domain, where there

are a number of blocks in the world; some are on top of another block and the others are

on the table. There are four actions: pickup the block from the table, putdown the block

on the table, stack the block on top of another block, if there are no blocks on the latter,

and unstack the block from the top of another block, if there are no blocks on the former.

Figure 2.2 shows an instance of this planning domain and the operation of an unstack

action in that instance.

[BK00] reports a search-control formula for TLPlan in the Blocks World domain

19

as follows:

χ : 2(∀[?x : clear(?x)]goodtower(?x)⇒ �(clear(?x)

∨ ∃[?y : on(?y, ?x)]goodtower(?y))

∧ badtower(?x)⇒ �(¬∃[?y : on(?y, ?x)])

∧ (on(?x, table)

∧ ∃[?y : GOAL(on(?x, ?y))]

∧ ¬goodtower(?y))⇒ �(¬holding(?x))).

In the above formula, ?x and ?y are variable symbols that represent individual

blocks in the domain. This formula characterizes the following two facts. First, the

planner must place a block only on good towers, but not on bad towers. A good tower is

a stack of blocks in which every block is in its goal position. A bad tower is a tower that

is not a good tower. The first two conjuncts of the above formula deals with this case.

Second, there may also be some useless actions applicable in the current state that can

be pruned out. For example, suppose we have a block ?x that is intended to be on block

?y but is currently on the table, and ?y is on top of a bad tower in the current state. In

this case, there is no point in moving ?x on top of ?y right now since it will be moved

back again when the planner tries to build a good tower under ?y. The last conjunct of the

formula models this fact.

Another widely-recognized formalization for specifying domain-specific heuristics

for planning is based on Hierarchical Task Networks (HTNs) (e.g., SHOP2 [NAI+03],

SIPE-2 [Wil88], and O-PLAN [CT91]). Here, the domain-specific knowledge is en-

coded by means of tasks (i.e., symbolic representations of real-world activities), and task-

20

decomposition methods that specify the possible ways of decomposing those tasks into

smaller ones. Planning starts by the input tasks to be achieved, along with specifications

on possible orders they should be achieved, and proceeds by decomposing those tasks

into smaller tasks until only primitive tasks that can directly be executed in the world is

left. The primitive tasks along with their ordering constraints constitute a solution plan

for the input planning problem. If task decomposition fails at some point during plan-

ning, then this means that there is no solution plan for the input planning problem given

the input tasks and task-decomposition procedures. In that case, the planning algorithms

return failure.

An example for tasks and task-decomposition methods as in SHOP2 [NAI+03] is

shown in Figure 2.3 for the Blocks World domain. This figure shows a task move-block

for moving blocks from one location to another in the world and a task-decomposition

method for accomplishing this task. The argument of the task move-block specifies

those blocks that have been already moved to their goal locations. Intuitively, this task-

decomposition method encodes the following search-control heuristic for SHOP2:

• if there is an “unsolved” block b such that b can be moved to its goal position, then do

the following:

• if b is on top of a block and its goal position is on some other block that is on top

of a good tower, then move b to its goal position, mark it as “solved”, and continue

with other “unsolved” blocks;

• else if b is on top of a block and its goal position is on the table, then move it,

mark it as “solved”, and continue with other “unsolved” blocks;

21

(:method (move-block ?solved)
;; method for moving x from y to z

(:first (arm-empty) (clear ?x) (eval (not (member ’?x ’?solved))) (on ?x ?y)
(goal (on ?x ?z)) (different ?x ?z) (clear ?z) (not (need-to-move ?z)))

((!unstack ?x ?y) (!stack ?x ?z) (move-block (?x . ?solved)))

;; method for moving x from y to table

(:first (arm-empty) (clear ?x) (eval (not (member ’?x ’?solved))) (on ?x ?y)
(goal (on-table ?x)))

((!unstack ?x ?y) (!putdown ?x table) (move-block (?x . ?solved)))

;; method for moving x from table to y

(:first (arm-empty) (clear ?x) (eval (not (member ’?x ’?solved))) (on-table ?x)
(goal (on ?x ?y)) (clear ?y) (not (need-to-move ?y)))

((!pickup ?x) (!stack ?x ?y) (move-block (?x . ?solved)))

;; method for moving x out of the way

((arm-empty) (clear ?x) (eval (not (member ’?x ’?solved))) (on ?x ?y)
(need-to-move ?x))

((!unstack ?x ?y) (!putdown ?x table) (move-block ?solved))

;; if nothing else matches, then we’re done

nil
nil)

Figure 2.3: A task-decomposition method that describes the search-control information

for SHOP2 in the Blocks World domain.

• else if b is on the table and its goal position is on a block that is on top of a

good tower, then move it, mark it as “solved”, and continue with other “unsolved”

blocks;

• else if there is an “unsolved” block that cannot be moved to its goal position, then move

it on the table and continue with other “unsolved” blocks;

• else, there is no “unsolved” block left.

Although it can take some effort to write and tune domain-specific search-control

22

heuristics, the case for doing so is quite strong. All of the planners mentioned above

have greater expressive power than the existing domain-independent planners; e.g., they

can call attached procedures, can do axiomatic inference and numeric computations, and

can reason about durative actions whose durations are not fixed in advance. In past AI

planning competitions [Bac01, FL02], these planners were the fastest, could solve the

hardest problems, and could handle the widest variety of planning domains.

2.3 Planning under Uncertainty

In many real-world planning problems, a planner does not know the exact outcomes

of its actions when it executes them in the world; e.g., an action may fail to achieve its

intended outcomes, and/or there may be some exogenous events that may change the state

of the world without the control of the system that executes the plan. Furthermore, the

system that executes a plan may not be able to observe the state of the world that arises

from executing an action. Planning under uncertainty focuses on the problem of how

to plan in environments that admit the above sources of uncertainty. In some cases, the

objective of planning under uncertainty is to generate plans that satisfy a given property

throughout all or some execution paths in the world; in others, it is to generate plans

that optimize some expected utility when they are executed. It is hard to achieve these

objectives: the algorithms must reason about all or most of the possible execution paths,

and the sizes of the solution plans may grow exponentially.

This section reviews the two most widely known and used approaches to planning

under uncertainty under the assumption of fully observability. The presentation here par-

23

ticularly focuses on the existing techniques that have been very successful to reduce the

complexity of planning under uncertainty in practice. Other related works on planning

under uncertainty that are relevant to this dissertation are reviewed in Chapter 6.

2.3.1 Planning based on Markov Decision Processes (MDPs)

Planning based on MDPs is the primary approach for solving planning problems

that deals with nondeterminism, probabilities, costs, and rewards (see [BDH99] for a

survey).

An MDP description of a planning problem (or an MDP planning problem, for

short) is a tuple (Σ, S0, G) where Σ is an MDP description of a planning domain, S0 ⊆ S

is the set of initial states, and G ⊆ S is the subset of the goal states.

An MDP description of a planning domain (or an MDP planning domain, for short)

is a tuple of the form Σ = (S, A, γ, α, Pr, C) where S is a finite set of all possible states

and A is a finite set of all possible actions. γ : S×A→ 2S is the state transition function.

Note that we do not have the determinism requirement in this formulation; i.e., |γ(s, a)|

does not have to be ≤ 1. The set of applicable actions in a state s is app(s) = {a | a ∈

A and γ(s, a) 6= ∅}.

In Σ, 0 < α ≤ 1 is the discount factor. Pr is the transition-probability function

defined as

Pr : S × A× S → [0, 1]

such that ∑
s′∈γ(s,a)

Pr(s, a, s′) = 1, ∀s ∈ S, a ∈ app(s),

24

and C is the cost function defined as

C : S × A→ <+.

In MDP planning, the objective is to find a policy (i.e., a plan expressed as a function

that tells which action to perform in each state) that optimizes a utility function. More

formally, a policy π is defined as a partial function

π : S → A.

The reason that a policy π need not be a total function is that if a state s ∈ S is not

reachable from the initial states in S0 by successively applying the actions in A, then s

can safely be omitted from the domain of π.

In an alternative set-theoretic view, a policy can be seen as a set of state-action pairs

of the form (s, a) such that γ(s, a) 6= ∅ — i.e., such that the action a is applicable in

the state s. In this view, the set of states Sπ in a policy is the set {s | (s, a) ∈ π}. This

dissertation uses the above set-theoretic representations of policies.

Given a policy π, the value function V π(s) is the expected sum of the future dis-

counted costs, i.e.,

V π(s) = Eπ[
∑
t≥0

αt C(st, π(st)) |s0 = s],

where st is the state of the MDP at time t, and Eπ[·] is understood with respect to the

search space induced by the state transition function γ and the transition probabilities. A

solution for an MDP planning problem is a policy π∗ such that when executed in an initial

state s0 ∈ S0, π∗ reaches a goal state in G with probability 1, and no other policy π′ has

both the same property and a lower expected cost. An MDP planning problem is solvable

if and only if there is a solution for it.

25

It is well-known [Put94] that the optimal value V (s) for state s can be computed by

solving the system of equations

V (s) =

0, if s ∈ G

mina∈app(s) Q(s, a), otherwise,
(2.1)

Q(s, a) = C(s, a) + α
∑

s′∈γ(s,a)

Pr(s, a, s′)V (s′). (2.2)

Solution Methods for MDP Planning

The two basic algorithms for solving MDP planning problems are Value Iteration

and Policy Iteration. The former is a dynamic programming technique that computes op-

timal values of states in a backwards fashion by computing the value of the current state

using the cost function C and the values of the all possible successor states. This com-

putation is based on Bellman’s Principle of Optimality; which says, “an optimal policy

must have the property that whatever the initial state and the initial decision (for planning

an action in that state) are the remaining states and the decisions (for planning actions

in those states) must constitute an optimal policy with regard to the states resulting from

the first decision.” [Ber05]. Figure 2.4 shows the pseudocode for the Value Iteration

algorithm for generating optimal solutions for MDP planning problems.

The Policy Iteration algorithm performs a search over the space of all possible

policies. The algorithm successively alternates the following two phases: the policy-

evaluation phase and the policy-update phase. In the former phase, Policy Iteration com-

putes the expected values of the states in the current policy by solving the system of

equations shown in Equations 2.1 and 2.2. In the policy-update phase, the algorithm re-

26

Procedure Value Iteration
select any initialization for the value function V

while V has not converged do
π ← ∅
for every state s ∈ S

for every a ∈ app(s)
Q(s, a)← C(s, a) + α

∑
s′∈γ(s,a) Pr(s, a, s′) V (s′)

V (s)← mina∈app(s) Q(s, a)
a← argmina∈app(s) Q(s, a)
π ← π ∪ {(s, a)}

return π

Figure 2.4: The Value Iteration algorithm. In the procedure above, S is the state space

in an MDP planning problem.

fines a policy to a new policy where the initial states of the new one have smaller expected

costs. The Policy Iteration algorithm terminates when there are no further refinements

are possible, in which case the current policy is an optimal policy (i.e., a solution) for the

input planning problem.

One limitation of the Value Iteration and Policy Iteration algorithms is their high

computational complexity due to the need for examining the entire state space (or large

portions of it) to generate optimal policies. For complex planning problems the state space

can be quite huge: for planning problems expressed using probabilistic STRIPS operators

[HM93, KHW94] or 2TBNs [HSAHB99, BG96], planning is EXPTIME-hard [Lit97].

Real-Time Dynamic Programming (RTDP) has emerged as a promising technique

for MDP planning [BG00, BG03]. Figure 2.5 shows the pseudocode of the RTDP plan-

ning procedure. RTDP is a planning algorithm based on real-time forward search, which

is performed by simulating possible execution paths in the world, rather than by explor-

ing all or most of the states that can be reached from the initial states of the input MDP

27

Procedure RTDP
select any admissible initialization for V

while V has not converged relative to a parameter ε do
s← s0

while s 6∈ G do
a← argmina∈app(s) Q(s, a)
V (s)← C(s, a) + α

∑
s′∈γ(s,a) Pr(s, a, s′)V (s′)

pick s′ ∈ γ(s, a) with probability Pr(s, a, s′)
s← s′

extract the greedy optimal policy π given V and s0

return π

Figure 2.5: The Real-Time Dynamic Programming, RTDP, procedure.

planning problem. In each iteration of the outer while loop, RTDP performs a greedy

search going forward starting from the initial state towards the goal states of the input

MDP planning problem.1 RTDP’s forward search at each iteration is a stochastic simula-

tion of the greedy partial policy. The planning procedure updates the values of the states

visited in an iteration using the Bellman update

V (s)← C(s, a) + α
∑

s′∈γ(s,a)

Pr(s, a, s′)V (s′),

where a is the greedy action (i.e., the current best action that has the minimum Q(s, a)

value) in a state s that the algorithm is currently exploring. After updating the value of

s, the planning algorithm simulates the execution of a in s by stochastically selecting

a single successor state s′ of s based on the state-transition function Pr(s, a, s′). The

1Without loss of generality, RTDP assumes that there is a single initial state in the description of MDP

planning problems [BG00, BG03]. Note that MDP planning problems with multiple initial states can easily

be modeled as a planning problem with a single initial state and a special action such that applying that

action in the initial state generates a set of successor states that correspond to the initial states of the original

planning problem.

28

simulation continues with the state s′ until a goal state is generated.

Experimental comparisons of RTDP with traditional dynamic programming ap-

proaches such as Value Iteration showed that RTDP is able scale up to much larger MDP

planning problems than Value Iteration. However, RTDP is not an optimal algorithm as

Value Iteration is — i.e., it does not guarantee to generate optimal solutions for every

MDP planning problem; in some cases, it even does not guarantee to terminate [BG03].

If the initial estimate of the value function V is not over-estimating (i.e., V ≤ Eπ∗ [·]) and

there is a path with positive probability from every state in an MDP planning domain Σ

to the goal states of the input planning problem, then the algorithm is shown to terminate

after finitely many forward searches and return an optimal solution [BG03].

2.3.2 Planning as Model Checking

Planning as Model Checking deals with the problem of planning under nondeter-

minism and partial-observability. The primary difference between MDP planning prob-

lems and the planning problems here is that planning as model checking does not require

probabilities, rewards, and costs to be known, and the objective is to satisfy a property

in all or some execution paths induced by a policy rather than to optimize some utility

function. This planning approach is useful in applications where transition probabili-

ties are unavailable due to lack of data, or where the transition probabilities are irrele-

vant because the objective is to guarantee some outcome rather than to make that out-

come probable. Applications that are being investigated include the control of trains and

railway stations [CGM+97, CGM+98, CPS+99, CCP+99], and the control of spacecraft

29

[ACGT01, ACG+01].

Planning as model checking uses nondeterministic models for formalizing planning

domains. A nondeterministic description of a planning domain (or a nondeterministic

planning domain, for short) is given in terms of a nondeterministic state-transition system

Σ = (S, A, γ) where S and A are the finite sets of all possible states and actions in the

domain, and γ, the state-transition function, is a function defined as

γ : S × A→ 2S.

An action a is applicable in a state s if γ(s, a) 6= ∅. The set Sa of all states in which a is

applicable is {s | s ∈ S and γ(s, a) 6= ∅}.

As in MDP planning, a policy π is defined as a partial function from states to ac-

tions. The set Sπ of states in a policy π is {s | (s, a) ∈ π}. The set St
π of terminal states

of π is {s′ | (s, a) ∈ π, s′ ∈ γ(s, a), and s′ 6∈ Sπ}.

The execution structure Σπ induced by a policy π is the subsystem of the particular

planning domain Σ, defined as Σπ = (Vπ, Eπ) such that Vπ is the set of the nodes of Σπ.

Each node in Vπ represents either a state in the policy π or a terminal state of π — i.e.,

Vπ = Sπ ∪ St
π. Eπ is the set of arcs between the nodes of Σπ, which represent possible

state transitions caused by actions in π.

The notion of reachability in execution structures can be formalized as follows. Let

π be a policy, and let Σπ = (Vπ, Eπ) be the execution structure induced by π. For any

two nodes s, s′ ∈ Vπ, s is a π-ancestor of s′ in Σπ if there is a path in Σπ from s to s′.

Similarly, s′ is called a π-descendant of s in Σπ.

A dead-end state s of π is a state in the execution structure Σπ such that

30

• if s a terminal state of π and there is no action applicable in s, or

• if s is a non-terminal state of π and s has no π-descendants in the terminal states of

Σπ that are not dead-end states.

A state-action pair (s, a) in π is a dead-end state-action pair if all of the states in γ(s, a)

are dead-end states.

A planning problem description in a nondeterministic planning domain (or a

nondeterministic planning problem, for short) is a tuple of the form (Σ, S0, G) where

Σ = (S, A, γ) is a nondeterministic planning domain, S0 ⊆ S is the set of initial

states, and G ⊆ S is the set of goal states. Solutions to planning problems are clas-

sified as weak (at least one execution trace will reach a goal), strong (all execution

traces will reach goals), and strong-cyclic (all “fair” execution traces will reach goals)

[CRT98a, CRT98b, DTV99]. More precisely,

• A weak solution to a nondeterministic planning problem is a policy π such that if for

every initial state s in S0, there exists at least one path in Σπ that starts from the node

that represents s and reaches to a final node that represents a goal state. A policy π is a

candidate weak solution if, for each initial state s ∈ S0, there exists at least one path in

Σπ that starts from s and ends in a terminal state in St
π.

• A strong solution is a policy π such that (1) if every finite path in Σπ reaches to a final

node that satisfies the goals, and (2) there are no infinite paths (i.e., no cycles) in Σπ. A

policy π is a candidate strong solution if (1) every finite path in Σπ reaches to a terminal

state in St
π, and (2) there are no cyclic paths in Σπ.

• A strong-cyclic solution is a policy that is guaranteed to achieve the goals of the plan-

31

ning problem under a so-called “fairness assumption” [CPRT03]; which says, the ex-

ecution of the policy must guarantee to reach to the goal states, if every cyclic path in

Σπ is executed only finitely many times in the world. This means that a policy π is a

strong-cyclic solution if every (finite or infinite) path in Σπ can be extended to a finite

execution path that reaches to a goal state. A policy π is a candidate strong-cyclic solu-

tion if every path in Σπ can be extended to a finite execution path that reaches to a state

in St
π.

A nondeterministic planning problem is solvable if it has any of the three kinds of solu-

tions described above.

Solution Methods for Planning as Model Checking

The model-checking based planning algorithms for generating weak, strong, and

strong-cyclic solutions use breadth-first search techniques that proceed backwards starting

from the goal states towards the initial states of a planning problem. The primary and the

most important difference between these planning algorithms and traditional backward-

chaining state-space planning, as described in Section 2.1, is that the former perform the

backward search over sets of states, whereas the latter explores one individual state at a

time. As a result, the model-checking based planning algorithms are able to explore huge

state spaces that traditional backward search could not scale up to.

The backward search over clusters of states is performed using Preimage functions

as search primitives. Given a set of states S, a Preimage function computes some set

of predecessors of S in a single backward operation. Model-checking based planning

32

techniques use primarily two types of Preimage functions: namely, the WeakPreimage

and StrongPreimage functions. The WeakPreimage of a set S of states is defined as

follows [CPRT03]:

WeakPreimage(S) = {(s, a) | γ(s, a) 6= ∅ and γ(s, a) ∩ S 6= ∅}.

Intuitively, the WeakPreimage of a set S of states include every state s in Σ such that at

least one of the successor states generated by applying an action a in s is in S.

The StrongPreimage of S is defined as follows [CPRT03]:

StrongPreimage(S) = {(s, a) | γ(s, a) 6= ∅ and γ(s, a) ⊆ S}.

Intuitively, the StrongPreimage of a set S of states includes every state s in a planning

domain Σ such that all of the successor states that are generated by applying a in s are in

S.

The model-checking based planning algorithms are based on either of these

Preimage functions, depending on whether their objective is to generate weak, strong,

and strong-cyclic solutions. [CPRT03] gives an extensive overview of these algorithms.

Weak planning simply consists of successive WeakPreimage computations, starting

from the goal states towards the initial states. The algorithm terminates when for each

initial state, it generates a path that reaches to a goal state. The weak planning algorithm

is a special case of strong and strong-cyclic planning algorithms, and therefore, it is not

described here in detail.

Strong planning is done by performing a backward search that starts from the goal

states of a planning problem and the empty policy, and by extending the current pol-

icy with the actions generated as a result of performing successive StrongPreimage

33

Procedure StrongPlan(S0, G)
π ← FAILURE; π′ ← ∅
while π′ 6= π and S0 6⊆ (G ∪ Sπ′) do
preimage← StrongPreimage(G ∪ Sπ)
π′′ ← PruneStates(preimage, G ∪ Sπ)
π ← π′; π′ ← π′ ∪ π′′

if S0 ⊆ (G ∪ Sπ) then return(MkDet(π))
return(FAILURE)

Figure 2.6: The StrongPlan algorithm for generating strong solutions in nondeterministic

planning domains.

operations. Figure 2.6 shows, StrongPlan, the strong planning algorithm described in

[GNT04].2 The strong planning process ends either when the initial states of the input

planning problem are reached, or when there are no possible further extensions to the cur-

rent policy. The former case marks the successful termination of planning, and therefore,

the algorithm returns the generated policy as a solution for the input planning problem. In

the latter case, however, the planning process fails to generate a solution for that planning

problem.

In StrongPlan, the function PruneStates removes any state-action pair (s, a) if

the current partial policy π already specifies another action for s. The function MkDet

“determinizes” the final policy π: it returns a policy π′ ⊆ π such that Sπ = Sπ′ and

for every state s ∈ Sπ′ there exists only one state-action pair (s, a) in π′. The formal

definitions of all of these functions are given in [CPRT03, GNT04].

Similar to strong planning, strong-cyclic planning is also based on backward

breadth-first search over sets of states using Preimage operations. Figure 2.7 shows

2[CPRT03] gives a more detailed pseudocode for strong planning; however, the exposition in [GNT04]

is simpler and easier to understand.

34

Procedure StrongCyclicPlan(S0, G)
π ← ∅; π′ ← UnivPol

while π 6= π′ do
π ← π′

π′′ ← PruneOutgoing(π′, G)
π′′′ ← ∅
repeat

X ← π′′′

π′′′ ← π′′ ∩WeakPreimage(G ∪ Sπ′′′)
until X = π′′′

π′ ← π′′′

if S0 ⊆ (G ∪ Sπ′) then
return(MkDet(RemoveNonProgress(π,G)))

return(FAILURE)

Figure 2.7: The StrongCyclicPlan algorithm for generating strong-cyclic solutions in

nondeterministic planning domains.

StrongCyclicPlan, the strong-cyclic planning algorithm described in [GNT04]. Strong-

cyclic planning differs from the strong planning algorithm in the way it exploits backward

search as well as in its preimage operations. The planning procedure starts from the uni-

versal policy, i.e., the policy that contains all of the possible state-action pairs in the given

planning domain, and successively eliminates state-action pairs from this policy. Each it-

eration of the strong-cyclic planning algorithm performs a backward search starting from

the goal states toward the initial states of the input planning problem. During this back-

ward search, StrongCyclicPlan identifies and eliminates the state-action pairs that does

not specify any progress toward the goal states of the planning problem. In order to iden-

tify such state-action pairs, a more relaxed preimage operation than StrongPreimage

is needed; in particular, StrongCyclicPlan uses the WeakPreimage function described

above. WeakPreimage operations ensure that a state-action pair (s, a) will not be elim-

inated in this iteration if there is at least one possible execution path that starts from s

35

and leads toward to a goal state by applying a in s. All of the state-action pairs that do

not specify any progress toward the goal states are eliminated from the current policy in

this iteration. Note that elimination of state-action pairs in one iteration may require other

state-action pairs be eliminated in the successive iterations.

Strong-cyclic planning continues until no further elimination is possible. Note that,

at this point, the planning procedure reaches to a fixpoint policy π by successively elim-

inating state-action pairs from the universal policy it started with. This fixpoint policy

induces an execution structure in which every path can be extended to finite execution

path that reaches to the goal states. Thus, a final correctness check is needed to make

sure that π also includes the initial states of the input planning problem as well. If so,

StrongCyclicPlan first removes the redundant state-action pairs from π that do not make

any progress towards the goals. Then it “determinizes” π as described above and returns

the final policy as solution for input planning problem. Otherwise, the planning process

terminates with a failure to generate a solution for that planning problem.

In StrongCyclicPlan, the functions PruneStates and MkDet are as explained

above. The functions RemoveNonProgress and PruneOutgoing in StrongCyclicPlan

are responsible for ensuring that no state-action pair is left in the final solution policy

that needs to be removed. The formal definitions of all of these functions are given in

[CPRT03, GNT04].

Both StrongPlan and StrongCyclicPlan planning procedures described above

have been theoretically shown to be sound and complete planning algorithms. They are

sound in the sense that if they return a solution for the given planning problem, that solu-

tion is guaranteed to be a strong or strong-cyclic solution for that problem, respectively.

36

p1

p2

p3

True False

Figure 2.8: A BDD representation of the propositional formula (p1∧p2)∨¬p3. The solid

arrows represent the case where a proposition pi is TRUE and the dotted arrows represents

the case where pi is FALSE.

They are complete in the sense that if they return failure, then there exists no strong or

strong-cyclic solution to the given planning problem, respectively.

2.4 Binary Decision Diagrams (BDDs) in Planning

As we discussed in the previous section, the model-checking based algorithms per-

form their backward searches over clusters of states, rather than over individual states as

in the traditional state-space planning. This allows for using symbolic model-checking

techniques to compactly represent sets of states in those algorithms and implementing

the search procedures over those compact representations. It has been experimentally

demonstrated that in some cases, the use of such compact state representations exponen-

tially improves the run times required by those planning algorithms to generate solutions

to planning problems [BCP+01, PBT01, JVB03].

The most popular symbolic model-checking method for compactly representing

37

sets of states during planning is based on the use of Ordered Binary Decision Diagrams

(or BDDs for short) [Bry92]. BDDs are data structures that provide a canonical form for

representing Boolean functions (i.e., propositional logical formulas). More specifically, a

BDD is a directed acyclic graph in which the terminal nodes (i.e., nodes that do not have

any outgoing edges) represent the logical values TRUE and FALSE, and the non-terminal

nodes represent the propositions in a Boolean formula. Each nonterminal node has two

children BDDs. The truth value of a propositional formula represented as a BDD is given

by the terminal node that is reached by traversing the BDD starting from the root node and

ending at that terminal node. As an example, Figure 2.8 shows the BDD representation

of the following propositional formula:

(p1 ∧ p2) ∨ ¬p3,

where each pi is a proposition. In this example, suppose p1 is FALSE, and p2 and p3 are

TRUE, so the entire formula is FALSE. The evaluation of the formula to this fact is done

over the BDD of Figure 2.8 is as follows. We start from the p1 node. Since p1 is FALSE,

we follow the dotted arrow out of this node, coming to the p3 node. Since p3 is TRUE, we

follow the solid arrow out of p3 and end up in the FALSE node. Note that this is correct

since ¬p3 is FALSE, and therefore, the entire formula is FALSE.

As demonstrated above, BDDs can be combined to compute the negation, conjunc-

tion, and disjunction of propositional formulas. The combination of two BDDs, say b1

and b2, can be performed in linear time O(|b1| |b2|) where |bi| is the size of the BDD bi —

i.e., |bi| is the number of variables (nonterminal nodes) in the BDD bi [Bry92].

The model-checking based planning algorithms discussed in the previous section

38

exploit BDDs to implement sets of states over which the backward searches are performed

and the transformations over BDDs through negation, conjunction and disjunction to im-

plement the Preimage operations over those sets of states. This way, the transformation

of a set of states into its preimage is done in a single BDD transformation operation,

which, in some cases, provides a very efficient way to solve planning problems.

Unfortunately, there is no guarantee that in the general case, BDD-based compact

representations of states provide huge performance gains in the planning algorithms that

use such representations. The reason is that the ordering of the propositions represented

by the nonterminal nodes of a BDD plays a crucial role in determining the truth value of

the propositional formula represented by the entire BDD since the performance of travers-

ing the graph structure of a BDD depends on the compactness of that structure itself. As

demonstrated in several experimental studies [PBT01, CPRT03, KN04], there are many

planning problems in which the structure of the BDDs is lost due to successive transfor-

mations performed over them during planning. In such cases, the planning algorithms do

not benefit from using compact state representations at all; they perform very poorly even

on the simplest toy planning problems.

Dynamic variable ordering techniques have been developed and used in BDD-based

planning algorithms to address these drawbacks [Rud93, PSP94]. However, restructuring

the BDDs is itself a costly computation and does not provide any benefits if it is done

every time a transformation is performed over the BDDs. Identifying the exact condi-

tions for restructuring the BDDs during planning is also a hard problem, and often, those

conditions depend on the planning problems that is being solved. Thus, dynamic variable

ordering is not always helpful.

39

Chapter 3

Forward-Chaining Planning in Nondeterministic Planning Domains

The previous chapter mentioned some efficient classical planning algorithms such

as SHOP2 [NAI+03], TLPlan [BK00], TALplanner [KD01], and gave some examples

of the search-control information that these algorithms can use. This chapter describes a

method to take any forward classical planning algorithm (e.g., HSP, SHOP2, TLPlan,

and TALplanner), and systematically generalize it to work in nondeterministic planning

domains – i.e., planning domains where actions may have more than one possible out-

come. Such generalizations enable us to exploit many of the desirable characteristics of

these planners, such as the ability to use search-control information, to achieve highly

efficient planning in nondeterministic domains.

Section 3.1 first describes a formalization for “nondeterministic versions” of clas-

sical planning problems. Sections 3.2 to 3.4 describe the generalization method in de-

tail. Section 3.5 presents theorems showing that generalizations preserve the correctness

properties of the original classical planners. These theorems also show that, under certain

conditions, the complexity of our generalized algorithms for finding solutions to plan-

ning problems in nondeterministic domains are polynomially bounded by those of their

original classical versions. As a special case, if the original planning algorithm generates

solutions in polynomial times for a classical planning problem, then its corresponding

generalization generates solutions for nondeterministic versions of those problems also in

40

polynomial times.

The theoretical results are confirmed by an experimental comparison of one of the

generalized algorithms, ND-SHOP2, a generalization of SHOP2, with the state-of-the-

art planner MBP [BCP+01] originally developed for nondeterministic domains. On prob-

lems where the branching factor in the search spaces are very high, the well-known MBP

algorithm took exponential times, confirming prior results by others. On those problems,

ND-SHOP2, on the other hand, took only polynomial times. We confirm the polynomial-

time figures by a complexity analysis.

3.1 Deterministic vs. Nondeterministic Planning Problems

A classical description of a planning domain Σ = (S, A, γ) assumes that |γ(s, a)| ≤

1 for any state-action pair, in order to formalize the requirement that actions have deter-

ministic effects in classical planning. In a nondeterministic planning domain description,

this determinism requirement is relaxed by lifting the constraint on the size of γ for mod-

eling one or more possible outcomes of an action.

The relaxation of γ in nondeterministic planning domains is the basis of a rela-

tionship between the classical planning domains and their nondeterministic versions. Let

Σ = (S, A, γ) be a classical planning domain. Then a nondeterministic planning domain

Σ′ = (S ′, A′, γ′) is a nondeterministic version of Σ, if the following holds:

• S = S ′; and

• there is a one-to-one mapping det from A′ to A such that the following holds:

• for each state s ∈ S, if γ′(s, a′) = ∅ then γ(s, det(a′)) = ∅.

41

a
c
b a

c

b
UNSTACK(c,b)

a cb

…
Intended Outcome

Failed Outcome

Figure 3.1: A nondeterministic unstack action in a nondeterministic version of Blocks

World with 3 blocks.

• Otherwise, γ(s, det(a′)) ∈ γ′(s, a′).

Intuitively, a nondeterministic planning domain is a nondeterministic version of a classical

one if both descriptions specify the same set of states and actions, except that the actions

in the former may have additional effects in the planning domain.

As an example, consider the classical Blocks World domain, as described in Sec-

tion 2.2. A nondeterministic version of Blocks World contains the same state space and

the same set of actions as the original domain does, except that an action in this version

may have its intended outcome that is the same outcome it has in the classical case but it

may also fail to have any effects in the world or it may drop the block on the table (e.g.,

in the case the gripper is slippery). Figure 3.1 gives an illustration of the nondeterministic

unstack action with a failure in the nondeterministic version of a Blocks World domain

with three blocks.

A nondeterministic planning problem P ′ = (Σ′, S0, G) is a nondeterministic ver-

42

Procedure FCP(s,G, π, χ)
if s ∈ G then return(π)
actions← {a ∈ A | γ(s, a) 6= ∅ and

acceptable(s, a, χ) holds}
if actions = ∅ then return(failure)
nondeterministically choose a ∈ actions

s′ ← result(s, a)
χ′ ← progress(s, a, χ)
π′ ← append(s, a, π)
return(FCP(s′, G, π′, χ′))

Figure 3.2: An abstract version of a forward-chaining classical planning algorithm. In the

initial call of the procedure, π is the empty plan, s is the initial state, and χ is the initial

search-control information.

sion of a classical planning problem P = (Σ, s0, G), if Σ′ is a nondeterministic version

of Σ and s0 ∈ S0. Note that both P ′ and P have the same set of goals according to this

definition.

3.2 FCP: An Abstract Procedure for Forward-Chaining Planning

Section 2.1 discussed the backtracking forward-chaining state-space search: the

search procedure FCS starts at an initial state and proceeds by successively generating

new states. A successor of a state s is generated by nondeterministically choosing an

action a in s and applying it in s. The search terminates if a goal state is generated in

this way and the search trace starting from the initial state and ending at the goal state

describes a solution to the input planning problem. FCS performs very poorly in most of

the classical planning problems since it generates an search space that is exponential in

the sizes of those problems. Section 2.2 described the use of search-control heuristics for

classical planning that enable planners to explore smaller search spaces than FCS does.

43

Figure 3.2 shows the abstract FCP planning procedure that formalizes a class of

forward state-space planning algorithms that have the ability to use search-control heuris-

tics. In this pseudocode, s is the current state, G is the goal, and π is the current partial

plan. In the initial call of the procedure, s is the initial state of the input classical planning

problem and π is the empty plan – i.e., π = ∅. Given an initial state s and a set of goal

states G, FCP searches for a sequence of actions — i.e., a plan π —, which generates a

goal state in G, when π’s actions are executed in s in the order they are specified.

In FCP, χ, the search-control information, is any auxiliary information available

to the planner that specifies one or more actions applicable in a state of the world,

among all possible alternatives. FCP uses this information in its search-control function

acceptable, in order to determine whether an action a should or should not be consid-

ered in a state. The formal definitions for both χ and acceptable depend on the particular

planning algorithm, and we will discuss several planning algorithms that are instances of

FCP and their respective search-control mechanisms in the subsequent section.

If there is no acceptable actions for the state s given the auxiliary information χ,

then FCP backtracks and tries other possibilities in the previous iterations of the search

process — note that, although there might be an action a that is applicable in s, i.e.,

γ(s, a) 6= ∅, FCP may prune out all of them, given the search-control information χ. If

FCP has an acceptable action a for a state s, it generates (1) the state s′ that arises from

applying a in s and (2) the search-control information χ′ that is to be used along with

s′. The functions result and progress are responsible for these tasks, respectively. As

before, the formal definitions of these functions depend on the particular instance of FCP

and examples are given in the subsequent section.

44

3.2.1 Instances of FCP

This section presents several instances of the abstract FCP planning procedure,

which include examples of classical planning algorithms that use domain-independent

and domain-specific search-control information.

Heuristic Search Planner (HSP).

HSP [BG99, BG01b] is a combination of hill-climbing search (i.e., greedy local

search) and a variation of the A∗ search algorithm [RN03]. The planner is a simple

forward state-space search engine that incorporates a family of both admissible and non-

admissible domain-independent heuristics for controlling its search.

HSP uses domain-independent search-control information during planning as fol-

lows. Given a planning problem, HSP compiles the search-control information during

planning by computing “distance/cost estimates” of the goal states from a state generated

during the planning process. The planner obtains a distance/cost estimate of a state s to a

goal state by solving a “relaxed” version of the original classical planning problem, where

the negative effects (i.e., the delete-lists) of the actions are ignored. The optimal cost of

solving the relaxed problem from the state s is a lower bound on the cost of solving the

original problem from s [BG99].

The acceptable function in HSP is responsible for computing the heuristic costs.

In each state s generated during planning, acceptable performs a forward search in order

to generate the cost h(s) of solving the relaxed planning problem from the state s. The

planner then chooses the action a that, when applied in s, generates the next state s′

45

with the least-cost h(s′) value that is less than the cost value computed for s — i.e.,

h(s′) ≤ h(s). Then, the search continue from the state s′ until a goal state is generated in

this way.

Selecting a locally best next state and searching from that state on towards the

goal states is demonstrated to be an effective technique for reaching goal states effi-

ciently; however, it suffers from the search plateaus in the topology of the search space of

most planning problems, a well-known problem for most hill-climbing search algorithms

[RN03]. A search plateau is a portion of the search space that consists of states whose

heuristic values do not change. In other words, the planner generates and visits a sequence

of states such that h(s′) = h(s) for any two successor state s and s′ in that sequence. A

hill-climbing search algorithm caught within a search plateau does not have any infor-

mation whether or not the planning process is proceeding towards the goals. To prevent

spending unnecessary computational time in a search plateau, usually search algorithms

make a random move or restart their searches after a prespecified number of moves in a

plateau [RN03]; HSP does the latter.

The result function in HSP is responsible for generating the next state s′ by apply-

ing the best action a in a state s, given the current heuristic function of HSP. Furthermore,

this function also implements the restarting mechanism HSP uses to escape from a search

plateau — i.e., result simply returns the initial state of the input planning problem, if the

algorithm makes more than a prespecified moves without improving the heuristic value

of the states visited.

In HSP, the progress function shown in Figure 3.2 does not have any functionality

since HSP computes the search-control information (i.e., the heuristic cost functions)

46

Procedure TLPlan(s,G, π, χ)
if s ∈ G then return(π)
actions← {a ∈ A | γ(s, a) 6= ∅}
if actions = ∅ then return(failure)
nondeterministically choose a ∈ actions

s′ ← result(s, a)
χ′ ← Progress(s, χ)
if χ′ = FALSE then return FAILURE

π′ ← append(s, a, π)
return(TLPlan(s′, G, π′, χ′))

Figure 3.3: The TLPlan planning algorithm. In the initial call, π is the empty plan, s is

the initial state, and χ is the initial temporal-logic formula.

itself in the acceptable function.

TLplan and TALplanner.

TLPlan [BK00] and TALplanner [KD01] are two planning algorithms that have the

ability to use domain-specific search-control information.1 TLPlan and TALplanner have

been very successful in solving classical planning problems in many experimental studies

[Bac01, FL02]. Both are instances of the abstract FCP planning procedure. Figures 3.3

and 3.4 show the pseudocodes of TLPlan and TALplanner, respectively.

In TLPlan and TALplanner, the search-control information χ is specified in terms

of a logical formula written in some form of modal temporal logics, as described in Sec-

1[KD01] describes two versions of TALplanner, called the sequential and the concurrent TALplanner.

The former is developed for solving planning problems in classical planning domains, whereas the latter

extends the sequential algorithm to incorporate reasoning about action durations and plans that contain con-

current actions whose executions may overlap. This dissertation considers only the sequential TALplanner

since it does not concern with temporal characteristics of actions.

47

Procedure TALplanner(Ns,NG, π,Nχ)
if Ns satisfies NG then return(π)
actions← {a | a is an action inNA, and a is applicable in s}
if actions = ∅ then return(FAILURE)
nondeterministically choose a ∈ actions

Ns′ ← result(Ns, a)
Nχ′ ← Progress(Ns, a,Nχ)
if SearchControl(Ns,Nχ′) = FALSE

then return(FAILURE)
π ← append(Ns, a, π)
return(TALplanner(Ns′ ,NG, π′,Nchi′))

Figure 3.4: The TALplanner planning algorithm. In the initial call, π is the empty plan,

Ns is the TAL formula that describes the initial state s, NG is the TAL formula that

describes the goal states G, and Nχ is the TAL formula that describes the initial search-

control formula.

tion 2.2. In particular, TLPlan uses Linear Temporal Logic (LTL) and TALplanner uses

the Temporal Action Language (TAL).2 Both TLPlan and TALplanner use temporal-logic

formulas written in these languages to specify acceptable behaviors of action sequences

and they avoid any action sequence that does not satisfy a formula during the search.

The acceptable function in TLPlan and TALplanner checks whether an action a, when

applied in a state s, violates the current search-control formula χ. An action a that is

applicable in a state s violates χ if it generates a successor state s′ in which χ does not

2Note that, although the description of TALplanner in [KD01] seems that the planning algorithm per-

forms a search in a space of TAL formulas, the internal planing engine is a simple forward-chaining state-

space search algorithm that starts with the initial state and searches over a state space described by the input

planning domain. Given a TAL formula N that specifies a planning domain, a planning problem, and a set

of search-control rules for this domain, one can always split N into pieces such as NG, NA, Nχ, and Ns,

which correspond to the descriptions of the goal states, the actions, the initial search-control information,

and the initial state of the input planning problem, respectively.

48

hold. Otherwise a is acceptable to be applied in s.

If there are no acceptable actions to be applied in the current state s, then both

algorithms backtrack and try other alternative actions in the previous steps of the planning

process. Otherwise, they generate the set of acceptable actions in a state s during their

search. They nondeterministically choose one of those actions and generate the successor

state s′ that is the result of applying that action in s. Then, the planners generate the

search-control formula χ′ to be used in s′. The progress function is responsible for this

task, and it is a direct implementation of the Progress algorithms defined for TLPlan and

TALplanner in [BK00] and [KD01], respectively.

Starting from an initial state and an initial search-control formula, TLPlan and

TALplanner successively generate new states and search-control formulas associated

with those states until a goal state is reached. At that point, the sequence of actions,

i.e., the plan, generated by the planners is a solution for the input planning problem and

the planners return this plan.

SHOP2.

Figure 3.5 shows the pseudocode for the SHOP2 algorithm. In SHOP2, the ob-

jective of the planner is to accomplish tasks; i.e., symbolic representations of activities

to be performed in the world. Tasks can be either primitive or nonprimitive. A primi-

tive task can be directly executed in the world, whereas a nonprimitive task needs to be

decomposed into smaller tasks (or subtasks), each of which can be either primitive or

nonprimitive. A task network is a set of tasks and a set of constraints on the order that

49

Procedure SHOP2(s,G, π, w, M)
if w is the empty task network then return(π)
T ← {t | t ∈ w and t has no predecessors}
nondeterministically choose a task t ∈ T

if t is a primitive task then
actions← {(a, σ) | a is an action, σ is a substitution s.t.

head(a) = σ(t), and a is applicable in s}
if actions = ∅ then return(FAILURE)
choose (a, σ) ∈ actions

w′ ← σ(w − {t})
π ← append(s, a, π)
s← γ(s, a)

else
methods← {(m,σ) | m is an instance of a method in M,σ is a

substitution s.t. head(m) = σ(t), and
m is applicable in s}

if methods = ∅ then return(FAILURE)
choose (m,σ) ∈ methods

w′ ← ApplyMethod(s, w, t,m, σ)
return(SHOP2(s,G, π, w′,M))

Figure 3.5: The SHOP2 planning algorithm. In the initial call, π is the empty plan,

s is the initial state, w is the initial task network. and M is the set of available task-

decomposition methods.

those tasks must be achieved.

Given a task network w and a state, SHOP2 decomposes the nonprimitive tasks in

w into smaller and smaller tasks in the order those tasks will be achieved in the world.

For this purpose, SHOP2 uses task-decomposition methods, which are “operational pro-

cedures” to specify possible ways to decompose a task into its subtasks [NAI+05]. Task

decomposition in SHOP2 provides a way for controlling the planner’s search by focus-

ing the search to only those sequences of primitive tasks (i.e., actions) that are solution

prefixes.

In SHOP2, the search-control information χ is a pair of the form (w,M) where w

50

is the current task network and M is the set of all task-decomposition methods available to

the planner. Given a state s and the current search-control information χ, the acceptable

function holds for an action a that is applicable in s such that (i) a appears in some task

network w′ that is produced by recursively decomposing tasks in the task network w

specified in χ, and (ii) a has no predecessors in w′. More specifically, suppose t is the

current task selected by the current invocation of the algorithm, as shown in Figure 3.5.

If t is a primitive task and there is an action a that accomplishes t then the acceptable

function holds for an action a in the state s of this invocation. If t is a nonprimitive

task then SHOP2 deomposes t into smaller and smaller subtasks until a primitive task is

generated. Then, acceptable holds for the action that accomplishes that primitive task.

Once SHOP2 computes all the acceptable actions in s given χ, it nondeterminis-

tically chooses one of them and generates the state s′ that arises from applying that action

in s. The search-control information to be used with s′ is produced via the progress

function: progress(s, a, χ) is the pair (w′′, M) such that w′′ is the task network pro-

duced by removing a from w′, the task network that satisfies the conditions for a being

acceptable in s as described above. More specifically, as shown in Figure 3.5, if the

current task t is primitive then w′′ is the task network produced by removing t from w.

Otherwise, w′′ is the task network produced by replacing t by its subtasks specified by the

task-decomposition method being used for t.

The planning process terminates when there are no nonprimitive tasks left to further

decompose, and in that case, the set of primitive tasks along with their ordering constraints

is returned as a solution plan for the input planning problem.

51

Solve-EBW.

The Solve-EBW algorithm [GN92] is a domain-specific planning algorithm devel-

oped for solving planning problems in the Blocks-World domain. Starting from an initial

state (i.e., a configuration of blocks), Solve-EBW enters a loop in which it attempts to

move a clear block to its goal position. If there are no such blocks that can be moved to

their goal positions, the algorithm arbitrarily moves a clear block to the table. The plan-

ning process continues until each block in the world is at its goal position. It has been

shown that this algorithm can solve Blocks-World problems in lower-order polynomial

times in the number of blocks in the domain [GN92, ST01].

It is rather straightforward to show that Solve-EBW is an instance of the FCP

procedure. It is a direct implementation of FCP, such that the search-control information

χ specifies a block that can be moved in the current state into its goal position. The search-

control function acceptable specifies the particular move action for χ – i.e., acceptable

specifies whether the block χ should be picked up from the table, put down on the table,

stacked on another block, or unstacked from the top of another block. The progress

function specifies the next block to be moved in the world.

3.3 ND-FCP: Nondeterminized FCP

This section describes a general method for taking classical forward-chaining plan-

ners and nondeterminizing them, i.e ., translating them into planners that find weak,

strong, and strong-cyclic solutions for nondeterministic planning problems. The basis

of this method is the FCP planning procedure for classical planning domains described

52

above, and the corresponding procedure ND-FCP for planning in nondeterministic plan-

ning domains. The following discussion presents the nondeterminization of FCP for

strong-cyclic planning since this is the most general form of solutions in nondeterministic

planning problems as described in the previous chapter. Once the nondeterminized ver-

sion of FCP for strong-cyclic planning is established, it is somewhat straightforward to

modify this nondeterminized planning procedure to produce weak and strong nondeter-

minizations.

The abstract FCP planning procedure generates a solution plan (or equivalently, an

execution path) from the initial states of the input classical planning problem to the goal

states. The ND-FCP procedure for strong-cyclic planning in nondeterministic domains

is similar to FCP, except that ND-FCP includes some additional bookkeeping opera-

tions. These bookkeeping operations deal with multiple possible outcomes of actions and

with executions paths induced by the policies that may or may not violate the “fairness

assumption” on the strong-cyclic solutions, as described in Section 2.3.2.

Figure 3.6 shows the ND-FCP procedure for strong-cyclic planning in nondeter-

ministic domains. In this figure, the underlines indicate how the coding from FCP is

embedded in ND-FCP. In particular, ND-FCP generalizes the forward OR-search of

FCP to a forward AND-OR search, in which an AND branch corresponds to the different

possible outcomes of applying an action in a state, and an OR-branch corresponds to the

different choices of actions applicable — more precisely, to the different choices from

the acceptable actions — in a state. To implement this, ND-FCP uses an OPEN set,

which contains a set of states and the search-control information associated with them.

The states in OPEN are those states generated by ND-FCP during its forward search,

53

Procedure ND-FCP(OPEN, G, π, solved)
if OPEN = ∅ then return(π)
select a pair (s, χ) ∈ OPEN and remove it
if s ∈ G then solved← solved ∪ {s}
else if s 6∈ Sπ then
actions← {a ∈ A | result(s, a) 6= ∅ and acceptable(s, a, χ) holds}
if actions = ∅ then return(FAILURE)
nondeterministically choose a ∈ actions

χ′ ← progress(s, a, χ)
π′ ← append(π, 〈(s, a)〉)
π ← π′

OPEN ′ ← OPEN ∪ {(s′, χ′) | s′ ∈ result(s, a)}
else if s does not have a π-descendant in (StatesOf(OPEN) ∪ solved) \ Sπ then
return(FAILURE)

return(ND-FCP(OPEN ′, G, π, solved)

Figure 3.6: ND-FCP, the nondeterminization of FCP for finding strong-cyclic solutions

for nondeterministic planning problems. In the initial call of the procedure, π is the empty

policy, solved is the empty set, OPEN is a set of pairs of the form (s, χ) where s is an

initial state and χ is the initial search-control information. The underlines indicate how

the coding from FCP is embedded in ND-FCP.

but no actions are specified by the current partial policy for them.

ND-FCP also uses a solved set, which is a set of goal states that are reached by

the planning procedure during its forward search. The solved set is used to ensure that a

policy returned by ND-FCP is a solution for the input nondeterministic planning problem

as described below.

At each recursive invocation, ND-FCP first selects a pair (s, χ) from OPEN . If

s is a goal state, then ND-FCP inserts s into its solved set and continues from other

open states in OPEN . Otherwise, if ND-FCP has not already planned an action for it

— i.e., s 6∈ Sπ —, then the procedure generates the set of actions that are applicable

in s by using the current search-control information χ and the search-control function

54

acceptable. Then, it chooses one of those applicable actions, say a, and generates the set

of successor states of s by applying a in s. ND-FCP also generates the successor search-

control information to be used in each of those successor states by using the progress

function. Note that this is exactly the same as in FCP, except that the result function

now returns more than one possible successor state that arises from applying a in s. The

successor pairs of states and the corresponding search-control information are inserted

into the OPEN set.

If s is already among the states of the current partial policy π, then the procedure

performs a further π-descendancy check to decide whether or not the current partial policy

is a candidate strong-cyclic solution for the input planning problem. This π-descendancy

check is done as follows: if the current state s has a π-descendant in the currently solved

states then the cycle induced by the current state s does not violate the “fairness assump-

tion” in strong-cyclic planning. Similarly, if s has a π-descendant in the current OPEN

states that have not been visited before, then ND-FCP cannot eliminate the current par-

tial policy at this point, since there is still a possibility that during the planning process,

the π-descendant of s in OPEN will be expanded to reach to a goal state. On the other

hand, if s does not satisfy these checks, then the cycle induced by s in the current partial

policy violates the conditions of strong-cyclic solutions, and therefore, ND-FCP returns

FAILURE and backtracks in order to try other search branches in the search space.

If the π-descendancy checks described above does not return FAILURE, ND-FCP

continues planning by recursively calling itself with the new OPEN ′ set that contains

the new pairs of states and the corresponding search-control information generated in this

invocation. The planning process terminates when no open states left to explore — i.e.,

55

OPEN = ∅. In that case, ND-FCP returns the policy π. As shown in the next section,

π is indeed a solution for the input nondeterministic planning problem that was given to

ND-FCP, and ND-FCP will return such a solution policy if there exists one.

So far, ND-FCP is described as an abstract planning procedure for generating

strong-cyclic solutions for nondeterministic planning problems. If a nondeterministic

planning problem admits strong or weak solutions, it is straightforward to modify the

ND-FCP procedure in Figure 3.6 to generate a strong or a weak solution for that planning

problem. For strong planning, the π-descendancy check in ND-FCP needs to removed

and the planning procedure is modified to return FAILURE as soon as it detects a cyclic

execution trace in the current partial policy. Weak planning requires a further modifica-

tion to the algorithm; namely, whenever ND-FCP generates goal state, it needs to remove

every situation (s, χ) that s is not an initial situation from OPEN . This ensures that the

planning algorithm generates an execution path from each initial state to a goal state.

3.4 Instances of ND-FCP

The nondeterminization technique described above specifies how to take a class of

forward planners — namely, those planning algorithms that are instances of FCP —, and

generalize them to work in nondeterministic planning domains. In many cases, it is pos-

sible to use/generalize the search-control information produced for an original classical

planner to work for its corresponding nondeterminized version. Note that, however, the

nondeterminization technique itself does not describe how to transfer the search-control

information χ used by the instances of FCP in classical (i.e., deterministic) planning do-

56

Procedure ND-TLPlan(OPEN, G, π, solved)
if OPEN = ∅ then return(π)
select a pair (s, χ) ∈ OPEN and remove it
if s ∈ G then solved← solved ∪ {s}
else if s 6∈ Sπ

actions← {a ∈ A | a is applicable in s}
if actions = ∅ then return(FAILURE)
nondeterministically choose a ∈ actions

χ′ ← Progress(s, χ)
if χ = FALSE then return(FAILURE)
π′ ← append(s, a, π)
π ← π′

OPEN ′ ← OPEN ∪ {(s′, χ′) | s′ ∈ γ(s, a)}
else if s does not have a π-descendant in (StatesOf(OPEN) ∪ solved) \ Sπ then
return(FAILURE)

return(ND-TLPlan(OPEN ′, G, π, solved))

Figure 3.7: ND-TLPlan, the nondeterminization of TLPlan for finding strong-cyclic so-

lutions for nondeterministic planning problems. The underlines indicate how the coding

from TLPlan is embedded in ND-TLPlan.

mains over nondeterministic settings. The reason is that different instances of FCP use

different formalizations to describe the search-control information they use; therefore, the

way to generalize the search-control information in an instance FCP depends on the way

such information is formalized in that particular planner. This section addresses this issue

by describing several instances of ND-FCP and possible ways to use the search-control

information developed for the original classical planners in the nondeterminized ones.

3.4.1 ND-TLPlan

Figure 3.7 shows the nondeterminized version of TLPlan, called ND-TLPlan. Note

that, since TLPlan is a simple forward-chaining search algorithm that is an instance of

FCP, ND-TLPlan is mostly a direct implementation of the abstract ND-FCP planning

57

procedure.

In most cases, the search-control information χ that is written in Linear Temporal

Logic (LTL) for a classical planning domain can be modified to be used by ND-TLPlan

in nondeterministic versions of that classical planning domain. As an example, consider

again the classical Blocks World domain and its nondeterministic version as we discussed

previously in Section 3.1. Consider the search-control formula described for TLPlan in

Section 2.2:

χ : 2(∀[?x : clear(?x)]goodtower(?x)⇒ �(clear(?x)

∨ ∃[?y : on(?y, ?x)]goodtower(?y))

∧ badtower(?x)⇒ �(¬∃[?y : on(?y, ?x)])

∧ (on(?x, table)

∧ ∃[?y : GOAL(on(?x, ?y))]

∧ ¬goodtower(?y))⇒ �(¬holding(?x))).

This search-control formula can be used in the nondeterministic version of Blocks

World by incorporating in it a failure-recovery strategy as follows. Each time an action

fails in the world by dropping the block on the table, we immediately pick that block up

before executing any other action. This strategy yields solution policies whose sizes are

polynomial in the size of a solution plan for the classical version of the Blocks World

domain, since each time an action fails, the pickup action immediately takes the planner

to an intended state.

The above failure-recovery strategy can be encoded by modifying the search-

control formula χ as follows. For each action in the nondeterministic Blocks World do-

58

main, we specify the corresponding failure-recovery condition as follows. For example,

for the unstack action shown previously in Figure 3.1, we have

χunstack
fail : on(?x, ?y) ∧ clear(?x) ∧ handempty ∧ ∃[?z : GOAL(on(?x, ?z))]

∧ � (ontable(?x))

χunstack
recover : χunstack

fail ∧ �� (holding(?x)).

The first formula above specifies the condition when the unstack action fails. The second

formula specifies the condition that must be satisfied during planning when such a failure

occurs. More specifically, the second condition states that if a nondeterministic unstack

action fails by dropping the block on the table, in which case the block will be on the

table in the next state of the world, then the gripper must be holding the block in the state

following that failed state, which can only be satisfied by picking up that block from the

table.

Once a failure-recovery strategy is encoded for all four actions in the domain, the

original TLPlan search-control formula χ must be modified as follows:

χ′ : 2[χ ∧ (χunstack
recover ∨ χstack

recover ∨ χpickup
recover ∨ χputdown

recover)],

where each χa
recover is the failure-recovery formula written for each action a in the domain.

3.4.2 ND-TALplanner

Figure 3.8 shows the pseudocode of the ND-TALplanner algorithm. As in

TALplanner [KD01], the SearchControl and Progress subroutines are responsible from

checking the non-modal control rules and progressing the modal formulas, respectively.

59

Procedure ND-TALplanner(OPEN,NG, π, solved)
if OPEN = ∅ then return(π)
select a pair (Ns,Nχ) ∈ OPEN and remove it
if Ns satisfies NG then solved← solved ∪ {Ns}
else if Ns 6∈ Sπ

actions← {a | a is a ground instance of an operator in Nop, and
a is applicable in s}

if actions = ∅ then return(FAILURE)
nondeterministically choose a ∈ actions

Nχ′ ← Progress(Ns, a,Nχ)
if SearchControl(Ns,Nχ′) = FALSE

then return(FAILURE)
π′ ← append(Ns, a, π)
π ← π′

OPEN ′ ← OPEN ∪ {(Ns′ ,Nχ′) | N ′
s ∈ γ(Ns, a)}

else if Ns does not have a π-descendant in (StatesOf(OPEN)∪ solved)\Sπ then
return(FAILURE)

return(ND-TALplanner(OPEN ′, G, π, solved))

Figure 3.8: ND-TALplanner, the nondeterminization of TALplanner for finding strong-

cyclic solutions for nondeterministic planning problems. Initially, OPEN is the set of

pairs of the form (Ns,Nχ), where Ns is the TAL formula describing an initial state and

Nχ is the TAL formula that encodes the search-control information χ. The underlines

indicate how the coding from TALplanner is embedded in ND-TALplanner.

A TAL formula Nχ developed originally for controlling search in TALplanner can be

used/modified to work in ND-TALplanner for nondeterministic planning problems in the

same way as described above for the nondeterminization of TLPlan.

3.4.3 ND-SHOP2

Figure 3.9 shows the nondeterminization of SHOP2, called ND-SHOP2. In

SHOP2, and therefore in ND-SHOP2, the search-control information for a planning do-

main is encoded by using Hierarchical Task Networks (HTNs) and its progression mech-

anism is based on decomposing the tasks in those task networks. Consequently, the pseu-

60

Procedure ND-SHOP2(OPEN, G, π, solved)
if OPEN = ∅ then return(π)
select a pair (s, w,M) ∈ OPEN and remove it from OPEN

if s ∈ G then solved← solved ∪ {s}
else if s 6∈ Sπ

T ← {t | t ∈ w and t has no predecessors}
nondeterministically choose a t ∈ T

if t is a primitive task then
actions← {(a, σ) | a is an action, σ is a substitution s.t.

head(a) = σ(t), and a is applicable in s}
if actions = ∅ then return FAILURE

choose (a, σ) ∈ actions

w′ ← σ(w − {t})
π′ ← append(s, a, π)
π ← π′

OPEN ← OPEN ∪ {(s′, w′,M) | s′ ∈ ApplyOperator(s, w, t, a, σ, γ)}
else
methods← {(m,σ) | m is an instance of a method in M,σ is a

substitution s.t. head(m) = σ(t), and m is applicable in s}
if methods = ∅ then return FAILURE

choose (m,σ) ∈ methods

w′ ← ApplyMethod(s, w, t,m, σ)
OPEN ′ ← OPEN ∪ {(s, w′,M)}

else if s does not have a π-descendant in (StatesOf(OPEN) ∪ solved) \ Sπ then
return(FAILURE)

return(ND-SHOP2(OPEN ′, G, π, solved))

Figure 3.9: ND-SHOP2, the nondeterminization of SHOP2. In the initial call, OPEN

is the set of pairs of the form (s, w,M) where s is an initial state, w is the initial task

network, and M is the set of available HTN methods. The underlines indicate the code

inherited from the SHOP2 planning algorithm.

docode of the ND-SHOP2 algorithm looks different than that of both ND-TLPlan and

ND-TALplanner. However, it is basically a forward search algorithm over a space that is

defined by an initial state(s) of the world and the set of actions available to the planner.

Thus, it is an instance of the abstract ND-FCP planning procedure.

ND-SHOP2 takes as input a set of goal states G, the empty policy π, the empty set

61

solved, and the OPEN set, which is initially {(s, w,M) | s ∈ S0} where S0 is the set of

initial states, w is the initial task network, and M is the set of available task-decomposition

methods.

At each invocation, ND-SHOP2 first selects a tuple (s, w,M) from the OPEN

set and removes it. Like its predecessor SHOP2, ND-SHOP2 recursively decomposes

the tasks in w into smaller and smaller tasks, until a primitive task (i.e., an action a) is

generated for the current state s. Then, it applies a to s and generates the successor states

γ(s, a). This produces the successor task network w′ to be accomplished in each state

s′ ∈ γ(s, a). The planning process proceeds with each such successor (s′, w′) until there

is no tasks left to be accomplished.

Like in SHOP2, the search-control information in ND-SHOP2 is defined by the

current task network that the planner is trying to accomplish at a particular stage of the

planning process and the set of HTN methods available to the planner. The acceptable

and the progress functions in ND-SHOP2 are both defined by the task-decomposition

mechanism that the planner uses. More specifically, in a state s, acceptable(s, a, χ =

(w,M)) holds for each action a that is generated by successively decomposing the tasks

in the current task network w until we reach task network w′ in which a is a primitive task

that has no predecessors. Then, progress(s, a, χ) is the successor search-control infor-

mation (w′′, M) where w′′ task network generated by removing a from w′. Figure 3.9 also

shows the pseudocodes for acceptable and progress. The subroutines ApplyOperator

and ApplyMethod are as defined in SHOP2 [NAI+03].

The search-control information for ND-SHOP2 in a nondeterministic planning do-

main can be produced by modifying the task-decomposition methods that were originally

62

(:method (move-block ?solved)
;; method for moving x from y to z

(:first (arm-empty) (clear ?x) (eval (not (member ’?x ’?solved))) (on ?x ?y)
(goal (on ?x ?z)) (different ?x ?z) (clear ?z) (not (need-to-move ?z)))

((!unstack ?x ?y) (check-unstack-and-continue-with-stack ?x ?y ?z ?solved))

;; method for moving x from y to table

(:first (arm-empty) (clear ?x) (eval (not (member ’?x ’?solved))) (on ?x ?y)
(goal (on-table ?x)))

((!unstack ?x ?y) (check-unstack-and-continue-with-putdown ?x ?y ?solved))

;; method for moving x from table to y

(:first (arm-empty) (clear ?x) (eval (not (member ’?x ’?solved))) (on-table ?x)
(goal (on ?x ?y)) (clear ?y) (not (need-to-move ?y)))

((!pickup ?x) (check-pickup-and-continue-with-stack ?x ?y ?solved))

;; method for moving x out of the way

((arm-empty) (clear ?x) (eval (not (member ’?x ’?solved))) (on ?x ?y)
(need-to-move ?x))

((!unstack ?x ?y) (check-unstack-and-continue-with-putdown ?x ?y ?solved))

;; if nothing else matches, then we’re done

nil
nil)

Figure 3.10: The task-decomposition method that describes the search-control informa-

tion for ND-SHOP2 in the nondeterministic Blocks World domain.

designed for the classical version of that domain. As an example, consider the nondeter-

ministic versions of Blocks World problems as described in Section 3.1, where an action

may fail and drop the block on the table. Here, the task-decomposition method given in

Figure 2.3 can be used with a slight modification in order to encode a failure-recovery

strategy that tells the planner that, when a block is dropped on the table due to a fail-

ure, it needs to pick up that block immediately. To do so, we insert a failure-recovery

task after each action in the task-decomposition method of Figure 2.3, and develop a new

task-decomposition method for that failure-recovery task.

63

(:method (check-unstack-and-continue-with-stack ?x ?y ?z ?solved)
;; If the intended effect of the unstack action occurs, then continue with stack
((holding ?x))
((!stack ?x ?z) (check-stack-and-continue ?x ?z ?solved))

;; If the unstack action fails, then immediately pick-up the block and continue

((on-table ?x))
((!pickup ?x) (check-pickup-and-continue-with-stack ?x ?z ?solved)))

Figure 3.11: The task-decomposition method for the failure-recovery task for the unstack
primitive task in the nondeterministic Blocks World domain.

Figure 3.10 shows the modified task-decomposition method for the move-block

task. The following describes the task-decomposition method for the failure-recovery task

check-unstack-and-continue-with-stack for the unstack primitive task; the methods

for failure-recovery tasks for the other actions is very similar. The method for the task

check-unstack-and-continue-with-stack specify two different ways to accomplish that

recovery task, as shown in Figure 3.11. The first is when the unstack action succeeds;

i.e., when its intended outcome of holding the block occurs in the world. In this case,

task-decomposition method tells the planner to stack the block to its destination position,

as in the original domain description written for SHOP2. The second case is where the

action fails and the block is on the table. Then, the method for the failure-recovery task

tells the planner to pick that block up immediately and then stack it to its destination.

3.4.4 ND-HSP

HSP, a heuristic-search planner, is a variation of the well-known A∗ search algo-

rithm, which is a backtracking forward search algorithm. For this reason, the pseudocode

for the nondeterminized version of HSP, called ND-HSP, is the same as the abstract

64

ND-FCP procedure shown in Figure 3.6.

Although the search-control functions in the original HSP planning algorithm can

be used in ND-HSP, this information alone may not help much in pruning the search

space in some cases for the following reason. For every state ND-HSP generates during

its search, the search-control information (i.e., the distance-cost estimate computed for

that state) will specify an action that would be best to reach a goal state from that cur-

rent state. In the worst case, ND-HSP may explore exponentially many states since it

is not possible to use domain-specific information in ND-HSP, in order to encode simi-

lar failure-recovery strategies as described above for ND-TLPlan, ND-TALplanner, and

ND-SHOP2.

However, in most planning problems, a slight modification can be made to a search-

control function for HSP in order to make it work in nondeterministic settings. More

specifically, the search-control function acceptable computes the same distance/cost es-

timates for a state s as HSP, if s is generated by the intended outcome of an action. If s is

a failed state, then the modified search-control function returns a heuristic value that will

force the planner to choose an action a such that each outcome of a is a state that has been

visited before in the current search trace. This modified search-control function works

correctly, and it enables us to use in ND-HSP similar kinds of failure-recovery strategies

described above.

65

3.5 Formal Properties of the Nondeterminization Technique

This section presents the formal properties of the nondeterminization method de-

scribed in the previous sections. The proofs of the theoretical results can be found in

Appendix A.1.

The following definitions will be helpful for a clear exposition of the theoretical

results. Recall that a planning problem P is solvable if there is a solution for it. A

planning problem P is χ-solvable if there is a solution for it given the search-control

information χ. Such a solution will be denoted by πχ throughout this section. Intuitively,

if πχ is a solution for a planning problem, then the search-control information χ does not

prune any actions in πχ. Note that if a planning problem is χ-solvable then it is solvable.

Let

• Σ be a classical planning domain and Σ′ be a nondeterministic version of Σ;

• P be a classical planning problem in Σ and P ′ be a planning problem in Σ′ that is a

nondeterministic version of P ;

• χ and χ′ be the search-control information for Σ and Σ′, respectively; and

• Λ be an instance of FCP and ND-Λ be the corresponding instance of ND-FCP.

The following theorems establish that our nondeterminization technique is correct.

Theorem 1 Suppose one of the search traces of ND-Λ returns a policy πχ′ for P ′ given

χ′. Then πχ′ is a solution policy for P ′..

Theorem 2 Suppose that P ′ = (S0, G, Σ) is χ′-solvable. Then, at least one of the search

traces of ND-Λ returns a solution policy.

66

The following theorem establishes an upper bound on the time complexity of a

nondeterminized planning algorithm for finding solutions in strongly-connected planning

domains. A planning domain is strongly-connected if and only if every state is reachable

from any other state in that domain. Such domains are not hard to find. Most well-known

classical planning domains are strongly connected (some examples from previous plan-

ning competitions [Bac01, FL02] include Blocks-World, Logistics, DriverLog, Zeno-

Travel, Depot, and Rover). Note that any nondeterminization of such a domain will also

be strongly connected.

The following lemma will be helpful for the main complexity theorems in the non-

determinization technique.

Lemma 3 Suppose Λ returns a solution plan π for the classical planning problem P .

Then, one of the search traces of ND-Λ also returns π for P .

Then, we get the following theorem:

Theorem 4 Suppose Λ finds solution plans in time O(ρ(|πχ|)) in a strongly-connected

classical planning domain, given the search-control information χ. |πχ| is the size of the

solution plan and ρ is a monotonic function.

Then ND-Λ finds solutions in time O(ρ(|Σπ′
χ′ |)) in a nondeterminized version of that

planning domain, where |Σπ′
χ′ | is the size of execution structure for the solution policy π′χ′

returned by ND-Λ.

Intuitively, Theorem 4 says that the time complexities of the nondeterminized algorithms

are bounded by those of the original algorithms. As a special case, if the original algo-

rithms generate solution plans for planning problems in a strongly-connected classical

67

domain in polynomial times, then the nondeterminized algorithms also generate solution

policies for the nondeterministic versions of those problems in polynomial times. For

example, TLPlan, TALplanner, and SHOP2 solve Blocks World problems in polyno-

mial times. Thus, the nondeterminized algorithms ND-TLPlan, ND-TALplanner, and

ND-SHOP2 solve the planning problems in the nondeterministic version of Block World

that we described in Section 3.1 also in polynomial times.

A corollary immediately follows:

Corollary 5 Under the conditions of Theorem 4, if the number of possible successors of

each state is bounded by a constant, then ND-Λ finds solutions in time O(ρ(|π′χ′|)), where

|π′χ′| is the size of the solution policy.

The following complexity result holds in planning domains that are not strongly

connected:

Theorem 6 Suppose Λ finds solution plans in time O(ρ(|πχ|)) in a classical planning

domain, given the search-control information χ. |πχ| is the size of the solution plan and

ρ is a monotonic function.

Then, ND-Λ finds solutions in average time O(ρ(n) + bdn
t

)), where n = |Σπ′
χ′ | is

the size of the execution structure for the solution policy π′χ′ returned by ND-Λ given the

search-control information χ′, b is the maximum number of state-action pairs that are

added to any policy after ND-Λ generates a dead-end state-action pair, t is the maximum

number of actions applicable to a state, and in every state s, 0 ≤ d ≤ t is the maximum

number of actions applicable to s that lead to a dead-end state.

68

Note that, in planning domains that are not strongly connected, a partial policy

generated at any step of our nondeterminized algorithms may induce cyclic executions

that have no possibility of reaching the goals, when that policy is executed. In such cases,

the nondeterminized algorithms backtrack and try alternative policies as soon as they

detect an unacceptable cycle in the current partial policy. However, by the definition of

π-descendancy, a planner may detect an unacceptable cycle in the current partial policy

only after it performs some additional work after the point that cycle is first introduced

in the partial policy. When the planner detects an unacceptable cycle, it backtracks to the

point when that cycle is introduced and try alternative policies. In doing so, all of the

additional work performed on the current partial policy is lost; hence the additional term

in the time complexities of the nondeterminized planners in the theorem above.

Similar as in the strongly-connected case, we have the following corollary:

Corollary 7 Under the conditions of Theorem 6, if the number of possible successors

of each state is bounded by a constant, then ND-Λ finds solutions in average time

O(ρ(|π′χ′|) +
bd|π′

χ′ |
t

)), where |π′χ′| is the size of the solution.

Note that, although the complexity results reported in Theorems 4 and 6, and their

corollaries are true upper bounds, we can show that there exists a much tighter upper

bound for weak planning using ND-FCP. This is because weak planning is only a vari-

ation of classical (i.e., deterministic) planning in which, in effect, a planning algorithm

solves a series of classical planning problems, each of which corresponds to an initial

state of the input nondeterministic planning problem. Thus, the above complexity results

reduce to the following corrollary:

69

Corollary 8 Suppose Λ finds solution plans in time O(ρ(|π|)) in a classical planning

domain, where |π| is the size of the solution plan and ρ is a monotonic function. Then,

ND-Λ returns weak solutions for nondeterminized versions of those planning problems in

time O(ρ(|π|)).

We will now describe a set of conditions under which we can guarantee to have

an upper bound on the sizes of the policies returned by our nondeterminized planning

algorithms. In particular, we describe an upper bound on the sizes of policies returned by

these planners in failure-recoverable planning domains.

We formalize this notion as follows. Let a, a′ be two actions in a nondeterministic

planning domain Σ′. Let s be a state in which a is applicable (i.e., γ(s, a) 6= ∅), and let

s′ ∈ γ(s, a) be an unintended outcome of applying a in s. Let a′ be an action that is

applicable in s′. Then, a′ is a recovery action for a if γ(s′, a′) ⊆ {s, s′, si}, where si is

the intended outcome of applying a in s. A nondeterministic planning domain is failure

recoverable, if for every action there is a recovery action in that domain. It is important

to note that most of the planning domains such as Blocks-World, Logistics, Depot, and

ZenoTravel and others are failure recoverable planning domains.

If a classical planning algorithm Λ finds a solution plan π in a classical failure-

recoverable planning domain using the search-control information χ, then ND-Λ also

returns solutions of size O(|π|) for a nondeterminized version of that planning domain

using a search-control information χ′ for that domain, where |π| is the size of the solution

plan. This is because failure-recoverable planning domains do not require any extra plan-

ning effort for the action failures; thus, the nondeterminized algorithms are guaranteed to

70

run in polynomial times, if their deterministic counterparts do so.

3.6 Experimental Evaluation

This section presents an experimental evaluation of one of the nondeterminized

planning algorithms, namely ND-SHOP2, the strong-cyclic nondeterminization of

SHOP2 shown in Figure 3.9. The experimental evaluation compares ND-SHOP2’s per-

formance and scalability with MBP [BCP+01], the best previous planning system for

nondeterministic domains.

MBP is a model-checking based planner that implements the weak, strong, and

strong-cyclic algorithms described in Section 2.3.2. MBP is a general planning system

that is composed of two stages. In the first stage, the input planning domain and the

problems, which are expressed in the high-level action language AR [CGGT97], are

compiled into Binary Decision Diagrams (BDDs). In the second stage, different planning

algorithms are applied to the specified planning problems and domains as described in

[CPRT03]. The MBP planning system is written in C++ [BCP+01] and it uses the Col-

orado University Decision Diagram (CUDD) package3 for an implementation of Binary

Decision Diagrams.

I implemented ND-SHOP2 in LISP. The reason for the LISP implementation of the

planner is that SHOP2 was implemented in LISP and the implementation of ND-SHOP2

builds on SHOP2’s source code, as the former being a generalization of the latter. The

experimental results do not include the compilation times for ND-SHOP2 and MBP; in-

3CUDD is accessible via http://vlsi.colorado.edu/∼fabio/CUDD/

71

stead, the source codes for the planning algorithms were compiled before the experiments

began. Following [PBT01], the experimental results included the times that took for MBP

to preprocess its input planning problems to convert them into BDDs — this had very lit-

tle impact on the results reported in the subsequent sections as the preprocessing times

were always in the order of a few seconds in all experimental problems.

All of the experiments described in the subsequent sections were performed on

an AMD Duron 900Mhz laptop computer with 256MB memory running Fedora Core

2 Linux. The experiments involved three planning domains: two nondeterministic ver-

sions of the classical Blocks World domain and the Robot-Navigation domain that was

used in [PBT01, CPRT03]. For each domain, both ND-SHOP2 and MBP were pro-

vided as input the same planning operator descriptions (i.e., action desciptions) in their

respective representational languages. All of the domain descriptions, problem descrip-

tions, and the random problem generators used in these experiments will be accessible

via http://www.cs.umd.edu/users/ukuter/nfcp/. The subsequent sections describe the

experimental planning domains, problems, and results, as well as a complexity analysis

of ND-SHOP2 on these domains.

3.6.1 Nondeterministic Blocks World

The first nondeterministic version of Blocks World used in this experimental evalu-

ation was as follows. Each action may have two kinds of outcomes: (1) its intended effect

(the same effect as the action would have in the original Blocks World domain), and (2)

a failed effect such that the action may fail to change the state of the world at all – e.g., a

72

0

100

200

300

400

500

600

700

800

900

1000

B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10

Number of Blocks

A
vg

. C
PU

 T
im

e
(s

ec
.'s

)

ND-SHOP2 MBP

Figure 3.12: Average running times of ND-SHOP2 and MBP in the first version of the

nondeterministic Blocks World domain, as a function of the number of blocks.

pickup operator may fail to pick up a block from the table or a stack operator may still

be holding the block it intended to stack on another one.

Figure 3.12 shows the results of the experiments in the nondeterministic Blocks

World domain. Each data point is the average of 20 random problems. For MBP, there

are no data points for n > 8 because it was unable to solve any problems within the alloted

time (30 minutes per problem). These results show that MBP is extremely sensitive to the

size of the problems, which is the number of blocks in this case. On the other hand, the

performance of SHOP2 seems to be not affected by the increasing size of the problems.

In particular, the time required by MBP grows exponentially with the increasing size

of the problems (the logarithm of MBP’s CPU time is linear), whereas curve fitting on

ND-SHOP2’s running time shows that it grows only polynomially.

The reason for the polynomial behavior of ND-SHOP2 on these problems are as

follows. The nondeterminism in these problems are due to the failed effects of the actions

we described above; an action may fail to change the state of the world. This means

73

0

100

200

300

400

500

600

700

B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10

Number of Blocks

A
vg

. C
PU

 T
im

e
(s

ec
.'s

)

ND-SHOP2 MBP

Figure 3.13: Average running times of ND-SHOP2 and MBP in the second version of

the nondeterministic Blocks World domain, as a function of the number of blocks.

that the failure of an action a in a state s can only take the planner back to s itself. This

will induce a cycle in the search space of ND-SHOP2, but this cycle is a valid cycle

according to the definition of strong-cyclic solutions. For this reason, we can use the

same search-control information of SHOP2 developed for Blocks World in ND-SHOP2

for this nondeterministic version. Since this search-control information enables SHOP2

to find solutions in polynomial times, so does ND-SHOP2.

The second nondeterministic version of the Blocks World domain is the one de-

scribed in Section 3.1. To summarize, in this nondeterministic version, the actions may

have three possible outcomes: the same two outcomes as the one above and a third out-

come such that an action may fail by dropping the block onto the table. Note that, unlike

before, this kind of failure in the actions may possibly produce new states that the planner

needs to explore to generate strong-cyclic solutions to the planning problems.

Figure 3.13 shows the results of the experiments on the second nondeterministic

74

version of Blocks World. Like before, each data point is the average of 20 random prob-

lems. For MBP, there are no data points for n > 8 again because it was unable to solve

any problems within the alloted time (30 minutes per problem). The logarithm of MBP’s

CPU time is also linear; thus on this problem domain, like the other one, MBP takes

exponential time.

Curve-fitting on ND-SHOP2’s running time shows it growing at only about Θ(n5),

and a complexity analysis confirms this polynomial behavior (see Section 3.7). The rea-

son for ND-SHOP2’s polynomial behavior is that it uses a search-control strategy that

involves task-decomposition methods for recovering from the action failures, as described

in Section 3.4. In particular, each time an action drops the block on the table, ND-SHOP2

picks the block up immediately, and tries that action again. As a result, ND-SHOP2 is

guaranteed to produce a policy of size O(n) where n is the number of blocks, as its

predecessor SHOP2 would do in the original Blocks World domain. In contrast, MBP

produces exponential-size policies that tell what to do in most of the states of the world.

3.6.2 Robot Navigation

The third experimental domain in the evaluation of ND-SHOP2 was the Robot

Navigation domain that was used as a benchmark domain for MBP in [PBT01, CPRT03].

This domain is a variant of a similar domain described in [KBSD97]. It consists of a

building with 8 rooms connected by 7 doors. In the building, there is a robot and there are

a number of packages in various rooms. The robot is responsible for delivering packages

from their initial locations to their final locations by opening and closing doors, moving

75

0

50

100

150

200

250

1 2 3 4 5
Number of Packages

A
vg

. C
PU

 T
im

e
(s

ec
.'s

)

ND-SHOP2 MBP

Figure 3.14: The average running times of ND-SHOP2 and MBP on Robot-Navigation
problems as a function of the number of packages, when the number of kid-doors in the

domain is fixed to 7.

between rooms, and picking up and putting down the packages. The robot can hold at

most one package at any time. Nondeterminism is introduced via a “kid” that can close

any of the open doors that are designated initially as “kid-doors.”

The experiments in this domain compared ND-SHOP2 and MBP with the same

set of experimental parameters as in [PBT01]: the number of packages n is ranged from

1 to 5, and the number of kid-doors k is ranged from 0 to 7. Figure 3.14 shows only

the results for k = 7 and n = 1, . . . , 5; this illustrates the behavior of the algorithms

as the sizes of the problems increase. As in [PT01], the CPU time for MBP’s includes

both its preprocessing and search times. Omitting the preprocessing times would not have

significantly affected the results: they were never more than a few seconds, and usually

below one second.

These results confirm the ones in [PBT01]: in both their experiments and the ones

described here, MBP’s CPU time grows exponentially (the logarithm of the data grows

76

linearly) in the size of the problem. In contrast, the data for ND-SHOP2 show its CPU

time growing polynomially (see Section 3.7 for a complexity analysis).

Note that if there are k kid doors in the domain, then there are 2k possible initial

states. However, in the representation language for the Robot Navigation domain, a

policy can say things along the lines of “if we are at door number 3 and it is open, then

go through it,” rather than having to give explicitly all of the exponentially many states

of the world in which we’re at door number 3 and the door is open. More specifically,

ND-SHOP2 does not represent the fact that a kid door may be either open or closed

explicitly in a state. Instead, when the robot is in front of a kid door, ND-SHOP2 splits

this state in two states such that the door is open in one of them and it is closed in the other,

and plans an action for each of such states. After that, since the robot is done with door

at this point, it merges these two states again into one in which the information about

the openness or closedness of that particular door has been disappeared. Note that the

splitting and merging operations performed this way are easily encoded in ND-SHOP2’s

task-decomposition methods.

Because of this, problems in the robot-navigation domain have strong-cyclic solu-

tions of linear size, and these are the solutions that ND-SHOP2 finds. In fact, this is

the main reason for ND-SHOP2’s fast performance relative to MBP in this domain. Al-

though MBP represents policies in a similar compact way, it apparently does not exploit

this representation well enough to produce policies of polynomial size in its backward

search algorithms.

To illustrate the scalability of the algorithms as the amount of nondeterminism in-

creases, Figure 3.15 shows the results for n = 5 and k = 1, . . . , 7. In each case, MBP

77

0

50

100

150

200

250

300

1 2 3 4 5 6 7

Number of Kid-Doors

A
vg

. C
PU

 T
im

e
(s

ec
.'s

)

ND-SHOP2 MBP

Figure 3.15: The average running times of ND-SHOP2 and MBP on Robot-Navigation
problems as a function of the number of kid-doors, when the number of packages in the

domain is fixed to 5.

takes one to two orders of magnitude more time than ND-SHOP2. The closest run times

occurred at k = 4, where MBP required about 15 times as much time as ND-SHOP2

did.

3.7 A Complexity Analysis on the Experimental Results

This section presents the complexity analysis of space and time requirements for

ND-SHOP2 on the planning domains used in the experimental evaluation. This analysis

is based on the current implementation of ND-SHOP2, as well as on the properties of the

task-decomposition methods written for these domains.

Proposition 1 ND-SHOP2 generates policies of size O(n), where n is the number of

objects in Robot Navigation, and the number of blocks in both of the nondeterministic

versions of the Blocks World domains, all of which are as described above.

78

Proof. Both nondeterministic Blocks World and Robot Navigation admit polynomial-

sized solutions. These solutions have the following characteristics:

• In the nondeterministic Blocks World, there are two cases for each block. In the

first case, the planner picks up (or unstacks) the block and puts it down (or stacks)

it to its goal location. In the second case, the planner cannot move the block to its

goal location so it moves it onto the table using the two actions above. Such a block

needs to be moved to its goal location later; therefore, the planner performs four

actions for that block in this case. However, note that during any of these actions

in either case, the planner may drop the block on the table. If the table is not the

block’s goal location, the search-control strategies above tell the planner to pick the

block immediately. Therefore, for each block, a solution includes at most 5 actions

to move it from its initial position to its goal. Thus, the size of a solution is O(n),

where n is the number of blocks.

• In Robot Navigation, for each object, the search-control strategies mentioned above

tell the planner to move the robot from its current position to a location where there

is an object, pick up the object, move from that location to the object’s goal location,

and put it down. Each move operation is a sequence of actions that moves the

robot between two rooms that are connected to each other via a door. In the fixed

building map in this domain, the maximum distance between two rooms is 5, hence

the maximum number of move actions to get the robot from one room to another.

Note that nondeterminism via the kid doors does not add any complexity here due

to representation we described above: that is, in the representation language for

79

the Robot Navigation domain, a policy can say things along the lines of “if we are

at door number 3 and it is open, then go through it,” rather than having to give

explicitly all of the exponentially many states of the world in which we’re at door

number 3 and the door is open. More specifically, when the robot is in front of a kid

door, the search-control strategy splits this state in two states such that the door is

open in one of them and it is closed in the other, and plans an action for each of such

states. After that, since the robot is done with door at this point, it merges these two

states again into one in which the information about the openness or closedness of

that particular door has been disappeared.

Thus, if a kid door is open, the robot moves through it; otherwise, it opens and

moves through it. If the door remains closed after the robot opens it, there is nothing

to do for the planner since the planner already generated an action for this case. As

a result, for each object, a solution specifies at most 12 actions; therefore, the size

of a solution is O(n), where n is the number of objects.

Proposition 2 ND-SHOP2 generates policies in time O(n5), where n is the number of

objects in Robot Navigation, and the number of blocks in the nondeterministic versions

Blocks World domains, all of which are as described above.

Proof. Note that the search-control strategies described in the proof of Proposition 1

enable the planner to generate a solution of O(n) size in O(n) many iterations since, at

each iteration, ND-SHOP2 generates one of the actions described above and inserts it

80

into the current partial policy. The dominant factor in each iteration of ND-SHOP2 is

to maintain the data structures we have implemented for checking cycles induced by the

partial policies generated by the algorithm — i.e., the π-descendancy in the pseudocode

of Figure 3.9.

Before we get into the details of the complexity of cycle checks in our implemen-

tation, we need to analyze the size of a state in our domains since our checks are mostly

based on it. [GN92] shows that the size of a state in the classical Blocks World domain

is O(n) where n is the number of blocks in the domain. Our nondeterminized version of

this domain also has this property since the nondeterminization process does not have any

effect on the states of the world.

In the Robot Navigation domain. Since, in a state, there is only one atom that

describes the location of the robot and there is at most one atom that describe whether a

door is open or not, the size of a state in this domain does not influenced by the location

of the robot. The size of a state is also not exponential in the status of the kid doors due

to our representation of the Robot Navigation as described in the proof of Proposition 1.

Furthermore, since the domain is a prescribed map of a floor in a building, the number

of atoms that specify connectivity information of the possible rooms is fixed. In fact, the

size of the state only changes by the number objects in the domain. More specifically, if

there are n objects in the domain, then there are n atoms that describe the locations of

these objects. This is true since an object can be only in one room in any state. Therefore,

the size of a state in this domain is O(n).

One way to check π-descendancy is to perform a search over the execution structure

induced by the partial policies generated during planning. In order to avoid this search,

81

we took an alternative approach in which we have implemented a data structure, called

the reachable list. The reachable list keeps the set of states in the open and the solved

lists that are reachable from every state in the execution structure for the partial policy

generated during planning. In other words, this list holds the π-descendancy information

for every state explored by the algorithm until a particular iteration. This data structure

enables us to perform a π-descendancy test in polynomial time in the size of the partial

policy generated until that iteration, and by Proposition 1, this means that we can perform

such checks in O(n) time, where n is the number of blocks in one domain and it is the

number of objects in the other.

However, in order to keep the correct π-descendancy information in each iteration,

we need to update this list in each iteration when we remove a state from the open list and

select an action for it. Let s be such a state in an iteration of the algorithm. Our current

implementation performs this update as follows: for every state s′ in the partial policy, we

first find the set of π-descendants of s′ using the reachable list. Then, we find the state that

was planned for in this iteration in this set. Finding the set of π-descendants of s′ requires

O(n) time since the size of the reachable list is the same as the size of the partial policy in

this iteration. Finding the particular state in the set of π-descendants of s′ requires O(n2)

time since we compare the atoms in s with the atoms of every state in that set. 4 After

finding s in that set we remove it and insert the successors of s into that set.

Therefore, updating the reachable list for each of the states in a partial policy re-

quires time O(n3). Since the number of such states in the partial policy is O(n), the

4Note that, due to the search-control strategies described above, the set of π-descendants of a state is

always bounded by a constant so we do not include the size of that set in our analysis.

82

algorithm requires O(n4) time to perform this update. Since this update needs to be done

at each iteration of the algorithm and the number of iterations required to return a solution

in our domains is O(n), ND-SHOP2 took O(n5) time in our experiments.

It would also be possible to write nondeterministic versions of the blocks world

with more complicated kinds of nondeterminism: for example, an action could drop the

block not just onto the table, but onto any clear block. Although this experimental eval-

uation does not include such cases, the complexity analysis above suggests that such an

experimental study would yield results similar to the above. ND-SHOP2 would take

polynomial time and space, although the space would this time be quadratic rather than

linear (it would immediately pick up the fallen block again, but in the worst case there

would be O(n) different places to pick up this block from). MBP would take exponential

time in the size of the problem, for the same reasons as before.

83

Chapter 4

Forward State-Space Splitting in Nondeterministic Domains

The previous chapter has described a way to generalize forward-chaining classical

planning algorithms to work in nondeterministic domains. The original planning algo-

rithms are able to use domain-independent or domain-specific search-control information

to focus their search in classical planning domains. The nondeterminization technique

preserves the ability to use search control for efficient planning in the nondeterministic

planning domains, as experimentally demonstrated in Section 3.6 with one of the non-

determinized planning algorithms; namely ND-SHOP2, a generalization of the SHOP2

planner [NAI+03] that can use domain-specific information encoded as Hierarchical Task

Network (HTNs) for controlling its search.

Despite the success of ND-SHOP2 in the experimental evaluation described in

the previous chapter, there are several classes of planning problems in nondeterministic

domains for which effective search control may not be available either because of the

complexity of the domain. This chapter first describes in Section 4.1 some examples of

the planning domains in which this is the case and demonstrates that MBP, without using

any search control, performs better than ND-SHOP2 in such cases. Then, Section 4.2

describes a novel planning technique, called Forward State-Space Splitting (or FS3 for

short), for planning in nondeterministic domains. The rest of the chapter is dedicated to

an extensive discussion on this planning procedure and the theoretical and experimental

84

analysis of it.

In particular, FS3 is an abstract planning procedure that is designed to combine the

advantages of using search control during planning with that of BDD-based representa-

tions of planning problems and domains as in MBP. Instances of FS3 include FS3
TLPlan

that combines planning with control rules as in ND-TLPlan and ND-TALplanner with

BDDs, and FS3
SHOP2 that combines HTNs as in ND-SHOP2 with BDDs. Our experi-

ments with FS3
SHOP2 demonstrated that FS3

SHOP2 was never dominated by either MBP or

ND-SHOP2, and could easily deal with problem sizes that neither MBP nor ND-SHOP2

could scale up to. Furthermore, FS3
SHOP2 could solve problems about two or three orders

of magnitude faster than MBP and ND-SHOP2.

4.1 ND-FCP vs. Planning with BDDs

The reason that ND-SHOP2 was able to outperform MBP in the experiments of

the previous chapter is the effective search-control information provided to the planner to

prune the search space. When such information is not available, however, ND-SHOP2

is a simple forward state-space search algorithm that is not to be expected to be effective

compared to MBP since the latter uses propositional formulas for a compact representa-

tions of sets of states and of transformations over such formulas for efficient exploration

in the search space. Thus, it is reasonable to hypothesize that the planning techniques

developed using search-control and compact representations perform well on different

kinds of planning problems and domains. This section describes two sets of experiments

with ND-SHOP2 and MBP in order to verify this hypothesis. One of these experiments

85

Table 4.1: Comparisons between ND-SHOP2 and MBP on CHAIN problems, with in-

creasing number n of rooms.
n = 10 20 30 40 50 60 70 80 90 100

MBP 0.068 0.114 0.157 0.192 0.287 0.389 0.354 0.452 0.583 0.742
ND-SHOP2 0.010 0.040 0.120 0.240 0.430 0.630 1.000 1.260 1.620 2.040

were performed on the toy CHAIN Domain described in [CPRT03] and the other in a

pursuit-evasion game, called Hunter-Prey domain, described in [KS95].

All experiments were run on an AMD Duron 900MHz laptop with 256MB memory,

running Linux Fedora Core 2. If a planning algorithm failed on a problem (i.e., it ran out

of memory or it could not solve the problem within a time limit of 40 minutes), it was

run again on another problem of the same size. Each data point on which the planning

algorithm failed more than five times is omitted from the experimental results, but those

data points where it failed 1 to 5 times are included. Thus the experimental results make

the performance of the failed planner look better than it really was compared to the other

planner, but this makes little difference since the former performed much worse than the

latter in each experimental case the former failed.

In all of these experiments, both ND-SHOP2 and MBP were provided as input

the same planning operator descriptions (i.e., action descriptions) for the CHAIN and the

Hunter-Prey domains in their respective representational languages.

In the CHAIN domain, there are n rooms, marked as i = 1, . . . , n. The objective is

to start from room i = 1 and to go to the room i = n. Each consecutive room i and i + 1

share two doors. The planners do not know which of the doors is open or close between

the rooms; thus, the number of possible successors of a state in this version of the domain

is exponential in the number of rooms left to visit.

86

Table 4.2: Comparisons between ND-SHOP2 and MBP on larger CHAIN problems,

with increasing number n of rooms. In this table, “−” shows the cases where the policy

representations in ND-SHOP2 required more memory than that was available.
n = 50 100 150 200 250 300

MBP 0.287 0.742 2.874 3.830 7.137 11.097
ND-SHOP2 0.430 2.040 4.370 − − −

The experiments with the CHAIN domain compared the running times required to

solve planning problems by ND-SHOP2 and MBP, varying the number of rooms in the

domain. Tables 4.1 and 4.2 show the results. These results illustrate that ND-SHOP2

was not able to solve large planning problems in this domain, where there are 200 rooms

and more, due to memory-overflow errors. On the other hand, MBP was able to solve all

of the planning problems in this test suite. The reason for this difference in the behavior of

the two planners is that, although ND-SHOP2’s search-control information focuses the

planner to a particular room being visited, the sizes of the explicit policy representations

in ND-SHOP2 become very large; hence the memory overflows to store those policies

in the memory. On the other hand, the size of MBP’s BDD-based policy representations

does not grow with the size of the problems, and therefore, MBP did not have any memory

problems in these experiments.

In the Hunter-Prey domain, there is a hunter and a prey in an n×n grid world. The

task of the hunter is to catch the prey in the world. The hunter has five possible actions;

namely, north, south, east, west, and catch. The prey has also five actions: it has the

same four moves as the hunter, and an action to stay still in the world. The hunter can

catch the prey only when the hunter and the prey are at the same location at the same time

in the world. In the representation of the Hunter-Prey domain, the prey does not appear as

87

MBP

ND-SHOP2

0

5

10

15

20

25

30

35

40

5x5 6x6 7x7 8x8 9x9 10x10 11x11 12x12 13x13
Grid Size

A
vg

. C
PU

 T
im

es
 (s

ec
.'s

)

MBP ND-SHOP2

Figure 4.1: Average running times in sec.’s for MBP and ND-SHOP2 in the Hunter-Prey

domain as a function of the grid size, with one prey. ND-SHOP2 was not able to solve

planning problems in grids larger than 10× 10 due to memory-overflow problems.

a separate agent. Instead, the prey’s possible actions are encoded as the nondeterministic

outcomes for the hunter’s actions.

Figure 4.1 shows the average running times required by MBP and ND-SHOP2,

as a function of increasing grid sizes. These results are obtained by running the two

planners over 20 randomly-generated problems for each grid size, and then, by averaging

the results. ND-SHOP2 ran out of memory in the large problems of this domain since

(1) the solution policies in this domain are very large to store using an explicit repre-

sentation, and (2) the search space does not admit a structure that can be exploited by

search-control heuristics. Note that this domain allows only for high-level strategies for

the hunter such as ”look at the prey and move towards it,” since the hunter does not know

which actions the prey will take at a particular time. MBP, on the other hand, clearly

outperforms ND-SHOP2 in these experiments, demonstrating once again the advantage

of using BDD-based representations over explicit ones.

88

MBP

NDSHOP2
0

500

1000

1500

2000

2500

2 3 4 5 6

Number of Preys

A
vg

. C
PU

 T
im

es
 (s

ec
.'s

)

MBP NDSHOP2

Figure 4.2: Average running times in sec.’s for MBP and ND-SHOP2 in the Hunter-Prey

domain as a function of the number of preys, with a fixed 4× 4 grid.

Another set of experiments on Hunter-Prey problems focused on a variation of the

domain in which there are more than one prey to catch. In this version of the planning

domain, the movements of prey are dependent on each other, assuming that a prey cannot

move to a location next to another prey in the world. Figure 4.2 shows the results in

this adapted domain, with the 4× 4 grid world: ND-SHOP2 is able to outperform MBP

in this domain. The reason for the difference in these results compared to the previous

ones is that this adapted domain allows much more powerful strategies for the hunter:

e.g., “choose one prey and chase it while ignoring others; when you catch that prey,

choose another and chase it, and continue in this way until all of the prey are caught.”

ND-SHOP2, using this strategy, is able to avoid the combinatorial explosion due the

prey’s actions in the world. On the other hand, the BDD-based representations in MBP

explode in size since the movements of the preys are dependent to each other, and MBP’s

backward-chaining breadth-first search techniques apparently cannot compansate for such

89

an explosion.

The results of the experiments described in this section clearly suggest that planning

with search control and with BDD-based state representations are two complementary

techniques: in some planning domains the former is exponentially faster than the latter,

and in others the reverse is true. The subsequent sections further investigate these two

techniques and describe a way to combine them.

4.2 ND-FCP + BDDs = Forward State-Space Splitting (FS3)

Forward State-Space Splitting (FS3) is a forward-chaining abstract planning proce-

dure that provides a way to combine the ability of exploiting search-control information in

planning with symbolic model-checking techniques in a single planning framework. The

symbolic model-checking techniques used in FS3 are BDDs, as in the MBP planner. FS3

can exploit search-control information encoded as HTNs as in ND-SHOP2 and control

rules as in ND-TLPlan or ND-TALplanner.

Figure 4.3 shows the FS3 planning procedure for generating solutions in nondeter-

ministic planning domains. The input for the planning procedure FS3 include the set G of

goal states and the empty policy π. The OPEN set is the set of pairs of the form (S, χ)

where S is a set of states and χ is the search-control information to be used in all of the

states in S.

In any invocation, FS3 requires the search-control information χ be ground — i.e.,

χ contains no variable symbols in its representation. This assumption is due to the need

that FS3 evaluates χ in a BDD representation of a set of states, which is based on propo-

90

Procedure FS3(OPEN, G, π)
OPEN ← {(S \ (G ∪ Sπ), χ) | (S, χ) ∈ OPEN and S \ (G ∪ Sπ) 6= ∅}
if NoGood(π, StatesOf(OPEN), G, S0) then return(FAILURE)
if OPEN = ∅ then return(π)
select a situation (S, χ) from OPEN and remove it
F ← {(S ∩ Sa, a, progress(S ∩ Sa, a, χ)) | acceptable(S ∩ Sa, a, χ) holds}
if F = ∅ then return(FAILURE)
nondeterministically choose F ′ ⊆ F

S∪ ←
⋃

(S∩Sa,a,χ′)∈F ′(S ∩ Sa)
if S∪ 6= S then return(FAILURE)
S∩ ←

⋃
(S′,a′,χ′)∈F ′,(S′′,a′′,χ′′)∈F ′(S′ ∩ S′′)

if S∩ 6= ∅ then return(FAILURE)
OPEN ′ ← Compute-Successors(F ′, OPEN)
π′ ← π ∪ {(s, a) | (S ∩ Sa, a, χ′) ∈ F ′ and s ∈ S ∩ Sa}
return(FS3(OPEN ′, G, π′))

Figure 4.3: FS3, an abstract planning procedure that use search-control information to

focus the search for generating solutions in nondeterministic domains. In the initial call

of the procedure, π is the empty policy and OPEN is the set that contains the pair (S0, χ)

where S0 is the set of initial states and χ0 is the initial search-control information.

sitional formulas (i.e., logical formulas over ground atoms).1

For the purposes of clarity of the discussion in the rest of this chapter, we will call

a pair (S, χ) as a situation. Initially, OPEN contains only the initial situation (S0, χ0),

where S0 is the set of initial states and χ0 is the initial search-control information. Starting

with the initial situation, FS3 recursively generates successive sets of situations until a

solution for the input planning problem is generated. At each iteration of the planning

process, FS3 first checks the OPEN set of situations for cycles and goal states: for every

situation (S, χ) ∈ OPEN , the algorithm removes any state s from S that either appears

1In the general case where the search-control information contains variable symbols, FS3 can be ex-

tended by a preprocessing phase that creates possible ground instances automatically. However, the current

implementation of the planning procedure does not perform this phase; this is one of the near-future works

planned to extend FS3.

91

already in the policy, i.e., s ∈ Sπ, or that appears in the set of goal states G. In the former

case, an action has already been planned for s, and in the latter case, no action should be

planned for s. During this operation, if the set S of states in a situation becomes empty,

then FS3 simply discards that situation since there is no further exploration it can perform

from this situation on.

After processing the cyclic and goal states in the OPEN situations, FS3 perform

a correctness test on the OPEN situations and the current partial policy π. This test

involves verifying that the current partial policy π is a candidate solution for the input

planning problem. In Figure 4.3, the NoGood function is responsible for this test. The

formal definition of this subroutine depends on whether the FS3 planning procedure is

used for generating weak, strong, or strong-cyclic solution for the input planning problem,

and it is described in the following section. NoGood takes as input the states of the

OPEN set, which is computed by the function StatesOf:

StatesOf(OPEN) = {s | (S, χ) ∈ OPEN and s ∈ S}

If the current partial policy π is not a candidate solution, then FS3 returns from the

current search trace by FAILURE. Otherwise, if there are no open situations to be explored

further (i.e, OPEN = ∅), then π is a solution to the underlying planning problem. This

is true since π does not violate the requirements of the input problem, as it passed all of

the NoGood tests from the start of the planning process to this point.

Suppose there is an OPEN situation (S, χ) in an invocation of FS3. Then FS3

generates (1) an action a for each state s in S given the search-control information χ

and (2) the successor search-control information χ′ to be used in the states that arise from

92

Procedure Compute-Successors(F,OPEN)
OPEN ′ ← OPEN ∪ {(succ(S, a), χ) | (S, a, χ) ∈ F}
OPEN ′ ← {(Compose(χ,OPEN ′), χ) | (S, χ) ∈ OPEN ′}
return OPEN ′

Figure 4.4: The Compute-Successors procedure.

applying a in s. More specifically, FS3 computes a set F tuples of the form (S∩Sa, a, χ′),

where S ∩ Sa is the subset of states in S in which the action a is applicable, and it is

acceptable to apply a in those states given the current search-control information χ. The

search-control information to be used in any state that is generated by applying a in a state

in S ∩ Sa is χ′ = progress(S ∩ Sa, a, χ).

If F is the empty set then this means that there is a state in S for which there is no

action given the current search-control information χ. In this case, FS3 returns FAILURE.

Otherwise, FS3 nondeterministically chooses a subset F ′ of F . If the subset F ′ specifies

one and only one action for every state in S (i.e., S =
⋃

(S′,a,χ′)∈F ′ S ′ and there are no

two tuples, say (S ′, a′, χ′) and (S ′′, a′′, χ′), in F ′ such that a′ 6= a′′ and S ′ ∩ S ′′ 6= ∅), the

algorithm computes the set of all successor situations that can be generated by applying

those actions in the states of S. Otherwise, FS3 returns FAILURE.

The Compute-Successors subroutine generates the new OPEN ′ set of situations

to be explored in the next iterations of the planning process. The formal definition of this

subroutine is shown in Figure 4.4. For each tuple (S, a, χ) ∈ F , Compute-Successors

first generates the set of states that arises from applying a in S by using the function

succ(S, a) = {s′ | s ∈ S and s′ ∈ γ(s, a)}.

The next situation corresponding this action application is defined as (succ(S, a), χ).

93

Once Compute-Successors generates the all of the next situations be explored, it

composes the newly-generated situations with respect to their search-control information.

More formally, the Compose function of Figure 4.4 is defined as follows:

Compose(χ, OPEN) = {s | (S, χ) ∈ OPEN and s ∈ S}.

The composition of a set of situations is an optimization step in the planning process.

The progression of open situations may create a set of situations in which more than one

situation may specify the same search-control information. Composing such situations

is not required for correctness, but it has the advantage of planning with more compact

representations.

4.3 Weak, Strong, and Strong-Cyclic Planning with FS3

The abstract planning procedure FS3 can be used for weak, strong, and strong-

cyclic planning by using different NoGood subroutines, each of which specifies the dif-

ferent conditions required for a policy to be a weak, strong or strong-cyclic solution for a

planning problem. This section presents the definitions for these routines.

Weak Planning. The NoGood function for weak planning is mainly responsible for

checking if there is an acyclic path from each initial state to a goal state in π. The formal

definition of this function is as follows:

94

Procedure NoGood(π, SOPEN , G, S0) /* for Weak Planning */

S′′ ← ∅; S ← G ∪ SOPEN

while S′′ 6= S

S′′ ← S

S′ ← {s′ | (s′, a) ∈ π and γ(s′, a) ∩ S 6= ∅}
π ← π \ {(s, a) | s ∈ S and (s, a) ∈ π}
S ← S ∪ S′

if S0 ⊆ S then return FALSE

return TRUE

This computation involves a backward search starting from the goal states and the

OPEN states, the set S in the pseudocode for NoGood above, toward the initial states

S0 of the planning problem input to FS3. The OPEN states are the ones in the situations

in the OPEN set. The backward search is based on the WeakPreimage operation de-

scribed in Section 2.3.2. The search stops when all states that can be reached from the

goal and the OPEN states by the WeakPreimage operations are generated in S. At this

point, S contains all the states from which there is an acyclic path to a goal state. Then,

NoGood simply checks if the initial states are in S. If so, the input partial policy π does

not violate the requirements of weak planning, so it returns FALSE (which tells FS3 that

π is actually good). Otherwise, it returns TRUE, forcing FS3 to backtrack.

Strong Planning. In strong planning, a policy must induce an execution trace to a goal

state from every state that is reachable from the initial states and there should be no cycles

in the execution structure induced by that policy. This can be checked as follows:

95

Procedure NoGood(π, SOPEN , G, S0) /* for Strong Planning */

S′ ← ∅; S ← G ∪ SOPEN

while S′ 6= S

S′ ← S

S ← S ∪ {s′ | (s′, a) ∈ π, and γ(s′, a) ⊆ S}
π ← π \ {(s, a) | s ∈ S and (s, a) ∈ π}

if S0 ⊆ S and π = ∅ then return FALSE

return TRUE

Note that the above NoGood function for strong planning have several similari-

ties with the one for weak planning in that both are backward search procedures that

start from the goal and the OPEN states and perform a search towards the initial states.

NoGood for strong planning, however, uses the StrongPreimage function described in

Section 2.3.2, rather than the WeakPreimage function. At each iteration, the NoGood

for strong planning removes those state-action pairs from π that have been verified to be

in the StrongPreimage of the goal states. At the end of the backward search, if there is

a state-action pair left in the policy, then it means that the policy induces a cycle in the

execution structure, and therefore, it can not be a strong solution for a planning problem.

In this case, NoGood returns TRUE, meaning that the input partial policy π is not good

and violates the requirements of being a strong solution.

Strong-Cyclic Planning. The definition for the NoGood function for strong-cyclic plan-

ning is very similar to that for weak planning, except that it ensures that every state-action

pair in the input partial policy π is processed by the backward search. If, at the end, there

are state-actions pairs that are not removed from π by the backward search, then this

means that π violates the “fairness assumption” for strong-cyclic planning; i.e., there is

a cycle induced by π from which there is no possibility of reaching to the goal states or

96

to the OPEN states, which, in effect, is the same as the former. In this case, NoGood

returns TRUE, forcing FS3 to backtrack. Otherwise, it returns FALSE.

The NoGood function for the strong-cyclic planning is defined as follows:

Procedure NoGood(π, SOPEN , G, S0) /* for Strong-Cyclic Planning */

S′ ← ∅; S ← G ∪ SOPEN

while S′ 6= S

S′ ← S

S ← S ∪ {s′ | (s′, a) ∈ π, and S ∩ γ(s′, a) 6= ∅}
π ← π \ {(s, a) | s ∈ S and (s, a) ∈ π}

if S0 ⊆ S and π = ∅ then return FALSE

return TRUE

4.4 Symbolic Model-Checking Primitives in FS3

This section presents a framework for implementing the data structures of the FS3

procedure and its helper routines using BDD-based symbolic model-checking primitives.

This framework uses the same machinery to represent the states of a planning domain

as in [CPRT03]. This machinery is based on using propositional formulae to compactly

represent sets of states and possible transitions between those states in a planning domain.

I assume a vector s of propositions that represents the current state of the world. For

example, in the Hunter-Prey world with a 3×3 grid and one prey, s is {hx = 0, . . . , hx =

3, hy = 0, . . . , hy = 3, px = 0, . . . , px = 3, py = 0, . . . , py = 3, prey caught}. A state

is an assignment of the truth-values {TRUE,FALSE} to each proposition in s. Let s(s)

denote such an assignment.

Based on this formulation, a set of states S corresponds to the formula S(s) such

that

S(s) =
∨
s∈S

s(s).

97

This definition of set of states is the basis of our framework in this paper. It allows us to

define FS3’s forward search mechanism over BDD-based representations of sets of states,

rather than single states.

I also assume another vector s′ of propositional variables to represent the next states

of the world, respectively. Similarly, a vector a of action variables represents a set of

actions to be applied at the same time. A policy π, which is a set of state-action pairs, can

be represented as a formula π(s, a) in the variables s and a. The formula S(s) denotes a

set of states S in the state vector s as before. A situation is represented as a pair of the

form (S(s), χ), where χ is the search-control information, as described previously.

The initial situation can be represented by {(S0(s), χ)}, where S0(s) represents the

initial set of states and χ is the initial search-control information. Similarly, the formula

G(s) represents the set of goal states. I assume the existence of a state-transition relation

R, which can be represented as R(s, a, s′), where s denotes the current state vector, a

denotes the current action vector, and s′ denotes the next state vector. Note that R is an

equivalent representation of the state-transition function γ in a planning domain.

The formulations of the inequality of sets, set difference operations, and subset rela-

tions constitute the most basic primitives used in conditionals and termination conditions

of the loops of our algorithms. These operations can be easily encoded in terms of basic

logical operations on the formulas described above. The inequality of two sets of states

can be represented as the formula

¬(S(s)⇔ S ′(s)),

where S(s) and S ′(s) are the two formulas representing the two sets of states under con-

98

sideration. Similarly, the subset relation between two sets of states corresponds to the

following formula:

S(s) =⇒ S ′(s).

A set difference operation S \ S ′ over two sets of states, S and S ′ can be represented as

follows:

S(s) ∧ ¬S ′(s).

The result of applying an action a in a set of states S can be represented as the

formula:

∃s′ : S(s) ∧R(s, a, s′)[s′/s],

where [s′/s] is called the forward-shifting operation [CPRT03]. Note that the above for-

mula represents the succ(S, a) function described in the previous section.

The StatesOf primitive used for computing the set of all states described by a set of

situations can be represented as a set-union operator over the situations we are interested

in. More formally, the computation of the set of all states of OPEN = {x1, x2, . . . , xn}

corresponds to the formula S1(s) ∨ S2(s) ∨ . . . ∨ Sn(s), where xi = (Si, χi).

The check for cyclic and goal states in the states of a situation is built on set-

difference and set-union operations, which can be represented as follows: S(s)∧¬(G(s)∨

∃a : π(s, a)).

The NoGood functions for strong and strong-cyclic planning are based on two

primitives for computing WeakPreimage and StrongPreimage of a particular set of

states. These preimage computations correspond to

∃a∃s′.π(s, a) ∧ S(s′) and ∃a∃s′.π(s, a) =⇒ S(s′),

99

respectively.

The composition of two situations that have the same search-control information is

a set-union operation over the sets of states described by those situations. In other words,

if two situations x1 = (S1, χ) and x2 = (S2, χ) are to be composed into a situation x,

then the situation x is the result of the following computation: x = (S1(s) ∨ S2(s), χ).

The Compose procedure of FS3 traverses a given set of situations and composes the

appropriate ones by using the computation above.

Finally, the update of a policy π by a set of state-action pairs π′ is represented as

follows: π(s, a) ∨ π′(s, a).

4.5 Formal Properties

This section presents theorems showing the completeness and the correctness of the

FS3 planning procedure for nondeterministic planning domains. The proofs are given in

the Appendix A.2.

The FS3 planning procedure starts from the initial states of the input planning prob-

lem and performs a forward search towards the goals. FS3 always terminates: the size

of OPEN set cannot grow unboundedly, as there are only a finite number of possible

state transitions and OPEN becomes the empty set after finitely many iterations, as FS3

removes the situations that contain only the goal and the visited states from OPEN at

each iteration.

Theorem 9 The planning procedure FS3 always terminates.

The correctness of FS3 depends on the correctness of the NoGood function, as this

100

function eliminates the partial policies that cannot be extended to a solution for the input

weak, strong, or strong-cyclic planning problem. The backward search of the NoGood

functions defined in the previous section always eliminates a partial policy that cannot

be a solution, as the NoGood functions are basically simple modifications of the model-

checking based weak, strong, and strong-cyclic planning algorithms of [CPRT03], which

have been shown to be correct.

Theorem 10 Let P = (Σ, S0, G) be a planning problem in a nondeterministic planning

domain Σ, and let π be a partial policy in Σ If π is a candidate solution for P , then an

invocation of NoGood(π, St
π, G, S0) returns FALSE, where St

π are the terminal states of

π. Otherwise, NoGood(π, St
π, G, S0) returns TRUE.

The following theorem establishes the correctness of the FS3 planning procedure:

Theorem 11 Suppose one of the search traces of FS3 returns a policy π given the input

planning problem P = (Σ, S0, G) in a nondeterministic planning domain Σ. Then π is a

solution for the planning problem P .

Finally, the following theorem establishes the completeness of FS3:

Theorem 12 Suppose P = (Σ, S,G) is a χ-solvable nondeterministic planning problem

given the search-control information χ. Then, one of the search traces of FS3 returns a

solution policy for P using χ.

101

4.6 Examples

This section describes two planning algorithms that are instances of the abstract

FS3 procedure. The first algorithm, FS3
TLPlan, combines temporal-logic based search-

control rules as in ND-TLPlan with BDD-based symbolic model-checking primitives to

compactly represent sets of states during planning. The second algorithm, FS3
SHOP2, does

a similar combination of ND-SHOP2’s HTNs and BDD-based representations.

4.6.1 FS3 with Control Rules

The FS3
TLPlan planning algorithm uses temporal-logic based control rules to spec-

ify search-control information as in ND-TLPlan described in the previous chapter. Fig-

ure 4.5 shows the pseudocode of this algorithm. FS3
TLPlan successively progresses the

input temporal-logic (TL) formula over BDD-based state representations as follows. The

input to the planner is the initial OPEN set, the set of goal states, and the empty policy.

At each iteration, the planning algorithm first removes the cyclic and goal states from

the OPEN situations as described for the abstract FS3 procedure. Then, it performs

the NoGood correctness test on the OPEN situations and the current partial policy as

described in the previous sections.

In Figure 4.5, the Control function is responsible for implementing both the

search-control function acceptable and the progression function progress for FS3
TLPlan’s

search-control information encoded as TL formulas. The formal definition of the Control

function in FS3
TLPlan is given in Figure 4.6. It splits the set S of states by generating

an action a that is applicable in some of the states in S and that is acceptable with

102

Procedure FS3
TLPlan(OPEN, G, π)

OPEN ← {(S \ (G ∪ Sπ), χ) | (S, χ) ∈
OPEN and S \ (G ∪ Sπ) 6= ∅}
if NoGood(π, StatesOf(OPEN), G, S0) then return(FAILURE)
if OPEN = ∅ then return(π)
select a situation (S, χ) from OPEN and remove it
F ← Control(S, χ)
if F = ∅ then return(FAILURE)
OPEN ′ ← Compute-Successors(F,OPEN)
π′ ← π ∪ {(s, a) | (S′, a, χ′) ∈ F and s ∈ S′}
return(FS3

TLPlan(OPEN ′, G, π′))

Figure 4.5: FS3
TLPlan, an instance of the abstract FS3 procedure that uses search-control

rules as in ND-TLPlan. In the initial call of the algorithm, π is the empty policy and

OPEN is the set that contains only the initial situation (S0, χ0).

Procedure Control(S, χ)
F ← ∅; loop
if S = ∅ then return(F)
nondeterministically choose an action a such that S ∩ Sa 6= ∅
χ′ ← PROGRESS(S ∩ Sa, χ)
if χ′ = FALSE then return ∅
F ← F ∪ {(S ∩ Sa, a, χ′)}
S ← S \ Sa

return F

Figure 4.6: The Control procedure.

respect to the current search-control information χ. Then, FS3
TLPlan generates the next

search-control information χ′ by using the PROGRESS function shown in Figure 4.6.

PROGRESS is the original progression function of TLPlan and ND-TLPlan, except

that it attempts to satisfy a logical condition in a set of states represented as a BDD, rather

than over a single state. The logical condition that needs to be satisfied is, in this case, the

non-temporal subformula in χ, and the set of states χ needs to be satisfied in is S ∩ Sa –

i.e., the states where the current action a is applicable. In order to perform such a satisfia-

103

bility check, the non-temporal subformula in χ is converted into a BDD that represents all

of the states, say Sχ, in which that subformula is satisfied, and the satisfiability check is

performed simply as checking the subset relation: (S ∩ Sa) ⊆ Sχ. If (S ∩ Sa) ⊆ Sχ then

this means that the subformula of χ is satisfied in every state where the current action is

applicable, and therefore, PROGRESS returns TRUE. Otherwise, it returns FALSE.

During its search, if PROGRESS generates a temporal-logic formula that is the

logical constant FALSE then Control returns the empty set, forcing FS3
TLPlan to fail in the

current search trace. Otherwise, Control continues with those states of S in which the

action a is not applicable in order to generate another action for those states. This search

continue until Control plans an action for every state in the input set of states S or it

returns FAILURE at some iteration as described above.

The symbolic representations of the set-based operations in Control is the same as

the ones described for FS3 in the previous section.

4.6.2 FS3 with Hierarchical Task Networks

FS3
SHOP2 combines task-decomposition methods as in ND-SHOP2’s HTNs with

BDD-based state representations. Figure 4.7 shows the pseudocode of the planning algo-

rithm. FS3
SHOP2 does successive task decompositions over BDD-based representations of

classes of states as follows. The input to the planner is the initial OPEN set, the set of

goal states, and the empty policy. At each iteration, the planner first removes the cyclic

and goal states from the OPEN situations as described for the FS3 procedure. Then, it

performs the aforementioned NoGood correctness test on the OPEN situations and the

104

Procedure FS3
SHOP2(OPEN, G, π)

OPEN ← {(S \ (G ∪ Sπ), χ) | (S, χ) ∈
OPEN and S \ (G ∪ Sπ) 6= ∅}
if NoGood(π, StatesOf(OPEN), G, S0) then return(FAILURE)
if OPEN = ∅ then return(π)
select a situation (S, χ) from OPEN and remove it
F ← Decompose(S, χ)
if F = ∅ then return(FAILURE)
OPEN ′ ← Compute-Successors(F,OPEN)
π′ ← π ∪ {(s, a) | (S′, a, χ′) ∈ F and s ∈ S′}
return(FS3

SHOP2(OPEN ′, G, π′))

Figure 4.7: FS3
SHOP2, an instance of the abstract FS3 procedure that uses HTNs as in

ND-SHOP2. In the initial call of the algorithm, π is the empty policy and OPEN is the

set that contains only the initial situation (S0, χ0).

current partial policy.

In Figure 4.7, the Decompose function is responsible for implementing the search-

control function acceptable and the progression function progress for FS3
SHOP2’s

search-control information encoded as HTNs. Intuitively, in a set S of states represented

as a BDD, a possible HTN decomposition of a task t specifies (1) a set of subtasks and (2)

a subset S ′ of S in which the particular decomposition of t is possible. Thus, decompos-

ing a task t in a set S of states represented by a BDD yields two sub-BDDs — one that

represents S ′ and and the other that represents the rest of the states S \ S ′ in which other

possible decompositions for t must be tried.

The formal definition of the Decompose function is given in Figure 4.8. In a

situation (S, χ), let t be a task that has no predecessors in the task network χ. If t is

a primitive task then t can be executed directly in the world. Let a be an action that

corresponds to t, and a can be applied in each state in S; i.e., S ⊆ Sa. Note that applying

an action a in a set of states S does not generate any new open situations: that is, S must

105

Procedure Decompose(S, χ)
F ← ∅; X ← {(S, χ)}
loop
if X = ∅ then return(F)
select a tuple (S, χ) ∈ X and remove it
select a task t that has no predecessors in w

if t is a primitive task then
actions← {a | a ∈ A is an action for t, and S ⊆ Sa}
if actions = ∅ then return ∅
select an action a from actions

F ← F ∪ {(S, a, χ \ {t})}
else

methods← {m | m is a task-decomposition method for t

and S ∩ Sm 6= ∅}
if methods = ∅ then return ∅
select a method instance m from methods

X ← X ∪ {(S ∩ Sm, (χ \ {t}) ∪ χ′}
if S \ Sm 6= ∅ then X ← X ∪ {(S \ Sm, χ)}

Figure 4.8: The Decompose procedure.

be a subset of Sa because, otherwise, there is at least one state in S for which no action is

applicable, and this is a failure point in planning.

If t is not primitive, then Decompose successively applies methods to the non-

primitive tasks in χ until an action is generated. Suppose it chooses to apply a method

m to t. Let Sm be the set of all states in which m is applicable to t. This generates two

possible situations: (1) the situation that arises from decomposing t by m in the states

S ∩ Sm in which m is applicable, and (2) the situation that specifies the states in which

m is not applicable – i.e., the situation (S \ Sm, χ). In the former case, Decompose

proceeds with decomposing the subtasks of t as specified in m. In the latter case, on the

other hand, other methods for t must be used. Note that if there are no other methods for

t to be used in situations like (S \ Sm, χ), then Decompose returns the empty set.

106

Decompose returns a set F of the form {(Si, ai, χi)}ki=0. If F = ∅ then this means

that the decomposition process has failed since there is a state s ∈ S such that there is

no action for s that can be generated by using the methods provided for the underlying

planning domain. If F 6= ∅ then the routine has generated an action ai for each state in S

— i.e., S =
⋃

i Si —, and a task network χi to be accomplished after applying that action.

The symbolic representations of the set-based operations in Decompose is the

same as the ones described for FS3, except that the check whether a method or an action

is applicable in a given set S of states corresponds to the following formula: S(s) =⇒

Sa(s) and S(s)∧ Sm(s), where S(s) represents the set of states in which Decompose is

performing these checks, and Sa(s) and Sm(s) represents the set of all states in which the

action a and the method m is applicable.

4.7 Experimental Evaluation

This section describes an extensive experimental comparison of the FS3
SHOP2 plan-

ning algorithm, one of the instances of FS3 as described above, with the ND-SHOP2

and MBP planning systems. The current implementation of FS3
SHOP2 is built on both the

ND-SHOP2 and the MBP planning systems. It differs from ND-SHOP2 in three ways:

(1) it plans over sets of states rather than a single state, and (2) it includes the NoGood

routine as a part of its backtracking search, and (3) it implements an interface to MBP for

exploiting the machinery of BDDs implemented in it.

The experimental evaluation of FS3
SHOP2 consists of three sets of experiments in

the Hunter-Prey domain. In these experiments, the domain was fully-observable in the

107

sense that the hunter can always observe the location of the prey. The hunter moves

first in the world, and the prey moves afterwards. In the domain representation, the prey

does not appear as a separate agent. Instead, the prey’s possible actions are encoded as

the nondeterministic outcomes for the hunter’s actions. As before, all three planners,

FS3
SHOP2, ND-SHOP2 and MBP, were provided as input the same planning operator

descriptions (i.e., action descriptions) for the Hunter-Prey planning domain in their re-

spective representational languages. Both FS3
SHOP2 and ND-SHOP2 were provided the

same search-control information encoded as hierarchical task networks for this domain.

All experiments were run on an AMD Duron 900MHz laptop with 256MB memory,

running Linux Fedora Core 2. If a planning algorithm failed on a problem (i.e., it ran out

of memory or it could not solve the problem within a time limit of 40 minutes), it was

run again on another problem of the same size. Each data point on which the planning

algorithm failed more than five times is omitted from the experimental results, but those

data points where it failed 1 to 5 times are included. Thus the experimental results make

the performance of ND-SHOP2 and MBP look better than it really was—but this makes

little difference since they performed much worse than FS3
SHOP2.

Experimental Set 1. These experiments aimed to investigate how well FS3
SHOP2 is able

to cope with large-sized problems compared to ND-SHOP2 and MBP. To achieve this

objective, the experiments are done with hunter-prey problems with increasing grid sizes

and with only one prey so that the nondeterminism in the world is kept at a minimum for

the hunter.

Figure 4.9 shows the results of the experiments for grid sizes n = 5, 6, . . . , 10. For

108

0 5 10 15 20 25 30

5x5

6x6

7x7

8x8

9x9

10x10

G
rid

 S
iz

e

Avg. CPU Times (sec.'s)

MBP ND-SHOP2 YoyoFS3SHOP2

Figure 4.9: Average running times (in sec.’s) of FS3
SHOP2, ND-SHOP2, and MBP in the

Hunter-Prey domain as a function of the grid size, with one prey.

each value for n, MBP, ND-SHOP2, and FS3
SHOP2 were run on 20 randomly-generated

problems. This figure reports the average running times required by the planners on those

problems. For grids larger than n = 10, ND-SHOP2 was not able to solve the planning

problems due to memory overflows. This is because the sizes of the solutions in this

domain are very large, and therefore, ND-SHOP2 runs out of memory as it tries to store

them explicitly. Note that this domain admits only high-level search strategies such as

“look at the prey and move towards it.” Although this strategy helps the planner prune a

portion of the search space, such pruning alone does not compensate for the explosion in

the size of the explicit representations of the solutions for the problems.

On the other hand, both FS3
SHOP2 and MBP was able to solve all of the prob-

lems in these experiments. The difference between the performances of FS3
SHOP2 and

ND-SHOP2 demonstrates the impact of the use of BDD-based representations: FS3
SHOP2,

using the same HTN-based heuristic as ND-SHOP2, was able to scale up as good as MBP

109

MBP

Yoyo

0
10

20
30

40
50

60
70

80

5x5 10x10 15x15 20x20 25x25 30x30 35x35 40x40 45x45 50x50

Grid Size

A
vg

. C
PU

 T
im

es
 (s

ec
.'s

)

MBP YoyoFS3

FS3

SHOP2

SHOP2

Figure 4.10: Average running times (in sec.’s) for FS3
SHOP2 and MBP on larger problems

in the Hunter-Prey domain as a function of the grid size, with one prey.

since it is able to exploit BDD-based representations of the problems and their solutions.

In order to see how FS3
SHOP2 performs in larger problems compared to MBP, I have

also experimented with FS3
SHOP2 and MBP in much larger grids. Figure 4.10 shows the

results of these experiments with varying the size of the grids in the planning problems as

n = 5, 10, 15, . . . , 45, 50.

These results show that FS3
SHOP2 is able to perform better than MBP with the in-

creasing grid size. The running times required by both of the planners increase in larger

grids; however, this increase is much slower for FS3
SHOP2 than MBP as shown in Fig-

ure 4.10 due to the following reasons: (1) FS3
SHOP2 is able to combine the advantages

of exploiting HTN-based search-control heuristics with the advantages of using BDD-

based representations, whereas MBP cannot exploit HTN-based strategies to complement

its BDD-based planning techniques; and (2) FS3
SHOP2, being a forward planner, consid-

ers only those states that are reachable from the initial states of the planning problems,

whereas MBP’s backward-chaining algorithms explore states that are not reachable from

110

the initial states of the problems at all.

In Figure 4.10, the data-point for MBP in the experiments with 40×40 grids shows

an unexpected decline in the performance of the planning system. With the same experi-

mental parameters and setup, the neighboring data points for grids 35× 35 and 45× 45,

respectively, does not reflect this anomaly. I ran the experiments with 40 × 40 grids

with different random problem sets three times and the results were always the same.

My speculation is that the anomaly might be occurring due to some problem in MBP’s

implementation and/or its integration with the CUDD package for BDDs.

Experimental Set 2. In order to investigate the effect of combining search-control strate-

gies and BDD-based representations in FS3
SHOP2, I used a variation of the Hunter-Prey

domain, where there are more than one prey in the world, and the prey i cannot move to

any location within the neighborhood of prey i + 1 in the world. In such a setting, the

amount of nondeterminism for the hunter after each of its move increases combinatorially

with the number of preys in the domain. Furthermore, the BDD-based representations of

the underlying planning domain explode in size under these assumptions, mainly because

the movements of the preys are dependent to each other.

In this adapted domain, ND-SHOP2 and FS3
SHOP2 were provided with a search-

control strategy that tells the planners to chase the first prey until it is caught, then the

second prey, and so on, until all of the preys are caught. Note that this heuristic allows for

abstracting away from the huge state space: when the hunter is chasing a prey, it does not

need to know the locations of the other preys in the world, and therefore, it does not need

to reason and store information about those locations.

111

MBP

ND-SHOP2

Yoyo
0

100

200

300

400

500

2 3 4 5 6

Number of Preys

A
vg

. C
PU

 T
im

es
 (s

ec
.'s

)

MBP NDSHOP2 YoyoND-SHOP2 FS3

FS3

SHOP2

SHOP2

Figure 4.11: Average running times (in sec.’s) of ND-SHOP2, FS3
SHOP2 and MBP on

problems in the Hunter-Prey domain as a function of the number of preys, with a 4 × 4

grid. MBP was not able to solve planning problems with 5 and 6 preys within 40 minutes.

The experiments in this set aimed to investigate the running times of MBP,

ND-SHOP2, and FS3
SHOP2, with varying the number of preys from p = 2, . . . , 6 in a

4 × 4 grid world. Figure 4.11 shows the results. Each data point is an average of the

running times of all three planners on 20 randomly-generated problems for each experi-

ment with different numbers of prey. These results demonstrate the power of combining

HTN-based search-control heuristics with BDD-based representations of states and solu-

tions in our planning problems: FS3
SHOP2 was able to outperform both ND-SHOP2 and

MBP. The running times required by MBP grow exponentially faster than those required

by FS3
SHOP2 with the increasing size of the preys, since MBP cannot exploit HTN-based

heuristics. Note that ND-SHOP2 performs much better than MBP in the presence of

good search-control heuristics.

112

Experimental Set 3. The final set of experiments are designed to further investigate

FS3
SHOP2’s performance compared to that of ND-SHOP2 and MBP on Hunter-Prey

problems, with multiple preys and with increasing grid sizes. In these experiments,

the number of preys were varied as p = 2, . . . , 6 and the grid sizes were varied as

n = 3, 4, 5, 6.

Table 4.3 reports the average running times required by FS3
SHOP2, MBP, and

ND-SHOP2 in these experiments. Each data point is an average of the running times

of all three planners on 20 randomly-generated problems for each experiment with dif-

ferent p and n combinations. These results provide further proof for our conclusions.

Search-control heuristics helped both FS3
SHOP2 and ND-SHOP2 as they both outper-

form MBP with the increasing number of the preys. However, with increasing grid sizes,

ND-SHOP2 runs into memory problems as before due to its explicit representations of

states and solutions of the problems. FS3
SHOP2, on the other hand, was able to cope with

very well both with increasing the grid sizes and the number of preys in these problems.

These experimental results demonstrate the importance of using search-control

heuristics and BDD-based representations in a single forward-chaining framework. The

search-control heuristics exploited the structure of the underlying planning problems, and

therefore, they resulted in a more compact and structured BDD representations of the

planning problems and domains. For example, in the hunter-prey domain, the strategy,

which tells FS3
SHOP2 to focus on catching one prey while ignoring other preys, provides

a combinatorial reduction in the representations of the solutions for the problems and the

state-transition relation for the domain. BDDs provide even further compactness in those

reduced representations. Note that the same strategy did not work for ND-SHOP2 very

113

Table 4.3: Average running times (in sec.’s) of MBP, ND-SHOP2, and FS3
SHOP2 on

Hunter-Prey problems with increasing number of preys and increasing grid size.

2 preys
Grid
3x3
4x4
5x5
6x6

MBP ND-SHOP2 FS3
SHOP2

0.343 0.78 0.142
0.388 3.847 0.278
1.387 18.682 0.441
3.172 76.306 0.551

3 preys
Grid
3x3
4x4
5x5
6x6

MBP ND-SHOP2 FS3
SHOP2

1.1 1.72 0.329
11.534 12.302 0.521
133.185 58.75 0.92
368.166 250.315 1.404

4 preys
Grid
3x3
4x4
5x5
6x6

MBP ND-SHOP2 FS3
SHOP2

29.554 3.256 0.448
492.334 31.591 0.759
>40 mins 176.49 1.818
>40 mins 547.911 3.295

5 preys
Grid
3x3
4x4
5x5
6x6

MBP ND-SHOP2 FS3
SHOP2

233.028 5.483 0.655
>40 mins 56.714 1.275
>40 mins 304.03 3.028
>40 mins memory-overflow 7.059

6 preys
Grid
3x3
4x4
5x5
6x6

MBP ND-SHOP2 FS3
SHOP2

2158.339 8.346 0.781
>40 mins 73.435 1.786
>40 mins 486.112 5.221
>40 mins memory-overflow 11.826

well in large problems due to explicit representations of the problems and the domain.

Note also that BDD-based representations alone did not work very well for MBP in prob-

lems with increasing number of the preys, since those representations are not sufficient to

abstract away from the irrelevant portions of the state space.

114

Chapter 5

Forward-Chaining Planning with MDPs

Planning algorithms for MDPs typically have large efficiency problems due to the

need to explore all or most of the state space. For complex planning problems, the state

space can be quite huge. This chapter continues the discussion on using search control in

planning under uncertainty and describes a way to improve the efficiency of planning on

MDPs by adapting the search-control (i.e., pruning) techniques used in forward-chaining

classical planners described previously.

In particular, Sections 5.1 and 5.2 describe how to modify any forward-chaining

MDP planning algorithm, by incorporating into it the search-control function from any

forward-chaining classical planner. Section 5.3 describes conditions under which the

modified MDP planning algorithms are guaranteed to find optimal answers, and condi-

tions under which they can do so exponentially faster than the original MDP planners.

Section 5.4 presents an experimental evaluation of the modified versions of Real-Time

Dynamic Programming (RTDP) [BG00], Labeled RTDP (LRTDP) [BG03], and a

forward-chaining Value Iteration (Value Iteration) [Ber05] algorithm. In these experi-

ments, modified algorithms ran exponentially faster than the original ones. On the largest

problems the original algorithms could solve, the modified ones ran about 10,000 times

faster. In only about 1/3 second, the modified algorithms could solve problems whose

state spaces were more than 14,000 times larger.

115

Procedure Forward-VI
select any initialization for the value function V

while V has not converged do
S ← S0; V isited← ∅; π ← ∅
while S 6= ∅ do

for every state s ∈ S ∩G, V (s)← R(s)
S ← S \G; S′ ← ∅
for every state s ∈ S

for every a ∈ app(s)
Q(s, a)← C(s, a) + α

∑
s′∈results(s,a) Pr(s, a, s′) V (s′)

S′ ← S′ ∪ {s | s ∈ results(s, a)}
V (s)← mina∈app(s) Q(s, a)
a← argmina∈app(s) Q(s, a)
π ← π ∪ {(s, a)}

V isited← V isited ∪ S

S ← S′ \ V isited

return π

Figure 5.1: Forward-VI, a forward-chaining version of Value Iteration.

5.1 Forward-Chaining MDP Planners

Many existing MDP planning algorithms can be viewed as forward-search proce-

dures embedded inside iteration loops. Examples include traditional Value Iteration al-

gorithm [Ber05], RTDP [BG00], LRTDP [BG03], and heuristic search techniques such

as LAO* [HZ01]. The forward search in these MDP planners starts at the initial states and

searches forward by applying actions to states, computing a policy and/or a set of utility

values as the search progresses. The iteration loop continues until some sort of conver-

gence criterion is satisfied (e.g., until two successive iterations produce identical utility

values for every node, or until the residual of every node becomes less than or equal to a

termination criterion ε > 0).

As an example, the well-known Value Iteration algorithm [Ber05] can be seen as

116

a forward-search procedure by making sure that in each iteration, Value Iteration starts

computing its values from the initial states of an MDP planning problem and proceeds

toward the goals. Figure 5.1 shows the pseudocode of a forward-chaining version of

Value Iteration. The iteration loop is the outer while loop, and the forward-search proce-

dure is everything inside that loop. The planning process continues until the value func-

tion V converges to its optimal form as in the traditional description of the Value Iteration

algorithm. In the pseudocode, app is the set of applicable actions in a state s: i.e.,

app(s) = {a | a ∈ A and γ(s, a) 6= ∅}.

Planners like RTDP [BG00] and LRTDP [BG03] fit directly into the above format.

For example, Figure 2.5 in Section 2.3.1 shows the pseudocode for RTDP. RTDP is

a planning algorithm based on real-time forward search [Kor90] that is performed by

simulating possible executions of the actions in the states visited during search, rather

than by exploring all or most of the states that can be reached from the initial states of the

input MDP planning problem.

In each iteration of the outer while loop, RTDP performs a greedy search going

forward starting from the initial state towards the goal states of the input MDP planning

problem. As described in Section 2.3.1, RTDP’s forward search at each iteration is a

stochastic simulation of the greedy partial policy: in a state s, RTDP chooses an action

a that has currently the best Q(s, a) value. Then the algorithm does a one-step update

of this Q(s, a) by using the Bellman Equation (Eqs. 2.1 and 2.2). Next, it generates a

successor state of s by probabilistically sampling the state transitions induced by applying

a in s using the transition probabilities as specified by Pr.

117

LRTDP is a variant of RTDP that implements a labeling mechanism in order to

mark the states whose values are converged during planning so that those states are not

expanded by the planning algorithm again. Note that in order the value of a state to be

converged, the values of all of its descendants need to be converged during planning.

LRTDP is shown to be correct — i.e., the labeling mechanism does not eliminate any

optimal solutions —, and in some cases, it outperforms RTDP.1

LAO* is a heuristic search algorithm based on a generalization of the well-known

AO* search [Nil80]. It extends AO* to incorporate mechanisms to deal with cyclic search

traces. Similar to the above planners, LAO* consists of an iteration loop in which the

algorithm performs a forward search starting from the initial states toward the goal states

of the input MDP planning problem. Unlike the previous planners, LAO* interleaves its

forward search with a dynamic programming step as follows. In each iteration, LAO*

first generates the best partial policy in a forward fashion. Then, the planning algorithm

uses dynamic programming to update the value of each state that is in that policy or that

is an ancestor of a state in that policy in the state space. The iteration continues until the

difference between the values of the states in the successive best policies falls below an

error threshold.
1Note that LRTDP is not guaranteed to perform better than RTDP in general. The reason for this is

that, in order to preserve correctness, a state must be labeled as solved only if all of its π-descendants are

labeled as solved in a greedy policy π. There are planning problems where the value function for some

states converge towards the end of planning process, and in such cases, LRTDP performance is not higher

than that of RTDP.

118

5.2 Modifying MDP Planners with Search Control

At each state s that an MDP planner visits during its forward search, the planner

needs to know app(s), the set of all actions applicable to s. For example, the innermost

for loop of Forward-VI iterates over the actions in app(s); RTDP and LRTDP choose

whichever action in app(s) currently has the best value and simulate its effects; and

LAO* expands one of the terminal states in the current best policy by choosing an action

in app(s).

The rest of this section describes how to modify the forward search in MDP plan-

ners in order to incorporate the search control techniques originally developed for classi-

cal planning algorithms. The modifications are based on the acceptable and progress

functions of the abstract planning procedure FCP presented Section 3.2 (see Figure 3.2).

Recall that FCP is a simple forward state-space search procedure that can use auxil-

iary search-control information χ in order to guide its search. Its search-control function

acceptable is responsible for pruning some of the actions in app(s) in a state and its

progress function generates the search-control information to be used in a successor

state that arise from applying an acceptable action in the current state.

Let Σ = (S, A, γ) be a classical planning domain and let Σ′ = (S ′, A′, γ′, α, Pr, C)

be an MDP. Let P be a classical planning problem P = (Σ, s0, G) in Σ and let P F =

(Σ′, S0, G) be an MDP planning problem in Σ′. The MDP planning problem P F is an

MDP version of the classical planning problem P if and only if the following holds:

• S = S ′ and s0 ∈ S0;

• there is a one-to-one mapping det from A′ to A such that the following holds:

119

– for each state s ∈ S, if γ′(s, a′) = ∅ then γ(s, det(a′)) = ∅.

– Otherwise, γ(s, det(a′)) ∈ γ′(s, a′).

Intuitively, P F is an MDP version of P if and only if the two planning problems have the

same states and goals, the initial state of P is among the possible initial states of P F , and

if there is a one-to-one mapping det from P F ’s actions to P ’s actions such that for every

action a in P F , a and det(a) are applicable to exactly the same states, and for each such

state s, γ(s, det(a)) ∈ γ′(s, a). The additional states in γ′(s, a) are used to model various

sources of the uncertainty in the domain, such as action failures (e.g., a robot gripper may

drop its load) and exogenous events (e.g., a road is closed). The action det(a) is called

the deterministic version of a, and a the MDP version of det(a).

Let Z be a forward-chaining MDP planning algorithm and let F be a classical

planning algorithm that is an instance of FCP. Then, ZF is a modified version of Z in

which every occurrence of app(s) is replaced by

{a ∈ app(s) | acceptableF (s, det(a), χ) holds},

where χ is the auxiliary search-control information and det(a) is the deterministic ver-

sion of an action a as described above. The search-control information χ is computed

by progression using F ’s progress function. Each time the forward search in the

MDP algorithm Z applies an action a in a state s and generates the successor state s′,

progress(s, a, χ) is the search-control information χ′ to be used with the state s′. This is

precisely the reason that we require Z to be a forward-chaining algorithm: the auxiliary

search-control information χ′ is computed by progression from s′’s parent.

The following gives some examples of ZF ; in particular, two of the enhanced MDP

120

planning algorithms, namely Forward-VITLPlan and RTDPSHOP2, that are produced by

incorporating search control as in TLPlan and SHOP2 (described in Chapter 3) in their

original versions.

5.2.1 Forward-VITLPlan

The first example for ZF is Forward-VITLPlan, the enhanced version for the

Forward-VI algorithm that incorporates TLPlan’s search-control rules. Figure 5.2 shows

the pseudocode of this procedure. The algorithm is basically the same as Forward-VI,

except that in a state s, it considers only the acceptable actions, rather than all of the

applicable ones. The acceptable function is defined using temporal-logic formulas as

in TLPlan. In a state s, Forward-VITLPlan first checks the search-control formula f that

is associated with s. If f is FALSE then this means that the action that is applied to the

parent of s yielding s is not an acceptable action. In that case, Forward-VITLPlan does

not generate any successors of s. Otherwise, it updates the value of s by computing the

Q(s, a) values given each applicable action a in s.

The forward search in Forward-VITLPlan continues as above until there are no states

left to explore in the current iteration of the planning algorithm. Successive iterations

of forward search continues until the value function V converges to its optimal value.

In practice, the algorithm terminates when the Bellman residual between two successive

computations of the value function V is less than or equal to a given ε value, which

is a very small number. More specifically, Forward-VITLPlan terminates when |V (s) −

V ′(s)| < ε for all states that is reachable by Forward-VITLPlan’s forward search starting

121

Procedure Forward-VITLPlan

let f be the initial search-control formula
select any initialization for the value function V

while V has not converged do
S ← {(s, f) | s ∈ S0}; V isited← ∅; π ← ∅
while S 6= ∅ do

for every (s, f) ∈ S such that s ∈ G, V (s)← R(s)
S ← {(s, f) | (s, f) ∈ S and s 6∈ G}; S′ ← ∅
for every (s, f) ∈ S

f ′ ← Progress(s, f)
if f ′ 6= FALSE then

for every a ∈ app(s)
Q(s, a)← C(s, a) + α

∑
s′∈results(s,a) Pr(s, a, s′) V (s′)

S′ ← S′ ∪ {(s′, f ′) | s′ ∈ γ(s, a)}
V (s)← mina∈app(s) Q(s, a)
a← argmina∈app(s) Q(s, a)
π ← π ∪ {(s, a)}

V isited← V isited ∪ {s | (s, f) ∈ S}
S ← {s | s ∈ S′ and s 6∈ V isited}

return π

Figure 5.2: Forward-VITLPlan, the enhanced version of Forward-VI with TLPlan’s con-

trol rules.

from the initial states of the input planning problem.

5.2.2 RTDPSHOP2

The second example for ZF is RTDPSHOP2. Figure 5.3 shows the pseudocode of

the enhanced RTDP planning algorithm that incorporates SHOP2’s search-control func-

tion acceptable and progression function progress, to use HTN-based search-control

information as in ND-SHOP2 and FS3
SHOP2.

As RTDP, RTDPSHOP2 performs successive stochastic simulations that start from

the initial state towards the goal state. At each state s, however, it successively decom-

122

Procedure RTDPSHOP2

select any admissible initialization for V

while V has not converged relative to a parameter ε do
s← s0; w ← w0

while s 6∈ G do
W ← {w}; A← ∅
while W 6= ∅ do
select a task network w ∈W and remove it
T ← {t | t ∈ w and t has no predecessors}
for every task t ∈ T do
if t is a primitive task then
actions← {(a, σ(w − {t})) | a is an action, σ is a substitution s.t.

head(a) = σ(t), and a ∈ app(s)}
if actions = ∅ then return FAILURE

A← A ∪ actions

else
methods← {(m,σ) | m is an instance of a method in M,σ is a

substitution s.t. head(m) = σ(t), and m is applicable in s}
for every (m,σ) ∈ methods do

w′ ← ApplyMethod(s, w, t,m, σ)
W ←W ∪ {w′}

if A = ∅ then return(FAILURE)
(a,w′)← argmin(a,w′)∈A Q(s, a)
V (s)← C(s, a) + α

∑
s′∈γ(s,a) Pr(s, a, s′)V (s′)

pick s′ ∈ γ(s, a) with probability Pr(s, a, s′)
s← s′; w ← w′

extract the greedy optimal policy π given V and s0

return π

Figure 5.3: The modified RTDP algorithm that incorporates search control as in SHOP2.

poses the tasks in the current task network w in order to generate all of the actions that are

acceptable in s. This computation is similar to the task-decomposition algorithm used

in the abstract FS3
SHOP2 planning procedure for generating solutions in nondeterministic

planning domains, as described in the previous chapter. Intuitively, this computation first

determines a task t that has no predecessors in w. Then, it generates all possible decom-

positions of t given the task-decomposition methods such that each such decomposition

123

generates an action a and a successor task network w′. RTDPSHOP2 then chooses the

“best” action a among those generated ones and its associated successor task network

w′. The best action is the one that has the minimum Q(s, a) value in the current state s,

among the actions generated by all possible decompositions of the task t. The algorithm

then applies a in s and probabilistically chooses one of the successor states generated by

this application. The task network w′ is the search-control information to be used along

with this successor state in the next iteration of the forward search.

The forward search (i.e., the stochastic simulation) in RTDPSHOP2 continues until

a goal state is generated. Then, the algorithm starts a new forward search from the ini-

tial state of the input planning problem, unless the value function over all of the states

reachable from that initial state is converged. As in Forward-VITLPlan, an ε termination

criterion is used in practice.

5.3 Formal Properties of the Modification Technique

Let Z be a forward-chaining MDP planning algorithm that is guaranteed to return

an optimal solution if one exists, F be an instance of FCP, and acceptableF be F ’s

search control function. Suppose Σ = (S, A, γ, α, Pr, C) is an MDP and P = (Σ, S0, G)

be a planning problem in Σ. The succ of a state s in Σ is the set

succ(s) = {s′ | a ∈ applicable(s) and s′ ∈ γ(s, a)}.

Recall that app(s) of a state s is the set of actions that are applicable in s and γ(s, a) is

the set of successor states that arise from applying a in s.

124

Then, I define the reduced MDP ΣF and planning problem P F as follows:

appF (s) = {a ∈app(s) | acceptableF (s, det(a), χ) holds};

PrF (s, a, s′) =

Pr(s, a, s′) if a ∈ appF (s),

0 otherwise;

γF (s, a) = {s′ | PrF (s, a, s′) > 0}

succF (s) =
⋃
{s′ ∈ γF (s, a) | a ∈ appF (s)};

SF =transitive closure of succF over S0;

GF =G ∩ SF ;

ΣF =(SF , A, γF , α, PrF , C);

P F =(ΣF , S0, G
F).

Recall that in every place where the algorithm Z uses app(s), the algorithm ZF

instead uses {a ∈ app(s) | acceptableF (s, det(a), χ) holds}. Thus from the above defi-

nitions, it follows that running ZF on the planning problem P is equivalent to running Z

on P F .

The search-control function acceptableF is admissible for P if for every state s in

P , there is an action a ∈ app(s) such that acceptableF (s, det(a), χ) holds and we have

V (s) = C(s, a) + α
∑

s′∈γ(s,a)

Pr(s, a, s′)V (s′).

From the admissibility of acceptableF , the theorem below follows:

Theorem 13 Suppose Z returns a solution policy π for P . Then, ZF returns a solution

policy π′ for P such that Vπ(s) = Vπ′(s) for every s ∈ S0, if acceptableF is admissible

for P .

125

Intuitively, the above theorem states that if the search-control function acceptableF is

admissible for the planning problem P then the modified planning algorithm ZF never

prunes an action that can be a part of an optimal solution policy for P . The proof of this

theorem is given in the Appendix A.3.

Next, we consider the computational complexity of Z and ZF . This depends

heavily on the search space. If P = (Σ, S0, G) is a planning problem over an MDP

Σ = (S, A, γ, α, Pr, C), then we define the reachability graph for P as the digraph

ΓP = (NP , EP), where NP is the transitive closure of succ over the initial states S0

of P , and EP = {(s, s′) | s ∈ NP , s′ ∈ succ(s)}. The Forward-VI algorithm searches

the entire reachability graph of the planning problem P in order to generate a solution.

For algorithms like RTDP and LRTDP, the search space is a subgraph of ΓP .

The depth of the reachability graph ΓP of P is the maximal distance between a state

s ∈ S0 and any other state in NP . The breadth of ΓP is max{|succ(s)| | s ∈ NP}.

If F is a forward-chaining planning algorithm that is an instance of FCP, then the

reachability graph for Forward-VIF is ΓF
P = (SF , EF), where SF is as defined earlier,

and EF = {(s, s′) | s ∈ SF , s′ ∈ succF (s)}. Then, we have the following: the ratio

between the running times of Z and ZF on P is O(bd

(bF)(dF)
), where d and b are the depth

and the breadth of ΓP , respectively, and dF and bF are the depth and the breadth of ΓF
P .

Note that d is always an upperbound on dF (i.e, dF ≤ d) and b is always an up-

perbound on bF (i.e., bF ≤ b), since the search-control function acceptable does not

introduce any new actions. The worst case is where b = bF and d = dF (i.e., ΓP = ΓF
P),

and therefore, the ratio between the running times of Z and ZF is 1; this happens if F ’s

search-control function, acceptableF , does not prune any actions from the search space.

126

On the other hand, there are many planning problems in which acceptableF will

remove a large number of applicable actions at each state in the search space (some ex-

amples occur in the next section). In such cases, we have bF << b, and this can produce

an exponential speedup, as illustrated in the following simple example. Consider the

Forward-VI algorithm. Suppose ΓP is a tree in which every state at depth d is a goal

state, and for every state of depth < d, there are exactly b applicable actions and each of

those actions has exactly k possible outcomes — i.e., the breadth of ΓP is bk. Thus, the

number of nodes in ΓP is Θ((bk)d). Next, suppose F ’s search-control function eliminates

exactly half of the actions at each state. Then ΓF
P is a tree of depth d and breadth (b/2)k,

so it contains Θ(((b/2)k)d) nodes. In this case, the ratio between the number of nodes

visited by Forward-VI and Forward-VIF is 2d, so Forward-VIF is exponentially faster

than the original one.

5.4 Experimental Evaluation

This section presents an experimental evaluation of the modification technique de-

scribed in the previous sections. The experiments are performed using Forward-VI,

RTDP, and LRTDP, and their enhanced versions Forward-VISHOP2, RTDPSHOP2, and

LRTDPSHOP2. I implemented all six of the planners in LISP. 2

For meaningful tests of the enhanced algorithms, these experiments involved plan-

ning problems with much bigger state spaces than in prior published tests of RTDP and

2The authors of RTDP and LRTDP were willing to let us use their C++ implementations, but we needed

LISP in order to use SHOP2’ search-control mechanism and to avoid integration issues between C++ and

LISP parts of the the implementations of the modified planners that would arise otherwise.

127

LRTDP [BG03], where the biggest experimental problems in size had 383,950 states in

their state spaces. For this purpose, I used the following two planning domains; which

are MDP adaptations of Blocks World and Robot Navigation. The planning problems in

the original versions of both of the Blocks World and Robot Navigation domains contain

more than 50 million states in their state spaces, and so do their MDP adaptations.

All of the experiments were run on a AMD Duron 900MHz laptop with 256MB

memory, running Fedora Core 2 Linux. In either of the experimental domains, each

action had a unit cost of 1. The discount factor was α = 1.0, as in the experiments with

RTDP reported in [BG03], and the termination criterion was ε = 10−8 for all of the

experimental planners. The modified planners were provided with the same input search-

control information encoded as hierarchical task networks, and all six planners have been

provided as input the same planning operator descriptions (i.e., action descriptions) in

these experiments. All of the domain and problem descriptions used in these experiments

will be accessible via http://www.cs.umd.edu/users/ukuter/mdps/.

The RTDP and LRTDP algorithms use domain-independent heuristics to initialize

their value functions. I used two such heuristics. The first one, h0, initializes the value of

every state to 0. The other is the hmin heuristic reported in [BG03]:

Q(s, a)← C(s, a) + min
s′∈γ(s,a)

Pr(s, a, s′) V (s′) (5.1)

5.4.1 Probabilistic Blocks World

One of the experimental domains was the Probabilistic Blocks World (PBW) from

the 2004 International Probabilistic Planning Competition [LY04]. This domain is a vari-

128

RTDP
LRTDP

0.001

0.01

0.1

1

10

100

1000

b=3 b=4 b=5 b=6 b=7 b=8 b=9 b=10

Number of Blocks

A
vg

. C
PU

 T
im

es
 (s

ec
s)

Fwd-VISHOP2

RTDPSHOP2

LRTDPSHOP2

Figure 5.4: Running times for PBW using h0, plotted on a semi-log scale. With 6 blocks

(b = 6), the modified algorithms are about 10,000 times as fast as the original ones. Each

data point is the average of 20 problems.

ation of the original Blocks World domain discussed in Section 2.2. As in the original ver-

sion, there are four kinds of actions; namely, the pickup, putdown , stack, and unstack

actions. However, each action may drop the block on the table with a 15% probability.

In Blocks World domain, the size of the state space in this domain grows combi-

natorially with the number of blocks: with 3 blocks there are only 13 states, but with 10

blocks there are 58,941,091 states. This is also true for the Probabilistic Blocks World

since this probabilistic adaption of Blocks World has the same set of states as the original

one.

On most of the problems, Forward-VI failed due to memory overflows, so there are

no results reported for this algorithm in the following discussion. Figures 5.4 and 5.5

show the average running times of all the other five planners in the PBW domain, using

the h0 and hmin heuristics respectively. Each data point is the average of 20 runs. The

running times for RTDP and LRTDP were almost the same, and so were those of the

129

RTDP

LRTDP

0.001

0.1

10

1000

b=3 b=4 b=5 b=6 b=7 b=8 b=9 b=10

Number of Blocks

A
vg

. C
PU

 T
im

es
 (s

ec
s)

Fwd-VISHOP2

RTDPSHOP2

LRTDPSHOP2

Figure 5.5: Running times for PBW using hmin, plotted on a semi-log scale. Like before,

when b = 6 the modified algorithms are about 10,000 times as fast as the original ones.

Each data point is the average of 20 problems.

three enhanced planners. Every algorithm’s running time grows exponentially, but the

growth rate is much smaller for the enhanced algorithms than for the original ones—for

example, at b = 6 they have about 1/10,000 of the running time of the original algorithms.

Once we got above 6 blocks (4,051 states in the state space), the original algorithms ran

out of memory.3 In contrast, the modified algorithms could easily have handled problems

with more than 10 blocks (more than 58 million states).

The reason for the fast performance of the modified algorithms is that it is very

easy to specify domain-specific (but problem-independent) strategies encoded in HTNs

such as “if there is a clear block that you can move to a place where it will never need

3Each time RTDP or LRTDP had a memory overflow, they were run again on another problem of the

same size. Each data point on which there were more than five memory overflows is omitted as before,

but those data points where it happened 1 to 5 times are included in the results. Thus our data make the

performance of RTDP and LRTDP look better than it really was—but this makes little difference since

they performed so much worse than RTDPSHOP2 and RTDPSHOP2.

130

to be moved again, then do so without considering any other actions,” and “if you drop a

block on the table, then pick it up again immediately.” Such strategies reduce the size of

the search space tremendously as already discussed for ND-SHOP2 and FS3
SHOP2 in the

previous chapters.

5.4.2 Probabilistic Robot Navigation

The second experimental domain was an MDP adaptation of the Robot Navigation

domain [KBSD97, PBT01] described in Section 3.6. In this adapted domain, there is a

building has 8 rooms and 7 doors. Some of the doors are called kid doors. Whenever a

kid door is open, a “kid” can close it randomly with a probability of 0.5. If the robot tries

to open a closed kid door, this action may fail with a probability of 0.5 because the kid

immediately closes the door. Packages are distributed throughout the rooms, and need to

be taken to other rooms. The robot can carry only one package at a time.

In the Robot Navigation domain and in the MDP adaptation of it described above,

the state space contains 54,525,952 states, when there are 5 packages in the domain.

Tables 5.1 and 5.2 show the running times for the planners in the Robot Navigation

domain. The times for RTDP and LRTDP grew quite rapidly, and they were unable

to solve many of the problems at all because of memory overflows. RTDPSHOP2 and

LRTDPSHOP2 had no memory problems, and their running times were quite small.

To try to alleviate RTDP’s and LRTDP’s memory problems, I created a Simplified

Robot Navigation domain in which there are no kid doors. When the robot tries to open a

door, it may fail with probability 0.1, but once the door is open it remains open.

131

Table 5.1: Running times using h0 on Robot-Navigation problems with one kid door. p is

the number of packages. Each data point is the average of 20 problems.

p = 1 2 3 4 5

RTDP 10.21 254.64 - - -
LRTDP 11.80 1622.68 - - -
Fwd-VISHOP2 0.01 0.03 0.06 0.08 0.14
RTDPSHOP2 0.01 0.02 0.05 0.07 0.11
LRTDPSHOP2 0.02 0.03 0.06 0.09 0.17

Table 5.2: Running times using hmin on Robot-Navigation problems with one kid door. p

is the number of packages. Each data point is the average of 20 problems.

p = 1 2 3 4 5

RTDP 23.85 629.46 - - -

LRTDP 15.08 383.17 - - -

Fwd-VISHOP2 0.01 0.03 0.09 0.14 0.25

RTDPSHOP2 0.01 0.03 0.08 0.13 0.22

LRTDPSHOP2 0.01 0.04 0.09 0.14 0.26

Table 5.3 shows the results on this simplified domain using hmin. RTDP and

LRTDP took less time than before, but still had memory overflows. As before,

RTDPSHOP2 and LRTDPSHOP2 had no memory problems and had very small running

times.

An explanation about the performance of RTDP and LRTDP in these experiments

is in order. LRTDP is an extension of RTDP that uses a labeling mechanism to mark

states whose values have converged so that the algorithm does not visit them again during

the search process. In most our problems, we observed that the value of a state did not

converge until towards the end of the planning process. As a result, labeling states did not

132

Table 5.3: Running times using hmin on Simplified Robot-Navigation problems, with no

kid doors. p is the number of packages. Each data point is the average of 20 problems.

p = 1 2 3 4 5

RTDP 4.69 211.22 - - -

LRTDP 4.66 209.87 - - -

Fwd-VISHOP2 0.01 0.03 0.05 0.09 0.15

RTDPSHOP2 0.01 0.02 0.04 0.08 0.14

LRTDPSHOP2 0.01 0.03 0.05 0.09 0.15

really help improve the performance of LRTDP on those problems. In each such case,

LRTDP spent a significant portion of its running time to unsuccessfully attempt to label

the states it visited. As a result, RTDP was able to perform better than LRTDP in those

problems since it is free from such overhead.

133

Chapter 6

Related Work

This chapter overviews the previous works on planning under uncertainty, with

a focus on the most directly related ones to the contributions of this dissertation, and

highlights the differences between those works and the ideas discussed here.

6.1 Planning in MDPs

In planning under uncertainty, the predominant approach is based on MDPs; see

[BDH99] for an excellent survey of this approach. In MDP planning problems, actions

have nondeterministic outcomes and the planner knows how likely each outcome will

occur when an action is executed in the world. The objective is to find a policy (i.e., a

plan expressed as a function that tells which action to perform in each state) that optimizes

a utility function.

The primary approach to solve MDP planning problems is dynamic programming

[Ber05]. Dynamic programming is general solution method for problems that involve

making a sequence of optimal and/or near-optimal decisions [HS78]. The basis of dy-

namic programming is the well-known Principle of Optimality, which states that

An optimal sequence of decisions has the property that whatever the initial

state and the initial decision are, the rest of the decisions must consitute an

optimal decision sequence with respect to the state resulting from the first

134

decision.

Dynamic programming techniques implement this principle by enumerating decision se-

quences that are relevant to an optimal solution to the input decision problem, avoiding

those sequences that cannot be possibly optimal.

The two basic algorithms for solving MDPs are Value Iteration and

Policy Iteration [Ber05]. The Value Iteration algorithm is a dynamic-programming

technique that explores the state space until it converges to a policy of optimal expected

utility. The Bellman Equation [Bel57], which is described in Section 2.3.1, is the basis

of the Value Iteration algorithm. Value Iteration is simply an iteration loop: at each

iteration, the algorithm considers every state in the state space and updates its value by

the Bellman Equation. The forward version of Value Iteration, one of the algorithms that

this dissertation focused on in Chapter 5, does not update the value of every state in the

state space, but it limits its computation only to those states that are reachable from the

initial states of the input MDP planning problem. The rationale behind this approach is

that a solution for an MDP planning problem in our setting must reach to the goal states

with probability 1, and therefore, there is no point in considering a state that is not reach-

able from an initial state since that state does not have any effect on the optimal solution

for the planning problem.

One issue in Value Iteration is that the value updates are not linear; in order to

guarantee convergence to the optimal value for each state in the state space, the algorithm

must be run infinitely often. In practice, Value Iteration is used to generate near-optimal

solutions by defining a termination condition ε, where the algorithm is terminated when

135

an iteration updates the values of every state by no more than ε.

The Policy Iteration algorithm is similar to Value Iteration in that it also uses the

Bellman Equation in order to update the values of the states in the state space. The

primary difference is that Policy Iteration iterates over the space of all possible policies,

rather than the state space. The algorithm alternates between a policy evalution phase

and a policy update phase. In the former, the values of the states in the current policy is

updated using the Bellman Equation. In that latter phase, the algorithm examines each

state and the action specified for that state by the current policy and compares the value

of applying that state-action pair with that of other possible actions applicable in that

state. If there is a better action for that state, then the algorithm updates the current policy

with that action. The process continues until no further policy improvement is possible.

The Policy Iteration algorithm always terminates after a finite number of iterations, since

there are only finitely many possible policies.

Despite its general applicability and mathematical soundness, the problem of find-

ing optimal policies in MDPs is often computationally impractical due to the typical re-

quirement of enumerating the entire state and/or action spaces. In fact, it has been theo-

retically shown that for planning problems expressed using probabilistic STRIPS opera-

tors [HM93, KHW94] or 2TBNs [HSAHB99, BG96], MDP planning is EXPTIME-hard

[Lit97].

Several approaches have been developed to address the complexity of MDP plan-

ning. In one venue, there has been attempts to extend classical planning to MDP planning.

For example, [KHW94] described an plan assessment-and-generation approach in which

goals are sets of states, and the planning problem is to generate partially-ordered plans by

136

requiring them to reach to a goal state with probability over a given threshold given a set

of initial states. This approach suffers from an significant drawback: as plan-space plan-

ners search in a space of partial plans; doing so, they lose the state information that would

otherwise be generated during planning as in state-space search, which usually allows for

using heuristics to guide the planning process.

As another example, [BL99] described PGP, a straightforward generalization of

GraphPlan [BF97] for MDP planning. In PGP, a planning graph is constructed by a

forward search starting from the initial states of an MDP planning problem, just like in

the original GraphPlan algorithm. Then, this planning graph is used to guide a dynamic

programming step, which computes the values of the policies represented by the planning

graph. The planning graph is successively extended until the dynamic programming step

cannot generate a better policy.

One idea was to use abstraction and aggregation techniques in order to reduce the

size of the state space that needs to be explored by MDP planning algorithms. Examples

of this approach include [DB97, LK02, GK03, DKKN95, HS94]. The DRIPS planning

system [HS94] is one of the earliest attempts for problem abstraction in MDP planning.

Here, the abstraction is achieved by the use of macro operators, i.e., high-level plan-

ning operators that specify a sequence of primitive actions together such that applying

a macro operator in a state have the same outcome as applying the sequence of actions

that it represents. This approach allows to search in an abstract state space to generate

solutions for MDP planning problems. Macro operators have been usually, and wrongly,

confused with Hierarchical Task Networks (HTNs). HTNs are strictly more expressive

than macro operators since they provide multiple levels of abstraction, rather than a single

137

level. Furthermore, the hierarchical abstraction in HTNs are computed on-the-fly during

the planning process, whereas macro operators need to be fixed in the input of a planning

algorithm.

In [DKKN95], the notion of using envelopes has been introduced: an envelope

is a smaller portion of the state space that abstracts away from the states that are not

relevant to an optimal solution. The algorithms based on this technique starts with an

initial envelope and incrementally extend it until a solution is found. [GK03] described

an application of this idea, where the classical planning algorithm GraphPlan [BF97]

is used for fast generation of the initial envelope. The authors have demonstrated the

applicability of their approach in simple planning problems, and discussed its scability in

larger problems.

One of the first attempts for using state aggregation in MDPs was introduced in

[DB97]. In this work, states are clustered together to form an abstract version of the

input MDP. This technique is based on the abstraction method described in [Kno94] for

classical planning that ignores some of the literals from the description of a classical

planning problem. In the MDP context, those literals that have little impact on the value

of an optimal policy are ignored. The abstract MDP constructed in this way has the

advantage over the envelope-based approaches that none of the states in state space is

actually ignored during planning but only the irrelevant portions of those states. However,

the solutions generated by this approach are approximate. However, the authors describe

how to compute bounds over the divergence from the optimal solution and near-optimal

policies can be compared by using these bounds.

The notion of factorized MDPs has been introduced based on the observation that in

138

many planning problems, the state space often admits a factored representation [BDH99],

i.e., each state can be represented as a collection of state variables. In planning problems

where this is true, often the utility of applying an action in a state will not depend on all

of the state variables that describe that state, but only on some of them. One particularly

popular factorization approach is to use linear representations of the value function asso-

ciated with an MDP [Ber05, KP99, KP00]. In this approach, the original value function

is represented a linear combinations of a number of basis functions, which are defined by

extracting the features of the MDP [TVR96]. The coefficients of those basis functions

in a particular linear form are computed by approximate linear programming techniques

[dFVR03, TZ97, GKP01b, SP01].

Factored representations of MDPs have been also fruitful in the use of decision trees

and diagrams [HSAHB99, BDG00] and other symbolic approaches [BRP01, FH02] for

MDP planning. In [HSAHB99], Algebraic Decision Diagrams (ADDs) are used to repre-

sent the reward functions, costs, probabilistic state-transitions, and the value functions in

factorized MDPs.1 [FH02] has extended this approach to generalize the heuristic search

algorithms LAO* [HZ98] and RTDP [BG00] to work over ADD-based representations of

MDP planning problems.

The LAO* planning algorithm [HZ98, HZ01] is a generalization of AO*, the well

known algorithm for searching AND-OR graphs [Nil80], for dealing with cycles in those

graphs. LAO* is a heuristic search algorithm that consists of an iteration loop in which

the algorithm performs a forward search starting from the initial states toward the goal

1ADDs are generalizations of Binary Decision Diagrams, which were the focus of a part of this disser-

tation, where a number is associated with a boolean formula, rather than a truth value.

139

states of the input MDP planning problem. This forward search is followed by a dynamic

programming step in which the value of each state that is in that policy or that is an

ancestor of a state in that policy in the state space is updated. The iteration continues until

the difference between the values of the states in the successive best policies falls below

an ε error threshold.

Real-Time Dynamic Programming was first introduced by [BBS95] as a technique

for solving for Reinforcement Learning [SB98] problems, and later adapted for planning

under uncertainty by [BG00, BG03] as described in this dissertation. RTDP is a com-

bination of the ideas from real-time search [Kor90], greedy search [RN03], stochastic

sampling [BT96], and dynamic programming in a single unified framework for MDP

planning. RTDP performs forward search by simulating possible executions of the ac-

tions in the states generated during this search. Each forward search starts from the initial

state of the input MDP planning problem and ends in a goal state. The algorithm performs

successive forward searches of this sort until some convergence criterion is met.

Simulation based MDP planning has been extensively used in reinforcement learn-

ing [SB98, Wat89] and systems control [Mac66, EDMM03, CFHM05]. Reinforcement

learning is a form of planning under uncertainty where the planning (i.e., learning) pro-

cess is usually characterized as trial-and-error search and the objective is to generate a

policy that optimizes some utility value. Despite the similarities between traditional MDP

planning techniques and reinforcement learning, one important difference is that the lat-

ter does not require the model of the underlying planning domain to be known; instead,

reinforcement learners, such as the TD(λ)-family of algorithms and SARSA [SB98], and

Q-Learning [Wat89], can discover it by trying actions in states and observing the out-

140

comes. Due to this property, most researchers believe that reinforcement learning is very

suitable for robotic applications, systems control, games, and other applications.

In systems control, a recent simulation based algorithm is AMS [CFHM05], which

is designed for finite-horizon MDPs with large state spaces but relatively smaller action

spaces. AMS can be seen as a search of a decision tree, where each node of the tree repre-

sents a state (with the root node corresponding to the initial state) and each edge signifies

a sampling of a given action. It employs a depth first search for generating sample paths

from the initial state to the final state (i.e., when a given finite horizon is reached) and

uses backtracking to estimate the value functions at visited states. The algorithm uses the

ideas from multi-armed bandit problems to adaptively sample applicable actions during

the search process.

One particular simulation-based approach is the idea of action elimination during

planning. The notion of action elimination was originated by MacQueen[Mac66], where

some inequality forms of Bellman’s Equation are used together with bounds on the op-

timal value function to identify and eliminate non-optimal actions in order to reduce the

size of the action spaces to be searched. Since then, action elimination has been applied

to several standard MDP solution techniques such as value iteration and policy iteration,

see e.g., [Put94] for a review. In a recent work [EDMM03], the idea of action elimination

has been explored in a reinforcement learning context where the explicit mathematical

model of the underlying system is unknown.

The key idea in all the aforementioned approaches is to avoid enumerating and

searching the entire state space in MDP planning problems. However, this approaches are

general and domain-independent planning algorithms that does not exploit any informa-

141

tion on the input MDP. Some of the new planning algorithms that have been described

in this dissertation, on the other hand, are domain-independent search engines with the

ability to use domain-specific search-control information. This property makes these al-

gorithms solve larger problems very efficiently, as demonstrated in the experimental eval-

uations in Section 5.4.

MDP planning has been extended to the partial-observability case via Partially-

Observable MDPs (or POMDPs, for short) [Son78, BG00, CKL94, KLC98, PB00, PB01,

Kar01, BDH99]. POMDP planning can be seen as searching over a space of belief states.

In its general form, a belief state is defined by a probability distribution over its member

states, and planning is done via transformations of these probability distributions. How-

ever, this formulation makes the POMDP planning very hard: the number of belief states

is huge and in most cases, it may not be finite. As a result, POMDP planning algorithms

can only solve very simple and toy planning problems, and they cannot scale up to com-

plex ones. Among the few planning algorithms that have demonstrated some practicality

are GPT [BG01a] and PTLplan [Kar01].

6.2 Planning in Nondeterministic Domains

This dissertation is not the first attempt to extend classical planning algorithms for

planning with under nondeterminism. Probably the first work in a similar vein is described

in [GN93], which is a breadth-first search algorithm over an AND-OR tree. Other early at-

tempts to extend classical planning to nondeterministic domains are conditional planning

techinques, including the CASSANDRA planning system [PC96], CNLP [PS92], PLINTH

142

[GB94], UCPOP [PW92], and MAHINUR [OP99]. Unfortunately, these extensions of

classical planning do not perform well in many planning problems and they cannot scale

up to complex planning domains. Furthermore, conditional planning techniques do not

address the problem of infinite paths and of generating trial-and-error strategies.

The PKS planning algorithm [PB02] introduced a different formulation of plan-

ning problems than the previous approaches. In PKS, planning problems under nondeter-

minism are modeled using a “knowledge-level formulation,” where the planner does not

reason over what is actually true or false about in the world, but instead, it reasons over

what it knows to be true or false about the states and the outcomes of its actions. PKS

generates conditional plans with sensing actions, which does not change the world state

but provide information about it. Planning in PKS is done by interleaving the executions

of those sensing actions and the actual actions that change the world state.

[Rin99a] introduced QBFPLAN, another novel planning algorithm that is a general-

ization of satisfiability-based planner SATPlan [KS92]. QBFPLAN translates a nondeter-

ministic planning problem into a satisfibility problem over Quantified Boolean Formulas

(QBFs). The QBF problem is then fed to an efficient QBF solver such as the one de-

scribed in [Rin99b]. QBFPLAN generates conditional plans that are bounded in length

by a parameter specified as input. If a solution cannot be found within the current length,

then the algorithm extends this bound and starts all over again. As its satisfiability based

predecessors, QBFPLAN does not seem to scale up to large planning problems.

One of the earliest attempts to use model checking techniques for planning under

nondeterminism was first introduced in [KBSD97]. SIMPLAN, the planning system de-

scribed in [KBSD97], is developed for generating plans in reactive environment, where

143

such plans specify the possible reactions of the world with respect to the actions of the

plan. Note that such reactions can be modeled as nondeterministic outcomes of the ac-

tions. SIMPLAN models the interactions between the environment and the execution of a

plan by using a state-transition system, which specifies the possible evolutions of the en-

vironment due to such interactions. Goals over the possible evolutions of the enviroment

are specified by using Linear Temporal Logics (LTL) as in the classical TLPlan algorithm

[BK00], which, in fact, takes its roots from SIMPLAN.

The SIMPLAN planner is based on model checking techniques that work over ex-

plicit representations of states in the state space; i.e., the planner represents and reasons

explicitly about every state visited during the search. Symbolic model-checking tech-

niques, such as Binary Decision Diagrams [Bry92], to do planning in nondeterministic

domains under the assumptions of fully-observability and classical reachability goals was

first introduced in [CGGT97, GT99]. BDDs enable a planner to represent a class of states

that share some common properties and the planning is done by transformations over

BDD-based representations of those states. In some cases, this approach can provide ex-

ponential reduction in the size of the representations of planning problems, and therefore,

exponential reduction in the times required those problems, as both demonstrated in this

dissertation and in previous works [CPRT03, PBT01].

The planning algorithms developed within this approach aim to generate solu-

tions in nondeterministic planning domains that are are classified as weak (at least one

execution trace will reach a goal), strong (all execution traces will reach goals), and

strong-cyclic (all “fair” execution traces will reach goals) [CRT98a, CRT98b, DTV99].

[CPRT03] gives a full formal account and an extensive experimental evaluation of plan-

144

ning for these three kinds of solutions.

Planning as model checking has been extended to deal with partial observability

[BCRT01, BCRT06]. In these works, belief states are defined as a classes of states that

represent common observations, and compactly implemented by using Binary Decision

Diagrams [Bry92]. Planning is done by performing a heuristic search over an AND-OR

graph that represents the belief-state space. It has been demonstrated in [BCRT06] that

this approach outperformed two other planning algorithms developed for nondeterminis-

tic domains with partial observability; namely GPT [BG01a] and BBSP [Rin05].

Planning with complex goals in nondeterministic planning domains has been also

investigated in several works, including [BCRT06, PT01, PBT01, DPT02]. The MBP

planner [BCP+01] that is used as a benchmark in the experimental evaluations described

in this dissertation is capable of handling both.

Other planning algorithms that are based on model checking techniques include the

UMOP planner, described in [JV00, JVB01, JVB03] is a symbolic model-checking based

planning framework and a novel algorithm for strong and strong-cyclic planning which

performs heuristic search based on BDDs in nondeterministic domains [JVB03]. Heuris-

tic search provides a performance improvement over the unguided BDD-based planning

techniques on some toy examples (as demonstrated in [JVB03]), but the authors also dis-

cuss how the approach would scale up to real-world planning problems.

As another example, [GMP00, GPM99] describes a model-checking approach to

planning that uses timed automata to guarantee that certain timing constraints are met

in the generated plans. CIRCA, a planning system that has been developed using this

approach, performs a forward state-space search in a nondeterministic planning domain

145

starting from a set of initial states in order to generate a policy that achieves the goals. To

prevent the exponential blow-up that can occur in a forward search, a domain-independent

heuristic based on computing a lookahead in order to choose the best action to apply in

a state is used as a part of the planner. [YMS03] generalized this technique to perform

stochastic sampling to generate solutions for MDP planning problems. Although this

approach has demonstrated to be successful for the applications in which CIRCA was

exploited, in the general case, the number of samples required to assess acceptable esti-

mations for the probability values may be exponential in the size of the state space, which

could be huge (even infinite) in most of the real-world planning problems.

Finally, several other approaches have been developed for planning under non-

determinism, mostly focusing on conditional and conformant planning. These ap-

proaches extend classical planning techniques based on planning graphs [BF97] and

satisfiability [KS92]. Satisfiability based approaches, such as the ones described in

[CGT03, FG00, Giu00], are limited to only conformant planning, where the planner

has nondeterministic actions and no observability. The planning-graph based techniques

[SW98, WAS98, BK04] can address both conformant planning and a limited form of

partial observability.

146

Chapter 7

Closing Remarks

7.1 Conclusions

This dissertation have described a suite of new approaches that have produced new

planning algorithms for planning under uncertainty. Some of the new planning algorithms

are developed for nondeterministic planning domains and others for MDP planning prob-

lems. In both settings, actions may have more than one possible outcomes and the plan-

ner does not know which outcome will actually occur when an action is executed in the

world. In MDPs, the planner knows how likely each outcome may occur, whereas in

nondeterministic planning domains, this information is not available. The objective of

MDP planning is to generate a plan that optimizes some expected utility when executed,

whereas in nondeterministic domains, the objective is to generate a plan whose execution

must achieve a condition (either during the execution or at the state where it is ended).

Planning in nondeterministic planning domains and in MDPs violates most of the

restrictive assumptions made in classical planning, rendering classical planning algo-

rithms inapplicable verbatim in such domains. However, some of these classical tech-

niques can be generalized to work in nondeterministic planning domains and in MDPs,

yielding new algorithms for planning under uncertainty, which are more efficient than

previous ones. Such generalization approaches were the focus of this dissertation.

147

The first technique described here was a method to take any forward-chaining clas-

sical planning algorithm, and systematically generalize it to work in nondeterministic

planning domains. There are significant classes of nondeterministic planning problems in

which the number of possible states is exponential but the sizes of the solutions are poly-

nomial in the size of those problems. This dissertation has presented theoretical results

that suggest that in such domains, nondeterminizations of efficient classical planners may

be able to do very well. The theoretical results are confirmed by an experimental eval-

uation and complexity analyses on two different problem domains. In the experiments,

ND-SHOP2, a “nondeterminization” of SHOP2 [NAI+03] produced by our planner-

generalization method, could find solutions in nondeterministic planning domains about

two to three orders of magnitude faster than MBP [BCP+01], which was one of the best

previous planners for such domains.

The primary reason that the generalized planning algorithms can generate solu-

tions very efficiently in nondeterministic planning domains is that they can use effective

search-control information to focus their search for solution plans. However, when ef-

fective search-control information is not available due to the complexity of a nondeter-

ministic domain, the efficiency of the generalized planning algorithms usually degrades

substantially.

Forward State-Space Splitting (FS3), the second planning technique described here,

has been aimed to combine the ability of using search-control information of the gener-

alized planners with symbolic model-checking techniques in order to reason during plan-

ning about classes of states that share some common properties. In particular, FS3 allows

to take the pruning technique of any forward-chaining classical planner, such as TLPlan,

148

TALplanner, and SHOP2, and use it in planning via Binary Decision Diagrams (BDDs).

The theoretical results presented in this dissertation described the correctness, the com-

pleteness, and the termination properties of this approach. In the experiments, FS3
SHOP2,

one of the new algorithms that combines hierarchical task networks as in SHOP2 with

BDDs as in MBP, was never dominated by either MBP or ND-SHOP2: FS3
SHOP2 could

easily deal with problem sizes that neither the other two approaches could scale up to, and

it could solve problems about two or three orders of magnitude faster than the other two.

As the third and the final approach, this dissertation have described a way to incor-

porate the search-control mechanism of classical planners, such as SHOP2, TLPlan, and

TALplanner, into the previous planning algorithms originally developed for MDPs. If the

search-control function of the original classical planning algorithm satisfies an “admissi-

bility” condition, then the modified MDP planner is guaranteed to find optimal solutions.

If the search-control algorithm generates a smaller set of actions at each state than the

original MDP algorithm did, then the modified planner will run exponentially faster than

the original one. In an experimental evaluation of this approach where the search-control

algorithm from SHOP2 has been incorporated into three MDP planners RTDP [BG00],

LRTDP [BG03], and Forward-VI, a forward-chaining version of Value Iteration [Ber05],

the enhanced algorithms were about 10,000 times faster than the original ones on the

largest problems the original ones could solve. On another set of problems that were

more than 14,000 times larger than the original algorithms could solve, the enhanced

ones took only about 1/3 second.

149

7.2 Future Work

The techniques described in this dissertation have good potential to be applicable

in other research areas as well. This section highlights some of those research areas,

namely Reinforcement Learning, Hybrid Systems Control, and Planning under Temporal

Uncertainty, and discusses how the ideas of this dissertation can be generalized to work

for problems in those fields.

7.2.1 Reinforcement Learning

Reinforcement learning can be seen as a form of planning under uncertainty in

MDPs, where the planning (i.e., learning) process is usually characterized as trial-and-

error search and the objective is to generate a policy that optimizes some utility value

[SB98]. Despite the similarities between MDPs and reinforcement learning, one impor-

tant difference is that the latter does not require the model of the underlying planning

domain to be known; instead, reinforcement learners can discover it by trying actions in

states and observing the outcomes. Due to this property, most researchers believe that re-

inforcement learning is very suitable for robotic applications, systems control, and games.

Typical solution methods for reinforcement learning problems are based on dy-

namic programming and simulation techniques, and they usually require exploring all or

most of the state space in order to generate optimal or near-optimal policies. In complex

problems, the sizes of the state spaces are usually prohibitive as in MDP planning. To

address this issue, Reinforcement Learning algorithms that use hierarchical abstract ma-

chines [Par98] and MAX-Q decompositions [Die00] have been developed. These tech-

150

niques are based on hierarchical abstractions that are somewhat similar to Hierarchical

Task Networks (HTNs), and they are analogous to an instance of the decomposition tree

that an HTN planner might generate. However, the abstractions must be supplied in ad-

vance by the user, rather than being generated on-the-fly as in an HTN planner.

In FS3, much of the computational machinery was for correctly handling the possi-

ble state transitions induced by the nondeterministic actions — a characteristic that non-

deterministic planning shares with MDP planning and Reinforcement Learning. This

suggests that it should be possible to generalize FS3 for solving MDP and Reinforcement

Learning problems. This requires developing new techniques for handling the probabil-

ities, rewards, and costs in the state-transition operations dictated by the transformations

over the BDDs and the search-control strategies.

Once the new solution methods are complete, it will be possible to investigate the

relationships between the search-control techniques developed in the fields of planning

and reinforcement learning, such as planning with hierarchical task networks and the

reinforcement learning techniques that exploit hierarchical abstractions. This will bring

the two research fields closer and pave a way to further cross-fertilizations between them.

7.2.2 Hybrid Systems and Control

Hybrid systems are dynamical systems that have both continuous- and discrete-

valued state variables [LTS99, TMBO03]. Examples of such systems include robotic

systems, tactical fighter aircrafts, intelligent vehicle/highway systems, and flight control

systems. The inherent uncertainties and interactions between the discrete and continuous

151

components make it very hard to synthesize optimal controllers for such systems.

Typical existing approaches for hybrid systems model the discrete and continuous

components of a hybrid system independently and generate controllers using techniques

that can exploit the interactions between the two separate models. Examples include

the use of timed automata [AD94], game-theoretic approaches [TLS00], linear hybrid

automata [SPS00], and linear programming and simulation techniques [HK04].

Combinations of BDD-based state representations and search-control strategies as

in FS3 can also be used in synthesizing controllers for hybrid systems in order to abstract

away from the continuous parts of the state space, which is usually infinite due to the

continuous-valued state variables in those systems. This approach primarily involves de-

veloping algorithms similar to FS3 that decompose the system models into smaller and

smaller models until a solution controller is generated. The results on FS3 described

in this dissertation suggests that this approach will compare favorably with the previous

techniques for synthesizing controllers for hybrid systems.

7.2.3 Planning under Temporal Uncertainty

Many practical planning problems require reasoning about the temporal character-

istics (e.g., durations) of the actions as well. In many cases, the execution of an action is

not instantaneous; instead, there is a time interval between the start and the end of that ex-

ecution. Even such action durations alone violates the requirements of classical planning.

What is worse, however, is that a planner may not know in advance the exact duration

that an action might take when it is executed. This requires a planner reason about the

152

possible durations for the actions, and generate plans that would guarantee the successful

executions of those actions despite possible conflicts that may arise due to the times they

are executed.

The planner-generalization method described in this dissertation can be extended

to develop similar generalization methods that will provide new temporal-planning al-

gorithms that will exploit those traditional search and pruning techniques. One of the

approaches will involve using constraint-based representations. The expressive power of

constraint-based representations has enabled their use in several practical settings—but

the existing planners that use such representations have tended to be quite slow, except

a few ones that are tuned for the specific planning domains in which they are intended

to work. The new planning algorithms produced by the generalization methods will use

effective pruning techniques to explore only the relevant portions of the search spaces,

so it is likely that several of these algorithms will work quite efficiently. Theoretical and

experimental investigations of this hypothesis is a research topic as a next step of this

dissertation.

Once generalization methods for temporal planning, hybrid systems, and reinforce-

ment learning have been developed, it will be possible to combine several of them, to pro-

duce new solution methods for planning and decision making that can handle both time

and nondeterministic actions, or time and probabilistic actions. This work will provide

new and efficient methods for planning and decision making with temporal uncertainty,

nondeterminism, contingencies, continuous states, probabilities, and utilities. The results

of this dissertation suggests that these solution methods will be able to solve larger classes

of problems than the existing ones developed for such conditions do.

153

7.3 Challenges of Using Search Control under Uncertainty

Throughout this dissertation, it has been both theoretically and experimentally

demonstrated that generalizing classical planning techniques that allow to use search-

control information to guide planning is an effective approach for planning under un-

certainty. Although, in principle, both domain-independent and domain-specific search-

control heuristics can be used, it is not very realistic to expect that domain-independent

search-control information would be proven to be effective except in very simple planning

problems. This is because planners need to compute such search-control information for

all or most states in the state space, and the state space of planning problems in uncertain

domains are usually huge. The domain-specific search-control information, on the other

hand, are compiled by domain experts and provided to the planners as an input. Some of

the classical planning algorithms considered here use very expressive languages to spec-

ify domain-specific search-control information, and therefore, the pruning done based on

such information is very effective. Forward planners are particularly successful in using

such search-control information since they know the current state of the world all the

time, and therefore, they can extract information from the states of the world for which

action to choose in those states.

However, compiling domain-specific search-control information can be very diffi-

cult (or even impossible) in complex planning problems in uncertain environments. For

example, there may be many possible outcomes of an action all of which may not be

anticipated in advance. In some cases, all of the possible outcomes of an action may not

be even known. Even if we know the exact possible outcomes of actions in a planning

154

domain, the decision of which action is to choose in a state may not only depend on that

state but it may also depend on the future decisions to be made during planning. In all

of such cases, it is simply not practical to expect from the domain experts to provide the

search-control information to the planning algorithms.

One possibility to address this problem is to develop automated learning techniques

to learn such search-control information. In classical planning, this approach has re-

cently been started to being investigated, particularly in the form of learning hierarchical

domain-specific knowledge. In [INMA06, INMAA05], the authors describe how to use

concept learning algorithms from machine learning literature in order to learn domain

knowledge in the form of hierarchical task networks as in SHOP2, ND-SHOP2, and

FS3. In another work, [LC06] describes a novel learning technique to learn hierarchi-

cal knowledge that is encoded in terms of a logical formalism. All of these learning

approaches have been demonstrated to be effective in acquiring domain-specific knowl-

edge, which later can be used as search-control information in the planning algorithms

that can reason over the formalisms that these learning techniques use. However, these

learning approaches only work in classical planning domains, and it is not straightforward

to generalize these approaches to nondeterministic planning domains and MDPs.

Another possibility is the following. Although, under uncertainty, it is difficult to

compile complete domain-specific search-control information that would guide a plan-

ning in most of the time, it is often possible to compile incomplete search-control infor-

mation that can be used in some parts of the planning domains. For example, an incom-

plete search-control information may specify high-level strategies in a planning domain,

whereas the low-level task of action selection needs to be done by the planners. In parts

155

of a planning domain for which the search-control information is available, planners may

use that information for guiding the search, and in other parts, they may use domain-

independent search control information (whenever it is easy to compute). Alternatively,

hybrid planning systems can be developed; in this case, the planner consists of two plan-

ning algorithms, one has the ability to use search control and the other does not. The

former algorithm is used whenever search-control information is available during plan-

ning, and the process switches to the latter whenever it is not. This approach would be

particularly effective if the latter one can plan over compact state representation such as

BDDs. For example, any instance of the FS3 procedure may be combined with the MBP

planner in order to produce such a hybrid planning system. This is a research direction

that is being pursued as a follow-up work for this dissertation.

156

Appendix A

Proofs of the Theorems

A.1 Proofs for Chapter 3

Theorem 1 Suppose one of the search traces of ND-Λ returns a policy πχ′ for P ′ given

χ′. Then πχ′ is a solution policy for it.

Proof. The proof is by contradiction and it is given in three parts, each for weak, strong,

and strong-cyclic planning with ND-Λ.

Strong-Cyclic Planning. Suppose the planning problem P ′ is solvable given the search-

control information χ′. Suppose one of the search traces of ND-Λ returns the policy πχ′

and suppose πχ′ is not a strong-cyclic solution for P ′. According to the definition of

strong-cyclic solutions, if πχ′ is not a strong-cyclic solution for P ′ then there exists at

least one path, say p, in the execution structure Σπχ′ that does not start at an initial state

and end at a goal state. The following shows that this is not possible.

First of all, note that every execution path in the execution structure Σπχ′ starts from

an initial state of the planning problem P ′ since ND-Λ is a forward-chaining algorithm

that starts from the initial states and explores only those states that are reachable from

the initial states by applying actions successively. Therefore, if πχ′ is not a strong-cyclic

solution then Σπχ′ contains an execution path p that does not end in a goal state. There

are only two possible cases in which this can happen.

157

• p ends in a terminal state s that is not a goal state. This means that either there are

no actions applicable in s or the search-control information χ′ prunes away all of

the applicable actions. In both cases, ND-Λ returns FAILURE rather than πχ′ .

• p contains a cyclic sequence of states 〈s0, s1, s2, . . . , sk〉 such that s = sk and there

is no execution path starting from any si and ending at a goal state in Σπχ′ . In other

words, s has no πχ′-descendant in the set G of goal states. If this is the case, then,

again, ND-Λ returns FAILURE rather than the policy πχ′ , which is a contradiction.

Therefore, if one of the search traces returns a policy πχ′ , then πχ′ is a strong-cyclic

solution for the input planning problem P ′.

Strong Planning. Suppose the planning problem P ′ is solvable given the search-control

information χ′. Suppose one of the search traces of ND-Λ returns the policy πχ′ and

suppose πχ′ is not a strong solution for P ′. According to the definition of strong solutions,

if πχ′ is not a strong solution for P ′ then there exists at least one path, say p, in the

execution structure Σπχ′ such that either p contains a cycle or it does not start at an initial

state and end at a goal state. The following shows that this is not possible.

Suppose p contains a cyclic sequence of states of the form 〈s0, s1, s2, . . . , sk〉 such

that s = sk. In this case, ND-Λ returns FAILURE when it explores sk, which is a contra-

diction. Now, suppose p it does not start at an initial state and end at a goal state. As in

the proof for strong-cyclic case above, every execution path in Σπχ′ , including p, starts

from an initial state since ND-Λ is a forward-chaining algorithm. Then p must not end in

a goal state, which means that p ends in a terminal state s in which there are no applicable

actions given χ′. However, if this is the case, ND-Λ returns FAILURE rather than πχ′ as

158

described above, which is a contradiction.

Therefore, if one of the search traces returns a policy πχ′ , then πχ′ is a strong-cyclic

solution for the input planning problem P ′.

Weak Planning. Suppose the planning problem P ′ is solvable given the search-control

information χ′. Suppose one of the search traces of ND-Λ returns the policy πχ′ and

suppose πχ′ is not a weak solution for P ′. According to the definition of weak solutions,

if πχ′ is not a weak solution for P ′ then, there is an initial state s0, from which there does

not exist a path in Σπχ′ that ends in a goal state. This means that every execution path

in Σπχ′ that starts at s0 either ends at a non-goal terminal state or induces a cycle such

that there is no possibility of reaching to a goal state from any of the states in that cycle.

In both cases, ND-Λ returns FAILURE rather than πχ′ as shown above: in the former, it

returns FAILURE there is no actions applicable in the non-goal terminal state, and in the

latter, the πχ′-descendancy check fails. Therefore, if ND-Λ returns a policy πχ′ then it is

a weak solution for the input planning problem P ′.

Theorem 2 Suppose that P ′ = (S0, G, Σ) is χ′-solvable. Then, at least one of the search

traces of ND-Λ returns a solution policy.

Proof. Let the size of a solution policy πχ′ for P ′ be the number of state-action pairs in

πχ′ . Let the minimum solution depth for the planning problem P ′ be the minimum size of

any solution for P ′. The proof is by induction on n, the minimum solution depth for P ′:

Base Step (n = 0). In this case, S0 ⊆ G so ND-Λ inserts every state s ∈ S0 into the

solved set and returns the empty policy.

159

Induction Step. Let n > 1 and suppose the theorem is true for every k < n. Let

S = StatesOf(OPEN) and let (s, χ′) be a pair in the OPEN set; i.e., s ∈ S. Then,

there must be an action a such that acceptable(s, a, χ′) is true and the planning prob-

lem ((S \ {s}) ∪ γ(s, a), G, Σ) must have the minimum solution depth n − 1 given the

search-control information progress(s, a, χ′) for every state in γ(s, a). This is true since

otherwise, the minimum depth of (S, G, Σ) could not be n. Then, one of the nondeter-

ministic choices of ND-Λ will choose this action and recursively invoke itself with the

input ((OPEN \ {(s, χ′)}) ∪ {(s′, progress(s, a, χ′)) | s′ ∈ γ(s, a)}). By the induc-

tion hypothesis, this invocation computes a solution policy π′ for the planning problem

((S \ {s}) ∪ γ(s, a), G, Σ). Thus, ND-Λ returns π′ ∪ π ∪ {(s, a)}.

Lemma 3 Suppose Λ returns a solution plan π for the classical planning problem P .

Then, one of the search traces of ND-Λ also returns π for P .

Proof. Since P is a classical planning problem, we have only deterministic actions in P ;

i.e., |γ(s, a)| ≤ 1 for all states in P . In this case, ND-Λ reduces to Λ since (1) ND-Λ’s

OPEN set always contains a single element at every invocation of the algorithm, and (2)

the candidate solutions generated in each invocation of ND-Λ are plans, i.e., sequences of

actions, rather than policies. Also, there are no π- descendants of a state visited in each

invocation induced by the partial policy (i.e., plan) π.

Thus, ND-Λ has exactly the same search traces as Λ on the planning problem P ,

and one of those traces return π.

160

Theorem 4 Suppose Λ finds solution plans in time O(ρ(|πχ|)) in a strongly-connected

classical planning domain, given the search-control information χ. |πχ| is the size of the

solution plan and ρ is a monotonic function.

Then ND-Λ finds solutions in time O(ρ(|Σπ′
χ′ |)) in a nondeterminized version of that

planning domain, where |Σπ′
χ′ | is the size of execution structure for the solution policy π′χ′

returned by ND-Λ.

Proof. Suppose Λ finds solutions in O(ρ(|πχ|)) time in strongly-connected classical plan-

ning domain. The following shows that ND-Λ finds solutions in time O(ρ(|Σπ′
χ′ |)) in a

nondeterminized version of that domain. Note that a nondeterminized version of a strong-

connected classical planning domain is also strongly connected. Since the planning do-

mains are strong-connected, for any state transition in Σπ′
χ′ , there is a deterministic action

det(a) in P such that the intended effect of det(a) induces that state transition. There-

fore, each path in the execution structure Σπ′
χ′ is a solution plan for the classical planning

problem P .

Suppose there are k paths in the execution structure Σπ′
χ′ . In weak and strong

planning, each of the paths in Σπ′
χ′ starts from an initial state s0 and ends in a goal state

sg. In strong-cyclic planning, there may be some cyclic paths that start from an initial

state and ends in a state that is visited before on that path. Note that as long as such cycles

do not violate the “fairness assumption,” the strong-cyclic policy π′χ′ that contains such

cyclic paths is a solution.

Let 〈s0, s1, s2, . . . , sk〉 be a cyclic path in Σπ′
χ′ where s0 is an initial state and sk = si

such that i = 0, . . . , k−1 – i.e., sk is a cyclic state. For each cyclic path p in Σπ′
χ′ we create

161

a classical planning problem P ′′ = (s0, {sk}, Σ). For each acyclic path p in Σπ′
χ′ , we

create a classical planning problem P ′′ = (s0, {sg}, Σ) where Σ is the classical planning

domain Σ in which P was formulated, and sg is the goal state in Σπ′
χ′ in which the path p

ends. Now, suppose Λ returns p as a solution for P ′′ in time O(ρ(|p|)) then ND-Λ returns

the solution policy π′χ′ in time O(ρ(Σπ′
χ′)) since, Lemma 3, the search space explored by

ND-Λ is the same as that is explored by Λ for each such problem P ′′, and ND-Λ explores

all the paths in Σπ′
χ′ .

Corollary 5 Under the conditions of Theorem 4, if the number of possible successors of

each state is bounded by a constant, then ND-Λ finds solutions in time O(ρ(|π′χ′|)), where

|π′χ′| is the size of the solution policy.

Proof. Let b be the number of possible successors of any state in a planning domain.

Then, if the solution policy has size k, then the execution structure will have size ≤ bk.

Theorem 6 Suppose Λ finds solution plans in time O(ρ(|πχ|)) in a classical planning

domain, given the search-control information χ. |πχ| is the size of the solution plan and

ρ is a monotonic function.

Then, ND-Λ finds solutions in average time O(ρ(n) + bdn
t

)), where n = |Σπ′
χ′ | is

the size of the execution structure for the solution policy π′χ′ returned by ND-Λ given

the search-control information χ′, b the maximum number of state-action pairs that are

added to any policy after ND-Λ generates a dead-end state-action pair, t is the maximum

162

number of actions applicable to a state, and in every state s, 0 ≤ d ≤ t is the maximum

number of actions applicable to s that lead to a dead-end state.

Proof.

Suppose one of the invocations of ND-Λ generates a dead-end state-action pair

(s, a). This means that one of the successor states s′ generated by applying a in s does

not have a π-descendant that is a goal state. There are two cases. The first case is straight-

forward: if s′ does not have a π-descendant in the goal states or in the states of the

OPEN set of this invocation of ND-Λ, then the planning algorithm immediately returns

FAILURE. In this case, the planning algorithm does not perform any additional work that

is to be lost afterwards when it backtracks from this search trace at the point it detects that

s′ does not have any π-descendants that is a goal state.

Now, suppose that s′ does have a π-descendant in the states of the OPEN set of

this invocation. Then ND-Λ will defer its decision on s′ until all of those π-descendants of

s′ has been determined to be dead. The sub-policy π′ that contains all of the state-action

pairs, including (s, a), that are generated during this process process will be discarded

during backtracking.

If this invocation of ND-Λ generates another dead-end state-action pair in this in-

vocation after it backtracks and discards π′, then ND-Λ will produce another π′ and will

discard at the end when it detects that π′ is not a part of a solution. Suppose there are d

possible state-action pairs that can be generated in this invocation and t of them are dead.

Let b be the maximum size of all those dead policies. Then, ND-Λ will explore a search

space of size | bt
d
|, which is discarded at the end.

163

At each state in the solution policy π′χ′ , ND-Λ could explore a redundant search

space of size | bt
d
|. The time complexity to generate the policy π′χ′ without exploring any

dead-end state-action pairs is given by Theorem 4. Therefore, it follows that the time

complexity for generating a solution is O(ρ(n) + bdn
t

)), where b the maximum number

of state-action pairs that are added to any policy after ND-Λ generates a dead-end state-

action pair, t is the maximum number of actions applicable to a state, and in every state

s, 0 ≤ d ≤ t is the maximum number of actions applicable to s that lead to a dead-end

state.

Corollary 7 Under the conditions of Theorem 6, if the number of possible successors

of each state is bounded by a constant, then ND-Λ finds solutions in average time

O(ρ(|π′χ′|) +
bd|π′

χ′ |
t

)), where |π′χ′| is the size of the solution.

Proof. Immediate from Theorem 6 and Corollary 5.

Corollary 8 Suppose Λ finds solution plans in time O(ρ(|π|)) in a classical planning

domain, where |π| is the size of the solution plan and ρ is a monotonic function. Then, if

the number of initial states in P ′ are bounded by a constant, ND-Λ returns weak solutions

for nondeterminized versions of those planning problems in time O(ρ(|π|)).

Proof. Immediate from the proof of Theorem 4.

A.2 Proofs for Chapter 4

Theorem 9 The planning procedure FS3 always terminates.

164

Proof. The only possible situation in which FS3 does not terminate is that the OPEN

set never becomes empty. However, this cannot happen because

• the state space of the planning problems are finite; and

• at the beginning of each invocation, the FS3 removes the states that it already visited

from the states of the OPEN set. Therefore, FS3 never visits a state more than

once, and therefore, it does not caught in infinite search traces during planning.

Thus, it follows from the above that FS3 always terminates.

Theorem 10 Let P = (Σ, S0, G) be a planning problem in a nondeterministic planning

domain Σ, and let π be a partial policy in Σ If π is a candidate solution for P , then an

invocation of NoGood(π, St
π, G, S0) returns FALSE, where St

π are the terminal states of

π. Otherwise, NoGood(π, St
π, G, S0) returns TRUE.

Proof. The proof is in three parts for weak, strong, and strong-cyclic planning with

NoGood function in FS3. All of the subproofs are by contradiction.

Weak Planning.

Case 1. The NoGood function for weak planning traverses all of the execution paths

in the execution structure Σπ induced by π, performing successive the WeakPreimage

operations. This is a backward search traversal that starts from the goal and non-goal

terminal states of π towards the initial states of the planning problem P . At the end of

this traversal, it computes the set S of states in π such that there exists at least one path

from a state s in S to a goal or a non-goal terminal state.

165

Suppose π is a candidate weak solution for P . Assume that the invocation

NoGood(π, St
π, G, S0) function returns TRUE. The only case in which NoGood returns

TRUE is when it traverses all paths in Σπ and detects that there exists at least one initial

state s0 in S0 such that s0 is not in S. This means that there is no execution path in the

execution structure Σπ that starts from s0 and ends in a goal state or in a non-goal termi-

nal state in St
π. However, by the definition of candidate solutions, this is a contradiction.

Therefore, if π is a candidate solution then NoGood never returns TRUE.

Case 2. Now suppose π is not a candidate weak solution and

NoGood(π, St
π, G, S0) function returns FALSE. NoGood returns FALSE only if

for each initial state s0 in S0, there exists at least one path in the execution structure Σπ

that starts in s0 and ends in a goal or non-goal terminal state. However, since π is not

a candidate solution, there must at least one initial state for which this does not hold.

Therefore, NoGood does not return FALSE for π, which is a contradiction.

Strong Planning.

Case 1. The NoGood function for strong planning is similar to that for weak planning,

but it traverses all of the execution paths in the execution structure Σπ induced by π, per-

forming successive the StrongPreimage operations. This is a backward search traversal

that starts from the goal and non-goal terminal states of π towards the initial states of the

planning problem P . At the end of this traversal, it computes the set S of states in π such

that all of the paths from a state s in S reaches to a goal or a non-goal terminal state in the

execution structure Σπ. During the backward search, NoGood removes the state-action

pairs that it visits from the partial policy π. At the end of the traversal, if there are state-

166

action pairs left in π then there is a cyclic path in the execution structure Σπ since this

means that the state s left in pi has a successor state s′ such that s′ is a π− ancestor of s.

In this case, NoGood returns TRUE.

Suppose π is a candidate strong solution for P . Assume that the invocation

NoGood(π, St
π, G, S0) function returns TRUE. There are only two cases in which

NoGood returns TRUE. First is when it traverses all paths in Σπ and detects that there

exists at least one initial state s0 in S0 such that s0 is not in S. This means that there is

no execution path in the execution structure Σπ that starts from s0 and ends in a goal state

or in a non-goal terminal state in St
π. However, by the definition of candidate solutions,

this is a contradiction. Secondly, the backward traversal of π does not remove all of the

state-action pairs from π, as described above. In this case, there is a cyclic path in the

execution structure Σπ, which means that π is not a candidate strong solution.

Therefore, if π is a candidate strong solution then NoGood never returns TRUE.

Case 2. Now suppose π is not a candidate strong solution and

NoGood(π, St
π, G, S0) function returns FALSE. NoGood returns FALSE only if (1) for

each initial state s0 in S0, there exists at least one path in the execution structure Σπ that

starts in s0 and ends in a goal or non-goal terminal state, and (2) the backward search re-

moves all of the state-action pairs from π. However, since π is not a candidate solution, π

must be violating one or both of these properties. Therefore, NoGood does return TRUE

for π, which is a contradiction.

Strong-Cyclic Planning. The proof for this case is the same as the one for the strong-

planning case, except that the NoGood function returns TRUE for cyclic paths that do no

167

have any possibility to reach to the goals.

Theorem 11 Suppose one of the search traces of FS3 returns a policy π given the input

planning problem P = (Σ, S0, G) in a nondeterministic planning domain Σ. Then π is a

solution for the planning problem P .

Proof. The proof is by contradiction. Suppose one of the search traces of FS3 returns

a policy π for P . Assume that π is not a solution for P . This means that there exists at

least one invocation of FS3 where the partial policy, say π′, in that invocation is not a

candidate solution. However, since FS3 did not return FAILURE, its NoGood function

must have returned FALSE in all invocations of FS3 on this search trace. However, by

Theorem 10, this is not possible: NoGood returns TRUE for an input partial policy that is

not a candidate solution. Therefore, π must be a solution for the input planning problem

P .

A remark regarding the above proof is in order. Note that, in any invocation of FS3,

the states in the OPEN set (i.e., S = StatesOf(OPEN)), constitute exactly the set St
π

of non-goal terminal states of the partial policy in that invocation. Hence, the application

of the Theorem 10 above.

Theorem 12 Suppose P = (Σ, S,G) is a χ-solvable nondeterministic planning problem

given the search-control information χ. Then, one of the search traces of FS3 returns a

solution policy for P using χ.

Proof. We define the minimum solution size for the planning problem P as |Sπ|, where

Sπ is the set of states in a solution policy π, such that there is no other solution policy π′

168

for P such that |Sπ′| < |Sπ|. The proof is by induction on n, the minimum solution size

for P :

Base Step (n = 0). In this case, the solution policy π = ∅. This means that S0 ⊆ G.

Indeed, in its initial invocation, FS3 removes all of the states from the only situation in

OPEN and leaves OPEN as the empty set. As a result, it returns the empty policy as a

solution.

Induction Step. Let n > 1 and suppose the theorem is true for every k < n. Note

that this means that this invocation of FS3 is attempting to solve the planning problem

P such that S is the set of all states in OPEN . Then, in this invocation of FS3, the

following must be true:

• there must be a situation (S, χ) in OPEN for which there must be a non-empty

set F of tuples of the form (S ∩ Sa, a, χ′) generated by using the search-control

function acceptable the search-control formula χ, such that F specifies one and

only one action for each state in S.

• Let OPEN ′ be the same as OPEN , plus it includes the successor situations of F

as well. Let S ′ be the set of all states in OPEN ′. Then, the minimum solution size

for the planning problem (S ′, G, Σ) must be n− |F | since, otherwise, P could not

have the minimum solution size n.

Then, one of the nondeterministic search traces in FS3 generates the set F and re-

cursively invokes itself for the planning problem (S ′, G, Σ). By the induction hypothesis,

this recursive invocation of the procedure generates a solution policy π′ for (S ′, G, Σ).

During this process, FS3 combines the policy π′ with the current partial policy computed

169

so far in the forward search, and it returns the solution policy π.

A.3 Proofs for Chapter 5

Theorem 13 Suppose Z returns a solution policy π for P . Then, ZF returns a solution

policy π′ for P such that Vπ(s) = Vπ′(s) for every s ∈ S0, if acceptableF is admissible

for P .

Proof. Without loss of generality, suppose there is only one initial state (i.e., S0 is a

singleton set). Let π be a solution policy returned by the original MDP algorithm Z.

Then, by the definition of a solution for an MDP planning problem, we have

Vπ(s0) = V (s0) = C(s0, a) + α
∑

s′∈γ(s0,a)

Pr(s0, a, s′)V (s′),

where a is the action specified by the policy π. By the admissibility of acceptableF , the

above is also true in the reduced MDP ΣF .

Now, suppose that the original planning algorithm Z returns a solution policy π for

P . Suppose the enhanced MDP planning algorithm ZF returns a policy π′ for P , using an

admissible search-control function acceptableF . Assume that Vπ(s0) 6= Vπ′(s0). There

are two cases:

• Vπ(s0) > Vπ′(s0). In this case, the value of the initial state in the reduced MDP

ΣF is less than that of the same state in the original MDP Σ. This means that the

solution π′ in the reduced case is not among the solutions for the planning problem

P in the original MDP. This could only happen if in the reduced MDP, there are

170

new actions introduced by acceptableF that do not appear in the original MDP,

and those actions are a part of the solutions in the reduced MDP. However, this is

not possible since the set of acceptable actions in a state s is always a subset of

the set of applicable actions in s.

• Vπ(s0) < Vπ′(s0). This means that there is a state s in π′ such that

V (s) < Vπ′(s) = C(s, a) + α
∑

s′∈γ(s,a)

Pr(s, a, s′)Vπ′(s′),

where a is the action specified in π′ for s and V (s) = mina∈app(s) C(s, a) +

α
∑

s′∈γ(s,a) Pr(s, a, s′)V (s′) since the algorithm Z considers all of the actions in

app(s).

Let X(s) be the set of actions for which acceptableF holds in the state s. Note that

X(s) is a subset of app(s) (i.e., X(s) ⊆ app(s)) by the definition of acceptableF .

Then, we have the following,

V (s) = min
a∈app(s)

C(s, a) + α
∑

s′∈γ(s,a)

Pr(s, a, s′)V (s′)

< C(s, a) + α
∑

s′∈γ(s,a)

Pr(s, a, s′)Vπ′(s′)

= min
a∈X(s)

C(s, a) + α
∑

s′∈γ(s,a)

Pr(s, a, s′)V (s′)

From this, it follows that for each action a in X(s), we have

V (s) < C(s, a) + α
∑

s′∈γ(s,a)

Pr(s, a, s′)V (s′),

171

and thus,

V (s) 6= C(s, a) + α
∑

s′∈γ(s,a)

Pr(s, a, s′)V (s′).

However, this contradicts with the admissibility of acceptableF .

Therefore, if acceptableF is admissible, Vπ′(s0) must be equal to Vπ(s0),

172

BIBLIOGRAPHY

[ACG+01] L. C. Aiello, A. Cesta, E. Giunchiglia, M. Pistore, and P. Traverso. Planning
and verification techniques for the high level programming and monitor-
ing of autonomous robotic devices. In Proceedings of the European Space
Agency Workshop on On Board Autonoy, Noordwijk, Netherlands, October
2001. ESA.

[ACGT01] L. C. Aiello, A. Cesta, E. Giunchiglia, and P. Traverso. Merging Planning
and Verification Techniques for ”Safe Planning” in Space Robotics. In 6th
International Symposium on Artificial Intelligence, Robotics and Automa-
tion in Space: A New Space Odyssey (ISAIRAS01), Montreal, Canada, June
2001.

[AD94] R. Alur and D. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126:183—235, 1994.

[Bac01] Fahiem Bacchus. The AIPS ’00 planning competition. AI Magazine,
22(1):47–56, 2001.

[BBS95] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-time
dynamic programming. Artificial Intelligence, 72(1):81–138, 1995.

[BCP+01] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. MBP: a model
based planner. In IJCAI-2001 Workshop on Planning under Uncertainty
and Incomplete Information, Seattle, USA, August 2001.

[BCRT01] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in nondetermin-
istic domains under partial observability via symbolic model checking. In
Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 473–478, Seattle, USA, August 2001. Morgan Kaufmann.

[BCRT06] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Strong Planning under
Partial Observability. Artificial Intelligence, 170:337–384, 2006.

[BDG00] Craig Boutilier, Richard Dearden, and Moises Goldszmidt. Stochastic dy-
namic programming with factored representations. Artificial Intelligence,
121(1-2):49–107, 2000.

[BDH99] Craig Boutilier, Thomas L. Dean, and S. Hanks. Decision-theoretic plan-
ning: Structural assumptions and computational leverage. JAIR, 11:1–94,
1999.

[Bel57] R. E. Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, NJ, 1957.

[Ber05] D.P. Bertsekas. Dynamic Programming and OptimalControl, volume 2.
Athena Scientific, 2005.

173

[BF97] A. L. Blum and M. L. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90(1-2):281–300, 1997.

[BG96] Craig Boutilier and Moises Goldszmidt. The frame problem and bayesian
network action representation. In Canadian Conference on AI, pages 69–
83, 1996.

[BG99] B. Bonet and H. Geffner. Planning as heuristic search: New results. In
Proceedings of the European Conference on Planning (ECP), pages 360–
372, Durham, UK, 1999. Springer-Verlag.

[BG00] B. Bonet and H. Geffner. Planning with incomplete information as heuris-
tic search in belief space. In Steve Chien, S. Kambhampati, and C.A.
Knoblock, editors, Proceedings of the International Conference on AI Plan-
ning Systems (AIPS), pages 52–61. AAAI Press, April 2000.

[BG01a] B. Bonet and H. Geffner. GPT: a tool for planning with uncertainty and
partial information. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pages 82–87, 2001.

[BG01b] B. Bonet and H. Geffner. Planning and control in artificial intelligence: A
unifying perspective. Applied Intelligence, 14(3):237–252, 2001.

[BG03] B. Bonet and H. Geffner. Labeled RTDP: Improving the Convergence of
Real-Time Dynamic Programming. In E. Giunchiglia, N. Muscettola, and
D. Nau, editors, ICAPS-03, pages 12–21, 2003.

[BK00] Fahiem Bacchus and Froduald Kabanza. Using temporal logics to ex-
press search control knowledge for planning. Artificial Intelligence, 116(1-
2):123–191, 2000.

[BK04] Daniel Bryce and Subbarao Kambhampati. Heuristic Guidance Measures
for Conformant Planning. In Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS), 2004.

[BL99] A.L. Blum and J.C. Langford. Probabilistic planning in the Graphplan
framework. In Proceedings of the European Conference on Planning
(ECP), pages 319–332, 1999.

[BRP01] Craig Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming
for first-order MDPs. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 2001.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[BT96] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, 1996.

174

[CCP+99] A. Chiappini, A. Cimatti, C. Porzia, G. Rotondo, R. Sebastiani, P. Traverso,
and A. Villafiorita. Formal Specification and Development of a Safety-
Critical Train Management. In Proceedings of the 18th International Con-
ference on Computer Safety, Reliability and Security (SAFECOMP99), vol-
ume 1698 of Lecture Notes in Computer Science (LNCS), pages 410–419,
Toulouse, France, September 1999. Springer-Verlag.

[CFHM05] H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus. An adaptive samping
algorithm for solving markov decision processes. Oper. Res., 53(1):126–
139, 2005.

[CGGT97] A. Cimatti, E. Giunchiglia, F. Giunchiglia, and P. Traverso. Planning via
Model Checking: A Decision Procedure for AR. In Proceedings of the
European Conference on Planning (ECP), volume 1348 of Lecture Notes in
Artificial Intelligence (LNAI), pages 130–142, Toulouse, France, September
1997. Springer-Verlag.

[CGM+97] A. Cimatti, F. Giunchiglia, G. Mongardi, B. Pietra, D. Romano, F. To-
rielli, and P. Traverso. Formal Validation & Verification of Software for
Railway Control and Protection Systems: Experimental Applications in
ANSALDO. In Proc. World Congress on Railway Research (WCRR’97),
volume C, pages 467–473, Firenze, Italy, November 1997.

[CGM+98] A. Cimatti, F. Giunchiglia, G. Mongardi, D. Romano, F. Torielli, and
P. Traverso. Formal Verification of a Railway Interlocking System using
Model Checking. Journal on Formal Aspects in Computing, 10(4):361–
380, 1998. Springer.

[CGT03] C. Castellini, E. Giunchiglia, and A. Tacchella. Sat-based planning in com-
plex domains: Concurrency, constraints and nondeterminism. Artificial In-
telligence, 147(1–2):85–117, 2003.

[CKL94] A. Cassandra, Leslie Pack Kaelbling, and M. Littman. Acting optimally
in partially observable stochastic domains. In Proceedings of the National
Conference on Artificial Intelligence (AAAI). AAAI Press, 1994.

[CLRS01] T.H. Cormen, C.E. Leirson, R.L. Rivest, and C. Stein. Introduction to Al-
gorithms. MIT Press, 2001.

[CPRT03] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and
strong cyclic planning via symbolic model checking. Artificial Intelligence,
147(1-2):35–84, 2003.

[CPS+99] A. Cimatti, P.L. Pieraccini, R. Sebastiani, P. Traverso, and A. Villafiorita.
Formal Specification and validation of a Vital Communication Protocol.
In Proceedings of the World Congress on Formal methods in the Devel-
opment of Computing Systems (FM’99), volume 1709 of Lecture Notes in

175

Computer Science (LNCS), pages 1584–1604, Toulouse, France, September
1999. Springer-Verlag.

[CRT98a] A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-based generation
of universal plans in non-deterministic domains. In AAAI/IAAI Proceedings,
pages 875–881, 1998.

[CRT98b] A. Cimatti, M. Roveri, and P. Traverso. Strong planning in non-
deterministic domains via model checking. In Proceedings of the Inter-
national Conference on AI Planning Systems (AIPS), pages 36–43. AAAI
Press, June 1998.

[CT91] K. Currie and A. Tate. O-Plan: The open planning architecture. Artificial
Intelligence, 52(1):49–86, 1991.

[DB97] Richard Dearden and Craig Boutilier. Abstraction and approximate
decision-theoretic planning. Artificial Intelligence, 89(1-2):219–283, 1997.

[dFVR03] D. P. de Farias and B. Van Roy. The linear programming approach to ap-
proximate dynamic programming. Oper. Res., 51(6):850–865, 2003.

[Die00] Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ
value function decomposition. JAIR, 13:227–303, 2000.

[DKKN93] Thomas L. Dean, Leslie Pack Kaelbling, J. Kirman, and A. Nicholson.
Planning with deadlines in stochastic domains. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI), pages 574–579, 1993.

[DKKN95] Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann Nicholson.
Planning under time constraints in stochastic domains. Artificial Intelli-
gence, 76(1–2):35–74, July 1995.

[DPT02] U. Dal Lago, M. Pistore, and P. Traverso. Planning with a language for
extended goals. In AAAI/IAAI Proceedings, pages 447–454, Edmonton,
Canada, August 2002. AAAI Press/The MIT Press.

[DTV99] M. Daniele, P. Traverso, and M. Vardi. Strong cyclic planning revisited. In
Proceedings of the European Conference on Planning (ECP), pages 35–48,
September 1999.

[EDMM03] E. Even-Dar, S. Mannor, and Y. Mansour. Action elimination and stopping
conditions for reinforcement learning. In Proceedings of the 20th Inter-
national Conference on Machine Learning (ICML-2003), Washington DC,
2003.

[ENS95] Kutluhan Erol, Dana S. Nau, and V. S. Subrahmanian. Complexity, decid-
ability and undecidability results for domain-independent planning. Artifi-
cial Intelligence, 76(1–2):75–88, 1995.

176

[FG00] P. Ferraris and E. Giunchiglia. Planning as satisfiability in nondeterministic
domains. In AAAI/IAAI Proceedings, pages 748–753. AAAI Press, 2000.

[FH02] Z. Feng and E. Hansen. Symbolic Heuristic Search for Factored Markov
Decision Processes. In AAAI-2002, 2002.

[FL02] Maria Fox and Derek Long. International planning competition, 2002. http:
//www.dur.ac.uk/d.p.long/competition.html.

[GB94] R. P. Goldman and M. S. Boddy. Conditional linear planning. In Proceed-
ings of the International Conference on AI Planning Systems (AIPS), 1994.

[Giu00] E. Giunchiglia. Planning as satisfiability with expressive action languages:
Concurrency, constraints and nondeterminism. In Proceedings of the In-
ternational Conference on Knowledge Representation and Reasoning (KR),
2000.

[GK03] Natalia H. Gardiol and Leslie Pack Kaelbling. Envelope-based planning in
realtional MDPs. In Advances in Neural Information Processing Systems,
2003.

[GKP01a] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored
mdps. In NIPS, 2001.

[GKP01b] Carlos Guestrin, Daphne Koller, and Ronald Parr. Max-norm projections
for factored MDPs. In IJCAI, pages 673–682, 2001.

[GMP00] R. P. Goldman, D. J. Musliner, and M. J. Pelican. Using model checking to
plan hard real-time controllers. In Proceeding of the AIPS2k Workshop on
Model-Theoretic Approaches to Planning, Breckenridge, Colorado, April
2000.

[GN92] Naresh Gupta and Dana S. Nau. On the complexity of blocks-world plan-
ning. Artificial Intelligence, 56(2-3):223–254, 1992.

[GN93] M. Genesereth and I. Nourbakhsh. Time-saving tips for problem solving
with incomplete information. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), 1993.

[GNT04] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: The-
ory and Practice. Morgan Kaufmann, 2004.

[GPM99] R.P. Goldman, M. Pelican, and D.J. Musliner. Hard real-time mode logic
synthesis for hybrid control: A CIRCA-based approach, mar 1999. Working
notes of the 1999 AAAI Spring Symposium on Hybrid Control.

[GT99] F. Giunchiglia and P. Traverso. Planning as model checking. In Proceedings
of the European Conference on Planning (ECP), pages 1–20, September
1999.

177

[HBG05] Patrik Haslum, Blai Bonet, and Hector Geffner. New admissible heuristics
for domain-independent planning. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI), 2005.

[HG00] P. Haslum and H. Geffner. Admissible heuristics for optimal planning.
In Proceedings of the International Conference on AI Planning Systems
(AIPS), pages 140–149, 2000.

[HK04] M. Hauskrecht and B. Kveton. Linear Program Approximations for Fac-
tored Continuous-State MDPs. In NIPS-2004, 2004.

[HM93] Steve Hanks and Drew McDermott. Modeling a dynamic and uncertain
world I: Symbolic and probabilistic reasoning about change. Technical Re-
port TR-93-06-10, University of Washington, Department of Computer Sci-
ence and Engineering, 1993.

[HN01] J. Hoffmann and Bernhard Nebel. The FF planning system: Fast plan gen-
eration through heuristic search. Journal of Artificial Intelligence Research,
14:253–302, 2001.

[HS78] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Com-
puter Science Press, Potomac, MD, 1978.

[HS94] P. Haddawy and M. Suwandi. Decision-theoretic refinement planning using
inheritance abstraction. In AIPS-1994 Proceedings, 1994.

[HSAHB99] J. Hoey, R. St-Aubin, A. Hu, and Craig Boutilier. SPUDD: Stochastic plan-
ning using decision diagrams. In Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence (UAI), 1999.

[HSMN96] Kiran Hebbar, Stephen J. J. Smith, I. Minis, and Dana S. Nau. Plan-based
evaluation of designs for microwave modules. In Proc. ASME Design Tech-
nical Conference, August 1996.

[HZ98] E. A. Hansen and S. Zilberstein. Heuristic search in cyclic and-or graphs.
In AAAI/IAAI Proceedings, 1998.

[HZ01] E. Hansen and S. Zilberstein. LAO*: A Heuristic Search Algorithm that
Finds Solutions with Loops. Artificial Intelligence, 129:35–62, 2001.

[INMA06] Okhtay Ilghami, Dana S. Nau, and Hector Muñoz-Avila. Learning to do
HTN planning. In Proceedings of the Sixteenth International Conference
on AI Planning and Scheduling, Cumbria, UK, June 2006. AAAI Press.

[INMAA05] Okhtay Ilghami, Dana S. Nau, Hector Muñoz-Avila, and David W. Aha.
Learning preconditions for planning from plan traces and HTN structure.
Computational Intelligence, 21(4):388–413, november 2005.

178

[JV00] R. Jensen and Manuela M. Veloso. OBDD-based universal planning for
synchronized agents in non-deterministic domains. JAIR, 13:189–226,
2000.

[JVB01] R. Jensen, Manuela M. Veloso, and M. H. Bowling. OBDD-based opti-
mistic and strong cyclic adversarial planning. In Proceedings of the Euro-
pean Conference on Planning (ECP), 2001.

[JVB03] R. Jensen, Manuela M. Veloso, and R.E. Bryant. Guided symbolic universal
planning. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), Trento, June 2003. AAAI Press.

[Kar01] L. Karlson. Conditional progressive planning under uncertainty. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJ-
CAI), 2001.

[KBSD97] Froduald Kabanza, M. Barbeau, and R. St-Denis. Planning control rules for
reactive agents. Artificial Intelligence, 95(1):67–113, 1997.

[KD01] Jonas Kvarnström and Patrick Doherty. TALplanner: A temporal logic
based forward chaining planner. Annals of Mathematics and Articial In-
telligence, 30:119–169, 2001.

[KHW94] N. Kushmerick, S. Hanks, and D. S. Weld. An algorithm for probabilistic
planning. Artificial Intelligence, 76(1-2):239–286, 1994.

[KLC98] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.
Planning and acting in partially observable stochastic domains. Artificial
Intelligence, 101, 1998.

[KN04] Ugur Kuter and Dana Nau. Forward-chaining planning in nondeterministic
domains. In AAAI-2004, 2004.

[Kno94] Craig A. Knoblock. Automatically generating abstractions for planning.
Artificial Intelligence, 68(2):243–302, 1994.

[Koe99] Jana Koehler. Handling of conditional effects and negative goals in IPP.
Technical note 128, Freiburg Univ., 1999.

[Kor90] R. Korf. Real-time heuristic search. Artificial Intelligence, 42(2–3):189–
211, 1990.

[KP99] Daphne Koller and Ronald Parr. Computing factored value functions for
policies in structured MDPs. In IJCAI, pages 1332–1339, 1999.

[KP00] Daphne Koller and Ronald Parr. Policy iteration for factored MDPs. In
UAI, pages 326–334, 2000.

179

[KS92] H. Kautz and B. Selman. Planning as satisfiability. In Proceedings of
the European Conference on Artificial Intelligence (ECAI), pages 359–363,
1992.

[KS95] Sven Koenig and Reid G. Simmons. Real-time search in non-deterministic
domains. In IJCAI-1995, 1995.

[KS98a] H. Kautz and B. Selman. Blackbox: A sat-technology planning system,
1998.

[KS98b] H. Kautz and B. Selman. The role of domain-specific knowledge in the
planning as satisfiability framework. In Proceedings of the International
Conference on AI Planning Systems (AIPS), 1998.

[LC06] P. Langley and D. Choi. Learning recursive control programs from problem
solving. Journal of Machine Learning Research, 7:493–518, 2006.

[Lit97] Michael L. Littman. Probabilistic propositional planning: Representations
and complexity. In AAAI/IAAI Proceedings, pages 748–761, Providence,
Rhode Island, 1997. AAAI Press / MIT Press.

[LK02] T. Lane and L.P. Kaelbling. Nearly deterministic abstractions of Markov
decision processes. In AAAI-2002, 2002.

[LTS99] J. Lygeros, C. Tomlin, and Shankar Sastry. Controllers for Reachability
Specifications for Hybrid Systems. Automatica, 35(3), March 1999.

[LY04] M. Littman and H.L.S. Younes. The probablistic planning track of the
2004 international planning competition, 2004. http://www.cs.rutgers.
edu/∼mlittman/topics/ipc04-pt/.

[Mac66] J. MacQueen. A modified dynamic programming method for markovian
decision problems. J. Math. Anal. Appl., 14:38–43, 1966.

[NAI+03] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, William Murdock,
Dan Wu, and Fusun Yaman. SHOP2: An HTN planning system. JAIR,
20:379–404, December 2003.

[NAI+05] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, H. Muoz-Avila, J. W. Murdock,
D. Wu, and F. Yaman. Applications of SHOP and SHOP2. IEEE Intelligent
Systems, 20(2):34–41, March–April 2005.

[Nil80] Nils Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann, 1980.

[NK01] N. Nguyen and Subbarao Kambhampati. Reviving partial order planning.
Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 2001.

180

[NKN02] N. Nguyen, Subbarao Kambhampati, and R. Nigenda. Planning graph as
the basis for deriving heuristics for plan synthsis by state space and CSP
search. Artificial Intelligence, 2002.

[OP99] N. Onder and M. E. Pollack. Conditional, probabilistic planning: A unify-
ing algorithm and effective search control mechanisms. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), pages 577–584,
1999.

[Par98] R. Parr. Hierarchical control and learning for markov decision processes,
1998. PhD thesis, UC Berkeley.

[PB00] Pascal Poupart and Craig Boutilier. Value-directed belief state approxi-
mation for pomdps. In Proceedings of the Conference on Uncertainty in
Artificial Intelligence (UAI), pages 497–506, 2000.

[PB01] Pascal Poupart and Craig Boutilier. Vector-space analysis of belief-state ap-
proximation for pomdps. In Proceedings of the Conference on Uncertainty
in Artificial Intelligence (UAI), pages 445–452, 2001.

[PB02] R. Petrick and Fahiem Bacchus. A knowledge-based approach to planning
with incomplete information and sensing. In Proceedings of the Interna-
tional Conference on AI Planning Systems (AIPS), 2002.

[PBT01] M. Pistore, R. Bettin, and P. Traverso. Symbolic techniques for planning
with extended goals in non-deterministic domains. In Proceedings of the
European Conference on Planning (ECP), 2001.

[PC96] L. Pryor and G. Collins. Planning for contingency: a decision based ap-
proach. Journal of Artificial Intelligence Research, 4:81–120, 1996.

[PPS+02] R. Patrascu, P. Poupart, D. Schuurmans, C. Boutilier, and C. Guestrin.
Greedy linear value-approximation for factored Markov decision processes.
In AAAI/IAAI Proceedings, 2002.

[PS92] M. Peot and D. Smith. Conditional nonlinear planning. In Proceedings of
the International Conference on AI Planning Systems (AIPS), pages 189–
197, 1992.

[PSP94] S. Panda, F. Somenzi, and B. Plessier. Symmetry detection and dynamic
variable ordering of decision diagrams. In Proceedings of the International
Conference on Computer-Aided Design, pages 628–631, 1994.

[PT01] M. Pistore and P. Traverso. Planning as model checking for extended goals
in non-deterministic domains. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 479–484, Seattle, USA,
August 2001. Morgan Kaufmann.

181

[Put94] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley & Sons, Inc., New York, 1994.

[PW92] J. S. Penberthy and D. Weld. UCPOP: A sound, complete, partial order
planner for adl. In Proceedings of the International Conference on Knowl-
edge Representation and Reasoning (KR), 1992.

[Rin99a] J. Rintanen. Constructing conditional plans by a theorem-prover. Journal
of Artificial Intelligence Research, 10:323–352, 1999.

[Rin99b] J. Rintanen. Improvements to the evaluation of quantified boolean formu-
lae. In Proceedings of the International Joint Conference on Artificial In-
telligence (IJCAI), pages 1192–1197, Stockholm, Sweden, 1999. Morgan
Kaufmann.

[Rin02] J. Rintanen. Backward plan construction for planning as search in belief
space. In AIPS-2002, 2002.

[Rin05] J. Rintanen. Conditional planning in the discrete belief space. In Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI),
2005.

[RN03] S. Russell and P. Norvig. Artificial Intelligence, A Modern Approach (Sec-
ond Edition). Prentice-Hall, Upper Saddle River, NJ, 2003.

[Rud93] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams.
In Proceedings of the International Conference on Computer-Aided Design,
pages 42–47, 1993.

[SB98] R. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[SNT98] Stephen J. J. Smith, Dana S. Nau, and Thomas Throop. Computer bridge:
A big win for AI planning. AI Magazine, 19(2):93–105, 1998.

[Son78] E. J. Sondik. The Optimal Control of Partially Observable Markov Decision
Processes. Operation Research, 26(2):282–304, 1978.

[SP01] D. Schuurmans and R. Patrascu. Direct value-approximation for factored
MDPs. In Proc. NIPS-14, 2001.

[SPS00] O. Shakernia, G.J. Pappas, and S.S. Sastry. Decidable Controller Synthe-
sis for Classes of Linear Systems. In Hybrid Systems: Computation and
Control (LNCS 1790), 2000.

[ST01] J. Slaney and S. Thiébaux. Blocks world revisited. Artificial Intelligence,
125(1-2):119–153, January 2001.

[SW98] David E. Smith and Daniel S. Weld. Conformant Graphplan. In AAAI/IAAI
Proceedings, pages 889–896, July 26-30 1998.

182

[TLS00] C. Tomlin, J. Lygeros, and Shankar Sastry. A Game Theoretic Approach
to Controller Design for Hybrid Systems. IEEE Proceedings, 88(7), July
2000.

[TMBO03] C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi. Computational Techniques
for the Verification and Control of Hybrid Systems. IEEE Proceedings,
91(7), July 2003.

[TVR96] J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large-scale dy-
namic programming. Machine Learning, 22:59–94, 1996.

[TZ97] M. Trick and S. Zin. Spline approximations to value functions: A linear
programming approach. Macroeconomic Dynamics, 1:255–277, 1997.

[WAS98] Daniel S. Weld, Corin R. Anderson, and David E. Smith. Extending Graph-
plan to handle uncertainty and sensing actions. In AAAI/IAAI Proceedings,
pages 897–904, Menlo Park, July 26–30 1998. AAAI Press.

[Wat89] C.J.C.H. Watkins. Learning from delayed rewards. Ph.d. dissertation, Kings
College, 1989.

[Wil88] David E. Wilkins. Practical Planning: Extending the Classical AI Planning
Paradigm. Morgan Kaufmann, San Mateo, CA, 1988.

[Wil90] D. Wilkins. Can AI planners solve practical problems? Computational
Intelligence, 6(4):232–246, 1990.

[YMS03] Håkan L. S. Younes, David J. Musliner, and Reid G. Simmons. A
framework for planning in continuous-time stochastic domains. In En-
rico Giunchiglia, Nicola Muscettola, and Dana S. Nau, editors, Proceed-
ings of the Thirteenth International Conference on Automated Planning and
Scheduling, pages 195–204, Trento, Italy, June 2003. AAAI Press.

[YS02] H. Younes and Reid Simmons. On the role of ground actions in refinement
planning, pages 54–61. AAAI Press, 2002.

183

