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Multi-agent pursuit-evasion games can be used to model a variety of different

real world problems including surveillance, search-and-rescue, and defense-related

scenarios. However, many pursuit-evasion problems are computationally difficult,

which can be problematic for domains with complex geometry or large numbers of

agents. To compound matters further, practical applications often require planning

methods to operate under high levels of uncertainty or meet strict running-time

requirements. These challenges strongly suggest that heuristic methods are needed

to address pursuit-evasion problems in the real world.

In this dissertation I present heuristic planning techniques for three related

problem domains: visibility-based pursuit-evasion, target following with differential

motion constraints, and distributed asset guarding with unmanned sea-surface vehi-

cles. For these domains, I demonstrate that heuristic techniques based on problem

relaxation and model-predictive simulation can be used to efficiently perform low-

level control action selection, motion goal selection, and high-level task allocation.



In particular, I introduce a polynomial-time algorithm for control action se-

lection in visibility-based pursuit-evasion games, where a team of pursuers must

minimize uncertainty about the location of an evader. The algorithm uses problem

relaxation to estimate future states of the game. I also show how to incorporate a

probabilistic opponent model learned from interaction traces of prior games into the

algorithm. I verify experimentally that by performing Monte Carlo sampling over

the learned model to estimate the location of the evader, the algorithm performs

better than existing planning approaches based on worst-case analysis.

Next, I introduce an algorithm for motion goal selection in pursuit-evasion

scenarios with unmanned boats. I show how a probabilistic model accounting for

differential motion constraints can be used to project the future positions of the

target boat. Motion goals for the pursuer boat can then be selected based on those

projections. I verify experimentally that motion goals selected with this technique

are better optimized for travel time and proximity to the target boat when compared

to motion goals selected based on the current position of the target boat.

Finally, I introduce a task-allocation technique for a team of unmanned sea-

surface vehicles (USVs) responsible for guarding a high-valued asset. The team of

USVs must intercept and block a set of hostile intruder boats before they reach

the asset. The algorithm uses model-predictive simulation to estimate the value of

high-level task assignments, which are then realized by a set of learned low-level

behaviors. I show experimentally that using model-predictive simulations based on

Monte-Carlo sampling is more effective than hand-coded evaluation heuristics.
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Chapter 1: Introduction

A wide variety of practical and theoretical problems in robot motion planning

can be thought of as pursuit-evasion problems. Although originally formulated

to model “predator” and “prey” type scenarios, pursuit-evasion problems can be

extended to cooperative situations, or situations where the objective is to observe

or block an evader. Many potential applications exist: robotic security guards

patrolling buildings to detect intruders, teams of robots conducting remote search-

and-rescue missions, assembly robots tracking human workers on the factory floor,

or unmanned boats defending shipping vessels from hostile incursion.

The attraction of pursuit-evasion games in literature has yielded a variety of

novel algorithms and theoretical results [1–9]. However, fundamental challenges

still exist for solving pursuit-evasion problems efficiently. NP-hardness results have

been established for pursuit-evasion problems in both discrete [1] and continuous

domains [2,3]. As a result, prior research has traditionally focused on solving relaxed

versions of the problem [4–6], or precomputing solutions to the problem offline [7–9].

However, many of these algorithms have running times that grow exponentially as

the size of the domain or number of agents increase, rendering them unsuitable for

situations where planning must be done quickly.
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In this dissertation I explore how problem relaxation and model-predictive

simulation can be used to develop computationally efficient planning heuristics for

pursuit-evasion problems. In particular, this work introduces novel methods that

incorporate Monte-Carlo sampling and learned probabilistic opponent models to

efficiently evaluate candidate action plans in several problem domains.

This work provides algorithmic contributions in the following three areas:

• A control action selection algorithm for visibility-based pursuit-evasion games

where a team of pursuer agents must track an evader through two-dimensional

environments with partial visibility

• A motion goal selection algorithm for unmanned boats subject to differential

motion constraints where a pursuer boat must follow an evader boat through

an environment with obstacles

• A contract-based task allocation algorithm for a team of unmanned sea-surface

vehicles (USVs) which must intercept and block hostile intruder boats before

they reach a high valued asset

This work is organized into four chapters, described below.

Chapter 2 introduces an efficient planning heuristic for visibility-based pursuit-

evasion games. In these games, the exact location of the evader is not known unless

it is within the limited sensor range of a pursuer, allowing the evader to move

behind obstacles or outside of sensor range to evade detection. The objective of the

pursuer team is to minimize uncertainty about the evader’s location. The planning
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heuristic evaluates control actions for the pursuer team by performing lookahead on

a relaxed version of the problem and estimating the potential for future visibility

loss. This approach scales linearly as the size of the domain or number of agents

increases. Experimental results show that the algorithm performs better than naive

approaches which follow the shortest path to the evader. The chapter also discusses

how this approach accounts for interrupted communication between agents.

Chapter 3 extends the planning heuristic from the previous chapter to support

probabilistic opponent models. Particle filtering is used to estimate the posterior

distribution of evader locations given the observation history of the pursuer team.

Particle movements are simulated using Monte-Carlo sampling over a weighted po-

tential field, which may be learned from interaction traces of prior games. Results

show that significant performance gains are seen over the non-probabilistic heuris-

tic even if a naive, random opponent model is used. When the learned model is

used, the heuristic obtains faster recovery times than competing algorithms based

on worst-case analysis.

Chapter 4 introduces motion goal selection algorithm for pursuit-evasion sce-

narios involving two boats subject to differential motion constraints. The objective

of the pursuer boat is to position itself behind the evader while safely avoiding ob-

stacles. Monte-Carlo sampling is used to generate a posterior distribution over the

future location and orientation of the evader boat. The resulting distribution is

used to select candidate motion goals for the pursuer. Experimental results show

that motion goals selected using this technique reduce the pursuer’s travel time

and increase the percentage of time the pursuer is within range of the evader when

3



compared to techniques that use the current evader location as a motion goal.

Chapter 5 introduces a contract-based task allocation algorithm for a team of

unmanned sea-surface vehicles (USVs) responsible for guarding a high-valued asset

against incursion by hostile intruder boats. The team of USVs must position them-

selves around the asset which is located in high-traffic area frequented by passing

civilian boats. When one or more intruder boats are identified, the USV team must

assign responsibility to intercept and block the intruders, delaying their approach

to the asset for as long as possible. The task allocation strategy uses Monte-Carlo

sampling and model-predictive simulation to evaluate candidate task exchanges, ac-

counting for uncertainty about the identity of the intruder boats and the opponent

model used by the intruder. Experimental results show that model-predictive sim-

ulation is more effective at performing task-allocation than hand coded heuristic

rules. The performance of the strategy can be improved by increasing the number

of simulations performed and expanding the set of candidate task allocations evalu-

ated. Once tasks are assigned, they are realized by low-level behaviors that are have

been optimized using a genetic algorithm. Details about the low-level behaviors

used by this algorithm are provided in Appendix A.
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Chapter 2: Visibility-Based Pursuit-Evasion

This chapter introduces a heuristic planning technique for visibility-based

pursuit-evasion games, where a team of pursuer agents must track an evasive target

through an environment with obstacles that obstruct visibility. When the evader

passes behind an obstacle, the pursuer team no longer knows its exact location. The

objective of the pursuer team is to minimize uncertainty about the location of the

evader by reducing the likelihood of visibility loss and recovering from it effectively

when it occurs. Potential applications of this problem include surveillance, search

and rescue, and environmental monitoring.

Almost all traditional instances of the visibility-based pursuit-evasion problem

are computationally difficult. Identifying if a particular domain is solvable with a

given number of pursuers is provably NP-hard [2] and existing solution techniques

have running-time complexities that are exponential in both the size of the domain

and the number of agents [9, 10]. This holds true even when making simplifying

assumptions, such as planning only for cases where the evader remains visible [11],

or treating the evader as if it has unbounded speed [7].

To function effectively in the real-world, the pursuer team must react to

changes quickly or risk permanently losing the evader. This means that control ac-
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tions for the pursuer team must be generated efficiently, despite the computational

challenges that are inherent to the problem. Additionally, any effective planning

technique should ideally be robust against sensor and communication uncertainty

and generalize to a wide range of environments.

This chapter introduces limited Euclidean-space lookahead (LEL), a control

action selection heuristic for visibility-based pursuit evasion games satisfying the

practical challenges described above. This algorithm generates sub-optimal but ef-

fective strategies in polynomial time by utilizing problem relaxation and generating

simplified projections about each of the agents possible movements. The primary

features of LEL are its low computational complexity and its applicability to sce-

narios where communication between agents may be interrupted. The algorithm is

also able to generate control actions when the evader is either visible or hidden from

view, a feature not supported by many previous approaches.

The following section provides a brief overview of prior research on the visibility-

based pursuit-evasion problem, while Sec. 2.2 offers a formal definition of the prob-

lem approached in this chapter. The remainder of the chapter is spent describing

the LEL heuristic and detailing experimental results that evaluate its performance

against three different evader strategies.

2.1 Background

This chapter examines visibility-based pursuit-evasion games, a special cate-

gory of pursuit evasion games where the objective of the pursuers is to obtain or
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maintain visibility of the evader. This section provides a review of existing lit-

erature on visibility-based pursuit-evasion, as well as graph searching, a related

pursuit-evasion formalism for discrete graphs.

2.1.1 Graph Searching

Graph-searching, a problem closely related to visibility-based pursuit-evasion,

has long been a topic of interest in algorithms literature [12–26]. In graph-searching,

a team of pursuers must navigate some graph G, where nodes represent locations

and edges represent possible moves. The objective of the pursuers is to capture an

evader whose movement is also restricted to the graph. Various rules have been

defined for what determines a capture state, how agents are allowed to move, and

what information pursuers have about the evader [12, 13].

In the original formulation by Parsons [14], no upper bound is placed on the

speed of the evader. Modeled after rescuers exploring a cave in search of a lost

spelunker, the objective of the pursuer team is to traverse the graph in such a way

that all possible paths for the evader are guaranteed to be crossed. The search num-

ber of a graph is the minimum number of pursuers required to search the graph and

successfully find the evader. Analysis by Megiddo et al. [15] showed that identifying

the search number for Parsons’ problem is NP-complete for arbitrary graphs, but

solvable in linear-time for trees.

Another formulation of the graph searching problem, where pursuers and

evaders move in alternating rounds, often goes by the name “cops and robbers”
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due to parallels with the real-world problem of tracking a fugitive [16, 17]. The

inclusion of alternating rounds places an upper bound on the speed of the evader,

adding an extra level of complexity as pursuers are forced to reason about the

evader’s strategy. Identifying the search number of a graph in “cops and robbers”

is known to be EXPTIME-complete [18] even if the location of the evader is known

throughout the game. If the location of the evader is not known, or if agents are

allowed to move simultaneously, then a non-deterministic strategy for the pursuer

team is required [13,19]. Research into the non-deterministic version of the problem

has focused on calculating lower bounds for the number of pursuers and the number

of steps required to capture the evader [19–21].

Numerous other versions of the graph searching problem exist, including games

where agents traverse a directed graph [22,23], where pursuers have a fixed capture

radius [24], or where the pursuers can travel arbitrarily between any two nodes on

the graph [25,26]. In the latter problem, pursuers are said to travel by “helicopter,”

an extension of the cops and robbers analogy. A common characteristic across all

graph searching problems is that motion is restricted to a graph, a constraint that

is relaxed in visibility-based pursuit-evasion.

2.1.2 Visibility-Based Pursuit-Evasion

In visibility-based pursuit-evasion, a team of pursuer agents with limited sensor

capability attempt to observe an evader. Unlike graph searching, the objective of the

game is not to capture the evader, but to obtain or maintain visibility. The problem
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domain is not restricted to discrete graphs, and is usually a two-dimensional plane

or polygon. A large variety of literature exists on visibility-based pursuit-evasion

games, the majority which falls into one of two categories:

• Visibility-based pursuit-evasion games where the objective of the pursuers is

to maintain visibility on the evader for as long as possible [27–30].

• Visibility-based pursuit-evasion games where the objective of the pursuers is

to detect an evader that was previously hidden from view [2, 7, 10, 31], also

called “hider-seeker” games.

NP-hardness results have been obtained for both of the above versions of

the visibility-based pursuit-evasion problem [2, 11]. The former focuses on perfect-

information scenarios, where the state of the world is known exactly. The latter

focuses on imperfect-information scenarios, where the exact location of the evader

is not revealed until the end of the simulation. The work in this dissertation is more

closely related to the second category, since the location of the evader is not always

known. However, prior research does not typically generalize to scenarios where the

evader passes both in and out visibility, something which is directly addressed by

the work introduced in this chapter. Although this limits direct comparison with

existing approaches, a brief summary of the related literature is provided below.

There are several existing approaches to the problem of maintaining visibility

on the evader [27–30]. These include generating paths for the pursuer to maximize

visibility on a evader whose trajectory is known in advance [27], tracking a evader

through an unknown environment by modeling the evader’s possible escape paths
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[28], and maintaining visibility at a fixed distance [29,30]. Provably optimal methods

have also been developed for discrete domains using backwards induction [32], and

game theoretic analysis has proven the existence of Nash equilibria for continuous

versions of the problem [33]. In general, these approaches do not address what

happens after visibility on the evader has been lost, ignoring any preemptive actions

that should be performed to increase the chance of recovery. The optimal solution

methods also suffer from computational tractability issues, scaling exponentially as

the size of the domain or number of agents increases [32,33].

The work of LaValle et al. [2, 7] defines the most well-known approach to

visibility-based pursuit-evasion problems where the evader is hidden from view. In

this formulation, the pursuer and evader are restricted to a two-dimensional polyg-

onal environment, and the objective of the pursuer team is to search the polygon

in such a way that the evader is guaranteed to be detected. The algorithm per-

forms an information-space search by discretizing the problem space along critical

information boundaries, such as bitangent rays and inflection rays, where the states

contained within each discretized region can be safely aggregated.

The algorithm introduced by LaValle et al. is guaranteed to find a solution

path if one exists, and the approach has been extended to solve problems where

the evader’s speed is bounded [9] and where the pursuer has a limited field-of-view

[10]. However, each of these extensions has significant penalties for the algorithm’s

performance, as the complexity of the algorithm grows exponentially as the density

of critical information boundaries increases. Due to this issue, the approach has

not yet been extended to three-dimensional domains [5], and heuristic techniques
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have been proposed for dealing with multiple pursuers, such as moving only a single

pursuer at any given time [34]. Since the algorithm by LaValle et al. does not specify

what to do in situations where the evader is visible, it is not directly comparable

to the approach outlined in this chapter. However, we do provide an experimental

comparison with the LaValle algorithm for recovery scenarios in Chapter 3.

The work by LaValle et al. additionally demonstrate that, for domains with

certain topology, unless a minimum number of pursuers is provided, no sequence

of actions can be performed that is guaranteed to detect the evader [7]. This is a

consequence of the “worst-case” assumption made about the evader’s movement,

and applies equally to all algorithms which make the same assumption, including

the heuristic evaluated in this chapter. This leads to scenarios where the evader is

unrecoverable, which has consequence for the performance of the algorithm in this

chapter. However, we show how this limitation can be relaxed in Chapter 3, by

providing a probabilistic model of the evader.

The relaxed lookahead (RLA) heuristic, developed as part of the preliminary

work for this dissertation, is capable of evaluating strategies for a simple gridworld

version of the visibility-based pursuit-evasion problem [35]. The RLA heuristic works

by projecting the future location of the evader and pursuers using a relaxed version

of the problem. The limited Euclidean-space lookahead (LEL) heuristic introduced

in this chapter is an extension of RLA to problems in continuous Euclidean space,

which is robust against interruptions in communication between agents [36]. Details

about RLA are provided in Sec. 2.3.
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Pursuer

Pursuer

Evader

Sensor range

Obstacle

Figure 2.1: Example pursuit scenario with two pursuer agents and a single evader
agent. Shaded areas represent the region that can be observed by the pursuer agents.

2.2 Problem Formulation

This chapter defines a multi-agent, imperfect-information game where a single

evader agent a0 is pursued by a team of n pursuer agents {a1, a2, . . . an}. The

goal of the pursuer team is to minimize its uncertainty about the evader’s location

by the end of the game. The degree of uncertainty is determined by the size of

the contamination region, the minimum set of locations guaranteed to contain the

evader based on the the pursuer team’s observation history. Agents’ movement and

observation capabilities are formally defined below.

2.2.1 States and Histories

We assume that each agent ai is a holonomic point robot with a fixed maximum

speed vi. Agents can be located anywhere in the region Lfree ⊆ R2, defined as free

space. The domain may have multiple obstacles, where each obstacle is a polygon

12



in R2, and Lfree is the set of locations not intersecting any obstacles.

The game’s state s ∈ S is a set of locations for each agent, {l0, l1, . . . ln}, and

a time tk. Each game has an initial state s0, and a time tend indicating when the

game ends. A game’s history h ∈ H at time tk ≤ tend is the set of paths followed

by each agent {f0, f1, . . . fn} from time t0 until tk, where fi(t) denotes the location

of agent ai at time t. Since agents can move freely in two-dimensional Euclidean

space, the set of all states S, and set of all game histories H, are both infinite.

2.2.2 Reachability and Visibility

Agent ai can travel from location lj to location lk only if a path exists from

lj to lk, and every location in that path is contained in Lfree. Thus, agent ai’s

reachability function is

Ri(lj, t) = {lk : locations 〈lj, lk〉 are connected in Lfree

by a path of length d(lj, lk) ≤ tvi}

which is the set of locations agent ai can reach in time t starting from location lj.

This can be generalized to Ri(L, t) = {lk : lj ∈ L∧ lk ∈ Ri(lj, t)} which is the set of

locations agent ai can reach in time t starting from anywhere in L ⊆ R2.

Agent ai can observe location lk from location lj only if lk is contained within

the visible region Vi(lj). The visible region is defined as the set of locations within

ai’s sensor range, ri, where the line-of-sight is not obstructed by an obstacle. Thus,

13



agent ai’s visibility function is

Vi(lj) = {lk : locations 〈lj, lk〉 are connected in Lfree

by a straight line segment of length d ≤ ri}

which is the set of locations visible to agent ai while located at lj. Visibility can

also be generalized as Vi(L) = {lk : lj ∈ L∧ lk ∈ Vi(lj)} which is the set of locations

agent ai can observe while located somewhere in L ⊆ R2. An example state of the

game that illustrates pursuers’ visibility is shown in Fig. 2.1.

Agent ai may recall its past location fi(t) for any time t ≤ tk, but it does not

know the path fj followed by any other agent aj 6=i. Agent ai must infer the location

of the other agents based on the initial state s0 and its observation history.

2.2.3 Observation Histories

During the game, each agent ai’s observation history is a finite set of obser-

vations Oi = {o0, o1, . . . ok} where each observation is a tuple 〈aj, L, t〉, meaning

fj(t) ∈ L, or “agent aj is located in region L at time t.” If observation o appears

in agent ai’s observation history at time t, then the information in o is available to

agent ai at any time t′ ≥ t.

Observations are made at discrete time intervals, such that the number of

observations in a particular observation history remains finite. Since agents are free

to move between observations, we define a set of rules for computing the possible

paths followed by each agent that are consistent with prior observations.
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Figure 2.2: (left) Example scenario where a single pursuer has lost sight of an evader.
The shaded area represents the contamination region, which is the set of locations
that may contain the evader. (right) Larger area that results from expanding the
boundary of the contamination region.

Given an observation history, an agent is able to calculate the region where

another agent may be located, even if the actual location is not known. Given Oi,

the set of locations guaranteed to contain agent aj at time t is

R+
j (Oi, t) = Rj(L, t− t′) (2.1)

where 〈aj, L, t′〉 is the most recent observation in Oi describing agent aj at some

time t′ ≤ t. This expands the set of locations where aj might be, also known as the

contamination region, as illustrated in Fig. 2.2.

If agent ai observes agent aj at time t, meaning fj(t) ∈ Vi(fi(t)), then the

tuple 〈aj, {fj(t)}, t〉 is added to agent ai’s observation history. However, if ai does

not directly observe aj, the observation history is updated with a projected set of
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locations instead, defined as

projectedj(Oi, fi, t) = R+
j (Oi, t) \ Vi(fi(t)) (2.2)

which is the set of locations that aj can reach by time t, minus the locations observed

by agent ai. If ai does not directly observe aj at time t, then 〈aj, projectedj(Oi, fi, t), t〉

is added to agent ai’s observation history.

In addition to its own observations, each pursuer receives periodic updates

from the other agents on their team. An update from pursuer aj informs the other

pursuers of aj’s current location, as well as aj’s observation history Oj. This can be

merged with ai’s latest observations by computing

mergek(Oi, Oj, t) = R+
k (Oi, t) ∩R+

k (Oj, t) (2.3)

where 〈a0,merge0(Oi, Oj, t), t〉 represents ai and aj’s combined knowledge of the

evader at time t. This observation, and 〈aj, {lj}, t〉 are both added to pursuer ai’s

observation history as the result of the update.

Agent ai’s observation history Oi and path fi map to an information set Ii(t) ⊆

H, which is the set of possible game histories given ai’s knowledge at time t. History

h is in Ii(t) if and only if 〈fi, Oi〉 is consistent with h. Formally,

Ii(t) ={h : (fi ∈ h) ∧ ∀fj∈hZ(Oi, fj)}

where Z(Oi, fj) = 〈aj, L, t〉 ∈ Oi → fj(t) ∈ L implies that fj is consistent with ob-
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servation history Oi. As with states and histories, the set of all possible information

sets at time t > t0 is infinite.

In practice, we only require the most recent observation from each history. This

is sufficient both to compute the LEL heuristic introduced in Sec. 2.3 and to maintain

an accurate contamination region for the evader. Therefore, older observations may

be safely discarded in the implementation.

2.2.4 Strategies

A pure strategy σi for agent ai is a function mapping the agent’s information

set, Ii(t) to the move it should perform at time t. Since changes to agent ai’s

observation history occur only at regular time intervals, σi(Ii(t)) should specify a

path f for agent ai to follow from time t until the next update occurs to Oi. Path

f is feasible for ai at time t if and only if f(t) is equal to fi(t) and

∀j,k[(t ≤ tj ≤ tk)→ f(tk) ∈ Ri(f(tj), tk − tj)].

A strategy profile ~σ = (σ0, σ1, . . . σn) assigns a single pure strategy to each

agent. Since the game is deterministic, each strategy profile ~σ should produce a

unique history h(~σ) at the end of the game. The expected value of profile ~σ is

E(~σ) = u(h(~σ))

where u(h) is the size of the region guaranteed to contain the evader based on the
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pursuers’ observation histories at the end of a game with history h. This value can

be computed given the observation history Oi(h) generated by history h,

u(h) = |
n⋂
i=1

R+
0 (Oi(h), tend)|. (2.4)

The utility for the pursuer team is −E(~σ), meaning the highest possible utility

is zero, which happens when the evader is directly visible at the end of the game.

We leave the objective function for the evader undefined, but set out to maximize

the pursuers’ utility −E(~σ) under a worst-case assumption: i.e. we assume that the

evader will always select a path that minimizes the pursuers’ utility.

2.3 Heuristic Strategy Generation

This section introduces the limited Euclidean-space lookahead (LEL) heuristic,

a control action selection heuristic for pursuer agents in visibility-based pursuit-

evasion games. LEL works by estimating how large the contamination region will

be in the game’s future if a pursuer agent follows a particular control action. As

defined in Sec. 2.2, the contamination region is the set of locations where the evader

could be located based on the information in an agent’s observation history. The

size of this region is proportional to the pursuer team’s utility, defined in Sec. 2.2.4.

LEL is a continuous-space extension of the relaxed lookahead (RLA) heuristic

introduced in prior work [35]. The RLA heuristic was designed to evaluate control

actions for pursuer teams in gridworld domains. Paths generated using RLA were

limited to movements between grid locations in one of four cardinal directions, and
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the algorithm required continuous, uninterrupted communication between agents.

LEL overcomes these limitations by estimating the size of the contamination re-

gion using only an agent’s observation history, as described in Sec. 2.3.1, and by

using the Fast Marching Method (FMM) to compute the reachability and visibility

information for each of the agents, described in Sec. 2.4.

Below, we provide a formal definition for the LEL heuristic in games where

agents can move freely over Euclidean space and where communication between

agents can be interrupted. This definition is described in terms of the formal def-

initions introduced in the previous sections. In Sec. 2.4, we provide a numerical

approximation of LEL for two-dimensional spaces that can be computed efficiently.

2.3.1 Formal Definition of LEL

The LEL heuristic assigns preference values to individual states based on how

the contamination region is expected to evolve over time. Correctly predicting how

this region will grow is not possible without knowing the future movements of the

pursuers and the evader. However, the LEL heuristic is able to estimate the size of

this region by relaxing the problem space, disregarding individual paths, and instead

evaluating all feasible paths that an agent may follow.

Given observation historyOi, the evader is guaranteed to be located somewhere

in the region R+
0 (Oi, t) at time t. Additionally, the region that can be observed by
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the pursuer team at time t is bounded by

V +(Oi, t) =
n⋃
j=1

Vj(R
+
j (Oi, t)) (2.5)

which contains every location that a pursuer agent could observe at time t, given

any path consistent with Oi. Using these bounds, agent ai can approximate the

region where the evader will be located at time t by computing

R+
0 (Oi, t) \ V +(Oi, t) ⊆ projected0(Oi, fi, t)

which is the set of locations that the evader can reach by time t, minus the set of

locations that may be visible to the pursuer team. This is a subset of the actual

contamination region defined in Sec. 2.2.3. The value returned by the LEL heuristic

is simply the weighted sum of this region’s size over time,

Ulel(Oi, t) =
∞∑
k=0

γk
∣∣R+

0 (Oi, t+ k) \ V +(Oi, t+ k)
∣∣ (2.6)

where t is the current time and γ ∈ [0, 1] is an exponential discount factor. Lower

values for γ bias the heuristic towards the immediate future. In Sec. 2.4 we present

an algorithm to efficiently compute a numerical approximation of LEL.
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2.3.2 Action Selection

We can select control actions for pursuers agent by using the LEL heuristic to

evaluate the state immediately produced by that action. The control actions space

for agent ai is a set Qi ⊂ R2 of movement vectors where each movement vector

q ∈ Qi has magnitude less than or equal to the maximum speed vi of agent ai,

Qi = {〈qx, qy〉 : q2
x + q2

y ≤ v2
i }. (2.7)

We can evaluate action q ∈ Qi by computing Ulel with the observation history

that results from applying q to the current state. Let fi(t) + q be the location of

pursuer ai after applying action q for one time step. The value assigned to control

action q is thus Ulel(Oi∪〈ai, {fi(t)+q}, t+1〉, t+1), where Oi∪〈ai, {fi(t)+q}, t+1〉

is the modified observation history that accounts for the agent’s movement. The

preferred action for pursuer ai is thus

q∗i (Oi) = arg min
q∈Qi

Ulel(Oi ∪ 〈ai, {fi(t) + q}, t+ 1〉, t+ 1). (2.8)

which is the control action that minimizes the Ulel heuristic given the current ob-

servation history. In practice, this evaluation is performed for only a finite subset

of the control actions in Qi.

In our experiments in Sec. 2.5, a total of ten control actions per agent are

evaluated: eight actions forming a uniform circle around the pursuer’s current lo-
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Pursuer

Pursuer

Evader

Figure 2.3: Paths generated using the LEL heuristic in a domain with two pursuer
agents and one evader. The pursuer agents start in the lower left and move past
obstacles while attempting to surround the evader from both sides.

cation, a single action to represent no movement, and a final action selected from

a weighted average of the best two actions evaluated. The paths in Fig. 2.3 were

generated using this technique.

If a tie occurs, the tie can be broken by re-computing LEL using the location

of just one pursuer agent. To do this, substitute Vi(R
+
i (Oi, t)) for V +(Oi, t) in the

heuristic and compute,

Utiebreaker(Oi, t) =
∞∑
k=0

γk
∣∣R+

0 (Oi, t+ k) \ Vi(R+
i (Oi, t+ k))

∣∣ (2.9)

which is equivalent to what the LEL heuristic would return if there were no other

pursuer agents on the team. A tie can occur when some subset of the pursuers are

the first to observe all of the locations that the evader can reach. In this case, the

tie-breaker ensures that the remaining pursuers move into a reasonable position.
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2.4 FMM-Based Implementation

This section introduces an efficient numerical approximation of the LEL heuris-

tic using the Fast Marching Method [37]. The Fast-Marching Method (FMM) esti-

mates the Euclidean shortest-path distances between a set of locations in a Cartesian

grid. Given a sufficiently large grid, the values computed by the FMM form an ar-

bitrarily close approximation of the actual distances. We use the FMM to compute

the bounds of the contamination region, as well as the distances each agent must

travel to reach locations in the domain.

Our algorithm is divided into two stages: first we compute reachability and

visibility distances for each agent over a set of discrete grid points Lgrid, then we

combine that information to compute an evaluation function which approximates

the value of Ulel. For this computation, we assume the agents have updated their

observation history according to the rules described in Sec. 2.2.3.

Before calculating distances using the FMM, we must identify the set of loca-

tions in Lgrid∩Lfree over which to perform the calculation. If we assume that Lfree is

represented by a set of disjoint polygons in R2, then a linear-time discretization can

be performed using point-in-polygon or similar algorithms [38]. The same technique

can be used to discretize the contamination region or visibility regions.

Since multiple calls to the LEL heuristic will result in redundant work, im-

provements can be made by caching reachability information at critical locations, a

process that is discussed in Sec. 2.4.3.
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2.4.1 Path and Visibility Distance

The numerical approximation of LEL requires computing a set of reachabil-

ity functions {rdisti,0, rdisti,1, . . . rdisti,n} for agent ai, where each function rdisti,j[l]

returns the Euclidean shortest-path distance to location l from agent aj’s observed

location at time t. If ai does not know the exact location of agent aj, then rdisti,j[l]

is the shortest-path distance from R+
j (Oi, t), which is the set of locations guaranteed

to contain aj at time t based on ai’s observation history.

The values of rdisti,j[l] for all locations l ∈ Lgrid can be computed by the FMM

in time O(|Lgrid|), where Lgrid ⊂ Lfree is a discrete set of points in a Cartesian

grid [39]. The FMM has the same complexity whether computing distances from a

single location or set of locations, so it can be used even if the exact location of an

agent is not known. The result of this computation is shown in Fig. 2.4b.

The numerical approximation algorithm also requires a set of visibility func-

tions, {vdisti,1, vdisti,2, . . . vdisti,n} where each vdisti,j[l] returns the shortest-path

distance from agent aj’s location at time t to any location that can observe l. This

can be defined in terms of rdisti,j as

vdisti,j[l] = min
l′∈Vj(l)

rdisti,j[l
′] (2.10)

where Vj(l) is the set of locations visible to aj from l.

Evaluating vdisti,j[l] is considerably more work than evaluating rdisti,j[l], since

it requires computing the minimum distance over the locations in Vj(l). Rather than
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Figure 2.4: Steps in the computation of LEL: a) actual state of the game, b) reach-
ability distance from the evader’s location, c) visibility distance from the pursuers’
locations, d) evaluation function used by the LEL heuristic.

computing this explicitly, we can approximate the visibility distance by computing

Vj(l) for a set of sample points Lsample, as shown in algorithm 1.

Algorithm 1 Compute agent ai’s visibility distance function vdisti,j.

Lsample = finite subset of Lfree
for all l ∈ Lgrid

vdisti,j[l]←∞
for all l ∈ Lsample
for all l′ ∈ (Lgrid ∩ Vj(l))

vdisti,j[l
′]← min(rdisti,j[l], vdisti,j[l

′])

The complexity of this algorithm is O(k|Lsample|), where k is the average size

of Lgrid ∩ Vj(l). If each visible region Vj(l) is represented as a polygon, we are able

to compute algorithm 1 efficiently by taking advantage of scan-line rasterization

techniques. An example of this computation is shown in Fig. 2.4c.
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2.4.2 Numerical Computation of LEL

Given {vdisti,1, vdisti,2, . . . vdisti,n} and rdist0, we can calculate the difference

in time between when a location can first be reached by the evader and when it can

first be observed by one of the pursuers. This can be evaluated as follows

eval(l, Oi) = min
j

(
g(v−1

j · vdisti,j[l])− g(v−1
0 · rdisti,0[l])

)

where rdisti,j[l] and vdisti,j[l] are the reachability and visibility distances of agent aj

to location l given history Oi. The value vj is the maximum speed of agent aj, and

g(v) =
∫
γvdv = γv

ln(γ)
is the indefinite integral of the exponential discount function.

The numerical approximation of Ulel can be computed as

Ũlel(Oi) =
1

|Lgrid|
∑

l∈Lgrid

max(0, eval(l, Oi)) (2.11)

which is the summation of eval(l, Oi) over all the locations in Lgrid, ignoring values

less than zero. An example of this computation is shown in Fig. 2.4d.

To connect this algorithm to the formal definition of Ulel in equation 2.6, note

that the size of an arbitrary region can be approximated by counting how many

points in Lgrid are contained by that region. The quality of the approximation de-

pends on the size of the grid, but with any sufficiently large grid we can approximate

the size of the region R+
0 (Oi, t) \ V +(Oi, t) to arbitrary precision and use that to es-

timate Ulel. However, rather than computing this region at each time step as is done
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in equation 2.6, we simply determine when each point in Lgrid is first intersected by

R+
0 (Oi, t) and V +(Oi, t), then use the difference in time to determine how long the

point was contained in R+
0 (Oi, t) \ V +(Oi, t). That is what is done in equation 2.11

using our algorithm, allowing us to leverage the Fast-Marching Method and avoid

performing costly set operations over complex polygonal regions.

An example of the rdist and vdist value generated by this technique are shown

in Fig. 2.4. The per-location evaluation of Ulel is represented as a heatmap, shown in

the fourth image of the figure. Shaded areas represent locations where the evader is

able to move before the pursuer can guarantee visibility, with darker areas indicating

a greater time difference. If there are many such locations, then Ulel will return a

high value, indicating that the state is poor for the pursuer team.

Most of the work performed evaluating a single control action can be re-used

to evaluate multiple control action at once. Since the same observation history is

used throughout this process, the reachability and visibility information for most of

the agents does not need to be recomputed. Evaluating m possible control action

for agent ai involves computing vdisti,j and rdisti,j only once per agent aj 6=i, while

vdisti,i is computed m times.

2.4.3 Caching Optimizations

The running time of the numerical approximation algorithm can be reduced if

the values of rdisti,j[l] and vdisti,j[l] are cached in advance. We can do this by caching

these values critical points, i.e. locations in the domain that a large number of other
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paths are required to pass through. For a two-dimensional polygonal environment,

the critical points are at the outward facing vertices of the obstacles, since the

shortest path around an obstacle always passes through these vertices.

Let Lvertex be the set of vertices along the boundaries of the obstacles in

the domain. Let vcachei,j[l, l
′] represent the cached visibility distance from some

arbitrary location l ∈ Lvertex to some arbitrary location l′. If agent aj is located at

fi(t), the value of vdisti,j[l] for all l ∈ Lgrid can be computed as follows:

Algorithm 2 Compute vdisti,j using critical point caching.

for all l ∈ Lgrid
vdisti,j[l]←∞

for all l ∈ (Lsample ∩ Vj(fj(t)))
for all l′ ∈ (Lgrid ∩ Vj(l))

vdisti,j[l
′]← min(rdisti,j[l], vdisti,j[l

′])
for all l ∈ (Lvertex ∩ Vj(fj(t))
d = |l − lai |
for all l′ ∈ Lgrid

vdisti,j[l
′]← min(d+ vcachei,j[l, l

′], vdisti,j[l])

The advantage of using Alg. 2 is that it is no longer necessary to calculate

vdisti,j[l] for any location l that isn’t in the immediate line-of-sight of agent aj. In-

stead, those distances can be determined based on the cached values in vcachei,j[l, l
′].

As the agents move throughout the domain, the set Lvertex ∩ Vj(fi(t)) of vertices

that are visible to agent ai only change gradually as new vertices become visible and

old ones become hidden. Thus, vcachei,j[l, l
′] can be computed once when a vertex

first becomes visible, and re-used indefinitely until the cache becomes too large or

the information is no longer needed.

It’s best to use caching when the average number of obstacle vertices visible

to an agent is much smaller than the number of points in Lsample. If the visibility
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polygons Vj(l) are pre-computed for each point l ∈ Lsample, Alg. 2 has a compu-

tational complexity of O((v + s)|Lgrid|) where v is the average number of vertices

visible to the agent, and s is the average number of points in Lsample ∩ Vj(l). If v

and s are held constant, then the complexity is linear in the size of the grid. In our

experiments, we compute the distances vcachei,j[l, l
′] in advance for all l ∈ Lvertex.

2.4.4 Complexity Analysis

The complexity of the approximation algorithm for the approximation algo-

rithm introduced in this section is O(n(V + R + |Lgrid|))), where n is the number

of pursuers, R and V are the computational complexity of the algorithms used to

generate rdist and vdist. Once rdist and vdist are computed, computing LEL is

simply a matter of computing the sum of the time differences between rdist and

vdist, which can be done in O(n|Lgrid|).

The Fast Marching Method can generate rdist in linear time, O(|Lgrid|) [39].

The algorithm for computing vdist has a complexity of O((v+s)|Lgrid|), as explained

in Sec. 2.4.3. As a consequence, the time required to compute LEL increases only

polynomially as the size of Lgrid or the number of pursuers n increases.

The complexity of other important algorithms are as follows: computing Vj(l)

for any single location l can be done in O(|Lvertex|), or linear in the number of

vertices in the domain [40]. Similarly, the vertices visible from polygon L can be

computed in O(p · |Lvertex|), where p is the number of vertices in the boundary of L.

Both of these are used in the computation of vdist, and can be cached in advance.
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2.5 Experimental Results

To evaluate the effectiveness of the LEL heuristic, we performed a series of ex-

periments on randomly generated two-dimensional domains. For each experiment,

we simulated games between a team of two or more pursuers and one evader. We

evaluated the performance of the pursuer team against three different evader strate-

gies: evade pursuer (SEP ), evade visibility (SEV ), and reverse LEL (SRL). These

evader strategies are defined in detail in Sec. 2.5.2.

For comparison purposes, we also evaluated the min-distance (MD) heuris-

tic, an alternative control action selection heuristic for the pursuer team. The

MD heuristic is a simple hand-coded rule that instructs the pursuers to follow the

shortest-path to the evader. If the evader is not visible, pursuers using MD will

follow the shortest-path to the closest possible location of the evader. This heuristic

provides a baseline comparison for judging the quality of the strategies produced by

LEL, and has been used for a similar purpose in the past [35].

Examples of the randomly generated domains used in these experiments are

shown in Fig. 2.5. The free space in each domain was generated by producing a

random spanning tree using a modified version of Kruskal’s algorithm [41]. Addi-

tional random edges were added to the tree to increase connectivity. This technique

produced domains with a variety of irregularly shaped obstacles, providing many

opportunities for the evader to escape and hide.
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Figure 2.5: Two randomly generated domains with two and three pursuer teams.

2.5.1 Experimental Setup

For each experiment, the initial location of each pursuer was set to a random

location in Lfree, while the initial location of the evader was set to a random location

in one of the pursuers’ visible area. To make the game more challenging, the speed

of the evader was set to 10% faster than the speed of the pursuers, meaning the

evader was able to out-run the pursuers given enough time. Except where otherwise

specified, the parameters used during the experiments are as follows: the size of

|Lgrid| = 200 × 200, the sensor range ri = 50 for all pursuers, the maximum speed

vi = 1 for all pursuers and v0 = 1.1 for the evader, the Ulel discount factor γ = 0.95,

and the duration of each game is 1000 time steps.

All results discussed in this chapter represent the average of 2000 randomly

generated trials. For each trial, we used a different set of randomly generated

obstacles and starting locations. The performance of each heuristic was measured

by calculating the percentage of time the evader was visible to the pursuer and the
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average size of the contamination region throughout the trial.

2.5.2 Evader Strategies

To determine the behavior of the evader during each of the experiments, we

specified three different evader strategies:

• Evade pursuer (SEP ) - evader selects a control action q ∈ Q0 that maximizes

its shortest-path distance to the nearest pursuer.

• Evade visibility (SEV ) - evader selects a control action q ∈ Q0 that maximizes

its shortest-path distance to the set of locations visible to pursuers.

• Reverse LEL (SRL) - evader selects control action q ∈ Q0 that maximizes Ulel,

exactly opposite of the pursuers, attempting to maximize the projected size of

the contamination region instead of minimizing it.

In addition to the behavior described above, both SEP and SEV exhibit a

special “escape” behavior when the evader is visible to pursuers and the evader’s

distance to the nearest pursuer is less than dmin. In this situation, the evader will

travel to the nearest location that is at least dmin away from the pursuers. This

is done to avoid situations where the evader would otherwise become trapped in a

corner and stop moving. This problem does not occur with the SRL strategy, so the

escape behavior is not triggered when SRL is used. The value of dmin was set to 20

for all experiments discussed in this chapter.

The shortest path distances for SEP and SEV can be computed using the Fast

Marching Method, as described in section Sec. 2.4.1. For each evader strategy, we
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assume the evader has complete knowledge of the state of the world, including the

current locations of the pursuers.

2.5.3 Pursuer Performance

The first set of experiments were designed to measure the performance of the

LEL and MD heuristic in games where the number of pursuers varied between two

and five agents. Performance was measured against each of the evader strategies

introduced in Sec. 2.5.2. Simulations were run for 1000 time steps and the average

size of the contamination region and percentage of time the evader was visible were

recorded. We assumed that pursuers were in constant communication during these

experiments, so no communication interruption was introduced.

The results in Fig. 2.6 show that teams using the LEL heuristic were sig-

nificantly more effective at pursuing the evader compared to teams using the MD

heuristic, and that the difference in performance grew as the size of the team in-

creased. Teams using LEL had visibility on the evader for a higher percentage of

time, and the average size of the contamination region was smaller.

When comparing the percentage of time a team of two pursuers had visibility

on evaders that were using the SRL strategy, there was a 1.7 times difference between

the LEL and MD heuristic. For teams of three pursuers, the difference between LEL

and MD grew to 2.9 times. A similar relationship between LEL and MD exists when

comparing the average size of the contamination region. For these experiments, the

benefit of using LEL was apparent against all three evader strategies, with LEL
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Figure 2.6: Comparison of LEL and MD heuristics with different teams sizes against
the SRL, SEV and SEP evader strategies: (left) the percentage of time the evader was
visible, higher is better (right) the average size of the contamination region, lower
is better. The box plots show the median, upper and lower quartile. The whiskers
show the upper and lower decile. The mean value is represented by a square.
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Figure 2.7: Percentage of evaders using the SRL strategy that are visible to a team
of two pursuers using LEL and MD heuristics as the simulation time increases.

outperforming MD in every case.

Of the three evader strategies, SRL proved the most challenging for pursuers,

since it resulted in the lowest performance for pursuers regardless of the size of the

pursuer team or the heuristic used. This is consistent with the idea that LEL is an

effective heuristic, since SRL is simply the negation of LEL applied to the evader.

Between the other two evader strategies, SEV was slightly more challenging than

SEP , which makes intuitive sense because SEV explicitly avoids the area visible to

pursuers, while SEP does not.

The results in Fig. 2.7 show that as the game progresses, fewer and fewer

evaders remain visible to the pursuer team. The LEL heuristic significantly out-

performs the MD heuristic at maintaining visibility over time. The reason for the

steady decline can be attributed to the fact that the evader travels faster than the

pursuer, thus it is highly like that the evader will break line of sight with the pursuer

at at least some point in time.
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Figure 2.8: Percentage of time an evader using the SRL strategy is visible to a team
of two pursuers using LEL as the exponential discount factor γ is varied. Recall
that γ is used in the computation of Ulel, as described in Sec. 2.3.1

The effectiveness of the LEL heuristic is influenced by the choice of exponential

discount factor γ ∈ [0, 1]. Recall from Sec. 2.3.1 that γ is used to bias the com-

putation of Ulel towards near-term predictions about the size of the contamination

region. Lower values for γ mean the heuristic will weigh the immediate future more

heavily. When γ = 1, both the near and long term are weighted equally. The reason

for introducing any bias at all, is that predictions about the near future are more

likely to be accurate, and provide a better estimate of the expected utility.

The results in Fig. 2.8 show how the amount of time the evader is visible

changes as the value of γ is varied. For these experiments, we ensured that changes in

γ only affected the LEL heuristic used by pursuers. The strategy used by the evader

was SRL with γ = 0.95, and its parameters were held constant. The experimental

setup was otherwise the same as described previously.

The best performance was obtained when γ was between 0.98 and 0.94, cor-
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Figure 2.9: Probability of recovering an evader using the SRL strategy within 500
time steps given on the current size of the contamination region. Results are shown
for pursuer teams of size n using the LEL heuristic.

responding to a 2% to 6% reduction in importance weight per time step. The best

performance is achieved when γ < 1, because long-term predictions are less accu-

rate, so they should not be weighed as heavily. At the opposite extreme, when

γ approaches 0, the pursuers become concerned only with the present, failing to

take advantage of the predictive capabilities of the heuristic. Similar results were

obtained when using SEV and SEP evader strategies.

It is important to remember that games do not end when an evader breaks

line-of-sight. The pursuer team has the ability to recover the evader by reasoning

about the boundaries of the contamination region, something that is incorporated

into the design of LEL. The results in Fig. 2.9 show the probability of a pursuer

team regaining visibility on an SRL evader at some point in the next 500 time steps

given the current size of the contamination region. These results were gathered from

an expanded set of trials using the same setup as Fig. 2.6.
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Figure 2.10: An evader escaping detection in a randomly generated game. The
pursuers are unable to completely contain the growth of the contamination region,
leading to poor performance from the LEL heuristic.

When the size of the contamination region is small (less than 5% of the total

area in Lfree) then there is 20% likelihood that the evader will be recovered by a

team of two pursuers, and a 68% likelihood the evader will be recovered by a team

of five pursuers in the next 500 time steps. However, there is an inverse relationship

between the size of the contamination region and the likelihood of recovery, with

the likelihood of recovery dropping to less than 5% for a team of two pursuers when

the contamination region exceeds 20% of the total area.

The above results suggest that, although pursuers using LEL have the ability

to recover visibility on lost evaders, they do poorly when uncertainty about the

evader’s location is very high. From a qualitative perspective, pursuers using LEL

have the tendency to stall or stop moving when that are no control actions that lead

to a near-term reduction in the size of the contamination region. This is apparent

in Fig. 2.10, where the rapidly expanding contamination region can no longer be

contained by the pursuers. The inability of LEL to effectively recover from these

situations motivates the probabilistic extension discussed in Chapter 3.
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Figure 2.11: Results for LEL and MD when communication is interrupted. As the
time between updates increases, agents are able to communicate less frequently.

2.5.4 Interrupted Communication

The second set of experiments were designed to measure the performance of

the LEL and MD heuristics when communication between pursuers was interrupted.

Recall from Sec. 2.2.3 that the observation history of a single pursuer is updated

only periodically with information from other pursuers. Between these periodic

updates, an individual pursuer must continue to generate control actions based

only on the most recent knowledge of other pursuers’ location and observations.

The LEL heuristic has been designed to deal with communication interruption by

making projections about the location of the other pursuers and their observations

in absence of up-to-date information.

For these experiments, we set a fixed interruption period during which no

communication between agents was allowed. If the interruption period was set to

100 simulation steps, then agents could communicate only once every 100 steps and
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not any time between. When communication did occur, agents exchanged all the

information in their current observation history.

Fig. 2.11 shows the effect of varying the interruption period for a team of two

pursuers versus an evader using the SRL strategy. As expected, when the inter-

ruption period was increased, the pursuers became less successful at pursuing the

evader. However, the pursuers performed better when using the LEL heuristic, even

when the interruption period was very long. For pursuers using LEL, the average

percentage of time the evader was visible dropped from 61% to 39% as the interrup-

tion period increased from 0 to 1000. For pursuers using MD, the average dropped

from 38% to 26% as the interruption period increased.

To put these results into perspective, when the interruption period was set to

1000 time steps, agents were only able to communicate once throughout the entire

game. Pursuers with a high level of interruption performed better using LEL than

pursuers with no interruption using MD. The performance of pursuers declined as

interruption increased, but the decline was not especially dramatic, indicating that

the heuristic is at least partly resilient to these interruptions.

2.5.5 Running-Time

The final set of experiments were designed to evaluate the running time and

computational complexity of the algorithm. The results in Fig. 2.12 show the average

CPU time1 for a single agent to select a control action using the LEL heuristic as

1All experiments were performed using a single core 2.40 GHz Intel Xeon processor running
Java Virtual Machine 6.
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Figure 2.12: (left) Running time in milliseconds for an agent to select its next move
using the LEL heuristic. The dashed lines show one standard deviation from the
mean. (right) Running time for LEL using a 400x400 grid given different team sizes.

the size of the domain and number of pursuers are varied. In these experiments, the

Ulel heuristic was evaluated nine times per decision and once per control action as

discussed in Sec. 2.3.2.

The relationship between CPU time and the size of the domain (both in num-

ber of obstacles and the size of Lgrid) was approximately linear. The relationship

between team size and average CPU time per agent was also approximately linear.

For the largest games we evaluated, with six pursuer agents and an Lgrid size of

200 × 200, the average decision time was under half a second. Since the algorithm

has a low running time, and the runtime complexity is approximately linear, this

approach is well scalable to larger problems. This is a notable difference from ap-

proaches such as LaValle et al. which scale exponentially as the size of the domain

or number of agents increases [7].
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2.6 Discussion

This chapter introduced the limited Euclidean lookahead (LEL) heuristic, a

control action selection heuristic for teams of pursuer agents in visibility-based

pursuit-evasion games. The LEL heuristic makes predictions about the future set of

locations that may contain the evader (the contamination region) by forward simu-

lating relaxed version of the game. Experimental results show that pursuer teams

using LEL are better at maintaining visibility on an evasive target than pursuer

teams using the MD heuristic, which follows the shortest path to the target’s cur-

rent location. This same result was demonstrated against three different evasion

strategies. The LEL heuristic is also resilient against communication interruptions

between agents, maintaining its superiority over the MD heuristic even when commu-

nication is severely reduced. Finally, the LEL heuristic can be computed efficiently,

scaling linearly with the size of the domain and number of agents, suggesting that

the heuristic can be used in time and resource constrained environments.

Agents that use the LEL heuristic exhibit very different behavior from pursuers

that simply follow the shortest path to the evader. Using LEL, typically one pursuer

will follow the evader closely, while the remaining agents position themselves around

the domain in a way that will corner the evader. An example of this behavior is

shown in Fig. 2.3, where the upper-most pursuer follows the evader directly, while

the lower pursuer moves along the edge of the domain to intercept the evader as

it passes behind the obstacles. This “division of labor” is often seen when LEL is

used, even though each pursuer selects its own control actions independently.
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2.6.1 Generalizing LEL

Although LEL was described in terms of two-dimensional Euclidean space,

it is straightforward to generalize the approach to higher-dimensional spaces. The

formalism in Sec. 2.2 defines Lfree ⊆ R2. If this is relaxed to RN , then necessary

changes must be made to the implementations of the reachability and visibility

functions R and V to accommodate higher dimensionality.

Higher dimensional implementations of the Fast Marching Method already

exist [42,43], and their incorporation into the reachability function R would require

little to no change in how the heuristic is formulated. For configuration spaces where

agents are subject to differential motion constraints, Fast Marching Trees can be

used as an alternative to the Fast Marching Method [43]. The computation of V

for dimensions N > 2 can be performed via ray-tracing. Although ray-tracing is

significantly slower than the algorithm cited in Sec. 2.4.4, it can be easily parallelized

if performance requirements demand it [44].

The value of LEL comes largely from its ability to efficiently redistribute agents

around the environment. It is possible to imagine LEL being used to evaluate

alternate objective functions, not just potential for visibility loss. As an example,

the objective function in Sec. 2.4.2 could be modified to distribute agents such that

the expected wait time to observe a set of target locations is locally minimized. The

general characteristic of objective functions for LEL is that they accept a set of the

distance functions as input (e.g. rdist and vdist), and return a single utility value.

Any additional input features (e.g. potential fields marking distance to landmarks)
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are likely to be domain-specific, but could reuse many of the same algorithmic tools

such as the Fast Marching Method and visibility sampling.

2.6.2 Limitations and Future Work

One limitation of the LEL heuristic is that there is a very low chance that

evaders will be recovered once the size of the contamination region is sufficiently

large. This scenario is depicted visually in Fig. 2.10, where the evader goes un-

detected by pursuers and the contamination region fills the majority of the envi-

ronment. Since the LEL heuristic is limited to reasoning only about the bounds

of the contamination region, and not the probability of the evader being located

anywhere within those bounds, situations such as these result in poor behavior from

the heuristic.

As explained in Sec. 2.1, due to the work of LaValle et al. we know that

for a large class of problems there is no sequence of actions that can be performed

which is guaranteed to detect the evader [2, 7]. This is a fundamental limitation

of any algorithm that assumes a worst-case model of the opponent, including the

LEL heuristic, as well as the algorithm introduced by LaValle et al. [7]. Rather

than making a best-effort attempt to recover the evader, many of these approaches

simply fail to produce a solution, or as is the case with LEL, fall into a state of

inaction. In the next chapter, I demonstrate how this limitation can be addressed

by incorporating a probabilistic model of the opponent into the algorithm.
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Chapter 3: Pursuit-Evasion with Probabilistic Opponent Models

One major limitation of the LEL heuristic identified in Chapter 2 is that

pursuers using the LEL heuristic have difficulty regaining visibility on the evader

once the contamination region becomes sufficiently large. To address this limitation,

this chapter introduces the probabilistic lookahead (PLA) heuristic, a control action

selection heuristic for the pursuer team that incorporates a probabilistic model of

the evader. The main benefit of PLA over LEL is that it allows the pursuer to

search for the evader based on where it is likely to be located, and is not restricted

to reasoning only about the bounds of the contamination region.

To support the PLA heuristic, this chapter introduces several probabilistic

opponent models backed by a particle filtering technique. Sec. 3.1.3 demonstrates

how the distribution of particles in the filter can be influenced by a user-defined

potential field, while Sec. 3.1.4 shows how these potential fields can be learned by

collecting historical data from interaction traces of previous games.

I show experimentally that the PLA heuristic is able to outperform the LEL

heuristic in randomly generated pursuit-evasion games. I also demonstrate that the

PLA heuristic achieves superior recovery times compared to the algorithm intro-

duced by LaValle et al. [7] in two case studies on example domains.
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3.1 Opponent Modeling

This section provides an overview of how particle filtering techniques can be

combined with weighted potential fields to produce different probabilistic models of

the evader. These models include purely random opponent models (Sec. 3.1.2), op-

ponent models based on weighted potential fields (Sec. 3.1.3), and opponent models

learned from historical data (Sec. 3.1.4). Instructions on how integrate these oppo-

nent models into the PLA heuristic is provided in Sec. 3.2.

3.1.1 Particle Filtering

Particle filtering, also known as Sequential Monte Carlo, is a sampling-based

probability density estimation technique for systems with observable and hidden

variables. Alternative hypotheses about the state of the system are represented as

individual particles, which collectively form an estimate of the posterior probability

distribution of the system. Particle filters have appeared in robotics literature as an

alternative to Kalman Filters for estimating the state of non-linear, non-gaussian

systems [45, 46]. Well-known applications of this technique include FastSLAM [47]

and Monte-Carlo Localization [48].

Particle filtering is directly applicable to the visibility-based pursuit-evasion

problem since each particle can represent an alternative hypothesis about the evader’s

location while it is hidden from view. The movement of particles can be sampled

directly from a probabilistic motion model of the evader. Since each particle can be

simulated individually, there are very few constraints on the type of model that can
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be used. The weights assigned to each particle can be updated given the pursuers’

sensor model and observation history.

In this paper, particle system Xt is a set of states {x0,t, x1,t, . . . xn,t} repre-

senting possible locations of the evader at time t. The location each particle is

updated by performing Monte Carlo sampling over some opponent model M , where

M(xi,t+k|xi,t, Ot) defines the probability that an evader will transition from state xi,t

to state xi,t+k given observation history Ot. Since the purpose of the particle filter

is to model an unseen evader, the posterior probability of state xi,t is reduced any

time that xi,t intersects the visible area of the pursuer agents. Thus, the probability

assigned to state xi,t+k given state xi,t and Ot is,

P (xi,t+k|xi,t, Ot) = (1− Pobs(xi,t|Ot))M(xi,t+k|xi,t, Ot), (3.1)

where Pobs(xi,t|Ot) is the probability that the pursuer team will detect an evader at

state xi,t at time t. In practice, the value of Pobs(xi,t|Ot) will always be either 1,

indicating that xi,t is in the pursuers’ sensor range, or 0 otherwise.

The posterior probability P (xi,t|Ot) of particle i reaching state xi,t from its

initial state xi,0 can be derived recursively using the formula

P (xi,t|Ot) = P (xi,t|xi,t−k, Ot)P (xi,t−k|Ot−k), (3.2)

which terminates trivially at the base case P (xi,0|O0) = P (xi,0) where P (xi,0) is

the prior probability of state xi,0. Prior probabilities are assigned when the particle
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system is initialized, which is usually when visibility of the evader is initially lost.

Each particle is assigned an importance weight wi,t meant to approximate the

relative posterior probability P (xi,t|Ot). The weights of all particles are initially

set to 1/|X0|, meaning that they are all equally likely. During each time step, the

weights are updated such that wi,t+k = wi,tP (xi,t+k|xi,t, Ot). If the weight wi,t of any

particle xi,t drops below a critical value wfloor, then particle xi,t is discarded and the

weights of the remaining particles are normalized.

If particle xi,t is discarded, a replacement particle is resampled immediately

by “splitting” one of the existing particles in Xt. This creates two particles at

the same location with half the weight of the original. The particle that is split

is selected with a probability proportional to its weight. If at any point there are

no remaining particles in Xt, new particles are sampled uniformly from the set of

possible locations for the evader.

3.1.2 Randomized Models

One very simple approach to modeling an opponent is to treat the opponent as

if they are moving randomly. Although this modeling assumption may seem unre-

alistic, prior research has demonstrated its effectiveness as a heuristic in adversarial

games with high levels of uncertainty [49]. Randomized models also have the ad-

vantage of being computationally efficient and requiring little to no prior knowledge

about the evader’s actual behavior.

To implement a randomized opponent model, it is necessary to define what
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Figure 3.1: Particle dispersion using the random walk MRW (left) and persistent
random walk MPRW (right) opponent models with pchange = 0.1 and σchange = π/6.
All particles were initialized at the center point. The path followed by a single
particle is marked with a blue line.

“random” means in the context of movement in Euclidean space. According to the

definition of reachability in Sec. 2.2, an evader can transition from its initial location

l0 to some location in R0(l0, k) in time k. However, many possible distributions over

this set of locations could be considered “random.” In this paper, I have selected

two such alternatives to describe a random opponent:

• Random walk (MRW ) - each particle xj,t follows control action qj,t which

changes with probability pchange, where qj,t is sampled uniformly from the

set of all possible control actions.

• Persistent random walk (MPRW ) - same as MRW , except action qj,t is selected

by rotating particle xj,t’s previous control action qj,t−k by some angle ψX sam-

pled from a Gaussian distribution with standard deviation σchange.

The primary difference between these models is the rate of dispersion and

shape of the paths they produce. Particles using MRW disperse more slowly and
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exhibit paths resembling Brownian motion. Particles using MPRW disperse more

quickly and have longer periods of stable movement. Decreasing the values of pchange

or σchange results in more linear paths, since control actions will not change as

frequently or significantly. Example paths for these two models are exhibited in

Fig. 3.1 along with the resulting particle distribution.

To prevent particles from getting stuck on walls, both MRW and MPRW will

only select control actions that face away from obstacles. If a particle’s current action

would result in a collision, the control action is resampled immediately, rather than

waiting for a collision to occur. Otherwise, control actions are sampled randomly at

each time step with probability pchange.

3.1.3 Weighted Potential Fields

One alternative to a purely random opponent model is to guide the motion

of particles using a potential field. Potential fields specify a gradient over the state

space such that goal locations can be reached via local hill-climbing. Potential fields

have previously appeared in robotics literature as an efficient way to perform motion

planning and obstacle avoidance [50]. They are particularly useful for particle sys-

tems, since a single potential field can guide the motion of every particle, incurring

little additional cost as the number of particles increases.

If F is a potential field, then the potential at state xj,t is given by F (xj,t). This

potential value can be thought of as the evader’s preference for state xj,t. When

applied to a particle filter, particles are locally attracted to states that have high
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potential and repelled from states with low potential. Since hill-climbing is used,

particles may become concentrated in areas that represent local maxima.

A particle’s control action qj,t given F is determined by finding the gradient

vector ∇F (xj,t) that maximizes potential at xj,t. To add noise to the system, action

qj,t is subsequently rotated some randomly selected angle ψX . As with MPRW , the

value of angle ψX is selected from a Gaussian distribution with standard deviation

of σchange. Each particle’s control action is resampled with probability pchange per

time step. This results in a set of particles X which closely follow the gradient of

the potential field, but with enough variation to generate multiple hypotheses.

Using potential fields, it is possible to generate matching opponent models for

the SEP and SEV evader strategies introduced in Sec. 2.5.2.

• Evade pursuer (MEP ) - each particle xj,t follows a control action qj,t that

maximizes its shortest-path distance to the nearest pursuer.

• Evade visibility (MEV ) - each particle xj,t follows a control action qj,t that

maximizes it shortest-path distance to the set of locations visible to pursuers.

Potential fields for MEV and MEP can be generated in O(|Lgrid|) time using

the Fast-Marching Method, as mentioned in Sec. 2.5.2. An example of the potential

field for MEV is shown in Fig. 3.2 along with the resulting particle distribution. The

behaviors of both MEV and MEP are similar when the evader is far away from the

pursuers, since the shortest path to the nearest pursuer and shortest path to the

pursuers’ visible region are approximately the same. Noise is added to both of these

models by specifying some σchange > 0.
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Figure 3.2: Example particle system (left) and potential field (right) when using
the evade visibility (MEV ) opponent model. Particles flow along the gradient in the
direction of increasing potential, denoted by brighter colors.

Generating an opponent model for SRL is not as simple as generating models

for SEP or SEV , since a potential field for SRL cannot be efficiently computed given

only a description of the strategy. However, in the following section, we demonstrate

how the motion preferences of more complicated strategies such as SRL can be

encoded in potential fields generated from historical training data.

3.1.4 Learning from Example Games

The opponent models described in the previous sections assume that either no

information about the evader’s strategy is known, or that the evader’s strategy can

be defined explicitly in terms of a potential field. However, there may be cases where

the only knowledge about an evader’s strategy comes through prior observations of

the evader’s movement. This section demonstrates how the motion preferences of

such an evader can be encoded in an opponent model by generating approximate

potential fields from historical training data.
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Figure 3.3: Location pairs drawn from historical data (left) and corresponding po-
tential field (right) using k-nearest estimation (k = 10). Historical data is sampled
from 100 games between one pursuer and one evader. Locations of the pursuer are
shown in white, while locations of the evader are shown in cyan.

The conditional potential field FH(xi|Yj) defines the potential at state xi given

input vector Yj = {yj,1, yj,2, . . . yj,n}, where each yj,k ∈ Yj represents the current

location of pursuer ak. The purpose of FH is to encode the motion preference of the

evader as a function of the pursuers’ locations. FH(xi|Yj) is computed using a set of

historical data H, where each location pair 〈x, Y 〉 ∈ H is sampled from interaction

traces of previous games.

Any historical data set is unlikely to exhaustively cover the state space, so

it is necessary to generalize from the data that is available. When computing FH ,

the potential at any given state is defined by performing a weighted average over

the historically observed states. If H = {〈x0, Y0〉, 〈x1, Y1〉, . . . 〈xm, Ym〉} is the set of

historical location pairs, then potential FH(xi|Yj) is given by the formula

FH(xi|Yj) =

∑m
k=1 e

−λxd(xi,xk)e−λyD(Yj ,Yk)∑m
k=1 e

−λyD(Yj ,Yk)
(3.3)
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where λx, λy ∈ [0,∞] are exponential decay constants, d(xi, xk) is the shortest-path

distance between states xi and xk, and D(Yj, Yk) is an equivalent shortest-path

distance metric for the paired state vectors Yj and Yk, defined by

D(Yi, Yj) =
√∑n

k=1 d(yi,k, yj,k)
2. (3.4)

The intuition behind Eqn. 3.3 is that samples in H where the pursuers are

located nearer to the state vector Yj should have greater influence on the resulting

potential field. The term e−λyD(Yj ,Yk) can be thought of as the weight for the kth

sample in H, such that FH(xi|Yj) computes a weighted average of e−λxd(xi,xk) over

all samples k. The reason for incorporating exponential decay into the formula is

to impose a falloff as the actual state diverges from the sample data.

Due to the exponential falloff, samples in H that are sufficiently far away from

state vector Yj have very little influence on the value of FH(xi|Yj). For this reason,

it is reasonable to restrict the computation of FH to only samples that are the k-

nearest neighbors of Yj. The result of this is depicted in Fig. 3.3, where the potential

field is generated from only the ten nearest samples.

The learned preference opponent model (MLP ) is generated by using potential

field FH to guide a particle filter. This model is depicted in Fig. 3.4 for a single

pursuer and evader. The historical preferences of the evader are encoded in FH ,

while the feasibility of individual hypotheses is determined by the flow of particles.

Together they form an estimate of the probability density over the evader’s possible

locations. The viability of this model is evaluated in Sec. 3.3.
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Figure 3.4: Example particle system (left) and learned potential field (right) when
using the learned preference (MLP ) opponent model in an example game between
one pursuer and one evader. Particles flow along the gradient in the direction of
increasing potential, denoted by brighter colors.

3.2 Probabilistic Lookahead Heuristic

Now that we have a set of opponent models for hypothesizing about the

evader’s location, it is necessary to describe how those opponent models can be

integrated into a planning heuristic for the pursuers. This section introduces prob-

abilistic lookahead (PLA), a control action selection heuristic for the pursuer team

which relies on the particle filtering methods described in this chapter.

PLA’s evaluation function Upla can be used to select control actions in a manner

similar to Ulel as described in Sec. 2.3.2. The key difference between Ulel and Upla

is that instead of estimating the future size of contamination region, Upla estimates

the probability of observing the future location of each particle in Xt. The formula

for Upla is given by,

Upla(Xt, Ot) =
d∑

k=0

γkpla

∑n
i=0 P (xi,t+k|Ot)obs(xi,t+k, k, Ot)∑n

i=0 P (xi,t+k|Ot)
(3.5)
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where Xt is the particle system representing locations of the evader, P (xi,t+k|Ot)

is the estimated probability of future state xi,t+k given observation history Ot, and

γpla ∈ [0, 1] is an exponential discount factor. The function obs(x, k,Ot) simply

returns 1 if state x can be observed by time t+ k, and 0 otherwise,

obs(x, k,Ot) = 1 if x ∈ V +(Ot, k), or 0 otherwise. (3.6)

At each time step, Upla identifies which particles can feasibly be observed,

and computes a weighted sum of their probabilities. Pursuers should select control

actions maximize this value. The future location of each particle xi,t+d can be

computed by forward simulating the particle system using some opponent model M .

The discount factor γpla biases the heuristic towards the more immediate future.

When Upla is used to select control actions, it will direct pursuers towards

nearby locations that can observe the particles in X. We demonstrate empirically

in Sec. 3.3 that this is an effective way to recover visibility on the evader when the

contamination region is large. However, the computation of Upla completely disre-

gards the boundaries of the contamination region, so it considerably less effective at

keeping the contamination region small in the first place.

In our implementation, pursuers will use Upla only when the size of the con-

tamination region exceeds some critical threshold τrecover. In all other cases, the

pursuers fall back on Ulel, which complements the features of Upla. In particular,

Ulel is good at keeping the contamination region small, but ineffective once the re-

gion becomes sufficiently large. We show empirically how the selection of τrecover
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affects the performance of the pursuer team in Sec. 3.3.

3.2.1 Complexity Analysis

The time complexity of updating particle system X is O(t|X|) over t time

steps. This is follows from the observation that updating a single particle’s location

is constant with regards to the size of the environment or any other variables. The

re-sampling of particles can also be performed in time O(|X|) when needed using

the re-sampling algorithm described in [51].

The shortest path distance d(yi, yj) from any state yi to all states yj ∈ Lgrid can

be computed in time O(|Lgrid|) using the Fast-Marching Method (FMM) mentioned

in Sec. 2.4. To compute potential field FH as defined in Eqn. 3.3, the FMM must be

performed once for each sample and pursuer, which takes time O(m|Lgrid|+n|Lgrid|),

where m is the number of samples and n is the number of pursuers. The complexity

is reduced with respect to m if only the k-nearest samples are used. Evaluating only

the k-nearest can be done in time O(k|Lgrid|+n|Lgrid|+m log k), where O(m log k)

is the complexity of identifying the minimum k values in a set of size m.

Computing eval(x, Y ) for all x ∈ Lgrid can be done in time O(n|Lgrid|) using

the caching method described in Sec. 2.4.3. Thus, the complexity using Upla to

evaluate a single control action is O(t|X|+n|Lgrid|+k|Lgrid|+m log k). In practice,

the work performed by the first evaluation can be reused in subsequent evaluations,

resulting in a lower amortized time.
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3.3 Experimental Results

To evaluate the performance of the PLA heuristic and each of the opponent

models, we performed a series of experiments using the randomly generated domains

that were introduced in Chapter 2. We also compared our algorithm with the work

of LaValle et al. [2, 7] in two case studies on hand-selected domains. The primary

result of this analysis was that the PLA heuristic achieved better performance than

the other approaches that were evaluated, independent of the choice of opponent

model. Between the different models, informed models such as MLP , MEV and MEP

performed better than the uninformed models such as MRW and MPRW .

The experimental setup for these experiments closely resembles the Chapter 2

setup described in Sec. 2.5.1. For each experiment, 2000 randomly generated games

were simulated between two pursuers and one evader. At the beginning of each

trial, the evader was either placed at the boundary of the pursuers’ visible area or,

in the case of recovery time experiments, placed at a random location in Lfree that

was not visible to pursuers. Each trial was performed using one of the three evader

strategies introduced in Sec. 2.5.2.

Except where otherwise specified, the parameters used by the PLA heuristic

were as follows: particle change probability pchange = 0.2, particle change deviation

σchange = 45◦, exponential decay constants λx and λy = 0.05, discount factor γpla =

0.95, recovery threshold τrecover =
|Lfree|

10
, particle set size |X| = 1000, historical data

set size |H| = 2000, and nearest neighbor sample size k = 10. These values were

hand-selected based on what appeared to offer the best recovery time for the team of
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pursuers. Figures depicting the performance for different values of these parameters

are shown in Sec. 3.3.3.

To gather the set of historical data H for the learned preference opponent

model, 100 games with a duration of 200 time steps were performed prior to each of

the experiments. This data collection was performed individually for each domain

and evader strategy. We assumed that the pursuer was aware which evader it would

be facing in advance. The pursuer strategy used while collecting historical data was

PLA with the MRW opponent model. H was sampled uniformly from the set of

states where the evader was not visible. This was done to ensure that the sample

data corresponded only to situations where the opponent model would be used.

3.3.1 Performance Comparison

The first set of experiments were designed to compare the performance of pur-

suer teams using the LEL and PLA heuristics with different opponent models in ran-

domly generated domains. The opponent models for the PLA heuristic introduced

in this chapter include: random walk (MRW ), persistent random walk (MPRW ),

evade pursuer (MEP ), evade visibility (MEV ), and learned preference (MLP ). Two

of these models, MEP and MEV , correspond with the SEP and SEV evader strategies

introduced in Sec. 2.5.2. The learned model, MLP , was tuned for each evader using

the technique described in Sec. 3.3.

For these experiments, we simulated games where the initial location of the

evader was known. As in Chapter 2, the evader was placed at the boundary of the
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(d) Contamination region size vs. SEV evader
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(f) Contamination region size vs. SEP evader

Figure 3.5: Comparison of LEL and PLA heuristics with different opponent models
against the SRL, SEV and SEP evader strategies: (left) percentage of time the evader
was visible, higher is better (right) average size of the contamination region, lower
is better. The box plots show the median, upper and lower quartile. The whiskers
show the upper and lower decile. The mean value is represented by a square.
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pursuers’ visible area, and the speed of the evader was set to 10% faster than the

pursuers. This ensured that the evader would eventually escape detection. Simula-

tions were run for 1000 time steps and the average size of the contamination region

and percentage of time the evader was visible were recorded.

The results in Fig. 3.5 show that the PLA heuristic outperformed the LEL

heuristic against all three evader strategies. This result held true even when PLA

was given a random model, such as MRW and MPRW , which required no prior

knowledge about the evader’s strategy. Between the different opponent models, the

more informed models did better: MEP and MEV did best against the matching

SEP and SEV evader strategies, while MLP performed best against the SRL evader

strategy. Even against the SEP and SEV evaders strategies, MLP came in third, not

far from the performance of the matching models.

The learned model, MLP , was only outperformed in cases where an exact model

of the evader’s strategy such as MEP or MEV was provided. The reason the MEP

and MEV models both do well against SEP and SEV is that the behavior generated

by those strategies is very similar; at far distances from the pursuers, the shortest

path to the nearest pursuer and shortest path to the pursuers’ visible region are

approximately the same. Against the SRL strategy, however, MEP and MEV were

not much better than the random models.

One explanation for why the PLA heuristic performs better than the LEL

heuristic, even using the random opponent models, is that the PLA heuristic at

a minimum induces the pursuers to explore the environment. Using the random

models, the likelihood that an evader is located in various parts of the environment
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is approximated by the “window of opportunity” available for particles to travel

there. If an area has recently been explored by the pursuers, it will not be populated

by as many particles, and the pursuers will explore other parts of the environment

until that area repopulates. The LEL heuristic on the other hand is comparatively

over-conservative, treating all locations as equally probable, leading to the “stalling”

behavior discussed in Sec. 2.5.3.

3.3.2 Recovery Time Comparison

The second set of experiments were designed to evaluate the recovery time

associated with each opponent model. For these experiments, we simulated games

where the initial location of the evader was not known. In contrast to the previ-

ous experiments, the evader was initially placed at a random location outside the

pursuers’ visible area. The contamination region, representing the pursuers’ belief

about the evader, was initialized to all locations not initially visible to the pursuers.

The particle set X was initialized to a random set of locations sampled uniformly

from this region. Each simulation was run for 5000 time steps, and the time at

which the pursuer team regained visibility of the evader was recorded.

The results in Fig. 3.6 show that PLA using the informed opponent models

performed better than PLA using the random opponent models. The MEP and MEV

models had the shortest recovery times against the SEP and SEV evader strategies,

while the MLP model had the shortest recovery time against the SRL evader strategy.

Interestingly, the MEP and MEV models did worse than the random models against
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Figure 3.6: Comparison of PLA heuristic with different opponent models against
the SRL, SEV and SEP evader strategies: (left) average amount of time it takes the
pursuers to recover an evader that is initially hidden, lower is better, (right) the
same data represented as a cumulative measurement over time.
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the SRL evader strategy, suggesting there is a penalty associated with using the

incorrect model. An explanation for the differences in performance between each

of these models follows the same justification provided in Sec. 3.3.1. The informed

models do better because they more effectively estimate the probability distribution

over where the evader is located.

3.3.3 Parameters for Learned Model

The following set of experiments were designed to compare the performance of

the PLA heuristic using the MLP opponent model for a variety of different parameter

values. The strategy used by the evader in these experiments was SRL, the most

challenging evader strategy from Sec. 3.3.1. The parameters that were varied include

particle deviation σchange, particle set size |X|, historical data set size |H|, nearest

neighbor sample size k, and recovery threshold τrecover. For each experiment, except

the recovery threshold experiment, we simulated games where the initial location of

the evader was not known. Each simulation was run for 5000 time steps, and the

time at which the pursuer team recovered visibility of the evader was recorded.

The results in Fig. 3.7a show that the fastest recovery times are achieved when

the value σchange lies between 40 and 100 degrees. Recall that σchange is the standard

deviation of the Gaussian from which ψX is sampled, where ψX is the random angle

by which particles’ control actions are rotated. There is an intuitive explanation

for why this “sweet spot” exists. Very high values of σchange negate the benefit of

using the learned potential field at all; particles will move entirely at random, so
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Figure 3.7: (a) Average recovery time for team of two pursuers as the particle
deviation σchange is varied. (b) Average recovery time for team of two pursuers as
the particle set size |X| is varied. Lower values indicate better performance.

it is equivalent to just using MRW . On the other hand, very low values of σchange

create a less diverse set of hypotheses about the evader, poorly generalizing from

the training set and resulting in overfitting.

The results in Figs. 3.7b, 3.8a, and 3.8b show that increasing the sizes of

the particle set X, historical data set H or nearest neighbor sample size k are all

effective in lowering the recovery time. However, in all three cases, there is a point

of diminishing returns after which the additional benefit becomes insignificant. The

most modest results are obtained by increasing the nearest neighbor sample size k,

where benefits become insignificant after k = 5.

For the recovery threshold experiment, we simulated games where the initial

location of the evader was known, as was done in Sec. 3.3.1. Each simulation was run

for 1000 time steps, and the percentage of time the evader fell within the pursuers’

visible area was recorded. Recall that the recovery threshold value τrecover determines

how large the contamination region can become before the PLA heuristic will start
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Figure 3.8: (a) Average recovery time for team of two pursuers as the historical data
set size |H| is varied. (b) Average recovery time for team of two pursuers as the
nearest neighbor sample size k is varied. Lower values indicate better performance.
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Figure 3.9: Average amount of time the evader was visible in randomly generated
games with two pursuers as the recovery threshold τrecover is varied. Higher values
indicate better performance.

to use Upla instead of Ulel for control action selection.

The results in Fig. 3.9 show that the selection of τrecover can have a significant

effect on the performance of the pursuers, but only at extreme values. The best

results are obtained when τrecover is roughly between 10% and 75% of the total area

of the environment. The heuristic starts to do poorly when τrecover is lower than 10%

of total area, a consequence of Upla being used almost exclusively in this case, even

though Ulel is better than Upla at keeping the contamination region small. When
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τrecover is greater than 75% of the total area, Upla is rarely used at all, and the

performance becomes equivalent to just using LEL. There is very little difference

between 10% and 75% because the contamination region is usually either very large

or very small, so any value within that range has roughly the same effect.

3.3.4 Case Studies

In this section, we evaluate the performance of the PLA heuristic for two

problem domains selected from the work of LaValle et al. [2, 7]. We compare the

recovery time performance of PLA with the performance of the algorithm introduced

by LaValle et al. in that same work. For the purposes of convenience, we will refer

to this algorithm as the LV algorithm.

Recall from Sec. 2.1 that the LV algorithm was designed exclusively for do-

mains where the initial location of the evader is unknown. The LV algorithm

works by decomposing the environment into convex subregions and performing an

exponential-time search over the problem’s information-space. The LV algorithm is

complete in the sense that it is guaranteed to find a path that detects the evader,

assuming such a path exists when the speed of the evader is infinite.

The LV algorithm’s success or failure is measured by its ability to completely

clear the contamination region. For this reason, LaValle et al. did not specify an

actual evader strategy to test against. In these experiments, we use the SRL evader

strategy specified in Sec. 2.5.2. Similar results are obtained using either of the other

two strategies, but the variance between different approaches is smaller due to the
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Figure 3.10: Example path for a single pursuer using the PLA heuristic with MEV

opponent model in example domain 1. The shaded region represents the area visible
to the pursuer. Images are ordered chronologically from left to right.

Figure 3.11: Example paths for two pursuers using the PLA heuristic with MEV

opponent model in example domain 2. The shaded region represents the area visible
to the pursuer. Images are ordered chronologically from left to right.

small size of the domains.

The LV algorithm places restrictions on the type of domains that can be solved.

In particular, any domain that has a topology with h holes requires Ω(log h) or more

pursuers to clear the contamination region [7]. The LV algorithm also requires that

the visibility range of the pursuers be infinite, which differs from our experiments in

Secs. 3.3.1 and 3.3.3. We have satisfied both of these restrictions for our experiments

in this section. The setup for these experiments is the same as the recovery time

experiments in Sec. 3.3.2, except the visibility range is infinite, and we use two

domains for which the LV algorithm is known to have a solution.

Example domain 1, shown in Fig. 3.10, consists of a set of nine interconnected

rooms which can be successfully cleared by a single pursuer using the LV algorithm.
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Figure 3.12: (a) Average recovery time for a single pursuer using the LV and PLA
strategies to search for an SRL evader in example domain 1. (b) The same data
represented as a cumulative measurement over time.

The results in Fig. 3.12 show that the fastest strategy in this domain was PLA

using the MLP opponent model, with a mean recovery time of 93 time steps. The

slowest was the LV algorithm with a mean recovery time of 153 time steps. There

was very little difference between the MLP and MRW models in this scenario, pos-

sibly attributable to the small size of the domain. Of the other models, the worst

performing was MEP , consistent with the results in Sec. 3.3.2 indicating that MEP

is a poor model of the SRL strategy.

Example domain 2, shown in Fig. 3.11, consists of a set of irregular pathways

with random obstacles positioned throughout. This domain requires two pursuers

to successfully clear using the LV algorithm. The results in Fig. 3.13 show that

the fastest strategy was again PLA using the MLP opponent model, with a mean

recovery time of 207 time steps. The slowest was the LV algorithm with a mean

recovery time of 345 time steps.

In both domains, the difference in performance between the LV algorithm
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Figure 3.13: (a) Average recovery time for a team of two pursuers using the LV and
PLA strategies to search for an SRL evader in example domain 2. (b) The same
data represented as a cumulative measurement over time.

and the PLA heuristic can be attributed to the comparatively conservative nature

of the paths generated by the LV algorithm. The paths are carefully chosen to

avoid recontamination and do not exploit the probabilistic model of the evader. In

contrast, the PLA heuristic relies exclusively on the probabilistic model and is not

concerned with recontamination of the environment.

Although PLA achieved the fastest recovery time in these two domains, this

result is specific to the opponent strategy used. Given a theoretically worst-case

outcome, such as the one assumed by LaValle et al., there is no guarantee that PLA

would ever recover visibility on the evader. The only way to provide that guarantee

is by completely clearing the contamination region, something the LV algorithm is

specifically designed to do. For domains where this goal is explicitly desired, the LV

algorithm is a better choice than the LEL heuristic.

The primary advantage of PLA is its applicability to domains where the LV

algorithm cannot provide a solution. In particular, LV is not applicable to the vast
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majority of the randomly generated domains used in Secs. 3.3.1 and 3.3.3, since

the topology of those domains prohibits the LV algorithm from finding paths that

can completely eliminate the contamination region. In contrast, the PLA heuristic

is applicable to those domains because it assumes that the opponent’s behavior

can be modeled probabilistically. In addition, PLA places very few restrictions on

the sensor model used by the pursuers, while LV requires that the sensor range

be infinite. This flexibility, combined with the comparatively low computational

complexity of PLA, suggest that the PLA heuristic may be a better choice than the

LV algorithm for a number of scenarios.

The recovery time of the LV algorithm could be improved by incorporating

probabilistic information about the evader, an extension that was explored by Stiffler

and O’Kane [6]. However, the model in that work relied solely on prior probabilities,

and the authors did not specify how to obtain the model. In future research, it

might be worth investigating how to combine the MLP opponent model with the

LV algorithm and see how the recovery times compare with PLA. However, the LV

algorithm would still be limited in the domains it can be applied.

3.4 Discussion

This chapter introduced the probabilistic lookahead (PLA) heuristic, a control

action selection heuristic for the pursuer team that evaluates control actions by

forward simulating the motion of the evader using a probabilistic opponent model.

Four opponent models were introduced, including two random opponent models, and
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a learned preference (MLP ) opponent model trained using historical data about the

evader’s location. Experimental results showed that using these opponent models

PLA is effective at recovering visibility of evader in situations of high uncertainty,

addressing a significant weakness of the LEL heuristic from Chapter 2. Results

also demonstrated that PLA is able to recover the evader more quickly than the

algorithm by LaValle et al. [7] in two case studies on example domains.

Across all of the experiments, the best performance was obtained when the

PLA heuristic was used in conjunction with an informed opponent model. The

random walk opponent model provided adequate performance, outperforming LEL

and the algorithm by LaValle et al. in the example domains. In situations where

historical data about the opponent’s location is not available, the random models

may serve as an effective substitute for the learned preference model.

3.4.1 Generalizing PLA

The use of particle filters for modeling purposes is not new [45, 52], however,

the primary novelty of PLA is that opponent models can be encoded as potential

fields generated from historical observations. The relative simplicity with which

this model can be generated leads to a variety of potential applications in both

cooperative and adversarial situations.

Although the configuration space in this chapter was restricted to R2, there is

no reason why this approach is limited to two-dimensional domains. The potential

fields generated in Sec 3.1.4 are implemented on top of the Fast Marching Method
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which, as discussed earlier, can be extended into higher dimensions. Particles can

also be extended to higher dimensions, although more particles are required as the

dimensionality increases [45].

The primary limitation of potential fields when modeling an agent’s move-

ment are their expressibility. With the potential field model, particles are attracted

to local minima only, so a single potential field cannot easily represent opposing

hypothesis about where a local set of particles will travel. A possible extension

of this approach would be to split the model across multiple potential fields when

dramatically opposing hypotheses are identified in the learning phase.

3.4.2 Deploying in a Real-World Setting

The efficient running time and reasonable performance of the LEL and PLA

heuristics are encouraging signs that this approach may be feasible for real-world

application. However, a number of additional challenges must be overcome before

deploying on a robotic platform is realistically feasible. Several of the most impor-

tant challenges are discussed below.

Imperfect Localization: While a variety of robot localization techniques

exist in literature, most noticeably FastSLAM and its variants [47,48], the output of

these algorithms is typically a probabilistic weighting over candidate locations. The

most straight-forward way to incorporate probabilistic localization into the PLA

heuristic is to evaluate each candidate location separately, then select a control

action which maximizes weighted average of utility across all candidates. However,
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this requires k-times the computational effort in scenarios with k-candidates. The

PLA heuristic can be computed quickly enough that this technique may be feasible,

but the tradeoff between number of candidates evaluated and performance should

be evaluated experimentally in future work.

Non-Holonomic Motion Constraints: Many robotic platforms are subject

to differential motion constraints, such as limited acceleration or turning radius.

The Fast Marching Method is designed primarily with the assumption that motion

is holonomic, so an alternative method must be chosen. One possible approach is to

predict the set of future states for the agents using particle filters, as is done for the

target boat in Ch. 4. Another alternative are Fast Marching Trees, a relatively new

technique for modeling state propagation over more complex configuration spaces

[43]. An experimental evaluation the tradeoff of different techniques should be

performed as part of future research.

Noisy Sensor Data: In both Ch. 2 and Ch. 3 the sensor region of the pursuers

is presented as a solid polygonal boundary. In the real-world, sensor readings are

noisy, and the ability of pursuers to detect an evader within a particular region

should be characterized probabilistically. Fortunately, particle systems provide us

with a straight-forward method of modeling this situation: rather than completely

discarding a hypothesis when it intersects the sensor region, the probability can

simply be discounted. How much the hypothesis should be discounted will depend on

the capabilities of the sensor, which needs to be modeled before being incorporated

into the algorithm.

Incomplete Map: One major assumption of the work in this dissertation is
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that an accurate map of the obstacles is provided in advance. How the algorithm

should model locations and obstacles that have not yet been observed is perhaps

the largest open question regarding how the algorithm can be applied in the real-

world. Even for obstacles that have been observed, the accuracy of the map is

subject to the sensor limitations of the robot. One approach may be to model the

unobserved portions of the environment as if they have perfect connectivity: i.e.,

if no obstacle has been observed, assume that none exists. It is unlikely that this

approach will yield optimal performance, but it is a reasonable starting point until

more sophisticated prediction methods are developed. How the algorithm performs

when there are inaccuracies in the map should be evaluated empirically as part of

future work.

3.4.3 Limitations and Future Work

One of the assumptions of the learned preference opponent model is that the

behavior of the evader is conditioned on some state vector Y representing the current

location of the pursuers. This assumption was made because the strategy used by

the actual opponent in our experiments was conditioned on that same information.

In practice, the evader may not have access to the current location of the pursuers,

and a different input vector may be appropriate. For example, the evader strategy

may be conditioned on the most recently observed locations of the pursuers, or some

other attribute such as time. It should be possible to generalize the model to handle

arbitrary input vectors, which is a subject for future research.
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Another assumption of the learned preference opponent model is that historical

data is specific to individual environments. The model does nothing to generalize

observations from past environments to new environments. This assumption must

be relaxed for the approach to be used in environments that have not previously

been encountered. One possible approach is to classify historical observations of the

evader in terms of abstract features of the environment rather than exact locations.

Due to the success of purely random opponent models, this approach may work even

if the information gleaned about the evader is minimal. However, the exact method

for doing this and its efficacy are a subject for future research.
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Chapter 4: Target Following with Unmanned Boats

This chapter introduces a motion goal selection algorithm for pursuit-evasion

games between two marine vessels subject to differential motion constraints. The

pursuer vessel, which may be an unmanned sea surface vehicle (USV), must closely

follow the evader while safely navigating an obstacle field. Example applications of

this problem include naval escorts through a crowded harbor, wildlife monitoring in

marine protected areas, or pursuing criminals through shallow coastal regions.

The motion goal selection heuristic introduced in this chapter utilizes an inde-

pendent, black box path planning algorithm to identify dynamically feasible paths

and calculate their travel cost. The heuristic performs Monte-Carlo sampling over a

probabilistic opponent model to select candidate motion goals, which are then eval-

uated using a cost function that incorporates the travel costs computed by the path

planner. Experimental results show that motion goals selected using this technique

reduce the pursuer’s travel distance and increase the percentage of time the pursuer

is within range of the evader when compared to simpler approaches that use the

current location of the evader as a motion goal.

While the previous two chapters demonstrated how problem relaxation and

Monte Carlo sampling can be used to select control actions in pursuit-evasion games,
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there are circumstances where it may be preferable for a planner to generate high-

level motion goals independently from low-level control actions. For example, the

control system for a USV may calculate control actions using a control-loop feedback

mechanism, such as a PID controller [53]. Additionally, separating motion goal

selection from control action selection allows for intermediary planning phases that

handle local obstacle avoidance or process dynamically feasible paths [54,55]. This is

particularly useful when calculating a dynamically feasible path requires simulating

complicated motion dynamics. It is with that objective in mind that we develop the

algorithm introduced in this chapter.

4.1 Background

This chapter builds upon the work of Švec et al. which introduces a trajectory

planning algorithm able to compute dynamically feasible paths for USVs in marine

environments with obstacles [53,55,56]. The planner uses a lattice-based discretiza-

tion of the USVs’ configuration space to perform a A* search over the space of

feasible trajectories. The planner also independently computes the desired velocity

of the USV to satisfy the specified arrival time for a motion goal. This algorithm is

utilized by our motion goal selection heuristic to determine the travel cost to reach

individual candidate motion goals.

A survey of existing state-of-the-art approaches for target following is provided

by Bibuli et al. [57]. This includes multi-vehicle motion control. In addition, the

paper presents experimental validation of USV following a leader vessel by observing
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its path and precisely executing it using a path-following algorithm.

High-speed straight-line tracking capability was developed in [58] which allows

underactuated USVs to follow a moving target. Based on the guidance system

previously utilized for interceptor missiles, the motion control system is composed of

constant bearing guidance and velocity control schema that allows high and precise

maneuverability.

A variety of advanced maneuvers for searching and tracking a target, docking,

reactive collision avoidance, U-turn, course tracking, and waypoint following are

implemented on the MESSIN system [59]. The system is capable of handling failures

of its components through various emergency programs. In addition, the integrated

path planning utilizes waypoints and motion primitives represented as circular arcs.

In order to handle motion uncertainties due to ocean disturbances, a dynamic

surface control and adaptive formation controller represented as a neural network

was developed in [60]. Similarly, a formation control algorithm for following a master

vessel while considering uncertain dynamics of the vessel can be found in [61].

4.2 Problem Formulation

In this chapter, we specify a pursuit-evasion scenario between a single un-

manned sea-surface vehicle (USV) and a target boat which may or may not be eva-

sive. Unlike the visibility-based pursuit-evasion formalism introduced previously, we

are not concerned with maintaining visibility on the target. Rather, we assume that

the USV is continuously aware of the target boat’s location, and that its objective
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is to position itself behind the target while safely avoiding obstacles.

The formal definition of the problem includes:

(i.) a vehicle state space X ⊆ R3 × S, where each state x = 〈l, ψ, v〉 defines the

location l, heading ψ, and surge speed v of a single boat or USV,

(ii.) a control action space Q(x) ∈ R2 for each x ∈ X, where each control action

q = 〈∆v,∆ψ〉 defines a change in surge speed ∆v and heading ∆ψ,

(iii.) an opponent model, MB(xt+k|xt, Ot) defining the probability that the target

boat will transition from state xt to xt+k given observation history Ot,

(iv.) an obstacle field Ω, where collision with any obstacle ω ∈ Ω results in an

immediate failure for the USV

(v.) a minimum and maximum desired radius rmin and rmax defining a circular

proximity region XP around the target

The performance of the USV is measured in terms of how consistently it stays

within the desired range of the target, as well as its total energy expenditure in

terms of distance traveled. The ideal pursuit strategy should maximize the time

that the USV is within proximity region XP and minimize the travel distance.

For the motion of boats and USVs, we use a simple steering model where

control action q = 〈∆v,∆ψ〉 determines the change in surge speed v and heading ψ,

while ∆lx = v cos(ψ) and ∆ly = v sin(ψ) determine the change in the coordinates of

location l = 〈lx, ly〉. To estimate the movement of the USV after time step ∆t, we
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use the formula

x′ = x+ ∆x(q)∆t (4.1)

where ∆x(q) = 〈∆l,∆ψ,∆v〉 represents the change in vehicle state x given control

action q. The set of control actions Q(x) = A(x) × Θ(x) is subject to physical

motion constraints, where

A(x) = {∆v : amin(x) ≤ ∆v ≤ amax(x)} (4.2)

Θ(x) = {∆ψ : θmin(x) ≤ ∆ψ ≤ θmax(x)} (4.3)

define the minimum and maximum change in surge speed ∆v and turning angle ∆ψ

given vehicle state x. We assume that the maximum turning radius decreases as

the surge speed v increases. Each boat has a maximum surge speed, vmax, which

it cannot accelerate past. We also assume that boats cannot travel in reverse, so

amin(x) is zero when the surge speed v is zero.

We assume that the USV has access to an evaluation function eval(x) which

returns the travel time for the USV to reach state x from its current state xu. This

function is computed using the lattice-based A* pathfinding algorithm originally

described by Švec et al. [55]. If state x is unreachable, or would place the USV in

a region of inevitable collision, then eval(x) will return infinite cost. The motion

goal selection algorithm described in the following section utilizes this function in

its evaluation of candidate motion goals.
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4.3 Motion Goal Prediction

To maintain a suitable distance between the USV and the target boat, we in-

troduce heuristic motion goal prediction algorithm designed to calculate the desired

motion goal xg and arrival time tg for the USV. The algorithm works by estimat-

ing the future poses of the target boat based on probabilistic opponent model MB

and then evaluating several candidate motion goals for the USV. Since the motion

goal must be computed relatively quickly, we search for a sub-optimal solution by

combining Monte-Carlo sampling and heuristic evaluation techniques. The process

is described below and summarized in Alg. 3.

Opponent model MB defines state transition probabilities over the set of target

poses xi ∈ X. To explore the future states of the target, we sample n random paths

fj ∈ F starting from the target’s current pose and forward-projecting the target’s

actions up to some finite time horizon td. During the sampling process, each state

transition is selected with probability MB(xt+k|xt, Ot). Sampled paths that lead to

a collision with an obstacle are discarded from F .

By recording the poses reached by the target boat along each sampled path,

we can estimate the probability Pb,i[lj] that the target will be at position lj at time ti

by counting the frequency of occurrence. To do this, we first discretize the problem

space into a set of locations Lgrid as was done in Chapter 2. We then apply a two-

dimensional Gaussian kernel to smooth out the probability distribution represented

by Pb,i, as illustrated in Fig. 4.1a. Similarly, we compute ψb,i(lj), which is the average

heading at lj across all samples at time ti.
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Algorithm 3 ComputeMotionGoal()

Require: The current poses xb and xu of the target boat and USV, a probabilistic
model of the target boat MB, and a map of obstacles

Ensure: A desired motion goal xg and arrival time tg.
1: Let F be a set of n randomly generated paths for the target boat, where each

path fi ∈ F begins at state xb and time t0 and continues until time td, such that
each state transition is sampled with probability MB(xt+k|xt, Ot).

2: for each time point ti ∈ {t1, t2, . . . td} do
3: for each path fj ∈ F do
4: Increment Pb,i[fj(ti)] by 1/n, where fj(ti) is the location of path fj at ti.
5: end for
6: Smooth Pb,i by applying an m×m Gaussian kernel.
7: Let l∗i be the location that maximizes Pb,i[l

∗
i ]

8: Let ψ∗i be the mean heading at l∗i across all fj ∈ F at time ti.
9: Let xg,i = 〈lj, ψj〉 ∈ Xg be a candidate motion goal for the USV at ti minimizes

the distance to the projected state, ||l∗i − lj||+ α||ψ∗i − ψj||
10: end for
11: Let x∗g equal the candidate motion goal xg,i ∈ Xg that minimizes the cost func-

tion cost(xg)
12: Compute a desired arrival time tg(x

∗
g) such that the USV will arrive at x∗g shortly

after the target boat
13: return Motion goal x∗g and arrival time tg(x

∗
g).

For each time point ti ∈ {t0, t1, . . . td}, the most likely location of the target

boat at time ti can be estimated by the formula

l∗i = arg max
lj

Pb,i[lj], (4.4)

where l∗i is the location with the highest probability density in Pb,i after applying

the Gaussian kernel. Similarly, the most likely heading of the target boat can be

estimated by ψ∗i = ψb,i(l
∗
i ). We select the candidate motion goal xg,i = 〈li, ψi〉 that

is nearest the projected target pose 〈l∗i , ψ∗i 〉 at time ti, such that

xg,i = arg min
xg,j∈X

||l∗i − lj||+ α||ψ∗i − ψj|| (4.5)
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Figure 4.1: Motion goal prediction steps (a) Probability distributions Pb,1, Pb,2 and
Pb,3, generated by sampling future target poses at each time point. (b) Candidate
motion goals xg,1, xg,2 and xg,3, generated by selecting the most probable target pose
at each time point.

where α is a coefficient determining how heavily to weight differences in heading,

and ||ψ∗i − ψj|| is the normalized interior angle between ψ∗i and ψj.

We now have a set of candidate goals Xg, where each xg,i ∈ Xg represents the

most likely pose of the target boat at time ti. Let eval(xg,i) be the amount of time

it takes the USV to travel from its current state xu to candidate goal xg,i. This can

be computed by the A* search process described in Sec. 4.2.

We define the cost function for motion goal xg,i as,

cost(xg,i) =


γi(eval(xg,i)− ti + 1), if eval(xg,i) > ti

γi, otherwise,

(4.6)
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where eval(xg,i)− ti is the estimated difference in arrival time between the USV and

target boat, and γ ∈ [0, 1] is an exponential discount factor. The smaller that γ is,

the stronger the bias towards earlier goals. From the set of candidate motion goals

Xg, a final motion goal x∗g is selected such that the cost function is minimized,

x∗g = arg min
xg,i∈Xg

cost(xg,i). (4.7)

Given final motion goal x∗g, the desired arrival time tg is determined by,

tg(x
∗
g) =


eval(x∗g), if eval(x∗g) > tk + tlag

tk + tlag, otherwise,

(4.8)

where tlag is the desired amount of time that the USV should follow behind the

target boat. This ensures that the USV will reduce its speed when it can afford to

do so, such as when it is already close the target boat.

Due to the design of the evaluation function eval(xg), the algorithm only

considers motion goals which guarantee a collision-free path for the USV. States

which lead to an inevitable collision are given infinite cost, as described in Sec. 4.2. If

no collision-free paths are found, the USV will continue to use its currently assigned

motion goal instead. For simplicity, we may select motion goals from the sample

poses in F if the dynamics of the USV and target boat are equivalent, since the

paths in F are already guaranteed to be collision free.
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4.4 Experimental Results

To evaluate the motion goal selection algorithm described in Sec. 4.3 we con-

ducted a series of experiments using randomly generated test cases. Each test case

consisted of a set of 48 to 144 randomly placed obstacles in an environment with an

area of 20× 20 meters. We generated 200 different environments with five different

obstacle densities, for a total of 1000 different test cases. In each test case, the target

boat followed a randomly generated path sampled from the probabilistic model MB.

Example paths are shown in Figs. 4.2 and 4.3.

For comparison purposes, we also evaluated the performance of USVs which

simply chose the current state of the target boat as a motion goal. In our results, we

refer to this as the simple strategy, and refer to the motion goal selection algorithm

introduced in Sec. 4.3 as the heuristic strategy. For each simulated trial, we recorded

the amount of time the USV was within range of the target boat, and the length of

the path followed by the USV.

4.4.1 Experimental Setup

At the start of each test case, the USV is positioned within 10 m of the

target boat, and oriented at a heading facing the target. During the simulation, the

target boat follows its pre-defined path for 2 minutes, while the USV follows a path

generated by applying the control policy from Švec et al. [55] to the chosen motion

goal. The path planner used to calculate eval(x) was configured to terminate after

5000 iterations to reduce its running time. If no feasible path was found to any of
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Figure 4.2: (a) Path of a USV using the location of the target boat as a motion goal.
(b) Path of the USV using the heuristic motion goal selection algorithm introduced
in Sec. 4.3. The path generated by the heuristic strategy is shorter.
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Figure 4.3: Paths of the USV and target boat in a randomly generated scenario with
96 obstacles. The path of the USV is generated by applying the control policy from
Švec et al. [55] to motion goals selected by the algorithm introduced in Sec. 4.3.
The path of the target boat is sampled randomly from opponent model MB.
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the candidate motion goals, then the previously computed path was used.

During each of the experiments, the parameters of the algorithm were as fol-

lows: the time horizon of the forward simulation td was set to 10 seconds, the

discount factor γ was set to 0.9, and the size of |Lgrid| was set to 400 × 400. The

USV and target boat were both given a maximum surge speed of 0.4 m/s. The

value of rmin was fixed to 1 m, while rmax was varied between 2 m and 6 m. The

lengths of the target boat and USV were both 0.7 m. Finally, the lag time used by

the heuristic motion goal selection algorithm tlag was set to (rmin + rmax)/(2 · vmax),

encouraging the USV to position itself half way between rmin and rmax.

4.4.2 Performance Comparison

A series of experiments were performed across each of the test cases described

in Sec. 4.4 as the radius of rmax varied between 2 m and 6 m. The results from each

experiments are presented in Fig. 4.5, with a more detailed breakdown in Fig. 4.4

for cases where the obstacle density is fixed at 96 obstacles.

The results in Fig. 4.4 show that USVs using heuristic motion goal selection

spent a larger portion of their time in the proximity region XP when compared to

USVs using the simple strategy which used the current state of the target boat as a

motion goal. When rmax was set to 2 m, USVs using the heuristic strategy remained

within XP a total of 10% more often than USVs using the simple strategy. However,

when rmax increased to 5 m, both strategies were able to stay within XP for almost

the entire duration, eliminating any significant difference between the two.
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Figure 4.4: Comparison of simple and heuristic motion goal selection for a set of
200 randomly generated test cases with 96 obstacles.(a) Portion of time the USV
spends in the proximity region. (b) Average distance traveled by the USV. For each
figure, the box plot shows the median, upper and lower quartile. The whiskers show
the upper and lower decile. The mean value is represented by a small square.
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Figure 4.5: USV performance while using heuristic motion goal selection for various
obstacle densities and rmax values. (a) Proportion of time the USV spends in the
proximity region. (b) Average distance traveled by the USV.
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Increasing rmax also caused a reduction in the travel distance for USVs using

heuristic motion goal selection. When rmax increased from 2 m to 6 m, there was

approximately a 10% reduction in path length. This is as expected, since as rmax

increases, less work needs to be done to keep the USV inside proximity region

XP . Fig. 4.2b illustrates the reduction in path length caused by switching to the

heuristic motion goal selection, with an approximately 2 m shorter path than the

one generated by the USV using the simple tracking in Fig. 4.2a.

As the obstacle density increased, the average time spent in the proximity

region decreased for USVs using both heuristic motion goal selection and motion

goals determined by the simple strategy. However, in all cases, the heuristic motion

goal selection either performed better than the simple strategy, or obtained equiva-

lent performance. There was little noticeable difference between changes in obstacle

density when rmax was greater than 5 m.

Although the simulation was not performed in real-time, the heuristic motion

goal selection algorithm had an average running time of 1.78 s, with a standard

deviation of 1.07 s, just slightly slower than the allotted time of 1 s to perform

the computation. The computation in real-time could be achieved by utilizing the

dimensionality reduction for the path planner as described by Švec et al. [55] and

optimization of the planner software.
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4.5 Discussion

This chapter introduced a heuristic motion goal selection algorithm enabling

an unmanned sea surface vehicle (USV) to safely follow a dynamically moving tar-

get through an obstacle field. The algorithm uses Monte Carlo sampling and model

based simulation to estimate the future pose of a target boat, and then selects candi-

date motion goals based on a heuristic cost function. The heuristic tightly integrates

with the path planning algorithm by Švec et al. which generates dynamically feasible

paths satisfying the differential motion constraints of the USV [55].

The performance of the heuristic motion goal selection algorithm was evalu-

ated through a series of experiments on randomly generated obstacle fields, and its

performance was compared against a simpler approach which used the current lo-

cation of the target boat as a motion goal. Experimental results showed that USVs

using the heuristic algorithm were able to stay in the desired range of the target boat

for a larger percentage of time, while simultaneously reducing energy expenditure

in terms of distance traveled.

4.5.1 Limitations and Future Work

One clear limitation is that the approach in this section does not incorporate

the learned opponent model introduced in Chapter 3. Before the potential field

model can be incorporated, it is necessary to extend potential fields to domains

with differential motion constraints. While this should be feasible using the methods

prescribed in Sec. 3.4.1, it is beyond the scope of this dissertation. Future work could
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combine this with a number of features from Chapter 2 and 3, such as limited sensor

ranges and multiple pursuers

Another limitation is that the motion goal selection algorithm defined in

Sec. 4.3 only selects candidate motions goals from the most likely pose of the target

boat at each time step. If the distribution is multi-modal, then this is potentially

suboptimal, as the ideal location for the USV may be between the two modes. Fu-

ture work should evaluate broader sampling methods which draw from a larger pool

of candidates and evaluate more samples.

Additionally, future evaluation of the approach describe in this section should

incorporate more diverse behavior from the target boat, such as adversarial motion

models, or navigation in environments with dynamic obstacles. This, could with the

learned motion model, should give a better perspective on the potential benefits of

predictive modeling.

One of the main contributions of this chapter is that it demonstrates how

Monte Carlo sampling techniques can be combined with a black box path planning

algorithms to produce a viable control strategy. In the following chapter, we extend

this idea further, by demonstrating how a multi-agent task allocation algorithm can

utilize model based simulation in a way that integrates planning methods at both

high and low levels of abstraction.
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Chapter 5: Distributed Asset Guarding

In high-risk marine environments, teams of cooperative, highly-maneuverable

unmanned sea-surface vehicles (USVs) can be deployed to guard high-valued assets

such as oil tankers or commercial cargo ships from incursion by hostile adversaries.

The use of autonomous robotic systems brings several advantages which include

reducing the risk of human fatalities and significantly decreasing the cost of missions,

while preserving the expected level of security. This, however, imposes multiple

challenging requirements on the decision-making capability of these vehicles.

Successfully guarding an asset using a team of USVs requires the cooperative

observation of passing boats, identification of potential hostile intruders, and the

delay of their progress towards the asset via interception and active blocking [62,63].

Intelligent, balanced decisions about which tasks to perform must be made by the

vehicles to keep adversaries away from the asset for as long as possible. This presents

a non-trivial challenge for the USVs, since the identity of the hostile boats may not

be known in advance. In addition, the possibility of intermittent communication

interruptions, noisy sensor data, and the differential constraints of the vehicles all

impose additional complications. Finally, the planning approach must be efficient

despite the very large state-action space, and should be general enough to be usable
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Figure 5.1: A team of unmanned sea-surface vehicles (USVs) guard an oil tanker
from hostile intruder boats. During the operation, each boat is assigned a probability
of being hostile based on observations made by the USVs.

for a range of scenarios and missions.

This chapter presents a decentralized, contract-based planning approach where

individual USVs perform incremental task exchanges to agree upon on the alloca-

tion of high-level tasks. The approach makes use of model-predictive simulation to

evaluate of candidate task allocations by projecting the future state of the boats

in the scene. Once tasks are assigned, they are realized by corresponding low-level

behaviors which have been optimized for the specific missions. These behaviors im-

plement a local, reactive obstacle avoidance and interception strategy that respects

the differential constraints of the vehicles.
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An experimental evaluation of the algorithm demonstrates that the use of

model-predictive simulation leads to significantly higher performance and robustness

than task-tailored heuristic rules. Additionally, we show that even using a small

sample size, Monte-Carlo sampling is beneficial for dealing with sensor uncertainty

or uncertainty about the opponent model. The running time analysis reveals that

the algorithm has a fast execution time and low-order polynomial time complexity in

relation to the number of USVs, suggesting that the algorithm has the computational

efficiency needed for online planning.

This chapter also provides a detailed analysis of the developed approach and

discuss lessons learned when designing the algorithm so that this information may

be used by robotic practitioners attempting solve similar problems. These contri-

butions include: 1) an analysis of the tradeoff between computational effort and

plan quality when varying parameters of the algorithm, 2) an analysis of the scal-

ability/computational complexity of the approach for different numbers of USVs

or boats, 3) an analysis of the effect of the errors in model-predictive simulation

or opponent model on the planner, 4) an analysis of the impact of sensor noise or

communication uncertainty on the planner.

5.1 Background

The problem outlined in this chapter can be decomposed into multiple com-

ponents, e.g., accelerated simulation [64, 65], trajectory planning for collision-free

guidance [53, 55, 65], learning of interception behaviors [62], and multi-agent task
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allocation and planning. In this chapter, our focus is mostly on task allocation and

planning. Hence, we provide an overview of representative approaches in this do-

main for intentionally cooperative systems of robotic agents [66]. In particular, we

focus on distributed and hybrid teams of agents [67].

A taxonomy of multi-robot task allocation (MRTA) problems is provided by

Gerkey et al. [68]. Relevant features include the number of tasks that can be per-

formed by a single robot (i.e., ST as single-task robots, and MT as multi-task

robots), the number of robots that may be required to fulfil a task (i.e., SR as

single-robot tasks, and MR as multi-robot tasks), whether the current assignment

of tasks is optimized for future task assignments or not (i.e., IA as instantaneous task

allocation and TA as time-extended allocation), and the level of task interdepen-

dencies. Our work mostly falls into the MT-MR-TA category, for which problems

are generally NP-hard, suggesting that efficient computation of the optimal task

allocation is infeasible.

Techniques for solving MRTA problems can be categorized into behavior-based

and negotiation-based approaches [66, 69] depending on whether the robots solely

rely on the states of other robots and their capabilities, or explicitly communicate to

decide on the tasks. The behavior-based approaches do not favor explicit commu-

nication among agents to allocate the tasks. Rather, the task allocation is decided

based on the known states and skills of other agents in a purely distributed manner.

A short survey of the techniques that belong to this category can be found in [66].

Our task allocation algorithm, an extension of our previous work [63], belongs

to the category of negotiation-based approaches where agents must individually
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communicate to decide on the task assignment. This negotiation-based category

includes contract and market-based techniques for allocating tasks between agents,

as opposed to more centralized approaches [70]. A survey on the current state-of-

the-art market-based techniques for multirobot task allocation is given in [66,67,71].

Most of the currently existing market-based approaches for cooperative task

assignment are based on the Contract Net Protocol (CNP) [72], one of the pioneering

negotiation (auction) protocols for implementation of task allocation algorithms in

a distributed setting. According to this protocol, the robots explicitly communicate

and negotiate tasks using a specific strategy. This leads to a gradual improvement

in the assignment of tasks to robots that have the best capabilities to perform them.

The market-based task allocation approaches differ on the type of the negotiation

protocol. The protocol defines the way in which the agents offer or request tasks

given their capabilities, how many of these tasks can be involved in a single contract

(e.g., cluster contracts if more than one task is dealt with), how many agents are

involved in a single negotiation (e.g., so-called multi-agent contracts if more than

two agents are considered), or whether the agents offer tasks in exchange for another

task, e.g., in the form of swap contracts in exchange-like auctions [71, 73].

A distributed, market-based approach MURDOCH for hierarchical task al-

location was introduced in [74]. The approach is based on the CNP protocol and

publish/subscribe communication model. It can handle robot failures by reassigning

the tasks to the most suitable robots in a greedy fashion, and can consider newly

created tasks in the allocation process.

The TraderBots [75] market-based approach was developed for distributed
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coordination of self-interested agents. The approach is known for its capability to

create centralized sub-groups within the distributed team to improve the global task

allocation efficiency. The approach is able to deal with disruptions in communication

through exchange task style of auctioning. Zlot and Stentz present an extension of

the TraderBots approach for complex task allocation in [76]. The approach explicitly

considers the task structure and its properties to produce more efficient allocations.

This includes complex decisions on subtasks sharing among the robots. The subtasks

are hierarchically arranged into a task tree, which allows them to be negotiated at

different levels.

The Hoplites approach [77] was developed for solving a complex coordination

of a distributed group of robots with highly coupled tasks. The approach is market-

based is one of the first approaches able to solve the ST-MR-IA type of problems.

It provides planned coordination in addition to the tight coordination capability. It

combines two different coordination strategies, i.e., the passive, purely local strategy

according to which the robots have to quickly decide on the tasks, and the active,

market-based strategy which allows them to agree on the tasks in more complex

scenarios.

A task allocation approach for computing a combination of strongly and weakly

cooperative solutions for a group of heterogeneous robots operating in the context

of a single task allocation application was introduced in [78]. More specifically,

the ASyMTRe-D algorithm for the synthesis of coalitions within the group was

combined with a market-based approach for the allocation of weakly cooperative

tasks. According to the authors, the approach is thus highly flexible and amenable
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to a large variety of robotic applications.

A game-theoretic approach is introduced in [79] for solving the “Mobile Re-

sources protecting Moving Targets” (MRMT) problem, where multiple defenders

must guard a set of moving targets against multiple attackers. The authors repre-

sent the problem as a continuous time Stackelberg game and use linear programming

to find a Strong Stackelberg equilibrium. This approach has the advantage of of-

fering a minimum performance guarantee against any possible opponent, something

that our work lacks. However, compared to our work, the interaction between de-

fenders and attackers in their model is highly simplistic. They do not consider the

movement of the attackers, so the notion of blocking or intercepting an attacker is

only dealt with abstractly. The attacker may choose an arbitrary time to attack

one of the targets, and the probability of the attack succeeding is determined by

whether or not the target is currently within the “protection radius” of one or more

defenders. In contrast, we explicitly model the movement of USVs and intruders

when blocking or intercepting, and include that information directly in our strategy

evaluation. We also address the problem of neutral, non-hostile boats that must be

distinguished from intruders through observation, something which their work does

not directly address.

Similar to the work above, the work in [80] computes a Stackelberg equilibrium

for a defensive game with multiple moving targets and multiple attackers. Unlike

the work above, this work does consider the movement of the attackers, but the

problem space is very heavily discretized. Their approach depends on solving an

NP-hard non-linear program, so the largest problem they evaluated used a 5x4 grid
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to represent the environment. Because their model is fairly coarse, this work does

not address differential constraints or realistic blocking behavior. This approach was

utilized in the marine domain to protect merchant ships against pirate boats [81].

Additional work on Stackelberg games in this domain includes the incorporation

of Quantal Response models for adversary behavior [82] and accounting for the

constrained mobility and limited endurance of defender agents [83].

In the USV domain, a decentralized, behavior-based STAGS approach for a

multi-USV system to protect sensitive areas against intruders was developed in [84].

The deployment of the vehicles is controlled by a heuristic algorithm that uses

dynamically created gaps between the vehicles and the asset. The parameters of

the approach are optimized to improve its performance by minimizing the average

response time and missing rate.

Purely rule-based approaches include [85] as a part of the Swarm Management

Unit (SMU) used for controlling a team of USVs to carry out surveillance and

guarding an asset by intercepting detected intruders. The approach selects which

USVs should intercept a detected intruder based on domain-specific heuristics. The

positions of the USVs are optimized according to two criteria, i.e., preventing the

intruders from getting too close to the asset and minimizing the interception time.

The aim is to find a balance between the desired coverage of the area around the

asset and the level of security.

Related research also includes techniques for patrolling a polygonal area using

a group of agents. A survey of the current state-of-the-art patrolling algorithms is

provided in [86]. The representative approaches are evaluated in detail in [87] in
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terms of the average idleness of a patrolling graph and scalability to the number

of agents metrics. In our approach, the patrolling strategy is computed indirectly

through the market-based exchange of guard tasks commanding the vehicles to

computed waypoints or predefined patrolling locations.

In contrast to prior approaches, our work makes explicit consideration of sens-

ing uncertainty when differentiating intruder boats from other non-hostile boats

(i.e., by requiring observation of passing boats to identify threats), and accounts for

differential constraints of the USVs and their complex interaction with the intruders

when allocating tasks (i.e., when executing intercepting and blocking strategies). We

show that by carefully integrating the model-predictive simulation with the underly-

ing task allocation, features such as differential constraints and sensing uncertainty

can be directly considered during task allocation and still run efficiently. We pro-

vide a detailed analysis of the developed approach and describe lessons learned for

realizing high-fidelity task allocation with unmanned surface vehicles.

5.2 Problem Formulation

This chapter defines a multi-agent planning problem where a team of USVs

must defend a stationary target from an attack by a set of hostile intruder boats

interspersed among other non-hostile boats. An example of this scenario is depicted

in Fig. 5.1. The USV team does not know a priori which boats are hostile intruders,

but can estimate the probability that a boat is an intruder through observation.

Once an intruder is identified, an alert is triggered, and the objective of the USV

101



team becomes to delay the hostile boats from reaching the target for as long as

possible. This is done by actively blocking the path of the intruders, forcing the

intruders to slow down or change direction.

In addition to uncertainty about which boats are intruders, the USV team

must deal with noisy sensor data, which creates uncertainty over the position of

passing boats, and random communication interruptions, which create periods of

time where USVs cannot exchange information directly.

The motion model used by the USVs and boats is the same as was described

in Chapter 4, Sec. 4.2. The formal definition of the problem also includes:

(i.) a team of USVs U = {u1, u2, . . . um} responsible for defending the target from

intruder boats,

(ii.) a set of passing boats B = {b1, b2, . . . bn} including a subset of one or more

hostile intruders I ⊆ B,

(iii.) the location ltarget of the stationary target,

(iv.) a non-finite set of observations Ω, where each observation obj = 〈x̃bj , fbj〉

provides a noisy estimate x̃bj of the vehicle state xbj and observed features fbj

of boat bj (e.g. color, size, etc.),

(v.) a pair of opponent models, MB(xi,t+k|xi,t, Ot) and MI(xi,t+k|xi,t, Ot), for pass-

ing boats and intruders respectively, which define the probability that boat bi

will transition from state xi,t to xi,t+k given observation history Ot,

(vi.) an intruder classification function P (bi ∈ I|Ot) which returns the probability
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that boat bi is an intruder given observation history Ot,

(vii.) a response team probability threshold palert, which defines the probability

P (bi ∈ I|Ot) above which an alert will be triggered.

The policy πui of USV ui provides a mapping from observation histories to

the control actions q ∈ Q(xui). The objective of the USV team is to find a set of

policies ΠU = {πu1 , πu2 , . . . , πum} that maximize the expected delay time, E[tdelay],

defined as the time difference between when the alert is first triggered and when an

intruder first arrives at the target, or tdelay = tarrival − talert. Thus, the optimal set

of policies Π∗U is defined as,

Π∗U = arg max
ΠU

E[tdelay|ΠU ]. (5.1)

Exactly computing Π∗U is likely to be intractable, so we are interested only in finding

a set of policies that can be computed efficiently, even if they are sub-optimal.

The motivation behind maximizing E[tdelay] is to provide a hypothetical re-

sponse team as much time as possible to deal with the intruders. Although the

response team is not modeled explicitly as part of the problem, we assert that the

longer intruders are delayed from reaching the target, the more time the response

team will have to repel an attack, do emergency preparations, or perform other task

which are beneficial the overall mission. Additionally, by having the alert triggered

by the response team, we isolate the USVs from the responsibility of classifying

intruders or weighing the cost of false alarms.
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To accurately reflect the limitation of USVs’ knowledge, policy πui must de-

pend only on information that is accessible to USV ui at the time the policy is

executed. The information known to USV ui at time t, includes:

(a.) the state xui of USV ui up to time t

(b.) USV ui’s observation history Oui up to time t

(c.) information received from other USVs before time t

When in communication, USVs are permitted to exchange arbitrary information,

including their current state and observation histories. USVs are also assumed to

have access to opponent models MB and MI , classifier P (bj ∈ I|Oui), target location

ltarget and response team threshold palert when computing their policies.

The parameterization of opponent models MB and MI , and intruder classifi-

cation function P (bi ∈ I|Ouj) are described in the experimental setup in Sec. 5.4.

The noisy state estimates x̃bj produced via observation are assumed to be the result

of adding two-dimensional Gaussian noise to the components of state vector x, with

variances also provided in Sec. 5.4.5.

5.3 Approach

This section presents a solution technique for the task assignment problem

described in Sec. 5.2. Our approach, illustrated in Fig. 5.2, consists of three major

components: 1) a decentralized task allocation process that determines the high-level

task assignment of each USV, 2) a set of parameterized behaviors that map each
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USV’s task assignment into a unique motion goal, 3) a control action policy that

selects a control action for each USV to reach its motion goal while performing local

obstacle avoidance. Each of these processes operate concurrently and are performed

online, updating as new sensor information becomes available.

Our approach utilizes a set of domain-specific tasks that may be specified by

the system developer. For the purposes of this chapter, we define the set of high-level

tasks, H ⊆ Ho ∪Hg ∪Hd, as the union of three distinct task types:

(i.) a set of observe tasks, Ho, where USVs are responsible for approaching and

gathering information about passing boats

(ii.) a set of guard tasks, Hg, where USVs must position themselves at predeter-

mined locations around the target

(iii.) a set of delay tasks, Hd, where USVs must intercept and block a hostile boat

Each task h ∈ Ho∪Hd specifies a single boat to observe or delay, while each h ∈ Hg

specifies a single location to guard. The task assignment Hui ⊆ H for USV ui may

contain any combination of these tasks.

The joint task allocation A = {Hu1 , Hu2 , . . . Hum} defines the current task

assignment for all USVs and is computed online and updated during each planning

step via a decentralized task allocation process. Our algorithm uses both heuristic

and model-predictive simulation to determine how the task allocation should be

updated. This process is described in Sec. 5.3.1.

Since communication between USVs can be interrupted, each USV ui main-

tains a local task allocation Aui representing ui’s belief about the joint task alloca-
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Figure 5.2: Planning and control architecture for one USV.

tion A based on the most recent information made available to ui. The local task

allocation Aui , together with the observation history Oui , form the input to USV

ui’s motion goal selection Gui(Oui ,Aui) and control action selection πui(Oui ,Aui)

policies. These are defined in Appendix, Secs. A.1 and A.2.

Both motion goal selection and control action selection policies are based on

hand-coded heuristics which are tuned offline using a genetic algorithm. A set of

tuning parameters Γ = {γguard, γintr, γdist, γlead, γblock, γmax, γinitialr , γoccupied, γslowr ,

γgoalr , γfanr , γfanθ} determine the low-level behavior of the USVs when selecting

motion goals or performing obstacle avoidance. The tuning process used for these

parameters is described in Sec. 5.3.5.

The sequence of state estimates {x̃bj ,1, x̃bj ,2, . . . x̃bj ,n} for boat bj contained

in USV ui’s observation history Oui are processed using a simple Kalman filter,

where lbj(Oui) represents the estimate of boat bj’s location given Oui and Kbj(Oui)
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represents the corresponding covariance matrix. We will refer to these as simply lbj

and Kbj throughout the chapter.

5.3.1 Task Allocation

The joint task allocation A is periodically updated via a decentralized task re-

allocation process that is performed concurrently by each of the USVs. This process

behaves like a local hill-climbing algorithm, where each USV ui evaluates variations

of the task allocation Aui that differ by exchanging one or two tasks. This process

is less computationally demanding than evaluating all possible task allocations. It

also makes it easier to decentralize the re-allocation process, since each exchange

alters the task assignment of at most two USVs. However, a disadvantage of this

approach is that it will only find locally optimal solutions, a limitation common to

many hill-climbing algorithms.

Before the task re-allocation process can be performed, an initial task alloca-

tion Aui,0 must be assigned to the USV team. We assume that the initial allocation

will be assigned by the system developer. In our case, we assign each USV one

or more guard tasks hj ∈ Hg, distributed uniformly at radius γinitialr around the

target. For each new boat bj that enter the scene, the nearest USV assigns itself

an observation task hj ∈ Ho. If any boats are identified as intruders, meaning

P (bi ∈ I|Ouj) > palert, the observation task for that boat becomes an equivalent

delay task, hj ∈ Hd.

At regular time interval talloc, each USV ui performs a task re-allocation step,
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(a) (b) (c)

Figure 5.3: Candidate task allocations a) the current task allocation A without
modification, b) modification of A with a delay task offered to USV u2 by USV u1,
c) modification of A with a delay task shared to USV u2.

in which ui computes a revised allocation A′ui , defined as

A′ui = arg max
Aui,j∈C

Ẽ[tdelay|Oui ,Aui,j] (5.2)

where C is a set of candidate task allocations produced by Alg. 4, and Ẽ[tdelay|Oui ,Aui,j]

is the estimated utility of candidate Aui,j given observation history Oui as computed

by the model-predictive simulation described in Sec. 5.3.3. Each candidateAui,j ∈ C

differs from Aui by sharing or offering one or more tasks from Hui to another USV,

as depicted in Fig. 5.3 and 5.4.

The method GenerateCandidates(Oui ,Aui , ui) in Alg. 4 produces a set of

candidate task allocations C by iterating through every task hj ∈ Hui in USV ui’s

task assignment and setting up potential exchanges with every USV uk ∈ U on the
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Algorithm 4 GenerateCandidates(Oui ,Aui , ui)
Require: The observation history Oui and task allocation Aui for USV ui
Ensure: A set of candidate task allocations C.
1: C ← {Aui}
2: for each hj ∈ Hui ∩Hd do
3: for each uk ∈ U do
4: C ← C ∪ ShareTask(Aui , hj, uk)
5: end for
6: end for
7: for each hj ∈ Hui ∩ (Hg ∪Ho) do
8: for each uk ∈ U do
9: C ← C ∪OfferTask(Aui , hj, ui, uk)

10: end for
11: end for
12: return C

team. These include both share and offer exchanges, where a task is either passed

exclusively to USV uk, or duplicated and shared with uk.

The method ShareTask(Aui , hj, uk) returns a new task allocation A′ui that

differs from Aui by appending task hj to USV uk’s task assignment Huk . The result

is a task allocation where both ui and uk share task hj.

The method OfferTask(Aui , hj, ui, uk) is very similar to ShareTask, only

it removes task hj from USV ui’s task assignment Hui before adding it to USV

uk’s task assignment Huk . The method can also be modified to include conditional

“swap” exchanges, composed of two distinct offer exchanges, depicted in Fig. 5.4.

This is applicable to situations where USV ui is already assigned a delay task h1

and then USV uj offers ui an additional delay task h2. USV ui cannot intercept

and block two different boats at the same time, so ui will “swap” task h1 for task

h2. This is equivalent to uj offering to h2 to ui and ui offering to h1 to uj, but

both exchanges are represented by a single candidate task allocation, allowing the
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(a) (b)

Figure 5.4: A conditional “swap” exchange, composed of two offer exchanges a) the
current task allocation A where USV u2 by USV u1 are assigned delay tasks for
separate intruders, b) modification of A where USV u2 by USV u1 have swapped
delay tasks.

combined exchanges to be evaluated by the predictive simulation.

5.3.2 Communication Protocol

Communication between USVs is modeled as a network of pairwise connec-

tions, as shown in Fig. 5.5. At each time step tk, each USV attempts to synchronize

its information with the other USVs. If USV uj is able to communicate with USV

ui, then uj’s most recent observation history Ouj and task assignment Huj of USV

uj are merged into USV ui’s observation history Oui and global task allocation Aui .

If USV ui cannot directly communicate with USV uj, it may still learn of uj’s obser-

vations and task assignment through a third USV that can communicate with both

agents, but it will take an additional time step for this information to propagate.

For USV ui to either offer or share a task with another USV uj, the two USVs

must explicitly agree to the exchange. If no communication is possible between ui
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Figure 5.5: An example of a communication network.

and uj, then exchanges between these agents cannot be performed until communica-

tion is re-established. Since communication interruptions occur at random, the USV

evaluates all candidate exchanges even if communication is not possible, then de-

termines whether communication has been restored once the evaluation is finished.

If the best-performing candidate allocation cannot be applied due to interrupted

communication, then the USV selects the next best candidate.

To avoid conflicts that might result from concurrent exchanges, the protocol

requires that USV ui retain the exclusive right to assign tasks from Hui to another

USV. For offer and share exchanges, this rule is trivial to enforce, since USV ui is the

agent that initiates the exchange. However, for “swap” exchanges, USV ui must ask

another USV uj to offer some task h2 in exchange for the task h1. Since exchanges

are evaluated concurrently, task h2 may no longer be in uj’s task assignment at

the time the request is made. In this situation, USV ui must forego the swap and
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perform a different exchange from its list of candidates.

5.3.3 Predictive Simulation

During task re-allocation process, USV ui uses model-predictive simulation to

evaluate the set of candidate task allocations C generated by the method in Alg. 4.

The predictive simulation estimates the expected delay time E[tdelay|Oui ,Ai] for

each candidate task allocation Ai ∈ C, given USV ui’s observation history Oui . The

simulation uses the probabilistic opponent models defined in Sec. 5.2 to estimate the

future control actions of passing boats and intruders, and uses the control action

selection policies for the USVs defined in Sec. A.2 to estimate the future control

actions of other USVs.

USV ui estimates Ai’s performance for the set of possible worlds W consistent

with USV ui’s observation history Oui . Since USV ui is uncertain which boats are

intruders and about the location of each boat, each possible world wj ∈ W consists

of a set of possible intruder boats Ij ⊆ B and an approximate of the global state

sj ∈ S. The set W is non-finite, so the algorithm uses Monte-Carlo sampling to

select nsample possible worlds to estimate the expected utility, E[tdelay|Oui ,Ai], for

each candidate task allocation Ai ∈ C.

For simplicity, we assume the probability distributions over I and s are statis-

tically independent, meaning

P (wj|Oui) = P (Ij = I|Oui)P (sj = s|Oui).
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where I is the true set of intruders and s is the true global state. Each global state

sj is sampled using the state estimate lbj and covariance matrix Kbj produced by

the Kalman filter described in Sec. 5.3. The algorithm samples the set of intruders

Ii with probability,

PIi =

∏
bj∈Ii

P (bj ∈ I|Oui)

 ∏
bj∈B\Ii

1− P (bj ∈ I|Oui)


where PIi is an approximation of P (Ii = I|Oui) computed by assuming that the

appearance of each intruder is statistically independent. In the special case where

nsample = 1, the possible world wj with the highest probability P (wj|Oui) is sampled,

rather than a random sample.

The task re-allocation process is not simulated during the predictive simu-

lation. This is to prevent the predictive simulation from recursively calling itself,

which would lead to an exponential increase in the computational workload as the

simulation searches deeper. Each trial is also given a maximum lookahead time,

tlookahead, after which the utility is estimated using the intercept point heuristic

described in Sec. 5.3.4.

5.3.4 Heuristic Evaluation Function

After the maximum lookahead time tlookahead has expired, the predictive sim-

ulation must use a static evaluation function to estimate the value of the resulting

state. To do this, we compute intercept point lint defined in Sec. A.1, and estimate

the arrival time of an intruder by measuring its straight-line distance from the asset.
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The estimated arrival time is delayed by an amount defined in the calculation of

lint given how many USVs are currently assigned to delay it and their distance from

the intercept point. This estimate is not as accurate as performing a full predictive

simulation, but it can be performed very quickly, which is useful for evaluating the

state of the world after the maximum lookahead time has passed. When multiple

intruders are present, we use the minimum time estimate across all intruders to

approximate the expected utility E[tdelay|Oui ,Ai] for the USV team.

USVs can also directly use heuristics to evaluate task exchanges as an alter-

native to predictive simulation. For example, to calculate the value of exchanging

a delay task, performing predictive simulation with tlookahead = 0 will provide an

efficient albeit less accurate evaluation. When exchanging guard or observe tasks

however, the estimated arrival time from the intercept point calculation does not

provide useful information, so an alternative heuristic must be defined.

To evaluate the exchange of guard or observe tasks without using predictive

simulation, we developed a heuristic rule that prioritizes the exchange of task hj ∈

Hui whose motion goal Ghj is furthest from USV ui’s current motion goal Gui .

This task is offered to another USV uk whose current motion goal is closest to task

hj’s motion goal. If uk is already assigned a delay task, then the distance to hj is

multiplied by γoccupied, to discourage giving too many tasks to USVs that are already

responsible for delaying an intruder.

Using these pure heuristic rules, we provide an alternative to the predictive

simulation which can be used for comparison purposes. The experimental results

in Sec. 5.4 show, among other things, that using the predictive simulation provides
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better task allocations than pure heuristics for this problem.

5.3.5 Optimization of Behaviors

We use a genetic algorithm (GA) [88] to optimize the 12 underlying parameters

γguard, γintr, γdist, γlead, γblock, γmax, γinitialr , γoccupied, γslowr , γgoalr , γfanr and γfanθ ,

of the behavior and control action selection policies to further improve the expected

utility of the USV policy. The optimization of these parameters allows the USVs to

make balanced decisions between guarding a certain location, observing incoming

boats, and intercepting and delaying the movement of identified intruders.

For the results presented in Sec. 5.4, the genetic algorithm was run for 150

generations using a population size of 100 chromosomes, where each chromosome

represented a complete set of parameters. The parameters for the initial population

were assigned at random, while subsequent populations were bred based on the

fitness values of the previous generation. Each chromosome’s fitness was measured

using the median delay time from 250 random simulation runs. We utilized roulette

wheel selection to determine the breeding population, and applied genetic operators

with a crossover rate of 0.35 and mutation rate of 0.08.

5.3.6 Complexity Analysis

Given the set of tasks H and the set of USVs U , the number possible task

allocations is O(|2HU |), which is too large to explore exhaustively. The number can-

didate task allocations selected by Alg. 4 is a more modest O(|H×U |). This means
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the number of candidates evaluated increases linearly as the number of USVs or

tasks increases. Since we are using predictive simulation to evaluate each candidate,

increasing the number of USVs should also increase the time it takes to perform a

simulation. As a result, the time complexity of a single task re-allocation step should

be O(|H×U | · |U |), which grows quadratically as the number of USVs increase. This

is confirmed by the experimental results in Sec. 5.4.4.

If we consider an arbitrary sequence of task exchanges of length k, then there

are O(|H ×U |k) such sequences. The number of possible sequences grows exponen-

tially as k increases, meaning it will be prohibitively time consuming to evaluate all

such sequences for large values of k. For this reason, we only evaluate exchanges of

one or two tasks at a time.

In our implementation in Sec. 5.4.1, we narrow the set of candidate task al-

locations further by pruning certain types of exchanges. First, we eliminate share

exchanges for guard and observe tasks, so only one instance of these tasks will exist

at a time. Second, we limit the number of USVs that can simultaneously delay a

single intruder, determined by the parameter γmax. Both of these changes reduce

the total number of tasks in A by eliminating redundant assignments while still

preserving at least one copy of each task. Additionally, we only consider “swap”

exchanges in the case described in Sec. 5.3.1 so that the number of candidates eval-

uated remains O(|H × U |).
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5.4 Experimental Results

We have evaluated our planning approach by performing experiments in two

simulated scenarios, depicted in Figs. 5.6a and 5.6b. The motion model used for the

experiments is the same motion model used by the predictive simulator, which was

defined by Eqn. 4.1 in Sec. 5.2. Details about the parametrization of the simulator

are provided in the experimental setup below, followed by results and discussion

for a number of different experiments. We also discuss the limitations of these

experiments in Sec. ??.

5.4.1 Experimental Setup

In scenario 1, shown in Fig. 5.6a, the target is positioned within a circular

region without any static obstacles. In scenario 2, shown in Fig. 5.6b, the target is

positioned near static terrain, restricting the direction of incoming boats. In scenario

1 there are a total of 5 USVs and 3 intruders, while in scenario 2 there are 3 USVs

and 2 intruders. In both scenarios, passing boats will continuously enter and leave

the operating space, with a maximum of 8 passing boats appearing in the scene at

any given time.

At the beginning of each trial, the positions of passing boats are initialized

at random locations around the target. During each trial run, new boats appear

at random locations along the boundary of the operating space, which is defined as

a ring in scenario 1, (with an inner and outer radius of 80 and 100 m), or as two

rectangles on the left and right sides of the target in scenario 2 (with a distance of
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Figure 5.6: Two example scenarios where a team of USVs ui defend a target in an
open ocean with several passing boats. Boats marked xi are identified as intruders.
The tasks assigned to each USV are depicted as lines.

80 m from the target and a width of 20 m). The rate at which new boats appear is

balanced with the rate at which other boats leave the operating space, restricted to

the maximum of 8 passing boats.

Each boat’s initial trajectory is a path tangent to a randomly sized circle (or

semi-circle in scenario 2) surrounding the target with minimum and maximum radius

of 30 and 60 m. Unlike non-hostile boats, intruders will change their trajectory and

turn towards the target when they pass within 60 m If an intruder passes within

5 m of a USV, it will assume it is being blocked and start approaching the target

immediately. Whether a boat will be an intruder or not is determined by the amount

of time elapsed during the simulation. Only non-intruder boats will appear during

the first 30 seconds of the simulation, immediately followed by 2 or 3 intruders

depending on the scenario. As a result, a group of intruders will always appear at

or around the same time in the simulation.
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Both intruders and non-intruder boats use the same reactive obstacle avoid-

ance strategy described in Sec. A.2. For intruders, the parameters γfanr and γfanθ

are set to 10 m and 120◦ respectively, while for non-intruders they are set to 15 m

and 180◦. The intruder is given a more aggressive set of parameters allowing it to

approach other boats more closely before adjusting its trajectory. For USVs, these

parameters are optimized using the genetic algorithm described in Sec. 5.3.5. The

maximum surge speed for all USVs and other boats is fixed at 10 m/s.

To make the interactions between USVs and intruders more challenging, in-

truders will perform evasive actions to avoid being blocked. If the intruder is blocked

by another boat and diverted away from the target for some time t, where t > tflip,

the intruder will turn away from the blocking boat and reverse its direction of

movement. For each evasive turn, the value of tflip is selected at random, uniformly

between 1 and 3 seconds, to introduce non-deterministic behavior into the intruder

strategy. We show that intruders which perform evasive turns are more difficult to

defend against in Sec. 5.4.2. However, this model is not guaranteed to be a best-

response to the USV team’s strategy, and therefore cannot be used to determine the

worst-case performance against any theoretical opponent.

The observation classification function simulates the probability that each boat

is an intruder based on the quality of the observations made by the USV team. It

does this by specifying an observation quality value αbj ∈ [0, 1] for boat bj that is

initially set to 0 and increases monotonically while USV ui is within 50 m of boat

bj. If d represents the distance between ui and bj, then αbj increases at a rate of

δlearn(1−d/50) per second, with the default learning rate δlearn = 0.5. This means it
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takes at most 5 seconds to obtain an observation quality of αbj = 1 when observing

boat bj from a distance of 30 meters.

The function P (bj ∈ I|Oui) returns a prior probability of 0.05 when αbj =

0, indicating that no observations have occurred. The choice of 0.05 is arbitrary,

but is meant to represent a small non-zero chance that each boat could be an

intruder. As αbj increases, the probability P (bj ∈ I|Oui) converges linearly to 1 or 0

depending on whether or not bi is actually an intruder. Gaussian noise with standard

deviation 0.1(1−αbj) is added to the probability function so that the change is non-

monotonic. For all simulations, the value palert for determining whether a boat

should be classified as a threat was set to 0.6.

During the predictive simulation, the lookahead time tlookahead is set to 5 s, and

the Monte-Carlo sample size nsamples is set to 5 for all experiments unless otherwise

indicated. These parameters are useful for ensuring the predictive simulation can

be executed in real time while still obtaining good performance.

5.4.2 Strategy Comparison

To evaluate the performance of the approach defined in Sec. 5.3, we performed

experiments on several strategy variants. All the strategies evaluated use the same

motion goal and control action selection policies defined in Secs. A.1 and A.2, but

they differ in how task allocation is performed:

(1.) a predictive strategy, which uses the complete task allocation strategy de-

scribed in Sec. 5.3,
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(2.) a heuristic strategy, which does not utilize predictive simulation, but performs

task allocation based on the heuristic approach described in Sec. 5.3.4,

(3.) a baseline strategy, which does not perform task exchanges at all, instead each

USV waits at its guard location until an intruder is identified, then delay tasks

are assigned using the heuristic in Sec. 5.3.4,

(4.) a pred-noswap strategy, a variant of the predictive strategy that does not use

the conditional “swap” exchange discussed in Sec. 5.3.1.

Figures 5.7 a) and b) show the average delay time across 1000 randomly gen-

erated trial for each of the four different strategies. The box plots show the median,

upper and lower quartile of the data set, while the whiskers mark the 5th and 95th

percentiles. The mean value is marked with a small square in each figure.

As expected, the predictive and pred-noswap strategies performed best, fol-

lowed by the heuristic strategy, while the baseline strategy performed worst. For

scenario 1, the predictive strategy increased the median delay time by 110% com-

pared to the baseline strategy and by 87% compared to the heuristic strategy. For

scenario 2, the increase was 68% compared to the baseline strategy and 29% com-

pared to the heuristic strategy. The predictive strategy also performed better when

the “swap” exchange was included, increasing delay time by 31% in scenario 1 and

4.5% in scenario 2.

The difference in delay time between the heuristic and predictive strategies is

less for scenario 2 when compared to scenario 1, possibly due to the smaller number

of choices during the task allocation step, decreasing the likelihood of the heuristic
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Figure 5.7: Average delay time across 1000 randomly seeded trials for USV teams
using baseline, heuristic, pred-noswap or predictive strategies.

selecting a bad candidate.

To optimize the parameter set Γ for each of the three main strategy types,

the genetic algorithm described in Sec. 5.3.5 was performed six separate times, once

for every combination of strategy and scenario. An exception was made for the

pred-noswap strategy, which was given the same parameter set as the predictive

strategy. The change in performance across 150 generations is shown in Fig. 5.8a

and Fig. 5.8b for scenarios 1 and 2, respectively. Most of the gains occurred within

the first 50 generations of the algorithm.

Figures 5.9 a) and b) show the average delay time as the learning rate δlearn

is varied. The utility of the USV team decreases as the learning rate is decreases,

and increases as the learning rate increases. This is true for all of the strategies

evaluated. However, the predictive strategy remains the preferred strategy for all

δlearn > 0. The special case where δlearn = 0 means that the USV team is unable to

identify the intruders through observation, resulting in a delay time of zero.
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Figure 5.8: Median delay time for each generation of the genetic algorithm when
optimizing strategies for scenarios 1 and 2. Results shown for the best-performing
chromosome in the population.
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Figure 5.9: Median delay time across 1000 randomly seeded trials for baseline,
heuristic and predictive strategies as the learning rate δlearn increases.

Evasive Non-Evasive

Baseline 9.0 s 21.2

Heuristic 10.1 s 67.6

Predictive 19.0 s 158.3

Figure 5.10: Median delay time for baseline, heuristic, predictive strategies in sce-
nario 1 against intruders that perform evasive turns and those that don’t.
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Figure 5.11: Average delay time across 1000 randomly seeded trials for the predictive
strategy as the lookahead time, tlookahead, increases.

Fig. 5.10 shows the average delay time when each of the strategies is per-

formed against a set of evasive or non-evasive intruders in scenario 1. As expected,

non-evasive intruders are delayed from reaching the target for longer than evasive

intruders. In practice, this occurred because the non-evasive intruders would be-

come locked in a continuous blocking pattern with a single USV, looping around the

target for an extended period of time. The evasive intruder was able to break this

pattern by intermittently flipping direction, reaching the target more quickly. We

use the evasive intruder model for all the remaining experiments in this chapter.

5.4.3 Running-time Tradeoff

Figures 5.11 and 5.12 show the change in USV team utility as the duration

and sample size of the predictive simulation increases. Generally, performing more

and better simulations results in higher utility for the USV team, but also results

in the algorithm taking longer to execute.
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Figures 5.11 a) and b) show the benefit of increasing the lookahead time,

tlookahead, for the predictive strategy in scenario 1 and 2. Longer values tlookahead

correspond with more time spent evaluating each predictive simulation. The predic-

tive simulation will run for a maximum duration of tlookahead, after which the static

evaluation function (defined in Sec. 5.3.4) is performed to quickly estimate the value

of the remainder of the simulation. When tlookahead = 0, no predictive simulation is

run at all, and the static evaluation function is performed immediately.

Increasing tlookahead from 0 s to 8 s offers a 151% increase in the median utility

for scenario 1, and a 79% increase in the median utility for scenario 2. The benefit

of increasing tlookahead starts to diminish at around five seconds, possibly due to the

gradual accumulation of errors in the simulation.

Figures 5.12 a) and b) show the benefit of increasing the sample size, nsample,

for the predictive strategy in scenario 1 and 2. The value of nsample corresponds

with the number of possible worlds evaluated via Monte-Carlo sampling. Increasing

nsample from 1 to 8 offers a 25% increase in the median utility for scenario 1, and a

14% increase in the median utility for scenario 2.

Increasing tlookahead or nsample individually should result a linear increase in

running time for the predictive simulation. However, if the goal is to maximize USV

utility, the tradeoff between the quality of the evaluation and the running time of

the task re-allocation step should be considered. Both tlookahead and nsample suffer

from diminishing returns as their value increases; each additional second added to

tlookahead or sample added to nsample is less valuable than the previous. This suggests

that the ideal selection of values for tlookahead and nsample will vary depending on the
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Figure 5.12: Average delay time across 1000 randomly seeded trials for the predictive
strategy as the number of samples nsample increases.

computational power available.

One motivation for minimizing the running time of the predictive simulation is

to reduce the time between reallocation steps, talloc. As shown in Fig. 5.13, reducing

talloc has a positive effect on utility for both the heuristic and predictive strategies.

However, Fig. 5.13 also shows that reducing talloc alone is not sufficient to maximize

utility, since the heuristic strategy is out-performed by the predictive strategy even

when USVs using the heuristic are allowed to exchange tasks at very high frequency.

This suggests that, for sufficiently small values of talloc, time is better spent carefully

evaluating which tasks to exchange instead of exchanging tasks quickly using an

inexpensive heuristic.

5.4.4 Scalability

Figs. 5.14 and 5.15 show the effect that increasing the number of USVs or pass-

ing boats simultaneously appearing in the scene has on the computational workload
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Figure 5.13: Median delay time across 1000 randomly seeded trials for the baseline,
heuristic and predictive strategies as the re-allocation time interval talloc increases.

2 4 6 8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of USVs

R
un

ni
ng

 ti
m

e 
(m

s)

(a)

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

Number of USVs

C
an

di
da

te
s 

ev
al

ua
te

d

(b)

Figure 5.14: Average running time and number candidate task allocations evaluated
across 1000 randomly seeded trials, as the number of USVs varies, for the predictive
strategy in scenario 1.
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Figure 5.15: Average running time and number candidate task allocations evaluated
across 1000 randomly seeded trials, as the number of passing boats varies, for the
predictive strategy in scenario 1.

of predictive strategy. Running time was measured using an Intel Core 2 Q6600

Quad processor with a 2.4 GHz clock speed with the algorithm running in a single

thread. Results are shown for scenario 1, but similar results should be expected for

other scenarios.

Fig. 5.14 shows that increasing the number of USVs causes a roughly linear

increase in the number of candidate task allocations evaluated and a polynomial

increase in the running time. As explained in Sec. 5.3.6, the number of candidate

task allocations evaluated by predictive simulation is at most O(|U ×H|), where U

is the set of USVs and H is the set of tasks. The number of USVs is directly pro-

portional to the number of task exchanges that are considered. Similarly, increasing

the number of USVs increases the running time of each predictive simulation. As a

result, doubling the number of USVs from 4 to 8 increases running time of the task

re-allocation step by 3.4 times, from 525 ms to 1805 ms.
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Fig. 5.15 shows the effect of increasing the number of passing boats in scenario

1. Since each passing boat must be assigned an observe or delay task, increasing the

number of boats should result in a linear increase in the number of tasks, similar to

increasing the number of USVs. However, the effect is much less pronounced than

in Fig. 5.14, because a single USV does not have to evaluate every new task that

is added. Thus, the cost of adding a USV is greater than the cost of adding a new

boat or task to evaluate.

The median running time for a single USV to compute a task re-allocation

step when there are 5 USVs and 8 passing boats (the default parameters for scenario

1) was 805 ms, which is within the 1 second allocated in the experimental setup.

This result, combined with the low-order polynomial complexity of the algorithm,

suggests that the approach is efficient and that online computation is feasible on

equivalent hardware.

5.4.5 Robustness

The reliability of the predictive strategy depends on how accurately the predic-

tive simulation is able to estimate the expected value of candidate task allocations.

Since the simulator used for our experiments and and the predictive simulator used

by USVs both use the same motion model, it is relatively easy for the USVs to

estimate the expected value. However, we cannot expect the same level of fidelity

in the real world. To determine what effect inaccuracies in the predictive simulation

have on performance, we tried several ways to make the simulation less reliable:
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Figure 5.16: Median delay time across 1000 randomly seeded trials for USV teams
using the predictive strategy when normally distributed error is added to the result
of the predictive simulation.

1) adding normally distributed error to the utility value returned by the predictive

simulation, 2) adding normally distributed error to the USV sensor measurements

and 3) using the incorrect opponent model in the predictive simulation.

The results for the first experiment are shown in Fig. 5.16. There is a signifi-

cant drop in performance as the utility value returned by the predictive simulation

becomes noisier. For scenario 1, the performance of the predictive strategy drops

below that of the purely heuristic strategy when standard error exceeds 4.5 seconds.

For scenario 2, this occurs when the standard error exceeds 3.0 seconds.

For the results in Fig. 5.17, we added normally distributed error to the USVs’

sensor measurements of the locations (x and y coordinates) of the passing boats.

The labels on the figure display the standard deviation of this error at an observation

range of 80 m or greater. For ranges between 80 m and 0 m, the amount of error was

decreased linearly based on distance, so that measurements had no error if taken

at 0 m range. As mentioned in Sec. 5.3, each USV uses a Kalman filter to produce
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Figure 5.17: Median delay time across 1000 randomly seeded trials for USV teams
using the predictive strategy when normally distributed error is added to USV sensor
measurements.

estimates of the boats’ locations based on this sensor data. The results show a

gradual decrease in utility as the sensor measurements become noisier, however the

predictive strategy remains the best-performing strategy in spite of the noise.

To evaluate how sensitive the predictive simulation is to the accuracy opponent

model, we created two variations on the opponent model by modifying the intruders’

level of aggression:

(1.) the “timid” model avoids collisions more actively and performs evasive turns

less frequently, increasing γfanr and γfanθ by 10% and increasing tflip by 100%

compared to the normal model,

(2.) the “aggressive” model avoids collisions less actively and performs evasive

turns more frequently, decreasing γfanr and γfanθ by 10% and decreasing tflip

by 50% compared to the normal model.

For each opponent model, we produced a complementary predictive strategy,
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Normal Timid Aggressive

Pred(N) 19.2 s 17.5 s 13.8 s

Pred(T) 18.5 s 36.9 s 12.8 s

Pred(A) 11.4 s 10.2 s 15.5 s

Pred(R) 18.1 s 28.4 s 13.8 s

Heuristic 10.0 s 10.6 s 9.5 s

Baseline 9.2 s 9.0 s 9.0 s

(a) Scenario 1

Normal Timid Aggressive
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16.6 s 14.4 s 20.8 s
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11.4 s 11.0 s 13.9 s

(b) Scenario 2

Figure 5.18: Median delay time across 1000 randomly seeded trials for USV teams
using the predictive, heuristic, and baseline strategies against intruders with timid,
normal or aggressive behaviors.

named Pred(T) and Pred(A), where the predictive simulation used the timid, or

aggressive model of the intruder respectively. We also produced a fourth strategy,

Pred(R), where one of the three intruder models is selected at random at the start

of each predictive simulation. For each of the strategies, the GA parameters Γ were

tuned for the normal intruder model.

The results in Fig. 5.18 show the median delay time when using each of the

different task re-allocation strategies against each of the three intruder models. As

expected, the USV team performed best when the correct opponent model was

used. Additionally, the Pred(R) strategy was the second-best performing strategy

in several cases, and performed better than the heuristic strategy in all of the cases.

One key result from this experiment is that using the correct model of the

intruder can have a significant impact on the performance of the algorithm. For

example, using the Pred(A) strategy against the timid intruder causes the predictive

strategy to perform worse than the heuristic strategy. This is because the Pred(A)
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strategy assumes the intruder is aggressive, when it is actually timid, and makes

worse predictions than the other predictive strategies. In contrast, Pred(T) was the

best-performing strategy for this situation, while Pred(R) was the second-best.

These results suggest that when the intruder model is not exactly known,

decent performance can be obtained by sampling over the set of possible intruder

models. Additionally, using a model that closely approximates the correct model,

(e.g. using the normal model to approximate the timid intruder, or the aggressive

model to approximate the normal intruder), results in better utility than using a

model that poorly approximates the correct model (e.g. using the aggressive model

to approximate the timid intruder). This suggests that the predictive simulator

still provides useful information even if the model used does not exactly match the

behavior of the opponent.

5.4.6 Interrupted Communication

To determine the effect of communication interruptions on USV team perfor-

mance, we performed simulation runs where the communication link between each

pair of USVs had a random chance of being interrupted. Fig. 5.19 shows the aver-

age utility for each of the three strategies when the chance of communication being

interrupted is varied. The interruption probability determines the likelihood of an

interruption event occurring between a pair of USVs during a 1 s time interval. If

an interruption event occurs, the two USVs cannot exchange information for the

whole 1 s interval. Each interruption is event modeled as statistically independent,
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Figure 5.19: Median delay time across 1000 randomly seeded trials for USV teams
using the predictive, heuristic, and baseline strategies when communication between
USVs is interrupted.

so repeated interruptions can block communication between two USVs indefinitely.

As the probability of interruption increases, the performance of the USV team

is negatively impacted. This is true for all three strategies. Going from no interrup-

tion, to interruptions occurring with 0.5 probability every second, the mean delay

time of the predictive strategy drops from 19.2 s to 14.2 s in scenario 1, and from

19.1 s to 15.2 s in scenario 2, a difference of 26% and 20% respectively. The impact

on the heuristic strategy is more significant, dropping from from 10.1 s to 6.0 s

in scenario 1, and from 15.3 s to 8.5 s in scenario 2, a difference of 40% and 44%

respectively.

For both scenarios, the difference in performance between the heuristic and

predictive strategies decreases as the probability of interruption increases. Since

task exchanges are not possible without communication between agents, high inter-

ruption renders the additional predictive simulation less effective. The predictive

strategy still out-performs both the heuristic baseline strategies in all but the most
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extreme levels of interruption. The baseline strategy also performs better than the

heuristic strategy when the interruption probability exceeds 0.1. This may be due

to the fact that the baseline strategy uses very few task exchanges to begin with

and is therefore better optimized for situations with low communication.

5.5 Discussion

This chapter introduced a decentralized, contract-based planning approach for

protecting an high-valued asset by a team of USVs operating in an environment with

civilian traffic. The developed planner is able to deal with uncertainty about which

boats are actual intruders and accounts for complex interactions between USVs and

intruders when allocating tasks. The planner combines high-level task allocation

with low-level user defined behaviors by using model-predictive simulations to eval-

uate plan performance. The planner is capable of evaluating candidate the task

allocation efficiently, is scalable to large teams of USVs, and can be optimized for a

specific mission.

We have evaluated the performance of the planner in two different simulation

scenarios. In both scenarios, the developed model-predictive planner had a signifi-

cant performance advantage compared to the baseline and heuristic strategies. We

also evaluated the scalability of the planner for large numbers of USVs and passing

boats, explored the trade-off between plan quality and execution time, and evalu-

ated the planner’s robustness in dealing with noisy sensor data, inaccurate opponent

models and high levels of communication interruption.
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The experimental results in Sec. 5.4 show that by carefully tuning and inte-

grating the model-predictive simulation into the task allocation process, features

such as differential constraints and sensing uncertainty can be directly considered

during task allocation and still run efficiently. We also demonstrate that the use

of model-predictive simulation leads to significantly higher performance and robust-

ness than the pure use of task-tailored heuristic rules. We show that through careful

Monte-Carlo sampling over the distribution of possible worlds, the model-predictive

simulation produces better results despite the fact that heuristics are computa-

tionally more efficient. These results suggest that time is better spent carefully

evaluating which tasks to exchange instead of exchanging tasks quickly based on an

inexpensive heuristic.

5.5.1 Limitations and Future Work

One limitation of the experimental design in this chapter is that it does not

directly incorporate concurrency into the simulation. The implementation is single-

threaded, meaning that the task re-allocation step for each USV is performed se-

quentially. As a result, some of the concurrency issues that may be experienced in

a real world scenario are not directly evaluated by our experiments.

Due to concurrency it is possible for the system to cycle between two or more

locally sub-optimal task allocations. This can occur when two different USVs per-

form separate exchanges without being mutually aware of the other’s decision. The

two exchanges together may have a lower expected utility than the original task
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allocation, causing the exchanges to be reversed in the subsequent iteration. In

this chapter, we did not develop mechanisms specifically to deal with these types

of cycles, however, this and other concurrency issues are something that should be

evaluated more closely in future work.

Another limitation of the experimental design is that simulator used during

experiments uses the same motion model for boat physics as the predictive simulator

used by the USVs to evaluate candidate task allocations. In the real world, it may

be unrealistic to expect the same level of fidelity from a predictive simulation. To

address this issue in future work, we intend to perform experiments using a higher

fidelity simulation environment [64,65].

In future work, it would be good to explore ways to improve the planner

under high communication uncertainty. Since explicit task exchanges between agents

are not possible when communication is interrupted, it may be beneficial to blend

contract-based task exchanges with purely local task assignment as communication

between agents becomes less reliable. Another idea worth investigating is whether

the algorithm should always perform the best exchange with the boats currently in

communication, or wait a bit longer for openings in communication to perform task

exchanges with higher expected value. More work should also be done to evaluate

the effect of concurrency on task exchanges in an experimental setting.

Significant gains in performance may be realized by improved sampling of can-

didate task allocations during the task re-allocation process. The current algorithm

behaves like a local search, evaluating a small number of variations based on the cur-

rent task allocation. Stochastic sampling beyond this local set of candidates could
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reduce the likelihood of becoming stuck in a local minimum, increasing the utility

of the USV team.

Finally, this approach could be extended to more complex scenarios, such as

defending a moving target, accounting for coordinated behavior from the intrud-

ers, incorporating static obstacles with complex shapes into the environment, or

by applying the algorithm in the ground and aerial vehicles domains. To do this,

the blocking and guarding behaviors may need to be modified and new tasks may

need to be created to account for changes in the target’s position, incorporate path

planning to navigate around obstacles, or model the motion constraints of different

vehicles. Adding more sophisticated behaviors and corresponding tasks for the cur-

rent scenarios, such as cooperative blocking for two or more USVs, may also improve

performance without any changes to the high level task allocation process.
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Chapter 6: Conclusion

This dissertation has presented a variety of novel heuristic planning techniques

for multi-agent pursuit-evasion games across several problems domains, including

visibility-based pursuit-evasion (Ch. 2&3), target following with differential motion

constraints (Ch. 4), and distributed asset guarding using unmanned sea-surface ve-

hicles (Ch. 5). To overcome the inherent difficulties associated with generating

solutions for pursuit-evasion problems, these techniques rely heavily on the use of

problem relaxation and model predictive simulation to achieve low computational

complexity and efficient running times. Experimental results for each heuristic

demonstrate favorable performance compared to alternative approaches.

The application of problem relaxation and model predictive simulation to

pursuit-evasion games greatly simplifies what can otherwise be a very complicated

problem. For many pursuit-evasion games, generating optimal solutions is provably

intractable, requiring an exhaustive search over complex information spaces or other

computationally demanding problem solving techniques. In contrast, this disserta-

tion demonstrates that the inclusion of a probabilistic opponent model allows for

efficient sampling over predicted future states, quickly generating heuristic estimates

for use in a planning algorithm.
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Although the strategies generated using heuristic approaches do not represent

optimal behavior, the experimental results in this dissertation demonstrate practical

effectiveness in a number of test cases. Furthermore, the agents encountered in many

practical pursuit-evasion games are unlikely to exhibit theoretically optimal behav-

ior. Not only is computing the optimal strategy computationally infeasible, agents

are likely to be human, animal, or other subjects whose behavior may be better

represented by a probabilistic opponent model that can be learned and integrated

into a planning algorithm. The work in this dissertation attempts to demonstrate

how that might be achieved for a range of different scenarios.

6.1 Summary of Contributions

6.1.1 Visibility Based Pursuit Evasion

A significant portion of the work presented in this dissertation focused on

visibility-based pursuit-evasion games, with a pair of associated algorithms intro-

duced in Ch. 2 and 3. Specific contributions include:

• A polynomial-time control action selection heuristic for coordinating teams of

pursuers in visibility-based pursuit-evasion games (LEL), with an extension to

incorporate probabilistic opponent models of the evader (PLA).

• Five different opponent models for the PLA heuristic (MRW , MPRW , MEP ,

MEV , MLP ), including a learned preference opponent model (MLP ) which can

be trained from interaction traces of previous games.
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• An experimental evaluation of the PLA and LEL heuristics versus three dif-

ferent evader strategies (SEP , SEV , SRL), with favorable comparisons against

two independent planning approaches (LV, MD).

• A detailed analysis of how varying the parameters of the learned preference op-

ponent model (MLP ) affects the PLA heuristic’s performance against evaders.

The developed algorithm represents an advancement over prior work due to

its low computational complexity and applicability to problem domains that are

unsupported by the work of LaValle et al. [2, 7]. Although the strategies generated

by these heuristics are not optimal, they demonstrate competitive performance in

experimental evaluation for comparatively little computational effort. The low com-

putational overhead can be attributed directly to the problem relaxation made in

the derivation of the heuristic.

6.1.2 Target Following with Unmanned Boats

An additional contribution of this dissertation includes a motion goal selection

algorithm for pursuit-evasion games between a unmanned sea-surface vehicle (USV)

and a target boat. The algorithm performs Monte Carlo sampling over a probabilis-

tic opponent model to generate candidate motion goals for the USV, which are then

evaluated using a separate path planning algorithm to ensure dynamically feasible

paths. Experimental analysis on randomly generated domains demonstrates that

USVs using the motion goal selection algorithm follow more efficient paths than

USVs which choose the current state of the target boat as a motion goal
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6.1.3 Distributed Asset Guarding

The final major contribution of this dissertation includes a contract-based task

allocation algorithm to coordinate a team of USVs defending a high-valued asset

from hostile incursion. The team of USVs must identify, intercept and block hostile

intruder boats before they reach the asset. Complications of this problem include

the presence of differential motion constraints, uncertainty about the identity of

intruder boats, and sensor and communication uncertainty.

The task allocation algorithm performs model-predictive simulation to esti-

mate the the value of candidate task allocations, which are then realized by low-level

parameterized behaviors. Experimental analysis demonstrates that task assignments

selected using model-predictive simulation perform better than task assignments

evaluated using pure heuristic rules. The performance also improves as the depth of

the prediction and sample size increase. A detailed analysis is provided to illustrate

how the performance of this algorithm varies as parameters in the domain and the

strategy executed by invaders are subject to change.

In addition to the above contributions, this work also illustrates how planning

heuristics can be developed at various levels of abstraction, including low-level con-

trol action selection (Ch. 2&3), motion goal estimation (Ch. 4), and high-level task

allocation (Ch. 5). This work demonstrates how Monte Carlo simulation can be

used as a means of facilitating cohesion between independent planning components,

such as providing motion goals to path planning algorithms (Ch. 4), or evaluating

candidate task allocations through the simulation of low-level parameterized behav-
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iors and control policies (Ch. 5). The exploration of these capabilities may prove

useful in the development of similar systems in the future.
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Appendix A: Asset Guarding Behavior Model

This section defines the parameterized behaviors and control action selection

policies for USVs and boats in Chapter 5.

A.1 Parameterized Behaviors

The behaviors for USV ui are a set of hand-coded heuristics that map ui’s task

assignment Hui to a unique motion goal Gui(Oui ,Aui). The rules for computing this

motion goal are defined below.

Each task hj ∈ Hui assigned to USV ui is given a task-specific motion goal,

Ghj(Oui ,Aui), defined as

Ghj(Oui ,Aui) =



boat location, lbj , if hj ∈ Ho,

guard location, lgj , if hj ∈ Hg,

intercept point, lint, if hj ∈ Hd.

(A.1)

For observe or guard tasks, this motion goal corresponds to the estimated boat

location lbj or pre-defined guard location lgj associated with task hj. For delay

tasks, the motion goal is an intercept point lint positioned along a line between
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some intruder bj and the target.

Since USV ui can be assigned multiple tasks, ui’s desired motion goal may

differ from the motion goal of any individual task. The desired motion goal for ui is

Gui(Oui ,Aui) =


Ghj(Oui ,Aui), if ∃hj ∈ Hui ∩Hd,

Gw(Oui ,Aui), otherwise,

(A.2)

which returns Ghj(Oui ,Aui) = lint if Hui contains some delay task hj ∈ Hd. Oth-

erwise, it returns a weighted motion goal (see Fig. A.1a) based on the USV ui’s

currently assigned guard and observe tasks,

Gw(Oui ,Aui) =

∑
hj∈Hui

whj(Oui)Ghj(Oui ,Aui)∑
hj∈Hui

whj(Oui)
, (A.3)

where whj(Oui) is the weight of task hj, equal to γguard if hj is a guard task, and

equal to wbj(Oui) if hj is an observe task for boat bj,

wbj(Oui) = γintrP (bj ∈ I|Oui)(1 +
γdist

|ltarget − lbj |
). (A.4)

The parameters γguard, γintr, and γdist are tuned by the genetic algorithm using the

method described in Sec. 5.3.5.

We simplify the calculation of intercept point lint by assuming both USVs

and intruders can travel in any direction at maximum velocity, ignoring differential

constraints and acceleration. If the intruder follows a linear path directly to the

target, then lint is the closest intercept point for the USV along that path.
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(a) (b)

Figure A.1: (a) USV u1 approaches the weighted motion goal Gw(Oui ,Aui) corre-
sponding to two observe tasks for boats b1 and b2 and a guard task for location
l1, (b) Heuristic model of USVs u1 and u2 intercepting intruder b1 in a simplified
version of the problem. The intercept points serve as a motion goal for the delay
behavior of the USVs.

More formally, to find lint for a single USV ui assigned to a single intruder bj,

the intercept point calculation finds the nearest point in the set of possible intercepts

Lint(ui, bj), defined as

Lint(ui, bj) = {l : Lpath(ui, bj) ∩ Ltarget(bj)} (A.5)

where Lpath(ui, bj) is the set of points for which some linear path for ui intercepts

some linear path for bj at their respective maximum velocities,

Lpath(ui, bj) = {l :
|l − luj |
vmax,ui

=
|l − lbj |
vmax,bj

}, (A.6)

and Ltarget is the set of points l that lie on the path between bj and the target,

Ltarget(bj) = {l : ∃s≥0[lbj + s(l − lbj) = ltarget]}. (A.7)
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We define Lint(Hui) as the union of Lint(ui, bj) for all boats bj with a cor-

responding delay task hj ∈ Hui ∩ Hd. The point lint(Hui) is the intercept point

l ∈ Lint(Hui) that minimizes its distance to ui’s current location.

lint(Hui) =


arg minl∈Lint |l − lui|, if Lint(Hui) 6= ∅,

ltarget, otherwise.

(A.8)

If Lint(Hui) is empty, no intercept is reachable, so USV ui will head to the location

of the target instead.

When multiple USVs are assigned to delay bj, the calculation of Lint(Hui) in-

corporates a speed reduction for each additional USV that intercepts the intruder.

An example of this calculation for multiple USVs is shown in Fig. A.1b. The cal-

culation estimates the speed of the intruder as vbj(k) = vmax,bj ∗ (γblock)
k after it

has been intercepted by k USVs. The calculation adjusts the intercept points for all

subsequent USVs accordingly. Since vbj(k) underestimates the real travel time of the

boats and USVs, we define a lead-time parameter, γlead, which the calculation adds

to USV ui’s starting time when computing the intercept. The parameters γlead and

γblock are tuned by the genetic algorithm using the method described in Sec. 5.3.5.

A.2 Control Action Selection

Given USV ui’s motion goal Gui(Oui ,Aui) and vehicle state xui , an appropriate

control action q ∈ Q(xui) must be selected to direct ui towards its goal while avoiding

collisions with other boats or static obstacles. Let ψui be ui’s current heading angle

147



and let φGui be the desired heading angle in the direction of Gui . The steering angle

to achieve this new heading is determined by,

∆ψGui (xui) = arg min
∆ψ∈Θ(xui )

|d(φGui , ψui + ∆ψ)|. (A.9)

where d(φj, φk) is the difference between any two angles φj and φk. Similarly, the

change in surge speed is determined by,

∆vGui (xui) = arg min
∆v∈A(xui )

|ηGui − (vui + ∆v)| (A.10)

where ηGui is the desired surge speed of USV ui as it approaches Gui . The resulting

control action is simply,

qGui (xui) = {∆vGui (xui),∆ψGui (xui)}. (A.11)

However, this control action may lead to a collision with obstacles such as other

boats or rocks. To reduce the chance of collision, the desired heading φGui and

velocity vGui are adjusted using reactive obstacle avoidance.

As depicted in Fig. A.2a, each USV has an obstacle avoidance fan with radius

γfanr and angular span γfanθ to identify which obstacles pose a risk of collision.

Headings within the obstacle avoidance fan are considered blocked if they are occu-

pied by an obstacle or will become occupied by an obstacle within some time tlead

based on the obstacles’ current velocities. Obstacles are assumed to have a non-zero

radius.
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Figure A.2: (a) USV u1 adjusts its heading to steer away from the region blocked
by boat b1 based on the depicted obstacle avoidance fan, (b) USV u1 intercepts
intruder b1, diverting it from its intended path to the asset.

Let Z = {z1, z2, . . . , zn} be a set of unblocked sectors inside the obstacle avoid-

ance fan, where each zj = [φj,a, φj,b] is a range of headings that are not blocked and

where the ordering constraint φj,b ≤ φj+1,a holds for all j < n. Let φj,mid be a mid-

point between φj,a and φj,b. Heading φ is considered safe if it is within the obstacle

avoidance fan, and φ ∈ [φ1,a, φ1,mid] or φ ∈ [φn,mid, φn,b], which is trivially true if

n = 1.

If φ∗Gui is the most direct heading to the motion goal, the adjusted heading

after reactive obstacle avoidance is,

φGui =


φ∗Gui , if φ∗Gui is safe,

φk,mid s.t. zk = zmax, otherwise,

(A.12)
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where zmax is the widest unblocked sector,

zmax = arg max
zj∈Z
|d(φj,b, φj,a)| (A.13)

The surge speed of the USV is not affected by obstacle avoidance unless Z = ∅, at

which point the USV will slow to a stop. Thus, the desired surge speed is,

ηGui =



0, if Z = ∅,

vmax,ui
|Gui−lui |
γslowr

, if |Gui − lui | < γslowr ,

vmax,ui , otherwise,

(A.14)

where lui is ui’s current location, and γslowr determines at what distance the USV

should start to slow down.

We define non-zero acceptance radius γgoalr such that USV ui is considered at

its destination if it is within the distance γgoalr of its motion goal Gui . The resulting

policy for USV ui is simply,

πui(Oui ,Aui) =


qGui (xui), if |Gui − lui | > γgoalr ,

qstop(xui), otherwise,

(A.15)

where qstop(xui) = {amin(xui), 0} is a control action that quickly halts the movement

of the USV.

The control action selection for passing boats is identical to USVs, only a

different motion goal Gbj and different set of parameters γfanr , γfanθ and γslowr
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are selected. For our experiments detailed in Section 5.4, the parameters for the

passing boats including intruders are predefined, while the parameters for the USVs

are learned using a genetic algorithm, described in Section 5.3.5.

If one or more USVs move within the obstacle avoidance fan of an another

boat, the boat will be forced to adjust its trajectory to avoid a collision. This is

illustrated in Fig. A.2b, where a USV intercepts an intruder, diverting its trajectory

away from the target.
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