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Evolutionary Game Theory (EGT) has become an attractive framework for

modeling human behavior because it provides tools to explicitly model the dynam-

ics of behaviors in populations over time and does not require the strong rationality

assumptions of classical game theory. Since the application of EGT to human be-

havior is still relatively new, many questions about human behavior and culture of

interest to social scientists have yet to be examined through an EGT perspective

to determine whether explanatory and predictive rather than merely descriptive

insights can be gained. In this thesis, informed by social science data and under

close collaboration with social scientists, I use EGT-based approaches to model

and gain a qualitative understanding of various aspects of the evolution of human

decision-making and culture. The specific phenomena I explore are i) risk prefer-

ences and their implications on the evolution of cooperation and ii) the relationship

between societal threat and the propensity with which agents of societies punish

norm-violating behavior.



First, inspired by much empirical research that shows human risk-preferences

to be state-dependent rather than expected-alue-maximizing, I propose a simple

sequential lottery game framework to study the evolution of human risk preferences.

Using this game model in conjunction with known population dynamics provides the

novel insight that for a large range of population dynamics, the interplay between

risk-taking and sequentiality of choices allows state-dependent risk behavior to have

an evolutionary advantage over expected-value maximization. I then demonstrate

how this principle can facilitate the evolution of cooperation in classic game-theoretic

games where cooperation entails risk.

Next, inspired by striking differences across cultural groups in their willingness

to punish norm violators, I develop evolutionary game models based on the Pub-

lic Goods Game to study punishment behavior. Operationalizing various forms of

societal threat and determining the relationship between these threats and evolved

punishment propensities, these models show how cross-cultural differences in pun-

ishment behavior are at least partially determined by cultures’ exposure to societal

threats, providing support for social science theories hypothesizing that higher threat

is a causal factor for higher punishment propensities.

This work advances the state of the art of EGT and its applications to the

social sciences by i) creating novel EGT models to study different phenomena of

interest in human decision-making and culture, and ii) using these models to pro-

vide insights about the relationships between variables in these models and their

impact on evolutionary outcomes. By developing and analyzing these models under

close consideration of relevant social science data, this work not only advances our



understanding of how to use evolutionary game and multi-agent system models to

study social phenomena, but also lays the foundation for more complex explanatory

and predictive tools applicable to behaviors in human populations.
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Chapter 1

Introduction

In this thesis, I employ evolutionary game theoretic approaches that combine

theoretical analysis and multi-agent system simulations to generate models of the

evolution of various phenomena relating to human decision-making and culture.

Following its original conception to study problems in evolutionary biology, Evo-

lutionary Game Theory (EGT) has become an increasingly common tool used to

model, explain, and predict phenomena of human behavior and societies. EGT is

an attractive framework under which to model human behavior because it allows

for the explicit modeling of changes in behaviors and norms over time based in a

manner that is dependent on other behaviors in the population. Also, the social-

science literature is filled with examples of empirical studies showing that humans

violate the strong rationality assumptions of classical game theory. Under the EGT

framework, such an assumption of a priori rational agents is not required.

This thesis advances the state of the art of evolutionary game theory and its

applications to the social sciences by i) developing novel evolutionary game theoretic

models to study different specific phenomena of interest in human behavior and

culture that have not yet been explored in this manner, and ii) providing novel

observations about the relationships between variables in these evolutionary game

theoretic models and their impact on evolutionary outcomes, thereby providing new
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insights into the evolution of human decision-making behavior, social norms and

culture.

Specifically, the models presented in this thesis show how a large range of

population dynamics that model social imitation learning result in state-dependent

risk preferences under sequential choice, how this principle facilitates the evolution

of cooperation in classic game theoretic games where cooperation entails risk, and

lastly how cross-cultural differences in punishment behavior to enforce cooperative

norms are at least partially determined by cultures exposure to societal threats.

These investigations are motivated and carried out under the close consideration of

relevant social science data. The development and analysis of evolutionary game

theoretic models of these aspects of human behavior and culture not only advances

our understanding of how to use evolutionary game and multi-agent system models

to study such problems, but also lays the foundation for more complex explanatory

and predictive tools applicable to human populations and societies.

1.1 Motivation, Aim and Approach

Many questions about human behavior and culture of interest to social scien-

tists have yet to be examined through an evolutionary game theoretic perspective

in order to determine whether explanatory and predictive rather than merely de-

scriptive insights can be gained. The primary goal of my evolutionary game theo-

retic models is to enhance our understanding of human behaviors and societies by

shedding light on the relationships of various environmental factors and adaptation
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(social learning) processes to evolutionary behavioral outcomes and dynamics. This

research is grounded in empirical social science data and conducted in close interdis-

ciplinary collaboration with social scientists. Such an interdisciplinary approach is

often crucial for the validity and usefulness of evolutionary game theoretic models.

Integrating evolutionary game theoretic models into social science can provide

a complementary method to those that exist in the field. In order to understand

our complex human social world, social scientists often create descriptive models of

human behavior and decision making. Based on empirical data, these studies seek

primarily to describe observed behavior rather than to understand their underlying

dynamics and reasons for emergence. Similarly, empirical studies often find cor-

relations among various historical, socio-cultural, and behavioral factors in human

populations. However, no causal relationships in these correlations can be deter-

mined. By providing explanatory models of the emergence of different observed

behaviors, evolutionary game theoretic models have the ability to describe the pro-

cess and dynamics under which different behaviors emerge, and establish support for

causal relationships among socio-cultural, historical, and behavioral factors that are

often difficult or impossible to test or infer empirically. Furthermore, such models

can be used to test hypothetical scenarios and to create predictive tools of human

behavior and population norms.

Throughout the development of the evolutionary game theoretic models pre-

sented in this thesis, I used mathematical analysis and multi-agent system simu-

lations in a symbiotic fashion. Simulations can be used as an exploratory tool to

inspire theoretical investigations, to validate theoretical predictions, or to produce
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results when the model is too complex to meaningfully analyze mathematically.

In return, when possible and useful, mathematical analyses serve to formalize the

dynamics and relationships in the presented models and validate simulation results.

1.2 Evolutionary Game Theory

Generally, Lewontin [62] and Maynard-Smith [69] are credited with the pio-

neering of evolutionary game theory and its application in biological contexts. They

recognized that the fitness of an organism (and hence its genes) is dependent on

the abundance of other organisms in the environment (termed frequency-dependent

fitness), and this fact critically influenced the evolution of biological species, genes,

and traits. In addition to biological genetic inheritance, however, the evolution-

ary process can also be treated as an analogy to the processes of learning [43] and

the cultural transmission and change of memes, behaviors, and norms in human

societies [27, 17]. In this context, strategies do not correspond to different genes

or species, but behaviors. The concept of frequency-dependent fitness undoubtedly

plays a crucial role in the evolution of human behaviors and norms, since the fitness

of a behavior of any one individual depends on the abundance and types of others’

behaviors and norms in the population.

Thus, following its original conception to study problems in evolutionary bi-

ology, EGT has become an increasingly common tool used to model, explain, and

predict phenomena of human behavior and societies. EGT provides the theoreti-

cal and practical computational tools to study the general, dynamic, and emergent
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properties of social systems and phenomena, including agent behaviors, culture, and

norms. EGT studies the effects of evolutionary pressures on populations of agents:

a population of agents making choices according to an assigned strategy in a game

that models a situation of interest. After agents have played the game (or games),

they reproduce into the next generation according to a reproduction function or

population dynamic that, generally speaking, increases the frequency of the types of

agents that were successful in the current generation. In this manner EGT adds an

important dynamical aspect to classical game theory for studying human behavior.

Often this evolutionary process can lead to complex population dynamics that

affect the change and prominence of agent behaviors over time. EGT generally

aims to analyze populations under such dynamics and to identify and characterize

solution concepts such as evolutionary stable states - states in which the popula-

tion has stabilized and generally speaking cannot be taken over by an arbitrarily

small number of invading new agents. Such analysis can aid the prediction of agent

behaviors in given environments and improve the understanding of behaviors and

norms by illuminating the (evolutionary) reasons for their existence. In addition,

it is relatively easy to validate, complement, and aid EGT analysis using computer

simulation.

The social science literature is filled with examples of empirical studies showing

that humans violate the strong rationality assumptions of classical game theory.

EGT is thus an attractive framework under which to model human behavior in such

domains, because the assumption of perfectly rational agents - in the classical game

theoretic sense - is not required. The focus of EGT approaches is generally not
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to define internal preferences and whether or not agents satisfy these. Rather, the

focus is to allow for all of a viable range of preferences or strategies and to evaluate

these according to their evolutionary fitness, which is external. The dynamic relative

fitness of existing preferences and strategies then determines which strategies become

norms, which of them become extinct, or if a variety of strategies remain in the

population cycling in a predator-and-prey-type dynamic. To this date, evolutionary

game theoretic approaches have been used to study a great variety of social and

cultural phenomena. Examples of such phenomena studied through evolutionary

games include cooperation, altruism, and reciprocity [6, 4, 8, 78, 93, 101, 25, 24,

48, 114, 74, 83, 15, 97, 97, 19, 80], trust and reputation [34, 71, 20, 61, 44], fairness

and empathy [9, 77, 87], punishment [85, 16, 18, 49, 51, 20, 21, 103, 52], and social

learning [100].

Despite the fact that EGT is generally not concerned with defining internal

preferences of agents a priori, there exists a need for closer coupling of EGT work

with empirical evidence and theories from social sciences. Many evolutionary envi-

ronments of concern are too complex to allow for the feasible consideration of all

possible combinations of agent strategies and game parameters. Empirical evidence

from the social sciences can aid in limiting the complexity of the evolutionary game

environment of interest, by constraining or specifying the possible strategies, model

of interactions and social learning process. Furthermore, comparing results of EGT

models to empirical data enables researchers to enhance and refine these models to

make their predictions more specific and more accurate. Conversely, EGT models

can identify aspects of the game environment crucial to evolutionary outcomes, thus
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providing information that can inspire additional empirical studies aimed at char-

acterizing these aspects. EGT models can also provide predictive models that can

be tested through actual empirical experiments.

1.3 Phenomena Explored

The phenomena I explore are i) risk preferences and implications on the evo-

lution of cooperation and ii) the willingness of humans to punish others for norm

violating behavior. The following two paragraphs give a brief motivation for each,

along with an overview of the models employed and results acquired in this thesis.

My work on risk preferences is inspired by an abundance of empirical evidence

that human decision-making under risk does not coincide with expected value max-

imization and is state-dependent.A considerable effort has been invested into the

development of descriptive theories of human decision-making involving risk (e.g.

Prospect Theory). An open question is how behavior determined by these descrip-

tive models could have been learned or arisen evolutionarily. I contend that the

answer to this question lies, at least in part, in the interplay between risk-taking,

sequentiality of choice, and population dynamics in evolutionary environments. I in-

troduce a framework of simple lottery games in which agents make sequential choices

between risky and safe lotteries to study this problem. This framework allows for the

study of risk behavior of agents in evolutionary environments through mathematical

analysis and computer simulation. Investigations of this lottery game framework in

conjunction with known population dynamics provide the novel insight that for a
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large range of population dynamics which model imitation, the interplay between

risk-taking and sequentiality of choices leads to the emergence of state-dependent

risk preferences that do not maximize expected value. The specific risk preferences

that emerge resemble well-known descriptive models of decision-making. Aside from

evolutionary lottery games I also explore a sequential evolutionary version of the

well-known stag hunt game, demonstrating how the principal discoveries from my

evolutionary lottery game framework can facilitate the evolution of cooperation in

classic game theoretic games where cooperation entails risk.

My work on punishment is inspired by empirical social science that shows that

there are striking differences across cultural groups in their willingness to punish

norm-violating behavior. While punishment has been a prevalent research subject

in psychology and EGT, the conditions under which different propensities of pun-

ishment are more or less adaptive for humans groups has received less attention.

Using Public Goods Game models in which I operationalize several forms of societal

threat, I show how these cross-cultural differences in the use of punishment are at

least partially determined by differences in cultures’ exposure to these threats. This

illuminates the evolutionary basis for the wide variation in punishment rates that

exists around the globe and helps promote cross-cultural understanding by showing

how cultural differences in punishment propensities, which may appear puzzling, are

generally adaptive to the society’s ecological and historical context.
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1.4 Thesis Outline

The rest of this proposal is organized as follows: Chapter 2 describes in detail

my work on the evolution of state-dependent risk preferences in an evolutionary lot-

tery game framework. Chapter 3 describes how the results on risk preferences in the

lottery game framework apply to games of social interaction. Chapter 4 describes

in detail my work on cultural differences in punishment norms. These Chapters

provide motivation, relevant background, and related work on the phenomena ex-

plored, describe the evolutionary game theoretic models developed to study these

phenomena, and provide results from mathematical analysis and multi-agent sys-

tem simulations. Chapter 5 discusses how evolutionary game theoretic approaches

fit into the study of culture in psychology. Chapter 6 concludes with summary of

the results and contributions in this thesis.
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Chapter 2

Evolution of State-Dependent Risk Preferences

Empirical evidence shows that human decision-making, rather than conform-

ing to the decision-theoretic notion of expected-value maximization, is state-dependent:

the decisions are sometimes risk-averse and sometimes risk-seeking, depending on

the decision maker’s circumstances. Much effort has been invested into describ-

ing and modeling such behavior, but these efforts have largely lacked an explicit

investigation of what evolutionary pressures might have influenced the behavior’s

spread. Thus an important open question is why state-dependent risk behavior is

so prevalent. I contend that the answer to this question lies, at least in part, in the

interplay between risk-taking, sequentiality of choice, and population dynamics in

evolutionary environments.

To demonstrate this, I use tools from evolutionary game theory to investigate

how agents’ risk behavior relates to different population dynamics (i.e., rules gov-

erning changes in the number of agents of each kind). The particular population

dynamics I explore are imitation dynamics, which model cultural evolution as a

product of social learning by imitation.

The probably best-known imitation dynamics are the replicator dynamic and

the imitate-the-better dynamic, but there also are many others and empirical evi-

dence on which one corresponds to human imitation is unclear. Hence I consider a
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parameterized class of imitation dynamics in which the parameter 0 ≤ α ≤ 1 yields

the replicator dynamic with α = 1 and the imitate-the-better dynamic with α = 0.

This study includes (1) a detailed mathematical analysis of how different imitation

dynamics can affect risk behavior when agents make sequential choices, and (2) sim-

ulations, using several different imitation dynamics, of evolutionary lottery games

in which agents make sequential choices among lotteries that have equal expected

value but different risks. Results demonstrate that for every population dynamic in

this class except for the replicator dynamic, the interplay between risk-taking and

sequentiality of choices allows state-dependent risk behavior to have an evolutionary

advantage over expected-value maximization.

My investigations also consider a sequential choice evolutionary version of the

well-known stag hunt game. While the lottery game results show how agents that are

sometimes risk-prone and sometimes risk-averse can outperform agents that make

decisions solely based on the maximization of the expected values of the outcomes,

the stag hunt game results show how this can facilitate the evolution of cooperation

in situations where cooperation entails risk.

This work provides a starting point for further investigation of how popula-

tion dynamics influence risk behavior in evolutionary game environments. I antici-

pate that state-dependent risk behavior will outperform expected-value-maximizing

strategies in a large variety of evolutionary game environments involving sequential

choices of different risks.

The next section provides background on human decision making under risk

and evolutionary game theory. The following sections describe imitation dynamics,
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the lottery game framework, and analysis and simulation results on the evolution of

state-dependent risk behavior.

2.1 Human Decision Making Under Risk

Human decision making under risk is the subject of much research effort in

the social sciences. In most of the existing literature on models of human decision

making under risk, the construction of such models is approached primarily through

the analysis of a decision maker’s choices among lotteries that have different pay-

off distributions, and thus potentially different risks. Under the most traditional

model of decision making, expected utility theory, a rational agent’s preferences

can be modeled by assigning to each possible outcome a number called the out-

come’s utility; and a rational choice is one that maximizes the expected utility of

the outcomes [120]. Empirical evidence of human decision making under risk shows

that humans are sometimes risk-averse, sometimes risk-seeking, and even behave

in ways that systematically violate the axioms of expected utility [60]. Expected

utility theory can account for different attitudes towards risk through certain von

Neumann-Morgenstern utility functions (e.g. [38]). Such risk propensities can differ

greatly from simple expected-value considerations on prospective outcomes.

Researchers have invested much effort into constructing utility functions that

appropriately model human decision making under risk under the expected-utility

model (e.g. [38, 58, 92]). Related efforts in economics have aimed to describe the

preferences of humans over inter-temporal lotteries, recognizing the effects of tem-
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porally successive lotteries on risk preferences [32, 33]. Other studies define utility

functions that take into account inter-personal or population comparisons [1]. Yet

other researchers have constructed alternative descriptive theories of decision mak-

ing that claim to correspond more closely to how humans make decisions involving

risk. Among the most popular of these models are prospect theory [60, 118], regret

theory [64], and SP/A (Security-Potential/Aspiration) theory [65, 66, 67]. One ad-

vantage of these models is that they more explicitly or perhaps more naturally model

some of the mechanics involved in human decision making processes. For example,

state-dependent attitudes toward risk are modeled in prospect theory by using a

reference point with respect to which prospective outcomes can be interpreted as

potential gains or losses, and are modeled in SP/A theory by including an aspiration

level as an additional decision criterion in decisions involving risk. A common theme

of both Prospect theory and SP/A theory is that agents are risk-averse when they

have done well relative to some reference point, and risk-seeking when they have

not done well relative to the reference point.

Several recent works speculate about the relation of risk-related behavior and

biological evolutionary factors [54, 94, 107]. Our work differs from and expands

such study by providing explicit analyses and simulations of risk behavior using

evolutionary-game models intended to reflect both biological and cultural evolution.

To study risk behavior in the framework of EGT, I model the situation of

interest as a game in which agents are faced with choices among lotteries of different

risks. As described in [2], these lotteries dispense resources that are considered to

be an objective quantity of which 1) agents always want more than less and 2)
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interpersonal comparisons are meaningful. The reproduction function defining the

dynamics of strategies in the population then acts directly on these resources.

2.2 Imitation Dynamics

Imitation dynamics are a class of population dynamics commonly used to

model the evolution of behaviors in societies [53, 76, 55, 75, 31]. The general frame-

work for imitation dynamics is stated by Hofbauer and Sigmund [53] as follows:

We shall suppose that occasionally a player is picked out of the popu-

lation and afforded the opportunity to change his strategy. He samples

another player at random, and adopts his strategy with a certain prob-

ability.

In what follows, I refer to these players as the observer and the observed agent,

respectively.

Important theoretical studies have been done of two specific imitation dy-

namics. One of these is the replicator dynamic [111, 98, 99, 53, 40], in which the

probability that the observer adopts the strategy of the observed agent is propor-

tional to how much more successful the observer was than the observed. The other

is the imitate-the-better dynamic [10, 119, 109, 93, 46, 26, 112, 116],1 in which the

observer always adopts the observed agent’s strategy if it was more successful than

the observer’s strategy.2

1The imitate-the-better dynamic is sometimes called tournament selection [93].
2Vega-Redondo generalizes the imitate-the-better dynamic by allowing the observer to observe

a collection of agents and adopt the strategy of the most successful agent [119].
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Several experimental studies investigating social learning through imitation

between humans have found experimental support for Vega-Redondo’s model [56,

57, 81]. Experiments on human imitation reported by Apesteguia et al. [3] indicate

that the difference in observed payoff to an agent’s own payoff does affect imitation

(the higher the difference, the more likely imitation occurs). This is more in line

with Schlag’s model. Due to this evidence for both imitation models, in I explore

a parameterized range of imitation dynamics based on a definition in [53], that

includes the replicator dynamic, the imitate-the-better dynamic, and a spectrum of

other dynamics in between those two.

2.3 Evolutionary Lottery Game Model

Here I describe the sequential lottery game, a class of games that I use to

investigate risk behavior under evolutionary pressures. I also describe the particular

range of imitation dynamics under which I explore the evolution of risk behavior.

2.3.1 Sequential Lottery Game

We shall consider a game in which agents acquire payoffs dispensed by lotteries.

In each generation, each agent must play an n-lottery game defined as follows:

Definition 1. An n-lottery game is a game in which an agent make a sequence of

n choices, where each choice is between two lotteries3: a safe lottery, whose payoff

3The choice of payoffs here is arbitrary. The results in this chapter would be roughly qualita-

tively similar if we had used any fixed value v for the safe lottery’s payoff and v+ δ and v− δ (for

fixed δ) for the risky lottery’s payoffs.
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is always 4, and a risky lottery, which one can win (a payoff of 8) with probability

p, or lose (a payoff of 0) with probability 1− p.

Note that if p = 0.5, both lotteries have expected value 4.

Our population consists of agents that follow strategies chosen from the set

S = {s1, . . . , sk} of all possible pure strategies for the sequence of lottery choices.

In any generation, a vector x = (x1, . . . , xk) gives the state of the population, where

each xi is the proportion of agents in the population using strategy si. Let π(i)

denote the payoff accumulated in a generation from the n lottery choices by agents

of type i (i.e. agents following strategy si).

2.3.2 Population Dynamics

As discussed in Section 2.2, we want to explore a range of population dynamics

that includes the replicator dynamic, imitate-the-better dynamic, and dynamics

intermediate between these two extremes. Hofbauer and Sigmund [53] give the

following parameterized formula for these population dynamics:

ẋi = xi
∑
j

xj|π(i)− π(j)|α sign(π(i)− π(j)), (2.1)

where xi is the current proportion in the population of agents of type i, ẋi is the

change in xi over time,4 and α ≥ 0 is a parameter that determines the particular

4As is common in the evolutionary game theory literature, Hofbauer and Sigmund approximate

the current population as a real-valued function xi(t) where t is the current time, so that ẋi =

dxi/dt.
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imitation dynamic. My formulation is based on theirs, but incorporates the following

changes:

• We are interested in population dynamics based on payoff comparisons among

individuals, as in [10, 109, 93, 46, 112, 116, 26]. To model payoff comparisons

among individuals, we must take into account the stochastic variability in

the payoffs to individual agents. We can do this by treating π(i) and π(j)

as discrete random variables representing the distributions of payoffs that an

agent of type i and an agent of type j receive from their lottery choices.

• The imitate-the-better dynamic and the replicator dynamic correspond to α =

0 and α = 1, respectively. Since the imitation dynamics that interest us are

these two and and the ones that are intermediate between them, we only

consider 0 ≤ α ≤ 1.

If we let r and s be any possible payoff values acquired by agents of type i and j,

and let p(r, s) the probability of obtaining this pair of values, then our modified

version of Eq. (2.1) is

ẋi = xi
∑
j

xj∇α(i, j), (2.2)

where ∇α(i, j) =
∑

r

∑
s |(r − s)|α sign(r − s) · p(r, s) is the switching rate between

two agent types i and j. This switching rate determines the effect that a pairing for

imitation between agents of type i and j has, on average, on type i’s growth rate in

the population. For example, if ∇α(i, j) is positive, a pairing for imitation between

agents of type i and j (which happens with non-zero probability if agents of type i
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Table 2.1: All of the possible pure strategies in our lottery game when n = 2.

Strategy 1st lottery 2nd lottery

SS choose safe choose safe

RR choose risky choose risky

SR choose safe choose risky

RS choose risky choose safe

RwS choose risky choose safe if 1st lottery was won, risky otherwise

RwR choose risky choose risky if 1st lottery was won, safe otherwise

and j exist in the population) on average has a positive effect on i agents’ growth

rate. If this is the case, we say i has an evolutionary advantage over j.

2.4 Analysis and Theoretical Predictions

In the two-choice sequential lottery game, there are six possible pure strategies.

These are listed in Table 2.1.5

Table 2.2 gives each each strategy, its possible numeric payoffs, and the prob-

abilities of these payoffs for the case where p, the probability of wining the risky

lottery, is 0.5. Note that in this case, all six strategies have the same expected

5For simplicity, I have restricted this study to pure strategies. For lottery games like the ones

we are considering, the reproductive fitness of a mixed strategy is intermediate among the pure

strategies in the mixed strategy’s support, hence the inclusion of mixed strategies should not have

a substantial affect on our results.
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Table 2.2: Payoff distributions of the six pure strategies in the sequential lottery

game with n = 2 and p = 0.5. All six strategies have the same expected payoff, 8,

but differing distributions. In this table and others in this section, we use boldface

numbers to denote payoff values, and non-boldface to denote probabilities.

RwS RwR SR RS SS RR

Payoff V 12 8 0 16 8 4 12 4 12 4 8 16 8 0

Prob. P (V ) .5 .25 .25 .25 .25 .5 .5 .5 .5 .5 1 .25 .5 .25

payoff value of 8, but they have differing probabilities of being above or below 8.

For example, P [π(RwS) > 8] = 0.5 and P [π(RwS) < 8] = 0.25.

In this section, we shall examine how these strategies will perform against one

another for different population dynamics (Sections 2.4.1, 2.4.2, and 2.4.4) and for

different expected values of the lotteries (Section 2.4.4), culminating in an evolu-

tionary stability result for the RwS strategy (Section 2.4.5). Finally, Section 2.4.6

briefly discusses cases where n 6= 2.

2.4.1 The Replicator Dynamic

I now show that under the replicator dynamic (α = 1), the switching rate

between any two agent types is equal to the difference in their expected payoffs.

Proposition 1. Under the population dynamics given by Eq. (2.2) when α = 1,

∇α(i, j) (the switching rate between any two agent types i and j) is the difference

between the expected payoffs of agents of type i and j (given by the discrete random

variables π(i) and π(j)).
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Proof. Let r and s be possible payoff values acquired by agents of type i and j, and

let p(r, s) be the probability of obtaining this pair of values. With α = 1,

∇α(i, j) =
∑
r

∑
s

|(r − s)|α sign(r − s) · p(r, s)

=
∑
r

∑
s

(r − s) · p(r, s) = EV (π(i)− π(j)).

Assuming independence between payoffs, ∇α(i, j) = EV (π(i)−π(j)) = EV (π(i))−

EV (π(j)), and the proposition follows.

Since all strategies have the same expected payoff in this environment, Propo-

sition 1 tells us that the switching rate between any two strategies will be 0. Con-

sequently, all six of the above strategies will perform equally well evolutionarily.

2.4.2 The Imitate-the-Better Dynamic

If we use the imitate-the-better dynamic (α = 0), then in Eq. (2.2), only the

sign of the payoff difference between two paired agents plays a role in determining

the switching rate; the magnitude of the difference is irrelevant. We can compute

the switching rate between two strategies by using the probabilities in Table 2.2 to

calculate the probability of each pair of payoffs occurring. Table 2.3 shows these

values for the RwS vs. RR pairing. We can then use these probabilities as the
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Table 2.3: Payoff distribution for RwS vs. RR in the sequential lottery game with

n = 2 and p = 0.5. Entries in the table show give the probabilities that each pair of

payoffs occurs.

RwS

12 8 0

RR

16 0.125 0.0625 0.0625

8 0.25 0.125 0.125

0 0.125 0.0625 0.0625

values of p(r, s) in Eq. (2.2) to calculate the switching rate, as follows:

∇α(RwS,RR) = sign(0− 0) · 0.0625 + sign(8− 0) · 0.0625 + sign(12− 0) · 0.125

+ sign(0− 8) · 0.125 + sign(8− 8) · 0.125

+ sign(12− 8) · 0.25 + sign(0− 16) · 0.0625

+ sign(8− 16) · 0.0625 + sign(12− 16) · 0.125

= 0.0625 + 0.125− 0.125 + 0.25− 0.0625− 0.0625− 0.125

= 0.0625.

Using similar calculations, we see that∇0(RwS,SS) = 0.25,∇0(RwS,RwR) =

0.0625, and ∇0(RwS,RS) = ∇0(RwS,SR) = 0. This suggests that RwS will be

able to consistently win an evolutionary competition against RR, RwR, or SS and

remain stable with SR and RS in this environment. The experimental results in

Section 2.5 verify this prediction.
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2.4.3 All Imitation Dynamics (Arbitrary α)

For 0 ≤ α ≤ 1, we can calculate the switching rate in a method similar to

the previous section, combining the probabilities from Table 2.2 to get the values

of p(r, s) for Eq.(2.2). However, since both the sign and magnitude of the payoff

differences are now important, the calculation is slightly more complex. For instance,

the switching rate for the RwS vs. RR pairing is now as follows:

∇α(RwS,RR) =|0− 0|α sign(0− 0) · 0.0625 + |8− 0|α sign(8− 0) · 0.0625

+ |12− 0|α sign(12− 0) · 0.125 + |0− 8|α sign(0− 8) · 0.125

+ |8− 8|α sign(8− 8) · 0.125 + |12− 8|α sign(12− 8) · 0.25

+ |0− 16|α sign(0− 16) · 0.0625 + |8− 16|α sign(8− 16) · 0.0625

+ |12− 16|α sign(12− 16) · 0.125

=4α(0.125) + 8α(−0.125) + 12α(0.125) + 16α(−0.0625).

Figure 2.1 shows how the switching rate between RwS and the other strategies

varies with α. One can see that RwS has an advantage over all other strategies for

0 < α < 1, suggesting that RwS should be able to win any evolutionary competition

in these environments. Again, this prediction is supported by the simulation results

in Section 2.5.
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Figure 2.1: Switching rate between RwS and each of the other five pure strategies for

0 ≤ α ≤ 1. A positive switching rate indicates an evolutionary advantage of RwS

against the other strategy (in a population made up of solely the two strategies).

We see that RwS has such an advantage over all other strategies when 0 < α < 1,

and all but SR and RS when α = 0.
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2.4.4 Differing Expected Values of Lotteries (Arbitrary p)

We now consider the case where p, the probability of winning the risky lottery,

is any number between 0 and 1 (whence the risky lottery’s expected value is between

0 and 8). Table 2.4 gives the probability distributions for each pure strategy.

We can also construct a new probability matrix for each pairing, such as the

one for RwS vs. RR shown in Table 2.5. We can then compute the switching rate

for our pairing as before. For example, the switching rate for RwS vs. RR is now

∇α(RwR,RR) =|0− 0|α sign(0− 0) · (1− p)4

+ |8− 0|α sign(8− 0) · (1− p)3p

+ |12− 0|α sign(12− 0) · (1− p)2p

+ |0− 8|α sign(0− 8) · 2(1− p)3p

+ |8− 8|α sign(8− 8) · 2(1− p)2p2

+ |12− 8|α sign(12− 8) · 2(1− p)p2

+ |0− 16|α sign(0− 16) · (1− p)2p2

+ |8− 16|α sign(8− 16) · (1− p)p3

+ |12− 16|α sign(12− 16) · p3

=4α(2(1− p)p2 − p3) + 8α((1− p)3p− 2(1− p)3p− (1− p)p3)

+ 12α(1− p)2p+ 16α(1− p)2p2

Notice that when p > 0.5, the risky lottery has a higher expected value than

the safe lottery, and the opposite is true when p < 0.5. Thus, RR has the highest

expected value when p > 0.5, and SS has the highest expected value when p < 0.5.
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Table 2.4: Payoff distributions of the six pure strategies in the sequential lottery

game with n = 2 and 0 ≤ p ≤ 1.

RwS RwR

Payoff V 12 8 0 16 8 4

Prob. P (V ) p (1− p)p (1− p)2 p2 (1− p)p (1− p)

RS, SR SS RR

Payoff V 12 4 8 16 8 0

Prob. P (V ) p (1− p) 1 p2 2(1− p)p (1− p)2

Table 2.5: Payoff distribution for RwS vs. RR in the sequential lottery game with

n = 2 and arbitrary p. Entries in the table show give the probabilities that each

pair of payoffs occurs.

RwS

12 8 0

RR

16 p3 (1− p)p3 (1− p)2p2

8 2(1− p)p2 2(1− p)2p2 2(1− p)3p

0 (1− p)2p (1− p)3p (1− p)4
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Figure 2.2: The shaded area indicates values of p and α for which the switching rate

between RwS and the expected-value maximizing strategy (i.e. RR if p ≥ 0.5, SS

otherwise) is greater than 0. RwS is at a disadvantage in terms of expected utility

when p 6= 0.5, but it still manages to retain its evolutionary advantage for a wide

range of values.

Surprisingly, even though RwS has a suboptimal expected value when p 6=

0.5, by examining the switching rates we can see that it still has an evolutionary

advantage over both SS and RR for many values of p and α. Figure 2.2 shows the

values of p and α for which ∇α(RwS,RR) > 0 and ∇α(RwS,SS) > 0, meaning that

for these values of p and α, RwS has an evolutionary advantage over expected-value

maximizing strategies. Under the imitate-the-better dynamic (α = 0), the range

is surprisingly large. For example, RwS outperforms SS even when p = 0.4, and

SS has a significantly higher expected value than RwS. As α increases, the range

shrinks at a roughly linear rate, disappearing at α = 1 (i.e., the replicator dynamic).
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2.4.5 Evolutionary Stability of State-Dependent Risk Behavior

This section discusses whether RwS is an evolutionarily stable strategy (ESS)

in the 2-lottery game when p = 0.5 and 0 < α < 1. I first give the classical definition

of an ESS, explain why it cannot be directly applied to n-lottery games when α 6= 1,

and propose an intuitive modification to make it applicable. I then show that RwS

fits our modified definition of an ESS.

2.4.5.1 Evolutionary Stability under Imitation Dynamics

In an evolutionary game, a population of agents using an ESS is resilient

against an arbitrarily small number of incoming agents that use any other strategy

[69]. According to Maynard Smith, strategy S is an ESS if for every strategy T 6= S,

one of the following conditions holds:

• E(S, S) > E(T, S);

• E(S, S) = E(T, S) and E(S, T ) > E(T, T );

where E(X, Y ) is the expected payoff an agent receives by playing strategyX against

strategy Y [69].

This definition does not apply directly to the n-lottery game, because it as-

sumes the population dynamics are governed by the replicator equation, for which

the expected payoff of a strategy pairing is all that is necessary to determine whether

one strategy will grow or shrink in population proportion compared to the other.

As described in the work summarized in Section 2.4.4, with imitation dynamics

other than the replicator dynamic, the expected value of a pairing is not sufficient
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to determine which strategy will perform better in the n-lottery game. Instead, one

must use the switching rate ∇α(X, Y ) rather than E(X, Y ) when defining evolution-

ary stability for the n-lottery game under imitation dynamics. This is appropriate

because if there are many agents using X and few using Y , then

• ∇α(X,X) > ∇α(Y,X) implies that X will grow faster playing against itself

than Y will grow playing against X, so Y will not be able to gain population

and will eventually die off;

• ∇α(X,X) = ∇α(Y,X) and ∇α(X, Y ) > ∇α(Y, Y ) implies that X and Y grow

at the same rate when playing against X, but X grows faster than Y when

playing against Y , so Y will still not be able to gain population and will

eventually die off.

and these scenarios correspond to the two conditions for X to be an ESS in the

classical definition.

Replacing expected value with switching rates in the definition above gives us

the following definition for an ESS in the n-lottery game:

Definition 2. A strategy S is an evolutionarily stable strategy in the n-lottery game

if on of the following two conditions holds:

• ∇α(S, S) > ∇α(T, S) or

• ∇α(S, S) = ∇α(T, S) and ∇α(S, T ) > ∇α(T, T )

for all T 6= S.
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Combining these conditions and considering the definition of the n-lottery

game (Definition 1), we get the following simpler condition for ESS:

Lemma 1. A strategy S is an evolutionarily stable strategy (ESS) in the n-lottery

game if, for any strategy T 6= S, ∇α(S, T ) > 0.

Proof. If for any strategy T 6= S ∇α(S, T ) > 0, then ∇α(S, S) > ∇α(T, S) holds for

any strategy T 6= S, since ∇α(S, S) = 0 and ∇α(S, T ) = −∇α(T, S) for all S and

T . Thus the first condition of Definition 2 holds, which is sufficient for S to be an

ESS.

2.4.5.2 RWS is Evolutionarily Stable

This section shows that RwS is an ESS by Lemma 1 for the 2-lottery game with

p = 0.5 and 0 < α < 1. To do this, one must show that it has a positive switching

rate with an arbitrary strategy. Therefore, the first step must be to devise a method

for representing an arbitrary strategy for the 2-lottery game. One can find that, if

the decisions an agent makes and the possible lottery outcomes are arranged into

a game tree as shown in Figure 2.3, then any strategy can be expressed as Sa,b,c,d,

where a, b, c, and d give the agent’s probability of choosing the risky lottery at each

of the four decision nodes indicated in the figure. For instance, the pure strategies

we have been dealing with thus far can be represented as follows (here, a “-” in

place of one of the four probabilities indicates that any value is acceptable, since

the decision corresponding to that probability is never reached):

• SS is S0,−,−,0
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Figure 2.3: Representation of the 2-lottery game as a game tree consisting of decision

nodes, in which the agent chooses between a risky (R) and safe (S) lottery, lottery

nodes, and terminal nodes, which assign the agent its total payoff. Any strategy in

this game can be represented as Sa,b,c,d, where a, b, c, and d give the probabilities of

choosing the risky lottery at each of the four corresponding decision nodes.
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• RR is S1,1,1,−

• RS is S1,0,0,−

• SR is S0,−,−,1

• RwS is S1,0,1,−

• RwR is S1,1,0,−

We can now calculate the switching rate between RwS and an arbitrary strat-

egy Sa,b,c,d in terms of a, b, c, d, and α. This comes out to:

∇α(RwS, Sa,b,c,d) =
[
1
8
(2 ∗ 8α − 12α − 4α)

]
(a(1− c) + (1− a)d) (2.3)

+
[
1
4
(2 ∗ 4α − 8α)

]
(1− a)(1− d)

+
[

1
16

(2 ∗ 12α + 2 ∗ 4α − 2 ∗ 8α − 16α)
]
ab.

Appendix A gives a full derivation. Intuitively, this says that the switching rate

for the arbitrary strategy is just the probability that the strategy follows the pure

strategies SS, SR, RS, and RR, times the switching rate between RwS and each

of those strategies. Given the above derivation for ∇α(RwS, Sa,b,c,d), we get the

following evolutionary stability result:

Theorem 1. RwS is an evolutionarily stable strategy in the n-lottery game with

p = 0.5 and 0 < α < 1.

Proof. By Lemma 1, we know that RwS is an evolutionarily stable strategy if

∇α(RwS, Sa,b,c,d) > 0 holds. Eqn. 2.3 gives this switching rate between RwS and

any other arbitrary strategy Sa,b,c,d in the 2-lottery game. The three bracketed terms
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are all strictly greater than 0 for 0 < α < 1; in fact, they are identical to the curves

in Figure 2.1 for SR/RS, SS, and RR, respectively. Given that the bracketed

terms are strictly positive, ∇α(RwR, Sa,b,c,d) > 0 unless a = 1, b = 0, and c = 1.

Since S1,0,1,− is equivalent to RwS, this means that ∇α(RwR, Sa,b,c,d) > 0 for all

Sa,b,c,d 6= RwS. Thus, RwS is an evolutionarily stable strategy by Lemma 1 and

Definition 2.

2.4.6 Higher Number of Sequential Choices (n > 2)

With the exception of Section 2.4.5.1, the presented theoretical development

has been largely restricted to the case n = 2. This Section desceibes briefly what

happens for other values of n.

The case n = 1 is relatively trivial: there are only two pure strategies, both

are unconditional, and both perform equally well (for more details, see [95]).

The case n > 2 is very hard to analyze, because the number of pure strategies

is super-exponential in n. However, intuition suggests that the behavior pattern

exhibited by RwS for n = 2, namely to play safe when having done well and risky

otherwise, should also have an advantage when n > 2. I discuss some simulation

experiments that support this intuition in Section 2.5.2.1.

32



2.5 Simulations

For further investigations of the dynamics in a population consisting of all pure

strategies, the next section describes results of computer simulations of agent-based

models playing the two-choice evolutionary lottery game.

2.5.1 Setup and Implementation

Simulations for the two-choice lottery game environment in this Section explore

population evolution under a variety of parameter combinations of α (the imitation

parameter) and p (the probability of winning the risky lottery). The types of agents

included were the six pure strategies for the two-choice game described earlier. All

simulations started with an initial population of 1000 agents for each agent type.

To correspond with the imitation dynamics given by Eq. (2.2) in the finite

population agent-based model, I used a pairwise comparison process [112] to model

the transmission of strategies among agents. Each generation, after all agents have

received payoffs from chosen lotteries, each agent i compares its (individual) payoff

ρ(i) to that of a randomly drawn agent from the population j (with payoff ρ(j))

and adopts the strategy of this agent with a probability q if ρ(j) > ρ(i). In order to

achieve the parameterized dynamics given by Eq. (2.1) in the agent-based model, I

use

q = [|ρ(j)− ρ(i)|/∆ρ]α, 0 ≤ α ≤ 1,

where ∆ρ is the highest possible difference in payoff. Figure 2.4 provides pseudo-

code on how this pairwise comparison imitation process was implemented.
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LOOP for each agent in population

Select current agent (imitator) from population

Select random agent (observed) from pop

Let ρim = payoff achieved by imitator

Let ρobs = payoff achieved by observed

Let ∆ρ = highest possible payoff difference

Let r = random number in [0, 1)

Let q = [|ρim − ρobs|/∆ρ]α

# Imitate observed agent with probability q based on payoff comparison

IF ρim < ρobs AND r <= qTHEN

Place an agent following the strategy of observed into next generation

ELSE

Place an agent following the strategy of imitator into next generation

END IF

END LOOP

Figure 2.4: Pseudo-code for the pairwise comparison imitation process used to re-

produce agents into the next generation in the evolutionary simulations. Takes

parameter 0 ≤ α ≤ 1.
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α = 1

Figure 2.5: Results of simulation for α = 0 in the population dynamic and p = 0.5.

Plot shows the number of agents of each type over the course of evolution for 500

generations.

2.5.2 Results

Figures 2.5, 2.6, and 2.7 show the results for simulations with p = 0.5 for

each α = 1 (the replicator dynamic), α = 0 (the imitate-the-better dynamic), and

α = 0.5. Each plot is an average over 20 simulation runs (the amount of variation

from one run to another was quite small). These experiments confirm my analysis

from Section 2.4.5.2, which shows that RwS has an evolutionarily advantageous risk

behavior under any 0 ≤ α < 0.

As predicted by my analysis, RwS outperformed the other strategies evolu-

tionarily except when α = 1:
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α = 0

Figure 2.6: Results of simulation for α = 0 in the population dynamic and p = 0.5.

Plot shows the number of agents of each type over the course of evolution for 500

generations.
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α = 0.5

Figure 2.7: Results of simulation for α = 0.5 in the population dynamic and p = 0.5.

Plot shows the number of agents of each type over the course of evolution for 500

generations. Simulation runs for α = 0.2, 0.4, 0.6, and 0.8 produced qualitatively

identical results to the case of α = 0.5.
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• For α = 1, all of the strategies performed equally well and remained at their

initial population counts.

• For α = 0, the state-dependent strategy RwS outperformed the other strate-

gies. RwS rose in population proportion relatively quickly to comprise the

majority (> 2/3) of the population and remained there throughout subse-

quent generations. Furthermore, the two unconditional strategies SR and RS

remained, comprising the proportion of the population not taken over by RwS.

• For α = 0.5, the RwS agent population grew similarly as for α = 0, but here

RwS also had an advantage against SR and RS (as indicated by Figure 2.1)

and thus continued to grow to comprise 100% of the population.

I also ran simulations with α = 0.2, 0.4, 0.6, and 0.8. The results for these α

values are all essentially equal to the case of α = 0.5. The only difference is that

the rate at which RwS grows to take over the population is inversely related to α

(i.e. for larger α values, it takes longer for RwS to take over the population).

In order to explore lottery games in which the risky lottery has a different

expected value than the safe lottery, I also ran experiments with p = 0.3, 0.4, 0.55,

and 0.7. These values were chosen because for α = 0, Section 2.4.4 showed that for

two of them (p = 0.4, 0.55) RwS has an evolutionary advantage over the expected-

value-maximizing strategy, and for the other two (p = 0.3, 0.7) the expected-value-

maximizing strategy has an evolutionary advantage over RwS.

As shown in Figure 2.8, 2.9, 2.10, and 2.11, the simulation results confirm the

theoretical predictions. More specifically:
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• For p = 0.2 (Figure 2.8), SS is the expected-value maximizing strategy and it

takes over the population.

• For p = 0.7 (Figure 2.11), RR is the expected-value maximizing strategy and

it takes over the population.

• Even though SS is the expected-value-maximizing strategy for p = 0.4 (Fig-

ure 2.9) and RR is for p = 0.55 (Figure 2.10), in both cases RwS has an

evolutionary advantage and takes over the population.

In Figures 2.9, 2.10, and 2.11, some fluctuations occur before stabilization. These oc-

cur because of the differing amounts of evolutionary advantage that different strate-

gies have over others. For example, a strategy a may grow in number temporarily

because it has an advantage over another strategy b. But once b becomes extinct

(or sufficiently small in number), a will diminish because some other strategy c has

an advantage over a.

2.5.2.1 Simulations for n > 2

In Section 2.4.6, I hypothesized that RwS’s behavior pattern, namely to be

risk-averse when it has done well and risk-seeking when it has done badly, may be

advantageous in lottery games with n > 2. To test this hypothesis, I ran experiments

for the case n = 4, using the six strategies shown in Table 2.6.

For my simulations I used an initial population of 1000 agents of each type,

and the parameters p = 0.5 for the risky lottery and α = 0 for the population

dynamic. The results were qualitatively the same as the ones in Figure 2.7: the
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p = 0.3

Figure 2.8: Results of simulation with p = 0.3 for the risky lottery and α = 0.

Plot shows the number of agents of each type over the course of evolution for 500

generations.
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p = 0.4

Figure 2.9: Results of simulation with p = 0.4 for the risky lottery and α = 0.

Plot shows the number of agents of each type over the course of evolution for 500

generations.
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p = 0.55

Figure 2.10: Results of simulation with p = 0.55 for the risky lottery and α = 0.

Plot shows the number of agents of each type over the course of evolution for 500

generations.
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p = 0.7

Figure 2.11: Results of simulation with p = 0.7 for the risky lottery and α = 0.

Plot shows the number of agents of each type over the course of evolution for 500

generations.
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Table 2.6: Pure strategies in the lottery game simulations for n = 4.

Strategy Behavior

SSSS always choose safe

RRRR always choose risky

SSRR choose safe in lotteries 1 & 2, then choose risky in 3 & 4

RRSS choose risky in lotteries 1 & 2, then choose safe in 3 & 4

RRwSS choose risky in lotteries 1 & 2,

then choose safe in 3 & 4 only if 1 & 2 were won, else choose risky

RRwRR choose risky in lotteries 1 & 2,

then choose risky in 3 & 4 only if 1 & 2 were lost, else choose safe

RRwSS strategy dominated the other strategies and grew to comprise 100% of

the population. This would seem to confirm my hypothesis—but since there are

hundreds of pure strategies when n = 4 and I only looked at six of the simpler ones,

the result should be regarded as preliminary.

2.6 Relations to Alternative Decision Making Models

The manner in which the RwS strategy deviates from expected value max-

imization in the lottery games can be characterized as risk-averse (preferring the

safe choice) when doing well in terms of payoff and risk-prone (preferring the risky

choice) otherwise. Similar risk behavior is suggested by models such as prospect

theory [60, 118] and SP/A theory. In prospect theory, people are risk-seeking in the
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domain of losses and risk-averse in the domain of gains relative to a reference point.

In SP/A theory [67], a theory from mathematical-psychology, aspiration levels are

included as an additional criterion in the decision process to explain empirically

documented deviations in decision-making from expected value maximization.

One explanation for the existence of decision-making behavior as described by

such models is that the described behavioral mechanisms are hardwired in decision

makers due to past environments in which the behaviors provided an evolutionary

advantage [54]. Another interpretation, not necessarily unrelated, is that the utility

maximized by decision makers is not the payoffs at hand, but a different perhaps

not obvious utility function. Along these lines, [30] proposes a model of decision

making that includes probabilities of success and failure relative to an aspiration

level into an expected utility representation with a discontinuous (at the aspiration

level) utility function. Empirical evidence and analysis provided in [88] provide clear

support for the use of probability of success in a model of human decision making.

All these descriptive theories provide for agents to be sometimes risk-prone and

sometimes risk-averse, depending on their current state or past outcomes, such as

the RwS in the presented simulations.

The sequentiality of choices in my game simulations allows for such state-

dependent risk behavior to be explicitly modeled. One could theoretically model

the sequential lottery game in normal form, i.e. reduce the choices to a single

choice between the payoff distributions listed in Table 2.4. Doing so would provide

essentially equivalent results except that the asymmetry in the payoff distribution of

lotteries would be the determining factor of agent successes. In such a representation
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however, the analysis of risky and safe choices, and agents’ preferences among them

becomes blurred. In fact, I believe that a tendency towards modeling games in

normal form often leads people to overlook the impact of sequentiality on risk-

related behavior.

I believe my results show that imitate-the-better models an important mecha-

nism that can lead to the emergence of risk-taking behavior with similar character-

istics to that captured in alternative, empirical evidence-based models of decision

making like the ones discussed above. Whenever reproductive success is not directly

proportional to payoff (i.e., a reproduction mechanism other than the pure replica-

tor dynamics),6 risk propensities that differ from expected value maximization have

the opportunity to be more successful than agents that solely consider expected

value in their local choices. This suggests that there are many other reproduction

mechanisms for which expected-value agents can be outperformed by agents that

vary their propensities toward risk-taking and risk-averseness.

2.7 Discussion

This chapter explored risk behavior of agents through analysis and simulation

of evolutionary lottery games. The results demonstrated how the interplay between

sequentiality of choice and population dynamics can affect decision making under

6We say “pure” here because replicator dynamics can be modified to make reproductive success

not directly proportional to payoff. For example, if a death rate (e.g. [79]) is implemented as

a payoff-dependent threshold function, one might expect risk propensities to differ depending on

whether an agent is above or below that threshold, similar to an aspiration level in SP/A theory.
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risk. Specifically, for any imitation dynamics other than the pure replicator dy-

namic, there are evolutionary game environments in which the RwS strategy has an

evolutionary advantage over expected-value maximization. Since RwS’s risk-taking

behavior is similar to the risk preferences captured in several prominent models

of human decision making, this suggests that population dynamics other than the

replicator dynamic may model an important mechanism for the emergence of those

risk preferences. The RwS strategy exhibits behavior that is sometimes risk-prone

and sometimes risk-averse depending on its success or failure in the previous lottery.

Such a behavioral characteristic is provided for in descriptive theories of human de-

cision making based on empirical evidence. It is not far-fetched to suppose that

when human subjects have exhibited non-expected-value preferences in empirical

studies, they may have been acting as if their decisions were part of a greater game

of sequential decisions in which the success of strategies is not directly proportional

to the payoff earned. Apart from a purely biological interpretation, in which cer-

tain behavioral traits are hardwired in decision-makers due to past environments,

perhaps such empirical studies capture the effects of the subjects’ learned habit of

making decisions as part of a sequence of events in their daily lives.

2.7.1 Limitations and Avenues for Future Work

General avenues for future work include investigating how a greater range of

population dynamics and sequential choices can affect risk behavior as well as if

and how such results apply to a variety of other games and situations. The vast
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majority of current literature of evolutionary game-theoretic approaches considers

situations of non-sequential choice, even though it seems clear that in many do-

mains of interest sequential choice and resulting diversity in strategies exist. The

presented lottery game simulations and evolutionary game analyses are a first step

in exploring evolutionary mechanisms which can induce behavioral traits resembling

those described in popular descriptive models of decision making. In general, there

is much more opportunity for future work to use evolutionary game approaches for

the purpose of exploring or discovering the mechanisms which induce, possibly in a

much more elaborate and precise manner, the risk-related behavior characteristics

described by prospect theory or other popular descriptive decision making models

based on aspiration levels.

Some specific ways in which this work could be extended are listed below:

• It is important to examine other population dynamics in which a strategy’s

reproductive success is not always proportional to its expected payoff. For

example, if a death rate (e.g. [79]) is implemented as a payoff-dependent

threshold function, one might expect risk propensities to differ depending on

whether an agent is above or below that threshold, in a manner similar to

behavior above or below an aspiration level in SP/A theory. A specific related

topic to explore is how the prospect-theoretic notion of setting a reference

point may relate to evolutionary simulations with sequential lottery decisions.

• My study focused primarily on the case n = 2, i.e., in each generation the

agents made two decisions. It should hold that state-dependent risk prefer-
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ences like those of RwS should also have an advantage when n > 2, and

Section 2.5.2.1 discussed some pilot experiments that support this intuition.

Conducting more extensive studies may be an worthwhile topic for future work.

Also, empirical studies that seek to estimate the rate (in terms of number of

choices made) at which humans tend to update their strategy would seem im-

portant in determining what specific type of state-dependent risk behavior is

to be expected in what certain environments or contexts.

• This work generally assumed a well-mixed population in which every agent

was able and equally likely to imitate any other. It would be interesting to

explore the possible effects of social or physical structures (that may guide or

constrain imitation) on the evolution of risk behavior. Along these lines, see

Section 3.5.1.

• Finally, this work has highlighted the need conduct more specific empirical

studies of which type of imitation dynamics best models human imitation

propensities under which conditions. The insights of this paper combined

with such knowledge have potential application in any domain where human

decision making under risk is of interest.
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Chapter 3

Risk Behavior in Games of Interaction

The evolutionary lottery games investigated in Chapter 2 did not involve in-

teractions between agents in the stage game, which allowed for the analysis of risk

behavior in an isolated manner. This Chapter shows how the principle observations

from the lottery game investigations apply to a popular social dilemma game of

safety and cooperation. I consider an evolutionary game in which agents play two

sequential stag hunt games in a generation. Like the prisoner’s dilemma [5], the stag

hunt is a game that models a dilemma between cooperation and noncooperation. I

demonstrate how a strategy essentially equivalent to the RwS strategy in the lottery

games can have an advantage in this evolutionary stag hunt environment, and how

this advantage impacts the evolutionary results. (For an extensive discussion of the

stag hunt game, see e.g. [108].)

3.1 Stag Hunt Environment

The stag hunt environment I consider is equivalent to the sequential lottery

game environment, except now payoffs are acquired through two sequential two-

player stag hunt games rather than through single-player lotteries. The payoff ma-
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trix I use for the stag hunt game is shown in Table 3.1.1 Each generation, all agents

are randomly paired to play a two-player stag hunt game. Agents receive payoff from

the first game and then are randomly paired again for a second game, the payoffs of

both games are accumulated. After these payoffs are accumulated, agents reproduce

into the next generation according to population dynamics as before (which means

an additional random pairing for imitation under the imitate-the-better dynamic).

Since agents play two sequential stag hunt games, I will call this an evolutionary

double stag hunt game.

Table 3.1: Payoff matrix used in the stag hunt game. The payoff values are chosen

as to coincide with the lottery games, but keep the relevant payoff relations of the

stag hunt.

Stag Hare

Stag 8, 8 0, 4

Hare 4, 0 4, 4

3.2 Risk and Strategies

A significant difference between the stag hunt environment and the lottery

game environment is that in the former payoffs are not stochastic due to probabilities

on the payoffs themselves, but due to the probabilities of playing against a stag agent

1Many different payoff matrixes may be used for the stag hunt game, as long as the payoffs

satisfy certain constraints. I chose payoff values that coincide with my lottery games, but keep the

relevant payoff relations of the stag hunt.
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(i.e., cooperator, always hunts stag) or hare agent (i.e., defector, always hunts hare)

in the social game. Assume the initial population consists of 50% stag agents and

50% hare agents. Hence, for a new agent entering the population, hunting stag is

a risky choice that will pay 8 with probability of 0.5 and 0 with probability 0.5.

Hunting hare on the other hand is a safe choice that will always pay 4. One can

thus define the equivalent of an RwS strategy in this environment as follows: hunt

stag (the risky choice) in the first stag hunt game; if the stag payoff was achieved in

the first game, hunt hare (the safe choice) in the second game, otherwise hunt stag

again in the second game.

Given what we have learned from the lottery game results in this Chapter,

we know that in a population approximately split equally between stag and hare

players, the RwS strategy just described should have an evolutionary advantage

under imitate-the-better (but not under replicator dynamics). This is because with

50% stag and 50% hare agents, the choices that an agent has to make in the two

stag hunt games—as described in the previous paragraph—are equivalent in payoff

distributions to those of the two-choice lottery game.

I describe simulation experiments that I have run to confirm this hypothesis

and to investigate the impact it has on population evolution in Section 6.4. But first

I provide some general analysis of the double stag hunt game environment required

to explain my experiments and results.
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3.3 Analysis

Consider a population consisting of hare and stag agents. Let s be the pro-

portion of stag agents in the population. The payoff to a hare agent will be 4 in

each stag hunt game, thus hare agents will accumulate a payoff of 8 in a generation

of the double stag hunt environment. The payoff to a stag agent will depend on s,

the probability of playing another stag player in each game. An accumulated payoff

of 16 is only achieved if the agent plays another stag agent (getting a payoff of 8)

in both games, which occurs with probability s2. If the agent plays a hare agent

(getting a payoff of 0) in both games, it receives a total payoff of 0, which occurs

with probability (1 − s)2. Finally, if the agent plays a hare agent (payoff of 0) in

one game and a stag (payoff of 8) agent in the other, it receives a total payoff of 8,

which occurs with probability 2s(1 − s). Table 3.2 lists these payoff distributions

achieved by agents in a population consisting of hare and stag agents in the double

stag hunt game environment.

Table 3.2: Payoff distributions for agents in a population of stag and hare agents in

the double stag hunt environment. s denotes the proportion of stag agents in the

population.

agent hare stag

payoff 8 16 8 0

probability 1 s2 2s(1− s) (1− s)2

It can be shown easily that in a population of (50%) stag and (50%) hare
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agents, neither strategy will have an advantage (on average) over the other under

either replicator dynamics or imitate-the-better. Under replicator dynamics, the

average payoff of both strategies is equal, and under imitate-the-better, the prob-

abilities that either strategy will achieve a higher payoff than the other is equal.

However, under both population dynamics, if one of the agent types increases in

population proportion due to random variation, that agent type will bootstrap it-

self to take over the entire population.

Under replicator dynamics a random (arbitrarily small) increase in s will lead

to a higher average payoff of stag agents, which in turn leads to more offspring,

which again leads to a higher average payoff. More specifically, let si and si+1 be

the proportion of stag agents in generation i and i + 1, respectively. Then the

replicator equation (Eq. (1)) gives si+1 = si · fi(s)/Fi, where fi(s) is the average

payoff of stag agents and Fi is the average payoff of the population. Using the

payoff distribution information from Table 3.2, we get:

fi(s) = 16s2 + 16s(1− s) + 0(1− s)2 = 16s,

Fi = sf(s) + 8(1− s) = 16s2 − 8s+ 8,

si+1 = 16si
2/(16si

2 − 8si + 8).

Since we are are dealing with a population of only stag and hare agents, the pro-

portion of hare agents at any generation j is simply hj = (1− sj). Figure 3.1 plots

si+1 and hi+1, the proportion of stag and hare agents in generation i + 1 against

si, the proportion of stag agents in the previous generation. We can see that if by

random variation we arrive at a generation j in which sj 6= 0.5, if sj < 0.5, then sj
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Figure 3.1: Plot of si+1, the proportion of stag agents in generation i+ 1, and hi+1,

the proportion of hare agents in generation i + 1 against si, the proportion of stag

agents in generation i, under replicator dynamics.

goes to 0, and if sj > 0.5, then sj goes to 1. Thus eventually one of the agents will

bootstrap themselves to take over the entire population. If neither strategy has an

advantage when s = 0.5, and we have a population split equally between hare and

stag agents, the population converges to 100% hare or 100% stag agents with equal

likelihood under replicator dynamics.

Similarly under imitate-the-better random variation in population proportion

will lead to the population being taken over entirely by either hare or stag agents.
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When pairing agents for imitate-the-better, we have the following possible pairing

probabilities and resulting reproductions:

P(stag vs. stag) = s2, whence stag reproduces.

P(hare vs. hare) = (1− s)2, whence hare reproduces.

P(stag vs. hare) = 2s(1− s)2, whence the agent with the higher payoff repro-

duces, or a random agent if payoffs are equal.

We can calculate si+1 under imitate-the-better by combining these pairing

probabilities and the payoff distribution information from Table 3.2. Doing so gives:

si+1 = P(stag vs. stag) · 1 + P(hare vs. hare) · 0 +

+ P(stag vs. hare)[P(stag ’s payoff is 16) + P(stag ’s payoff is 8)/2]

= si
2 + 2si(1− si)[si2 + si(1− si)]

= 3si
2 − 2si

3.

Figure 3.2 plots si+1 and hi+1 against si under imitate-the-better. We can see that,

as for replicator dynamics, an arbitrarily small increase in s will lead to a higher

reproduction probability for stag, which will in turn increase s in the next generation.

The opposite effect occurs for an arbitrary small decrease in s. As for the replicator

dynamics, eventually one of the agents will bootstrap themselves to take over the

entire population. If neither strategy has an advantage when s = 0.5, and we have

a population split equally between hare and stag agents, the population converges

to 100% hare or 100% stag agents with equal likelihood under imitate-the-better.
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Figure 3.2: Plot of si+1, the proportion of stag agents in generation i+ 1, and hi+1,

the proportion of hare agents in generation i + 1 against si, the proportion of stag

agents in generation i, under imitate-the-better.

Hence I have illustrated how under both replicator dynamics and imitate-the-

better, in a population of hare and stag agents, if one of the agent types acquires

a majority in the population (possibly due to random effects), that agent type will

bootstrap itself into taking over 100% of the entire population.

3.4 Simulations and Results

My first set of stag hunt simulation experiments above serve as a control

and as to verify that in a population of 50% stag and 50% hare agents, neither
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agent type has an advantage on average. Since the above analyzed bootstrapping

leads each simulation run to converge to 100% stag or 100% hare agents, I run a

large number of simulation runs and count the amount of times the population is

entirely taken over by either agent type. Figure 3.3 shows the counts of each for 200

simulation runs for an initial population of 3000 stag and 3000 hare agents under

both replicator dynamics and imitate-the-better. Observe that the counts are very

close, confirming that neither agent type has an advantage under either population

dynamic and the population is equally likely to evolve to full cooperation (100%

stag) and full defection (100% hare).

Figure 3.3: Simulation results for an initial population of 3000 hare and 3000 stag

agents. The plot shows the count of simulations in which the population resulted

in all stag agents (cooperation) and all hare agents (defection) for 200 simulations

under each imitate-the-better and replicator dynamics.

I have hypothesized in Section 6.2 that in a population of 50% stag and 50%
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Figure 3.4: Simulation results for an initial population of 3000 hare and 3000 stag

agents and 30 RwS agents. The plot shows the count of simulations in which the

population resulted in all stag agents (cooperation) and all hare agents (defection)

for 200 simulations under each imitate-the-better and replicator dynamics.

hare players, given the payoff matrix in Table 3.1, the RwS agent in the stag hunt

environment should have an evolutionary advantage under imitate-the-better (but

not replicator dynamics), as the two choices of hunting hare vs. stag are equivalent

to the safe vs. risky lottery choices in my earlier lottery games. My second set

of experiments serves to verify this hypothesis and investigate the impact it has

on population evolution. For this set of simulations, I used an initial population

of 3000 stag, 3000 hare, and a small amount (30) of RwS agents. I again ran 200

simulations each under replicator dynamics and imitate-the-better (the independent

variable is the population dynamics used) and compare results. The earlier described

bootstrapping of stag or hare agents occurs just the same in a population with RwS
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agents as it does in a population without. Thus all of the simulations again lead to

the population evolving to complete cooperation (100% stag)or complete defection

(100% hare).

Figure 3.4 shows the number of times that the population evolved to complete

cooperation and the number of times it evolved to complete defection under replica-

tor dynamics and under imitate-the-better. Observe that under imitate-the-better

the population evolves to all cooperators more often than under replicator dynam-

ics. A Pearson’s Chi-squared test shows this difference in the number of cooperative

outcomes between the two sets of simulations to be significant with a p-value of

0.005414 (X2 = 7.7356).

3.4.1 RWS as Catalyst for the Evolution of Cooperation

The reason a significantly higher amount of cooperation occurred under imitate-

the-better is due to the fact that the RwS strategy (as expected from the lottery

game results) had an advantageous risk behavior under the imitate-the-better dy-

namics. This led to growth in the number of RwS agents during the first few

iterations (during which the stag and hare players occupied an approximately equal

population proportion). The RwS agents in the population aid the cooperating

stag players, since the RwS agents will play stag as long as they haven not already

received a stag payoff in an earlier game. Thus RwS agents serve as a catalyst to

stag agents. Since the RwS agents initially increase under imitate-the-better, the

chance they will boost the stag players and lead them to bootstrap themselves into
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taking over the population is higher under imitate-the-better than under replicator

dynamics.
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Figure 3.5: Agent type frequencies for a typical stag hunt simulation run under

imitate-the-better in which RwS agents grew and boost stag players, leading them

to take over the entire population

Figure 3.5 shows a plot of the number of agents of each type from a typical

simulation run under imitate-the-better in which this “boosting” occurs. One can

see that the RwS agents grew from the initial 30 to over 500 agents, which was

enough aid to the cooperating stag players for them to take over the population.
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Once the stag agents grew to a significantly higher population proportion, hunting

stag is no longer as much of a risky choice, and the RwS agents begin to decline in

numbers. In summary, these experiments showed that the principle lessons learned

from the lottery game simulations can apply and impact the results of other (social)

evolutionary games, in this case promoting the emergence of cooperative behavior

in an evolutionary double stag hunt environment.

3.5 Discussion

The evolutionary stag hunt game investigations in this Chapter demonstrated

how the results from the lottery games of Chapter 2 can apply in other, more com-

plex and commonly studied games of social cooperation. The results show how

the advantage of conditionally risky behavior under imitate-the-better can promote

the evolution of cooperation in a situation where the cooperation requires a risky

decision (namely, choosing to cooperate). Hence, the existence of state-dependent

risk preferences in conjunction with an imitate-the-better social learning dynamic

increased the likelihood that cooperation emerged as a norm in the population. I sus-

pect that the interplay between risk taking, sequential choices, and population dy-

namics can impact a variety of other games (e.g. the Prisoner’s Dilemma) similarly.

Simulation source code and result data used for this Chapter are made available for

download online: http://www.cs.umd.edu/users/roos/materials/ACS2010.html.
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3.5.1 Risk in Games on Graphs

In the evolutionary stag hunt game presented, the risk involved in a hunt

stag or hunt hare action stemmed from the likelihood that the opponent would

pick either action. Since to demonstrate the main points here I only considered

well-mixed populations here, in which every agent was equally likely to play any

other agent in the population, it may seem very unlikely that the distribution of

agents would be so diverse in a population as to produce a significant variance in

the risky choice and a resulting significance of RwS agents. This is because, as

demonstrated, any population would rather quickly arrive at an all hare or all stag

agent equilibrium, and only a relatively small proportion of different agents would

be entering the population through mutation or exploration dynamics. However,

in evolutionary games on graphs (e.g. [20, 82, 96, 97, 22]), where the interactions

between agents is structured on a graph in which agents are nodes and play their

neighbors, it is much more likely that agents would face a more diverse group of

opponents. Agents generally have a much lower number of neighbors to possibly

interact with, and thus rare mutations or explorations would have a much greater

effect on (local) strategy diversity and resulting risky-choice variance.

3.5.2 Winner-Takes-All Interpretation of Imitate-the-Better

Both this and the previous Chapter have considered the imitate-the-better

dynamic as a type of social learning process of imitation, but it is worth noting

that this population dynamic has another analogy, giving it a broader scope of
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applicability. This alternate analogy is that of winner-take-all games [121, 29, 7].

In a winner-take-all game, the agent that acquires the higher payoff of two agents

reaps all the benefits, meaning, in evolutionary terms, that the agent with higher

acquired payoff is the only agent that replicates. Real life examples of winner-take-

all situations are patent races or various forms of price competition, and it has been

argued that many species’ mating process is winner-takes-all, i.e. a “winner-takes-

all game determines reproductive success” (the more well-off agent gets to mate)

[121, 7]. This suggests that my results on risk-taking under the imitate-the-better

dynamic has applicability to a broader spectrum of situations and environments

than those in which social learning governs the reproductive dynamics.
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Chapter 4

Societal Threat and the Evolution of Punishment

Propensities Across Cultural Groups

In this chapter I employ evolutionary game theoretic approaches to model and

investigate the evolution of human behaviors. This work specifically considers the

evolution of cultural groups, with the goal to understand and explain differences in

empirically observed characteristics between them. The specific cultural character-

istic explored is the willingness of individuals to punish others for norm-violating or

non-cooperative behavior.

There are striking differences across cultural groups in their willingness to

punish norm violators. However the conditions under which punishment of norm

violators is more adaptive or less for human societies and whether such differences

have an evolutionary basis has received little attention. To fill this void, I propose

that punishment propensities vary across groups at least partially as a function of

the degree of threat to which societies are exposed, because different punishment

propensities are optimal for group survival or stable under different threat condi-

tions. Whether there exists such a causal relationship between societal threat and

adapted punishment propensities is difficult, if not impossible, to test with labora-

tory or field studies. But this question is well-suited to evolutionary game theoretic
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(EGT) models, since such models allow for the observation of the effects of varying

threat levels on the evolution of punishment propensities.

A considerable number of studies have studied the evolution of punishment

in conjunction with cooperation through the Public Goods Game, a popular social

dilemma metaphor in which groups of individuals interact under a choice to Coop-

erate by contributing or to Defect by withholding contribution to a public good. To

date, a primary concern of these studies is how different forms of punishment can

arise and how they aid the evolution of punishment; none of these models, however,

have considered the question of how different punishment propensities may evolve

across groups.

In this chapter, I analyze the effects of varying degrees of different types of

societal threats through EGT models based on the Public Goods Game, and show

through mathematical analysis and computer simulations how differences in pun-

ishment propensities can arise from differences in the group’s exposure to societal

threats. I consider the evolution of punishment under two reasonable evolutionary

PGG models that differ in strategy set choice and the manner in which punishment

propensity is modeled. I focus on whether there is an evolutionary advantage (or

disadvantage) that different punishment propensities give a population. Thus I first

use a basic model which simply assumes that different groups or populations have

a way of maintaining a certain probability with which Cooperating members pun-

ish Defectors. I consider this probability the group’s punishment propensity and

can examine effects on evolutionary viability of a population under different circum-

stances by varying it. I refer to this model as the Basic Model. I also seek to replicate
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these effects in another, more complex PGG model with punishment. Recently, [52]

proposed a model that shows how responsible punishment can evolve in a popula-

tion model that allows for anti-social and spiteful punishment while simultaneously

avoiding the problem of higher order free-riding (cooperative outcomes being en-

dangered by Cooperators that do not punish Defectors invading the population).

Hence, I also consider this more expanded model, which includes the state-of-the

art strategy set including 16 strategies and a form of reputation proposed by [52].

I refer to this model the Hilbe and Traulsen Model. Since in this model agents ei-

ther punish or do not punish, I consider a population’s punishment propensity to

be the proportion of punishing agents in the population. The consideration of these

two alternative models in this chapter also serves to illustrate the robustness of the

general results presented.

Social scientists have identified a number of societal threats cultural groups

might face to widely varying degrees, including external man-made threats such

as invasions or warfare threatening a society’s own territory and ecological threats

such as natural disasters. Operationalizing these threats in the evolutionary game

models and investigating their impact on evolutionary dynamics shows that in-

creased levels of these threats lead to increased punishment propensities. In the

basic model this occurs because under increased threat, increased punishment is

required to maintain high cooperation rates, providing high overall group payoffs.

Hence to increase chances for survival under cultural group selection [48, 13, 114],

societies facing higher degrees of societal threat require higher punishment propen-

sities. However, since punishment is costly, punishment propensities too far above
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the required amount can reduce overall group payoff. Thus group selection favors

groups that maintain optimal propensities only slightly higher than what is needed

to sustain cooperation under their particular threat conditions. Interestingly, in the

Hilbe and Traulsen Model, no group selective pressures are needed for the differences

in punishment propensities to arise from differences in societal threat. In this model,

assuming a game parameter range under which populations can uphold cooperation,

a mix of punishers and non-punishers is evolutionarily stable within the population,

and this mix consists of a higher proportion of punishers under higher degrees of

threat. This work provides a critical insight into the study of cultural variation

in punishment by showing how populations that have higher societal threat evolve

higher punishment propensities, and that this relationship is of a causal rather than

merely correlational nature.

The remainder of this chapter is organized as follows. In the next Section, I

provide some more background on social science work concerning punishment and

motivation for this research. Section 4.2 describes the general evolutionary Public

Goods Game with punishment and the general population dynamics that specify

the change in strategy frequencies within a group or population used throughout

the models. Section 4.3 discusses the societal threats that I will operationalize in

the models. Sections 4.4 and 4.5 then respectively describe the Basic Model and the

Hilbe and Traulsen Model in detail and show how in both models the relationship

between societal threats and punishment support my hypothesis. Finally, Section 4.6

concludes this Chapter with a discussion of the results.
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4.1 Punishment Propensities in Humans

There is large amount of evidence that a willingness to engage in (costly) pun-

ishment exists in humans [36, 35, 86, 91, 42, 28, 41, 23, 72, 51] and that punishment

of Defectors can play a vital role in the evolution of cooperation [18, 12, 16, 20, 21,

104, 49, 45, 48, 47, 113, 44, 123]. Yet there are striking differences across cultural

groups in their willingness to punish people who violate social norms [51, 68, 50].

Early anthropological research showed that traditional societies have differing pun-

ishment propensities for norm violations: some groups (e.g., the Hutterites and

Hanno) have severe punishment, and others (e.g., the Kung Bushman, Cubeo) ex-

hibit much greater permissiveness [89]. Recent evidence shows that modern cultures

also vary widely in their punishment of norm-deviating behavior [51, 68, 50].

More recently, in research across 33 nations, [39] placed cultures around the

world on a psychological dimension scale of “tight” vs“loose”. They showed that the

“tightness”, i.e. strength of social norms and punishment of deviations from them,

of human cultural groups or populations is related to a broad array of ecological

and human-made societal threats (or lack thereof) that nations have historically

encountered. They argued that a high degree of threat increases the need for strong

punishment systems to facilitate the coordination necessary for survival. Nations

with few ecological and human-made threats, by contrast, have a much lower need

for order and social coordination, affording weaker social norms and much lower

punishment of deviant behavior. Societies that have had high degrees of territorial

threats (from 1918-2001), low natural resources (e.g., food supply and water re-
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sources), and high degrees of natural disasters (e.g., floods, cyclones, and droughts)

and human disease (pathogen prevalence) had much stronger norms and punishment

of deviance than societies that had low levels of these threats. The correlational

nature of this research, however, leaves open the question of whether groups actu-

ally require stronger punishments to survive under high threat, and more generally

whether differences in punishment across societies has any evolutionary basis.

4.2 Evolutionary Public Goods Game (PGG)

The Public Goods Game (PGG) is a well-established paradigm for studying

cooperation and norm violation [45, 20, 21, 49, 48, 113, 44], and it has also been

used to study punishment [20, 21, 113, 123]. In the PGG, N players may each either

Cooperate (contribute some amount c) or Defect (contribute nothing). If more than

one player contributes, the sum of all contributions is multiplied by a factor r. The

resulting amount is divided evenly among all players, regardless of whether they

contributed. The higher the proportion of Defectors, the less there is to share. Due

to the temptation to defect, it would be easy for the entire population to fall into a

state of all Defectors. However, several studies have shown how social mechanisms

such as individual-based peer-punishment or institutional punishment can foster

and establish cooperative behavior as a societal norm [18, 16, 20, 21, 49, 113, 123].

Under peer-punishment, if a Cooperator decides to punish a Defector, punishing

reduces the Defector’s payoff by ρ, at a cost λ to the Cooperator.

Following established work on PGG models [45, 113, 123], each generation, the
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model samples multiple disjoint game-groups from the population to play.1 Each

game-group plays a PGG, then Cooperators have a chance to punish Defectors in

their game-group. After num games samplings and PGGs played, the population

changes under a combination of total-payoff-proportional imitation and random ex-

ploration of strategies. Payoff-proportional imitation can be viewed as a process

of social learning in which agents imitate other agent’s strategy with a probability

that increases with the agent’s payoff. This process is commonly modeled in infinite

population models through the replicator dynamics [40, 53]. Alternatively, the pro-

cess is often modeled in finite populations using the Fermi Rule [11, 110, 115, 52]:

an agent a imitates (switches to) a randomly chosen other agent b’s strategy with a

probability pa→b = 1/(1 + e−s(πa−πb)), where πa and πb are the total payoffs of a and

b respectively, and s ≥ 0 is the selection or imitation strength. I assume all agents

update their strategy in such a way simultaneously each generation. Random explo-

ration (i.e. exploration dynamics) of strategies are analogous to random mutation.

Such random exploration of the available strategy space has recently been shown

to play an important and often underestimated role in human strategy updating

within social contexts [113, 117].

1I shall use the term “game-group” to refer to any group of agents playing a PGG within

a population, while I more generally use the term “group” as synonymous to “population” or

“society” when I refer to group selection.
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4.3 Societal Threats

Social scientists have identified a number of societal threats cultural groups

might face to widely varying degrees. These include ecological threats such as natu-

ral disasters and external man-made threats that threaten a society’s territory (e.g.

invasions or warfare) [39]. The degree of tightness (strength of social norms and

punishment of deviations from them) of different cultures was found to correlate

positively with the cultures’ exposure to such threats. In the following subsections

I discuss these categories of threat and describe how they are operationalized in the

PGG models.

Figure 4.1: Correlation between cultures’ exposure to natural disasters, a type of

ecological threat, and cultural tightness.
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Figure 4.2: Correlation between cultures’ exposure to food depravation, a type of

ecological threat, and cultural tightness.

4.3.1 Ecological Threats

Nations that face ecological threats such as floods, tropical cyclones, droughts,

or higher prevalence of pathogens, have been found to tend to stronger norms and

punishment systems [39]. See e.g., Figures 4.1 and 4.2, which show correlations

between more natural disasters (r = .47, p = .01) and higher food deprivation

(r = .52, p < .001) with the degree of tightness of cultures. Presumably, having

strong norms and punishment of deviants enables such groups to coordinate social

action and survive in the face of such severe threats. Similarly, nations that have a

high prevalence of pathogens, particularly those that are highly communicable (e.g.,

tuberculosis), require stricter rules in order to avoid contamination and ultimately
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Figure 4.3: Correlation between cultures’ exposure to territorial threats from their

neighbors, an external man-made threat, and cultural tightness.

enhance survival. In their field research, [39] found historical prevalence of pathogens

to be higher in tight nations as were the number of years of life lost to communicable

diseases, the prevalence of tuberculosis, and infant and child mortality rates. By

contrast, societies that do not face natural disaster threats can afford to have a fewer

rules and weaker punishment systems.

All of these threats may lead to inefficiencies in production, or managing them

may require the use of the population’s resources. Natural disasters are also related

to the availability of natural resources in that they often diminish agricultural yields

and engender food shortages [90]. Hence, a straightforward way to operationalize

ecological threats in the PGG models is by decreasing the payoff to the group mem-
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bers in general. One can do this by varying the parameter r, the multiplication

factor of contributions creating the public good to be divided among agents in both

the Basic Model and the Hilbe and Traulsen Model.

4.3.2 External Man-Made Threats

External man-made threats that threaten a society’s territory include, e.g.,

migration, intentional sabotage, and territorial invasion. [39]’s field research found

that societies facing potential invasions from neighboring groups (and by extension,

facing challenges to their group resources) developed stronger punishment systems

than societies that had few territorial threats. See Figure 4.3, which shows the

correlation between cultures’ exposure to territorial threats from their neighbors

during the period 1918-2001 and the degree of tightness of the culture (r = .41, p =

.04). One way to operationalize this type of threat is to reduce a population’s overall

payoff, as above, since resources that would otherwise go to the population must

instead be used to fend off threats. Another reasonable alternative is to model

this type of threat as an invasion of Defectors: by taking some of the group’s payoff

without contributing, Defectors in effect steal from the group: they decrease the per-

capita payoff, hurting group survivability. The threat’s intensity can be interpreted

as the size of the invasion of Defectors.
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4.4 Basic Model

This section describes the strategy sets used in the Basic Model, and show

how different degrees of threats in this model relate to punishment. Since the

strategy set for the Basic Model is relatively simple, I can provide mathematical

analysis of the theoretical infinite population dynamics to provide a basic intuitive

insight into the dynamics between cooperation, defection, and punishment in the

PGG. I represent the basic population dynamics mathematically through a system

of ordinary differential equations ODEs that is solvable for the effects of different

model parameters on evolutionary outcomes, and I shall use this system of ODEs

to explore the effects of different threats.

4.4.1 Strategy Set

The strategy set composing the Basic Model simply consists of Cooperators

and Defectors. As described in the Introduction, the main objective of this work

is to explore the relationships among various types of societal threat, punishment

propensity, and evolutionary outcomes. Hence I model a punishment propensity as

a probability q with which a Cooperator in any particular group punishes Defectors.

Modeling punishment in this sense allows not only for the representation of different

punishment propensities in different cultures, but, as I shall show, it also allows

us to describe optimal punishment propensity values (in terms of overall group

payoff) under different conditions of societal threat. While assuming the existence

of such a general punishment propensity within a population is not standard in
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EGT modeling, I believe that empirical evidence showing differences in punishment

propensity across populations supports this assumption, and I note that there are

various mechanisms (e.g. honor, reputation, or conformist transmission) through

which a society may uphold a certain propensity to punish among its members.

If a certain degree of punishment propensity is necessary for a society to reach

cooperative, high-payoff outcomes and hence survive (on its own or under group

selective pressures), I believe it is reasonable to assume that societies that do survive

have found or developed some mechanism to uphold such a degree of punishment.

4.4.2 Analysis

For the theoretical infinite populations case of the Basic Model, the replicator

dynamics with mutation described below (Eqn. 4.2) combined with the equations

giving the expected payoffs for agent types (shown in Eqns. 4.4 and 4.5) give us a

parameterized system of ODEs solvable numerically for the change in agent type

frequencies over time under different conditions. Under replicator dynamics we con-

sider payoffs achieved by agents as analogous to the agent’s fitness, i.e., an agent’s

probability of reproducing is directly proportional to these payoffs [40, 53].The

change in population proportions according to the replicator dynamics is thus given

by the following ODE:

ẋi = xi [ πi(x)− θ(x) ], θ(x) =
∑
i

xi πi(x), (4.1)

where xi is the proportion of agents of type i in the population, πi(x) is the

expected payoff an agent of type i, and θ(x) is the expected payoff of all agents in
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the population. An agent’s type is simply the strategy it employs to make choices.

I shall use xC and xD to denote the proportion of Cooperators and Defectors in

the population. To also include random exploration of strategies in the population

dynamics, we can use the replicator dynamics with mutation (i.e. replicator-mutator

equation):

ẋi =
∑
j

xjπj(x)Qji − θ(x)xi, (4.2)

where the matrix Q gives the mutation probabilities from one agent type to

another. With a mutation rate µ and n strategy types Qij = (1− µ/n) if i = j and

Qij = µ/n/(n− 1) if i 6= j.

Since in the model game-groups of size N are sampled at random from the

population to play PGGs, we need to calculate the average (expected) payoffs to

each agent type by considering the probabilities of group compositions. Following

this approach, for any given agent sampled to play a PGG in a game-group of size

N , the probability that k of its co-players are Cooperators is

xkC x
N−1−k
D

(
N − 1

k

)
. (4.3)

With k cooperating co-players and N − k Defectors, the payoff to each Defector

is rk/N from the common good, minus, kqρ, since Defectors are punished by Co-

operators in the group with probability q. Thus, considering group composition

probabilities, and simplifying for xC + xD = 1, the expected payoff to Defectors is

πD =
N−1∑
k=0

(
r

N
k − k q ρ)xkC x

N−1−k
D

(
N − 1

k

)
=

( r
N
− q ρ

)
(N − 1)xC (4.4)
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In a group of k Cooperators and N − k Defectors as co-players, the payoff to

a Cooperator is r(k + 1)/N − c from the common good (k + 1 because the player

itself cooperates), minus q λ (N − k − 1) due to the cost of punishing Defectors in

the group with probability q (there are N − k − 1 Defectors in the group and each

is punished with likelihood q). Thus, again considering all group compositions and

their probabilities, the overall expected payoff to Cooperators is

πC = −c+
N−1∑
k=0

[ r
N

(k + 1)− q λ (N − k − 1)
]
xkC x

N−1−k
D

(
N − 1

k

)
= rxC +

rxD
N
− c− qλ(N − 1)xD (4.5)

A population under replicator-mutator dynamics and the strategies and pay-

offs above can maintain a high level of cooperation as long as there exists a large

enough punishment propensity q among the Cooperators relative to the number of

Defectors currently in or entering the population. As an example, for a population

consisting of Cooperators in which Defectors are introduced by mutation µ = 0.01

and the game parameters r = 3, c = 1, λ = 1, ρ = 1, N = 5, Cooperators must have a

punishment propensity of q ≥ 0.13889 to avoid a take-over by Defectors. More gen-

erally, if it is possible for Cooperators to withstand Defectors through punishment,

there exists a value for the minimum punishment propensity required to withstand

Defectors (dependent on the game parameters). I denote such a required punish-

ment propensity qreq. If a population’s punishment propensity q < qreq, Defectors

take over the entire population, I refer to this as a societal break-down. However, if

q > qreq, the population withstands the Defectors, maintains high cooperation rates,

and hence high overall payoff. See Figure 4.4 for an illustration of the population
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dynamics in both cases. The population dynamics given by Eqn. 4.2, using the

expected payoffs for player types (Eqn. 4.4 and 4.5), give a systems of ODEs that I

can solve numerically for (qreq) under different game conditions (and hence different

conditions of societal threat). The results in Figure 4.5 described in the Results

section were derived this way.
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Figure 4.4: Evolution of strategy proportions of the Basic Model.The left graph

shows a break-down to defection when Cooperators have a punishment propensity q

lower than than that required to withstand take-over by Defectors (q = 0.1 < qrec).

The right shows maintenance of cooperation when q is high enough (q = 0.5 > qrec).

Game parameters r = 3, c = 1, λ = 0.3, ρ = 0.7, N = 5. Defectors are introduced by

mutation µ = 0.01.

4.4.3 Cultural Group Selection

The population dynamics described above determine the evolution of differ-

ent individuals within groups or populations, but it is important to understand

80



the implications of group selection in the interpretation of the results presented.

Group selection has been argued to play an important role in cultural evolution and

promotion of cooperation [106, 37, 48, 13, 114, 14]. Generally speaking, group selec-

tion is an additional level of selection (apart from selection at the individual level)

that selects for groups based on their overall group payoff . The most straight-

forward group selection mechanism in human groups is direct group competition

and empirical studies have shown that selective pressures through inter-group lethal

competition (warfare) have been strong enough to account for the selection of altru-

istic behavior in human groups [13]. Another mechanisms of cultural group selection

are selective intergroup migration, for which substantial literature exists supporting

that migrants flow from societies where immigrants find their prospects poor to ones

where they perceive them to be better, and most immigrant populations assimilate

to the host culture within a few generations [19]. Another form of group selection

recognized is inter-group cultural transmission [19]. Group selection leads groups

which are able to maintain higher overall payoff (i.e. group fitness) to have an evo-

lutionary advantage (i.e. higher likelihood to survive) over competing groups. This

is important for the understanding of the results presented in the following Section

because these show how higher degrees of threats require higher optimal punishment

propensities to maintain high group cooperation. Because high rates of cooperation

lead to higher overall group payoff, high rates of cooperation are linked directly to

group survival.
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4.4.4 Results

The operationalization of societal threats in the Basic Model support the hy-

pothesis that higher threats lead to higher punishment propensities in populations.

In general, the relationship between threat and punishment in the model is as fol-

lows: there is a minimum required punishment propensity qrec that a population

requires in order to maintain cooperation and thus to be evolutionarily viable; and

qrec increases monotonically with the amount of societal threat. Any q > qrec is

neutrally stable (not considering group selection). However, I also find that there

is an optimal punishment propensity qopt slightly higher than qrec. Punishment in

excess of qopt can harm overall group payoffs, hence would be selected against under

group selection. Thus group selective pressures would favor groups that establish

punishment propensities slightly above the minimum amount needed to prevent a

societal break-down into defection, and this minimum amount of punishment is an

increasing function of the degree of societal threat faced by the group:

• Ecological Threats Increase the Required Punishment Propensity: Solving the

system of ODEs giving the population dynamics for qreq under different r

parameters shows that a higher r (less societal threat) lessens the required

punishment propensity to maintain cooperation, while a lower r (more societal

threat) raises the required punishment propensity. See left graph of Figure 4.5.

• External Man-Made Threats Increase the Required Punishment Propensity:

Solving the system of ODEs giving the population dynamics for qreq under

different invasion sizes, i.e. different proportions of Defectors entering the
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Figure 4.5: Left graph: Minimum punishment propensity required (qreq) to resist

Defector take-over as a function of the game parameter r. Higher external threat

that reduces overall payoff means a lower r value. Right graph: Minimum pun-

ishment propensity required (qreq) to resist Defector take-over as a function of the

proportion of Defectors invading the population. Both computed by solving the

system of ODEs given by the replicator dynamics of the PGG model for the mini-

mum q needed to extinguish Defectors within t = 100. Game parameters used: with

r = 3, c = 1, λ = 0.3, ρ = 0.7, N = 5.
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population, shows that the greater the influx of Defectors, the higher the

punishment propensity needed to prevent a break-down into defection. See

right graph of Figure 4.5. Hence if a group is threatened in this fashion, it

needs a higher punishment propensity against Defectors to maintain high rates

of cooperation, high group payoff, and increased chances of group survival.

• Excess Punishment is Not Optimal for Group Payoff: The above results for the

Basic Model show how increases in societal threats increase qreq, the minimum

punishment propensity needed to maintain cooperation (hence high popula-

tion payoffs), but as such do not show any reason for why any population

would not simply keep a punishment propensity of q = 1 at all times. Finite

population model simulations of the Basic Model also show (see Figure 4.6)

that there exists an optimal punishment propensity, qopt, slightly above qreq.

These simulations were done using a straight-forward implementation of the

described evolutionary PGG Model, see Appendix B for pseudo-code of the

basic simulation sequence. As is evident from Figure 4.6, punishment propen-

sities above qopt decrease the overall population payoff. This is because a

constant exploration rate leads to a continuous, unavoidable presence of De-

fectors, and punishing them is costly. This effect is especially dramatic when

there is action perception noise - a nonzero probability κ that agents will

misinterpret a cooperative action as a defection and hence punish mistakenly,

or vice versa. Hence group selection selects against punishment propensities

above qopt. This principle applies to all threat types explored.
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Figure 4.6: Overall group payoff θ vs. the punishment propensity q for a population

of 500 agents in the Basic Model (with r = 3, c = 1, l = 0.7, ρ = 0.7, N = 10, µ =

0.01, κ = 0.05). The punishment propensity qreq to withstand Defector takeover

is qreq ≈ 0.4. Note also that there is an optimal punishment propensity qopt ≈

0.5 that maximizes the overall population payoff. A group that can maintain a

punishment propensity closer to qopt will do better under group selection than if it

had a punishment propensity lower or higher than qopt.
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4.5 Hilbe and Traulsen Model with Reputation

In this section I describe the strategy sets used in the Hilbe and Traulsen

Model, and show how different degrees of threats in this model relate to punishment.

The basic qualitative interplay between cooperation, defection, and punishment of

this model are the same as that described for our Basic Model. However, since the

Hilbe and Traulsen Model uses a much more complex strategy set of a total of 16

strategies, mathematical analysis is of limited intuitive utility and the model lends

itself more readily to be explored through agent-based simulations.

4.5.1 Strategy Set

Model B is based on the state-of the art strategy set used by Hilbe and Traulsen

(2012) [52]. Using this strategy set, which includes all forms of punishment and a

form of reputation, Hilbe and Traulsen showed as a first how responsible punishment

can evolve in a population model that allows for anti-social and spiteful punishment

while simultaneously avoiding the problem of higher order free-riding (cooperative

outcomes being endangered by Cooperators that do not punish Defectors invading

the population). The model includes a total of 16 possible strategies. There are

four possible strategies to play in the contribution stage and four possible strategies

to play in the punishment phase of the PGG, as listed in Tables 1 and 2.

Two of the contribution phase strategies may take reputation about their co-

players’ punishment behavior into account when deciding whether to cooperate or

defect. The level of reputation available is modeled through an environment param-
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eter i that determines the probability with which any player knows their co-players’

punishment strategies. Opportunistic Cooperators cooperate unless they know that

it is beneficial to defect, which is the case if they know that the number of antisocial

punishers A in the group is greater than the number of responsible punishers R.

Opportunistic Defectors defect unless they know that it is beneficial to cooperate,

which is the case if they know that that the number of responsible punishers R in

the group is greater than the number of antisocial punishers A. To allow for errors

in perception, a players’ known reputation is wrong (perceived as a random other

punishing strategy) with probability e. The presence of the conditional strategies

and punishment reputation is crucial for the evolution of cooperation and respon-

sible punishment. Responsible punishers can “force” Opportunistic Defectors into

cooperating based on their reputation to punish Defectors, and hence Responsible

punishers fare better than Non-Responsible Punishers in groups with Opportunis-

tic Defectors (or Cooperators). Thus reputation fosters an intertwined benefit for

cooperators and responsible punishers.

A representative example of the population dynamics of this strategy set under

game parameters that allow for cooperation to evolve is shown in Figure 4.7. For

readability, the plots show the aggregated proportion of contribution and punish-

ment strategies over time separately. Observe that the population settles at a mix of

(Opportunistic and regular) Cooperators as well as Non-Punishers and Responsible

Punishers. The population was initialized with 100% Non-Punishing Opportunistic

Defectors (OdN), but if enough knowledge about co-players’ punishment reputation

exists (high enough i), Opportunistic Cooperators (both R and N punishing types)
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Table 4.1: Contribution Phase Strategies

Label Name Description

C Cooperator Always contributes.

D Defector Never contributes.

Oc Opportunistic Coopera-

tor

Cooperates unless it knows that it is benefi-

cial to defect based on punishment reputation

of co-players.

Od Opportunistic Defector Defects unless it knows that it is beneficial to

cooperate based on punishment reputation of

co-players.

Table 4.2: Contribution Phase Strategies

Label Name Description

R Responsible Punisher Punishes defecting players.

S Spiteful Punisher Punishes everyone.

A Antisocial Punisher Punishes cooperating players.

N Non-Punisher Punishes no one.
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are able to invade the population, establishing cooperation as a norm. Once cooper-

ation is established, CN and CR agents are able to grow to significant proportions as

well. Eventually, the population settles at a mix of OcN, OcR, CN, and CR agents,

with the rest of the strategies remaining at very low proportions, introduced each

generation through exploration dynamics. (For a more detailed analysis of these

dynamics, see [52].) All simulations for this model use a population size of 1280.
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Figure 4.7: Example of evolution of strategy proportions of Model B. Model game

and environment parameters are r = 3, c = 1, λ = 1/2, ρ = 3/2, i = 0.7, µ = e = s =

0.05, N = 5.
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4.5.2 Results

In this Section, I show that the operationalization of societal threats in the

Hilbe and Traulsen Model support our thesis that higher threats lead to higher

punishment propensities in populations. As in the Basic Model, increased threats

increase punishment propensity. The manner in which this relationship comes to

being however differs from the Basic Model, and does not even require group se-

lection. In the Hilbe and Traulsen Model, as we saw in the above example, a mix

of Responsible Punishers and Non-Punishers is stable within a population itself.

Furthermore, the proportion of Punishers and Non-Punishers that is stable varies

with societal threat in such a way that higher threat conditions lead to a higher

proportion of Punishers in the stable state of the population:

• Ecological Threats Increase Punishment Propensity: Simulations of the Hilbe

and Traulsen Model under different r parameters show that lower r (more

societal threat) raises the stable amount of (Responsible) Punishers in the

population. See left graph of Figure 4.8.

• External Man-Made Threats Increase Punishment Propensity: To measure

the effect of external man-made threat, I ran simulations in which I introduce

an influx of Defectors (in particular, Antisocial Punishing Defectors, since

the invaders are hostile) in each generation, replacing random other agents.

As before, a greater influx (proportion of Defectors added) represents higher

threat. The results show again that the greater the threat, the greater the

stable proportion of (Responsible) Punishers in the population. See right
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graph of Figure 4.8. After an influx greater than 10% of the population, the

population breaks down into defection and hence I restricted the graph to this

influx range.

The general dynamics in the Hilbe and Traulsen Model are both different and

much more intricate than in the Basic Model. Most notably, a mix of Responsible

and Non-Punishers is evolutionarily stable within a population, while in the Ba-

sic Model, punishment propensity is only neutrally stable and group selection is

required to select between different punishment propensities. It is therefore even

more surprising that the general relationship between societal threats and punish-

ment, namely that higher threats lead to higher punishment, holds in this model just

like in the Basic Model. This demonstrates the robustness of the causal relationship

between societal threats and punishment.

4.6 Discussion

Cross-cultural social science has made great strides in understanding differ-

ences in cultural norms. This research expands upon this tradition through the

use of evolutionary game theoretic models to study the evolution of differences in

punishment toward norm violators across cultural groups. In this chapter I used

evolutionary Public Goods Games with punishment to show how societies’ optimal

(in terms of overall group payoff) punishment propensities depend on the degree of

societal threat that they face. In order to demonstrate the robustness of the results

to various modeling choices, I implemented two models: The Basic Model, which
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Figure 4.8: Left graph: Stable proportion of punishing types as a function of r.

Lower r (higher threat) leads to more Punishers. Right graph: Stable proportion

of punishing types as a function of the proportion of Defectors invading. Higher

influx (higher threat) leads to more Punishers. Each point is the stable distribution

(long-run average) determined by simulation. Game and environment parameters

used: r = 4.9, c = 1, λ = 1/2, ρ = 3/2, i = 0.7, µ = e = s = 0.5, N = 5.

assumes a population’s ability to maintain a certain propensity to punish amongst

its Cooperators, and the Hilbe and Traulsen Model, which is based on an expanded

strategy set used in state of the art work on punishment and cooperation. This

chapter considered two general types of threat examined by social science research

in relation to punishment norms: ecological disasters and other threats to group

resources, and external man-made threat. For each of these forms of societal threat
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and their plausible interpretations in the evolutionary game model, higher degrees

of threat increased the punishment propensity in the population.

While I have only explored a form of peer-punishment in this work, I should

note that recent research has demonstrated the importance and revived the explo-

ration of institutional or “co-operative” [sic] punishment as an aspect of the evolution

of cooperation [103, 59]. A general assumption is that such a punishing institution

is publicly funded through a portion of agents’ payoffs. Since institutional pun-

ishment acts as a replacement for individual punishment, strong (highly funded)

institutions result in a decreased need for peer-punishment while weak (sparsely

funded) institutions result in an increased need for peer-punishment. Most relevant

to the current research is that societal threats are likely to weaken institutions by

leading to a decrease in the overall payoff created by a society and hence a decrease

in the relative size of the institutional punishment funds available. With a decrease

in funding for (or effectiveness of) punishing institutions due to societal threats,

there is again a greater need for individual-based punishment to maintain the same

degree of cooperation. Therefore the existence of institutional or “co-operative”

punishment mechanisms in a population would not change the general relationship

between societal threat and punishment propensity illustrated in this paper.

Most existing research on punishment in evolutionary games has focused on

whether the existence of punishment is evolutionarily viable and how it can aid the

evolution of cooperation [45, 20, 21, 49, 48, 113, 44, 59, 123]. This work makes a

significant contribution to this line of research by investigating relationships among

differing degrees of societal threats, punishment propensities, and group survival.
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Grounded in relevant social science data, the presented results show that the lev-

els of societal threat to which different cultures are exposed can play an integral

role in determining differences in cultures’ evolved propensities to punish deviations

from social norms. This illuminates the evolutionary basis for the wide variation in

punishment rates that exists around the globe, may help predict changes in punish-

ment propensities in different cultural groups, and helps promote cross-cultural un-

derstanding by showing how cultural differences in punishment propensities, which

may appear puzzling, are generally adaptive to the society’s ecological and historical

context.

One limitation of the models presented in this chapter is that they investigated

punishment in societies under threat that is constant over time, or under threat at

one particular moment in time. An interesting question for future research is to in-

vestigate how societies respond to degrees of threat that vary over time. Figure 4.6

suggests that for a society to thrive under group selection, there is an evolutionary

pressure for the society to adjust its punishment propensity toward qopt. But the

figure also suggests that for punishment propensities below qopt, the possible conse-

quence (societal disintegration) is much worse than the consequence (a slightly lower

overall payoff) of too high a punishment propensity. This suggests that successful

societies may raise their punishment propensities very quickly when external threats

arise, and may be much slower to lower those punishment propensities when such

threats abate.

In conclusion, in a world of increasing interdependence, it is critical to under-

stand the mechanisms that drive cultural differences in norms. This work illustrates
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that evolutionary game theoretical models can be fruitfully integrated into cross-

cultural social science to illuminate new insights into the nature of culture.
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Chapter 5

EGT Approaches and the Study of Culture in Psychology

To this date there exists an incredibly rich literature on cultural differences

in psychological dimensions, behaviors, norms, and related social measures between

populations throughout the world. There are three main traditional theoretical

perspectives in the study of culture and psychology: the cultural psychology ap-

proach, the indigenous culture approach, and the cross-cultural approach. All of

these three perspectives recognize culture as a crucial behavioral influence, and

thus culture must be considered in understanding human behavior and cognitive

processes. However, each approach differs in its view on the extent to which uni-

versality of the human mind and psychological processes exists, and how culture

relates to this issue. Hence each approach differs in the methods employed to study

human psychology in relation to culture. My goal in this Chapter is not to give a

comprehensive overview of these approaches, their contributions (which are plen-

tiful), and their respective shortcomings. Rather, I aim to touch on the relevant

aspects of these perspectives and recent trends in the science of psychology and

culture that make evolutionary game theoretic approaches to culture a valuable and

complementary approach.
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5.1 Theoretical Approaches to Culture in Psychology

Cross-cultural psychology studies human behavior and mental processes across

different cultures, commonly seeking to find universals and discovering relationships

between psychological antecedents created by culture and the consequences of these

antecedents on behavior [63]. A different theoretical perspective is that of cultural

psychology, which, according to Schweder (1990), is the study of “the way cultural

traditions and social practices regulate, express, and permute the human psyche,

resulting less in psychic unity for humankind than in ethnic divergences of mind,

self, and emotion [102].” In the view of cultural psychology, human beings and

cultural environment, because they are so intertwined, cannot be separated analyt-

ically into independent and dependent variables, which is considered a flaw of the

cross-cultural perspective. According to cultural psychology, humans and culture

develop jointly within “intentional” worlds conceived by humans in a particular cul-

ture. A common criticism against cross-cultural approaches is that traditionally,

cross-cultural approaches do not recognize this relationship between mind and cul-

ture; and thus instead of investigating how cultural practices shape psychological

processes, cross-cultural studies are often too focused on testing the universality of

psychological processes, which, allegedly, is often incorrectly assumed. Similar criti-

cisms are sometimes made by proponents of the indigenous psychology perspective,

which emphasizes the extent to which concepts and knowledge are specific to partic-

ular cultures, and stresses that “foreign theories and categories cannot necessarily

be applied to understand behavior of a particular culture [105].”
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In more recent years, the evolutionary approach to culture and psychology has

gained more traction. The cultural evolution approach, argues that cultural diversity

develops as a result of cultural transmission [73]. Humankind’s capacity to acquire

cultural information is unique in the animal world. Humans are agents that learn

from their social surroundings, occasionally make errors in acquiring information

or simply exploring new behavior. These actions are analogous to mutations or

exploration dynamics in evolutionary game theoretic models and result in cultural

variance. Under different environmental, social, or cultural conditions, different

cultural variants may be stable, reinforced, or disappear. The existing cultural

variant in turn affect the social, cultural, and possibly environmental conditions

of that culture. In the cultural evolution view, this process is what drives the

emergence of diverse cultures and resulting behaviors and norms around the world.

I believe that in many ways, the evolutionary approach to culture is the most

precise and explicit in addressing the concerns about how culture affects behavior.

The evolutionary approach does not assume culture informing behavior or vice versa,

but through its circular process, recognizes the interdependence of the two, which

is emphasized in the work of Shweder [102], and also represented in the ecocultural

framework by Lonner and Adamopoulos [63]. As Newson, Richerson, and Boyd point

out, the evolutionary approach alleviates the most common criticism of cultural

behavior studies: namely they are not explanatory [73]. The lack of explanatory

results is a criticism that probably applies most heavily to typical cross-cultural

psychology studies, and this criticism could explain why cultural and indigenous

psychologists are adamant about maintaining their approaches. The cultural and
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indigenous approaches much more aim to “recreate” the different “worlds” within

which different cultures exist, or that different cultures have created, in order to

understand different cultural groups. I hold that evolutionary game and multi-

agent system models, while of course highly abstract and simplified, are some of

the most explicit and transparent tools at our disposal for recreating such different

worlds.

5.2 Structural Approaches to Understanding Culture

Until recently, most psychological studies took the subjective approach to cul-

ture, which generally solely considers culture as a result of individuals’ internal

mental representations. Structural approaches on the other hand emphasize the im-

portance of external factors that affect individuals’ psychology and behaviors [70].

Since EGT and multi-agent system models make it possible to operationalize such

external factors and test their effects on individuals and their behaviors, structural

approaches provide additional support for the use of these methods to study culture.

In the past few years, there has been an increase in psychological studies that explore

how external structural factors affect culture, individuals’ minds, and their behav-

ior. Examples of such structural approaches are the works of Yamagishi, Oishi, and

Gelfand et al. Yamagishi presents a niche construction approach to culture, where a

culture is a collectively created and maintained set of constraints and incentives and

agents/humans are cultural game players that behave in ways to pursue goals [122].

Oishi considers residential mobility as a specific structural factor and explores how
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it affects psychology and culture [84]. Gelfand et al., as I have discussed in Chapter

3, relate various structural factors to the degree of “tightness” or “looseness” of dif-

ferent cultures [39]. From an evolutionary game theoretic approach, such structural

studies are interesting and useful, as they present various possibilities of structural

factors and their effects that can be tested or used to inform EGT and multi-agent

system models of societies and cultures.

In general, evolutionary game theory is a useful framework to explore and un-

derstand how different external factors determine the nature of human interactions,

and how this affects the evolution and dynamics of different behaviors. Of course,

human behavior and psychology is extremely complex and consist of a multitude of

possibly interacting factors and behaviors. Thus, in line with Richerson and Boyd’s

approach of “sample theory” [17], it is crucial to begin with simple-as-possible evo-

lutionary game theoretic models that seek to understand fully the fundamental

dynamics and evolutionary relation between a characteristics of interest and basic

structural factors before moving to more complex models. A complete understand-

ing of the basic relationships between cultural characteristics and certain structural

factors form the necessary foundation to build and understand fuller, more complex,

or ultimately complete models
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Chapter 6

Conclusion

Even with the considerable surge of evolutionary game theoretic literature in

the past decade, evolutionary game theory is still a relatively young field, especially

as applied to the social sciences. Thus there still exists tremendous opportunity

for it to be more fully integrated and applied to its potential in the social sciences

to aid our understanding of human behaviors, culture, and societies. This thesis

presents a step in this direction, solidifying evolutionary game theoretic approaches

as a complementary approach to those common in cross-cultural social sciences,

particularly psychology. The following section concludes with a summary of the

contributions of this thesis.

6.1 Summary of Contributions

This thesis has presented evolutionary game theoretic models of the dynamics

and evolution of human decision-making, specifically state-dependent risk prefer-

ences, and aspects of culture, specifically punishment norms. These models have

been constructed in close consideration of social science data and collaboration with

cultural psychologists. The inclusion of social science evidence in the construction

of models presented in this thesis enabled this work to discover important new in-

sights into the dynamics of human behaviors and culture that otherwise may have
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remained unexplored. In my work on risk preferences, I considered a range of imita-

tion dynamics for the reproduction of strategies that, according to empirical evidence

on social learning, arguably model the ways in which humans adapt their behavior

more accurately than the commonly used replicator dynamics in biological or social

applications of evolutionary game theory. In my work on punishment, empirical

evidence from cultural psychology helped in identifying the environmental factors

that may be the cause of different evolved punishment propensities, and I was thus

able to explore the effects of these factors in evolutionary game models.

The main contributions of this thesis are 1) a simple sequential lottery game

framework to study the evolution of human risk preferences and 2) demonstrations

of how the principles observed in our lottery game studies affect classic cooperation

games, and 3) game theoretic and multi-agent system-based PGG models incorpo-

rating various interpretations of societal threat to study punishment, demonstrating

how societal threat plays an integral role in determining cultures’ evolved punish-

ment propensities. More specifically:

1. Studying risk preferences under the presented lottery game framework ad-

vances the understanding of human decision-making by showing how in evolu-

tionary game environments with sequential choices, a large range of imitation

dynamics can lead to state-dependent risk behavior that does not maximize

expected payoff. In this range of dynamics, agents that are sometimes risk-

prone and sometimes risk-averse in a manner that reflects descriptive models
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of observed human decision-making are evolutionarily stable and hence prolif-

erate.

2. The demonstrations of how the principles observed in the lottery game models

affect classic cooperation games illustrates how state-dependent risk prefer-

ences under imitation dynamics can facilitate the evolution of cooperation in

situations where cooperating entails risk, increasing the likelihood of cooper-

ation emerging as the norm.

3. Incorporating societal threats identified by the social science literature into

PGG models allowed for the study of their effects on the dynamics of pun-

ishment and cooperation. Increased threat led to the evolution of increased

punishment propensities. The results from these models illuminate the evo-

lutionary basis for the wide variation in punishment propensities that exists

around the globe and provide support for a causal relationship between oth-

erwise purely correlational data between societal threat and punishment be-

havior. This helps promote cross-cultural understanding by showing how the

tightness or looseness of a society’s cultural norms is adaptive to the society’s

ecological and historical context.

In general, the work in this thesis increases understanding of human behaviors,

cultures, and their evolution, and how to model these through evolutionary game

and multi-agent system approaches. Through the identification of important factors

in cultural change and the characterization of their effects, these studies aid our

understanding of socio-cultural processes that may lead to stability, instability, or
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general normative changes in different regions, environments, or populations. This

work provides foundational knowledge likely required for predictive tools that can

aid in making decisions about where and in what ways to invest resources in order

to achieve desired societal outcomes. While the models presented are still highly

abstract, understanding the relationships presented throughout these models are an

integral part of the fundamental understanding required for more complex, detailed,

and elaborate social modeling systems.
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Appendix A

Derivations

This Section presents the derivation of ∇α(RwS, Sa,b,c,d) used in Section 2.4.5.

Using Table 2.4 and Figure 2.3, one can determine the probability of each pair of

payoffs occurring and use them for the values of p(r, s) as follows:

∇α(RwS, Sa,b,c,d) =|12− 8|α(p)(apb(1− p) + apc(1− p) + (1− a)(1− d))

+ |12− 4|α(p)(a(1− p)(1− c) + (1− a)d(1− p))

+ |12− 0|α(p)(a(1− p)c(1− p))

+ |8− 4|α(p(1− p))(a(1− p)(1− c) + (1− a)d(1− p))

+ |8− 0|α(p(1− p))(a(1− p)c(1− p))

− |16− 12|αp(apbp)

− |16− 8|α(1− p)p(apbp)

− |16− 0|α(1− p)2(apbp)

− |12− 8|α(1− p)p(ap(1− b) + (1− a)dp)

− |12− 0|α(1− p)2(ap(1− b) + (1− a)dp)

− |8− 0|α(1− p)2(apb(1− p) + a(1− p)cp+ (1− a)(1− d))

− |4− 0|α(1− p)2(a(1− p)(1− c) + (1− a)d(1− p))
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Since we are considering the case where p = 0.5, we can collect terms as though

p = (1− p) (for ease of exposition we will wait to substitute 0.5 for p):

∇α(RwS, Sa,b,c,d) =|16|α(0− abp4) + |12|α(acp3 − a(1− b)p3 − (1− a)dp3)

+ (|4|αp− |8|αp2)(abp2 + acp2 + (1− a)(1− d))

+ (|8|αp+ |4|αp2 − |4|αp2)(a(1− c)p+ (1− a)dp)

+ |8|α(acp4 + abp4)

+ |4|α(0− abp3 − a(1− b)p3 − (1− a)dp3),

which yields

∇α(RwS, Sa,b,c,d) =− |16|α(abp4) + |12|α(acp3 − a(1− b)p3 − (1− a)dp3)

+|8|α(acp4 + a(1− c)p2 + (1− a)dp2

− abp4 − abp4 − acp4 − (1− a)(1− d)p2)

+|4|α(abp3 + acp3 + (1− a)(1− d)p− abp3 − a(1− b)p3 − (1− a)dp3),

which yields

∇α(RwS, Sa,b,c,d) =− |16|α(abp4) + |12|α(acp3 − a(1− b)p3 − (1− a)dp3)

+|8|α(a(1− c)p2 + (1− a)dp2 − abp4 − abp4 − (1− a)(1− d)p2)

+|4|α(acp3 + (1− a)(1− d)p− a(1− b)p3 − (1− a)dp3).
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Recollecting terms gives us

∇α(RwS, Sa,b,c,d) =(12α + 4α)acp3 + 8αa(1− c)p2

+4α(1− a)(1− d)p+ 8α(1− a)dp2

−(4α + 12α)(1− a)dp3 − 8α(1− a)(1− d)p2

−(16α + 2 ∗ 8α)abp4 − (12α + 4α)a(1− b)p3.

Substituting p = 1
2

and expanding the final term, we get

∇α(RwS, Sa,b,c,d) =
1

8
(12α + 4α)ac+

1

4
8αa(1− c)

+
1

4
(2 ∗ 4α − 8α)(1− a)(1− d) +

1

8
(2 ∗ 8α − 4α − 12α)(1− a)d

− 1

16
(16α + 2 ∗ 8α)ab− 1

8
(12α + 4α)a+

1

8
(12α + 4α)ab,

which yields

∇α(RwS, Sa,b,c,d) =
1

8
(12α + 4α)(ac− a) +

1

4
8αa(1− c)

+
1

4
(2 ∗ 4α − 8α)(1− a)(1− d) +

1

8
(2 ∗ 8α − 4α − 12α)(1− a)d

+
1

16
(2 ∗ 12α + 2 ∗ 4α − 2 ∗ 8α − 16α)ab.

Since (ac− a) = −a(1− c), this yields

∇α(RwS, Sa,b,c,d) =
1

8
(2 ∗ 8α − 4α − 12α)a(1− c)

+
1

4
(2 ∗ 4α − 8α)(1− a)(1− d) +

1

8
(2 ∗ 8α − 4α − 12α)(1− a)d

+
1

16
(2 ∗ 12α + 2 ∗ 4α − 2 ∗ 8α − 16α)ab.
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Finally, recollecting terms gives us

∇α(RwS, Sa,b,c,d) =
1

8
(2 ∗ 8α − 12α − 4α)(a(1− c) + (1− a)d)

+
1

4
(2 ∗ 4α − 8α)(1− a)(1− d)

+
1

16
(2 ∗ 12α + 2 ∗ 4α − 2 ∗ 8α − 16α)ab,

which matches Equation 2.3.
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Appendix B

Simulation Pseudo-Code

Basic Model evolutionary PGG of Chapter 4:

- create initial population of agents

LOOP for each generation:

# play games

LOOP NumGames times

- sample PopSize/M random disjoint sets of M agents from population

LOOP for each set of agents

- all agents in set play their type’s strategy in the PGG

- all agents in set receive payoffs from PGG

END LOOP

END LOOP

- set fitness of all agents equal to their accumulated payoff

# replicator dynamics

- create new population according to the discrete replicator dynamics

# exploration dynamics

LOOP for each agent in new population

- agent switches to a random strategy with probability µ

END LOOP

END LOOP
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