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In real-world applications of AI and automation such as in robotics, computer game

playing and web-services, agents need to make decisions in unstructured environments

that are open-world, dynamic and partially observable. In the AI and Robotics research

communities in particular, there is much interest in equipping robots to operate with min-

imal human intervention in diverse scenarios such as in manufacturing plants, homes,

hospitals, etc. Enabling agents to operate in these environments requires advanced plan-

ning and acting capabilities, some of which are not well supported by the current state

of the art automated planning formalisms and algorithms. To address this problem, in

my thesis I propose a new planning formalism that addresses some of the inadequacies in

current planning frameworks, and a suite of planning and acting algorithms that operate

under this planning framework.

The main contributions of this thesis are:

• Hierarchical Goal Network (HGN) Planning Formalism. This planning formal-

ism combines aspects (and therefore harnesses advantages) of Classical Planning



and Hierarchical Task Network (HTN) Planning, two of the most prominent plan-

ning formalisms currently in use. In particular, HGN planning algorithms, while

retaining the efficiency and scalability advantages of HTNs, also allows incorpora-

tion of heuristics and other reasoning techniques from Classical Planning.

• Planning Algorithms. Goal Decomposition Planner (GDP) and the Goal Decomposition

with Landmarks (GoDeL) planner are two HGN planning algorithms that combines

hierarchical decomposition with classical planning heuristics to outperform state-

of-the-art HTN planners like SHOP and SHOP2.

• Integration with Robotics. The Combined HGN and Motion Planning (CHaMP)

algorithm integrates GoDeLwith low-level motion and manipulation planning algo-

rithms in Robotics to generate plans directly executable by robots.

Given the need for autonomous agents to operate in open, dynamic and unstruc-

tured environments and the obvious need for high-level deliberation capabilities to enable

intelligent behavior, the planning-and-acting systems that are developed as part of this

thesis may provide unique insights into ways to realize these systems in the real world.
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Chapter 1: Introduction

In the real world, intelligent agents typically have to operate in environments that

are open-world, partially observable and dynamic, such as robotics [1,2], computer game

playing [3, 4], web-services [5] and others. In the area of robotics in particular, research

has slowly begun to shift focus from low-level issues of getting robots to execute prepro-

grammed plans reliably in highly constrained “lab-like” settings to the bigger challenge

of operating autonomously in unknown environments and completing the given task with

minimal human intervention. Enabling agents to operate as described requires AI research

to support advanced task-level planning and acting capabilities.

However, the current state of the art AI planning formalisms and algorithms, the

most prominent of which are Classical Planning and Hierarchical Task Network (HTN)

planning, do not adequately support some of these requirements. The following para-

graphs (and Table 1.1) compares these two formalisms.

Classical planning algorithms take as input only the descriptive models of actions

that can be executed in the domain. They leverage sophisticated domain-independent

heuristics and other reasoning techniques to decide how to choose and organize these

actions suitably in order to achieve the given goal. However, due to their inability to

model and exploit any additional domain-specific strategies, they often do not scale well

1



Criterion Classical Planning HTN Planning

Structure flat hierarchical

Amount of Domain Engi-

neering

low (only Action Models

needed)

high (Action Models, HTN

Methods needed)

Expressivity low (finite-state machine) high (Turing-complete)

Heuristic guidance Yes; sophisticated heuristic

search guidance available

No; relies almost exclu-

sively on HTN methods to

guide search

Scalability low high, when given high-

quality HTN methods

Table 1.1: Comparison of Classical and HTN Planning
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in real-world planning domains.

HTN planning algorithms take, in addition to the classical planning action models,

additional domain-specific advice as input; this knowledge consists of HTN methods,

which are descriptions of how to decompose complex problems into simpler subproblems.

Due to this, HTN planners are much more scalable than classical planners in practice.

Moreover, the hierarchical nature of HTNs mirrors the hierarchical structure of many

real-world planning applications, making HTNs a natural choice in practice.

However, HTN planning has its own inadequacies, some of which are:

• Huge Domain Engineering Effort in writing HTN methods. This is because the

HTN formalism requires users to provide methods to cover for every possible scenario

that the agent could encounter. If the HTN planner finds itself in a situation the user

hadn’t anticipated, it would just fail without returning a solution.

• Brittleness in Open, Dynamic Environments. The previous problem is exacerbated

in open, dynamic environments; since events outside of the agent’s control can happen

leading to novel situations not anticipated by the user, HTN planners are not well

suited to work in open, dynamic environments.

• Difficulty in designing domain-independent HTN planning heuristics. Heuristics

are critical in guiding the algorithm quickly towards high-quality solutions; due to

the lack of such heuristics, HTN planners are often completely reliant on the user-

provided knowledge in providing the necessary guidance, thus further increasing the

burden on the user.

There have been attempts to alleviate these issues by combining HTN and Clas-
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sical planning approaches, the idea being that planners could leverage HTNs whenever

available, and fall back to Classical Planning otherwise. This would help increase robust-

ness since the completeness of HTN planners no longer depends on the coverage of the

given HTN methods. Similarly, one could imagine constructing HTN planning heuristics

by adapting Classical Planning heuristics to work in the HTN setting. However, due to

incompatibilities between the two formalisms, these efforts have met only with limited

success.

The aim of this thesis is therefore to design a new hierarchical task-level planning

formalism that better combines elements of HTN and Classical Planning, and exploit this

synergy to:

• design better task planning algorithms that can leverage classical planning heuris-

tics and other techniques both to reduce the domain-engineering burden and to gener-

ate higher-quality plans;

• extend their scope to Robotics by developing algorithms that can refine the generated

task-level plans into a more detailed plan that can directly executed by the robots.

1.1 Contributions of This Thesis

The contributions of this thesis include a hierarchical planning formalism that com-

bines advantages of Classical and HTN Planning formalisms into a single theory, as well

as a suite of algorithms developed under this formalism that (1) generate plans for the

given planning problem, and (2) integrate these algorithms with off-the-shelf motion plan-

ners from Robotics to generate plans that are directly executable by robotic platforms.
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Our formalism allows these algorithms to incorporate classical planning heuristics and

other reasoning techniques into a hierarchical planning setting, enabling them to outper-

form current state of the art planning systems.

1. Planning Formalism. As indicated above, classical planning and HTN planning

have different (and in fact, complementary) advantages and disadvantages. To

combine the advantages of both approaches, we have developed Hierarchical Goal

Network (HGN) planning [6], a hybrid planning formalism that is hierarchical, but

is based on classical goals rather than tasks. HGN methods, the counterpart of HTN

methods in this formalism, thus decompose goals into networks of subgoals. This

has several advantages over HTNs:

• Unlike in HTNs where one has to commit to a task name in the methods,

in HGN methods we simply specify in a declarative manner what should be

achieved, instead of how to achieve it. The planner can then decide which

methods and actions are relevant and applicable.

• By moving from task hierarchies to goal hierarchies, leveraging reasoning

techniques from Classical Planning such as state-space heuristics, proposi-

tional landmark inference, etc. now becomes feasible. Analogous efforts in

HTNs have not not been very successful. This is mainly due to incompatibil-

ities between Classical and HTN Planning; HTN planning is centered around

tasks that need to be accomplished while Classical Planning is centered around

goals that need to be achieved.

• When given only partial control knowledge, goal decomposition using HGN

5



methods can be easily augmented with Classical Planning techniques to fill in

the gaps. Analogous approaches in HTN planning have been difficult to real-

ize for the same reason as in the previous point; it has been hard to combine

aspects of HTN and Classical Planning.

2. Planning Algorithms. We propose two HGN planning algorithms that help realize

the advantages of the HGN planning formalism.

• The Goal Decomposition Planner (GDP) [6] is a sound and complete HGN

planning algorithm. It is similar in several ways to SHOP/SHOP2 (two popu-

lar HTN planning algorithms) and like them, requires a complete set of meth-

ods in order to function correctly. However, one of the novel aspects of GDP

is its heuristic function; it is enhanced with a variant of the relaxed planning

graph heuristic [7]. Typically HTN domain models manually specify the or-

der in which the methods and operators should be tried when more than one

of them is applicable; the heuristic function in GDP makes this easier by en-

abling the planner to deduce the best order on its own.

Experiments comparing GDP to SHOP2 showed that GDP performed com-

parably to SHOP2 when given strong control knowledge, and outperformed

SHOP2 when given weak control knowledge due to its heuristic function. A

comparison of HGN and HTN domain model sizes showed that the HGN for-

malism allowed for much simpler and succinct encodings, mainly because the

declarative semantics eliminated the need for a plethora of auxiliary methods

and bookkeeping operations which SHOP2 domain models required.
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• The Goal Decomposition using Landmarks (GoDeL) algorithm [8] extends

GDP using subgoal inference via landmarks and action chaining techniques to

plan with partial sets of HGN methods, guaranteeing soundness and complete-

ness irrespective of the completeness of the given set of methods. Experiments

showed that GoDeL could generate solutions with any amount of knowledge

given to it, its performance improved as more knowledge was given, and that

it performed at par with GDP when given complete knowledge.

3. Combined Task and Motion Planning Algorithms for Robotics. HGN planning

algorithms, like most other task-level planning algorithms, operate on symbolic

abstractions of the target applications, and therefore generate abstract plans that

are not directly executable in the target domain. Instead, low-level domain-specific

planning techniques are needed to translate the abstract plans into a concrete plan

that is executable.

This thesis proposes the Combined HGN and Motion Planning (CHaMP) algo-

rithm, which attempts to address this problem in the context of planning for au-

tonomous robots. CHaMP integrates HGN planning with motion and manipulation

planning techniques from Robotics that handle the low-level planning problems of

navigation, object grasping, etc. It tightly integrates the two levels of planning by

leveraging certain useful properties of a class of motion planners called heuristic

search motion planners that allow estimates of how well the search process is going

on at the lower levels to be sent up to the HGN planner, which can then evaluate the

relative merits of continuing that search process versus trying another option at the

7



upper levels.

The rest of this document is structured as follows. Chapter 2 describes the re-

lated literature in more detail and put our work in perspective. Chapter 3 then formalizes

HGNs. Chapter 4 describes GDP, the first HGN planning algorithm we developed. Chap-

ter 5 describes GoDeL, our second HGN planning algorithm that extends GDP to work

with incomplete sets of HGN methods. Chapter 6 then describes CHaMP, the integrated

planning algorithms for robotics applications. Chapter 7 discusses possible extensions

and open problems within the scope of this thesis. Finally, Chapter 8 wraps up.
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Chapter 2: Related Work

In this section, we shall review the literature related on prominent task-level plan-

ning formalisms like Classical and HTN Planning. The literature related to integrating

task and motion planning techniques in Robotics will be reviewed in Chapter 6.

2.1 Classical Planning

As mentioned in Chapter 1, classical planning algorithms take as input a domain

description D consisting of models of all the actions executable in the domain. Each

action model consists of preconditions that need to be true in the system state in order to

execute the action, as well as effects that the action generates after execution. The action

preconditions and effects are both modeled as formulas in first-order logic. Example 1

describes such a model for the load-truck action in the Logistics domain.

Example 1. A model of the load-truck action, which loads object ?o onto truck ?t

at location ?l, in the Logistics domain will look as follows:

(:action load-truck

:parameters (?o ?t ?l)

:precondition (and (obj-at ?o ?l)

(truck-at ?t ?l))

9



:effect (and (not (obj-at ?o ?l))

(in-truck ?o ?t)))

The preconditions of this action require both object ?o and truck ?t to to be at

location ?l. After the application of this action, the effects of this action model the fact

that ?o is now in the truck, and no longer at ?l.

A problem in classical planning is modeled as a (D, initial-state, goal) tuple. The

initial-state and goal, along with the domain D, induces a search space; nodes are states

and edges denote actions that can take the system from one state to the next. The problem

can now be formulated as searching for a path in this search space from initial-state to a

state in which goal is satisfied.

The main thrust in AI Planning research has been in the development of domain-

independent heuristics and other reasoning techniques that can guide the underlying search

algorithm (which is usually depth-first search or A*) towards a good solution. The Fast-

Forward planner [7] was the first really successful example of such an approach; the

authors developed the relaxed planning graph (RPG) heuristic which efficiently solves a

relaxed version of the original problem and uses that solution to guide the search. Since

then, there have been a number of planners [9–12] that have proposed various heuristic

techniques that help scale up classical planning.

In particular, the LAMA planner [12], which won the 2008 and 2011 International

Planning Competitions, repurposes the RPG technique to infer propositional landmarks:

facts that need to be made true at some point in every plan that solves the given problem.

10



It then uses a novel landmark-based heuristic to guide the planner towards a goal state via

the inferred landmarks.

There has been a number of research attempts in extending these heuristics and

other techniques to do optimal planning [13, 14], temporal reasoning [15, 16], reason

about metric effects [17, 18] among others. However, despite the development of highly

sophisticated reasoning techniques in these works, the impact of classical planning in

practical applications has been limited by the impoverished planning model, which does

not allow for specification of higher-level planning strategies, even if available. Next,

we shall review HTN planning, which does provide for specification of richer planning

knowledge.

2.2 Hierarchical Task Network (HTN) Planning

HTN Planning is a hierarchical planning framework that allows encoding, in addi-

tion to the base actions, higher-level planning advice on how to decompose complex tasks

into sets of simpler subtasks. This allows the planners to decompose the given planning

problem recursively into smaller and smaller subtasks using the given planning knowl-

edge until they arrive at an executable sequence of primitive tasks (which correspond

directly to the base actions).

Example 2. An example HTN method that moves a package between locations in the

same city using trucks.

(:method (in-city-delivery ?truck ?obj

?loc-from ?loc-to)

11



:preconditions ((in-city ?loc-from ?city)

(in-city ?loc-to ?city)

(truck ?truck ?city))

:subtasks ((:task truck-at ?truck ?loc-from)

(:task !load-truck ?obj ?truck

?loc-from)

(:task truck-at ?truck ?loc-to)

(:task !unload-truck ?obj ?truck

?loc-to)))

In this example, ?obj needs to be moved from ?loc-from to ?loc-to using

?truck. The preconditions that need to be true in the current state for this method to

be applicable are ?loc-from and ?loc-to should be in the same city and ?truck

should also belong to that city. If the preconditions are satisfied, the method decom-

poses the top-task into the subtasks of (1) getting ?truck to ?loc-from, (2) loading

?truck with ?obj, (3) getting ?truck to ?loc-to, and finally (4) unloading ?obj

and depositing it at ?loc-to.

As one can imagine, this ability to exploit extra domain-specific knowledge al-

lows HTN planners to scale much better than Classical planners, thus enabling more

widespread use in practical planning applications. In fact, even before HTN planning was

properly formalized and analyzed, there existed several HTN-like planning systems used

in practice [19–21].

Erol et al [22] provided the first formalization and theoretical analysis of HTN plan-
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ning and later implemented the Universal Method-Composition Planner (UMCP) [23], a

sound and complete HTN planning procedure with respect to their formalization. Nau et

al then introduced SHOP and SHOP2 [24, 25], two HTN planners that were vastly more

efficient than UMCP and are considered state of the art even today.

However, while HTNs allow encoding of sophisticated domain-specific knowledge,

HTN planners require complete models of such knowledge; informally, what this means

is that users ought to provide HTN methods for every eventuality that the planner faces.

This is intractable even in moderately complex domains; there have been attempts to com-

bine HTN planning with Classical Planning in order to provide some fallback planning

mechanism in case of incomplete HTN models [26–28], but the incompatibilities between

HTNs (which is based on tasks) and Classical (based on goals) planning necessitated ad-

hoc modifications and restrictions, leading to unsatisfactory solutions.

Additionally, there is a lack of an ’optimization’ element in HTNs; for instance,

there is a conspicuous lack of optimal and anytime HTN planning algorithms that use

admissible heuristic estimates to search for a cost-efficient plan; the closest that comes to

this is a version of SHOP2 that uses depth-first branch and bound techniques to iteratively

prune search for the next solution based on the best solution found so far [25]. How-

ever, this can potentially require searching an exponential amount more than usual, thus

negating all the efficiency advantages of HTN planning. An alternative approach would

be to use admissible heuristic estimates to guide the search. However, this has not been

possible in HTNs due to the lack of HTN planning heuristics, which is also due to the

incompatibilities between tasks and goals; heuristics from classical planning cannot be

easily adapted to work in the HTN setting. Therefore, end-users of HTN planning sys-
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tems often need to encode very complex domain models to direct the planner in exactly

the right directions that will lead to good solutions.
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Chapter 3: Hierarchical Goal Networks

As Chapter 1 indicates, domain-independent planning and HTN planning formalisms

have different (and in fact, complementary) advantages and disadvantages. Therefore, we

attempted to come up with a hybrid formalism that is hierarchical, but is based on goals

rather than tasks. This idea is not new; SIPE [21] and PRS [29, 30] both use goal de-

composition techniques in order to build planning systems. Instead, our contributions

lie in (1) building a formal theory and analyzing properties of a hierarchical goal-based

planning framework, and (2) exploiting connections between HGNs and techniques in

domain-independent planning such as state-space heuristics and landmark reasoning.

Differences between tasks and goals. Before we get to the HGN formalism, a

note on some fundamental differences between tasks and goals might benefit the reader.

Ever since Sacerdoti’s seminal work on NOAH [31], problem decomposition have been

recognized as a useful planning technique. However, an important design decision made

in these early works was to use task symbols as the de facto problem representation; this

was motivated by practical considerations in applications like mission planning, where its

natural to view the decision-making process as a set of tasks (or missions) that need to be

accomplished. So, practical HTN planning systems often used task symbols to represent

problems, and used domain-specific decomposition knowledge to decompose these tasks
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into smaller and smaller tasks until it reached tasks that had an associated operational

model that could then be executed.

However, in formalizations of HTN planning [22, 23, 32], tasks got decomposed

into primitive tasks that had an associated descriptive model, much like actions in Clas-

sical Planning. This was there to be able to easily check whether a plan is executable.

Therefore, tasks were treated as abstract symbols with no intrinsic meaning; they derived

their semantics from the methods that decomposed them.

(a) (b)

Figure 3.1: Decompositions of a task symbol t. Figure (a) shows the result of decompos-

ing t using method m1, while figure (b) shows the result if method m2 was used. The

resulting plans are formed by the leaves of the tree.

For instance, in Figure 3.1 we see the result of decomposing the task symbol t by

two methods m1 and m2. Thus, the same task symbol t can yield completely differ-

ent plans based on the method that decomposes it; this is because its simply a syntactic

construct and its semantics is determined by the methods that decompose it.

This aspect of HTNs makes it hard to incorporate sophisticated reasoning tech-

niques into HTNs. For instance, this is the reason why its hard to incorporate planning
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heuristics into HTNs; given a set of tasks (that might have been obtained by decomposing

the top-level task) that need to be planned for, its hard to estimate how costly it is to ac-

complish these tasks since we don’t know what the task symbols mean. Similarly, if we

want to repair HTN plans during execution, its hard to localize the faulty section of the

plan since we don’t know the semantics of the tasks in the plan. For this reason, goals are

at times preferable to tasks since the semantics of goals are much clearer. For instance,

the task in Figure 3.1 (a) can be replaced by the goal its supposed to represent, which

would be at (q). Similarly, the task in Figure 3.1 (b) can be replaced with in (q). Below

we’ll crystallize this notion of planning with a hierarchy of goals.

3.1 HGN Planning

Before we formalize HGN planning, we shall first formalize Classical Planning

since we reuse many concepts from the Classical Planning formalism in HGN Planning.

Classical planning. Following Ghallab, Nau and Traverso (2004), we define a clas-

sical planning domain D as a finite state-transition system in which each state s is a finite

set of ground atoms of a first-order language L, and each action a is a ground instance of a

planning operator o. A planning operator is a triple o = (head(o), precond(o), effects(o)),

where precond(o) and effects(o) are sets of literals called o’s preconditions and effects,

and head(o) includes o’s name and argument list (a list of the variables in precond(o) and

effects(o)).

An action a is executable in a state s if s |= precond(a), in which case the resulting

state is γ(a) = (s − effects−(a)) ∪ effects+(a), where effects+(a) and effects−(a) are
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the atoms and negated atoms, respectively, in effects(a). A plan π = 〈a1, . . . , an〉 is

executable in s if each ai is executable in the state produced by ai−1; and in this case we

let γ(s, π) be the state produced by executing the entire plan.

A classical planning problem is a triple P = (D, s0, g), where D is a classical

planning domain, s0 is the initial state, and g (the goal formula) is a set of ground literals.

A plan π is a solution for P if π is executable in s0 and γ(s0, π) |= g.

HGN planning. An HGN methodm has a head head(m) and preconditions precond(m)

like those of a planning operator, and a sequence of subgoals subgoals(m) = 〈g1, . . . , gk〉,

where each gi is a goal formula (a set of literals). We define the postcondition of m to

be post(m) = gk if subgoals(m) is nonempty; otherwise post(m) = precond(m). See

Figure 3.2 for an example set of HGN methods for the Logistics domain.

An action a (or grounded method m) is relevant for a goal formula g if effects(a)

(or post(m), respectively) entails at least one literal in g and does not entail the negation

of any literal in g.

Some notation: if π1, . . . , πn are plans or actions, then π1 ◦ . . .◦πn denotes the plan

formed by concatenating them.

An HGN planning domain is a pair D = (D′,M), where D′ is a classical planning

domain and M is a set of methods.

A goal network is a way to represent the objective of satisfying a partially ordered

sequence of goals. Formally, it is a pair gn = (T,≺) such that:

• T is a finite nonempty set of nodes;

• each node t ∈ T contains a goal gt that is a DNF (disjunctive normal form) formula
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over ground literals;

• ≺ is a partial order over T .

An HGN planning problem is a triple P = (D, s0, gn), where D is a planning domain, s0

is the initial state, and gn = (T,≺) is a goal network.

Definition 1. The set of solutions for P is defined as follows:

Case 1. If T is empty, the empty plan is a solution for P .

Case 2. Let t be a node in T that has no predecessors. If s0 |= gt, then any solution for

P ′ = (D, s0, (T
′,≺′)) is also a solution for P , where T ′ = T − {t}, and ≺′ is the

restriction of ≺ to T ′.

Case 3. Let a be any action that is relevant for gt and executable in s0. Let π be any solu-

tion to the HGN planning problem (D, γ(s0, a), (T ′,≺′)). Then a ◦ π is a solution

to P .

Case 4. Let m be a method instance that is applicable to s0 and relevant for gt and has

subgoals g1, . . . , gk. Let π1 be any solution for (D, s0, g1); let πi be any solution

for (D, γ(s0, (π1 ◦ . . . ◦ πi−1)), gi), i = 2, . . . , k; and let π be any solution for

(D, γ(s0, (π1 ◦ . . . ◦ πk)), (T ′,≺′)). Then π1 ◦ π2 ◦ . . . ◦ πk ◦ π is a solution to P .

In the above definition, the relevance requirements in Cases 2 and 3 prevent classical-

style action chaining unless each action is relevant for either the ultimate goal g or a sub-

goal of one of the methods. This requirement is analogous to (but less restrictive than) the

HTN planning requirement that actions cannot appear in a plan unless they are mentioned
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explicitly in one of the methods. As in HTN planning, it gives an HGN planning problem

a smaller search space than the corresponding classical planning problem.

The next theorem shows that HGN planning is sound: any HGN solution is also a

solution to the corresponding classical problem.

Theorem 1 (HGN soundness). LetD = (D′,M) be an HGN planning domain. For every

(s0, g), the set of solutions to the HGN planning problem P = (D, s0, g) is a subset of the

set of solutions to the classical planning problem P ′ = (D′, s0, g).

Proof. Let π = 〈a1, . . . , an〉 be any solution for P . From the definition of a solution,

it follows that in the HGN domain D, π is executable in s0 and γ(s0, π) |= g. But

D = (D′,M), so any action that is executable in D is also executable in the classical

domain D′ and produces the same effects. Thus it follows that in D′, π is executable in

s0 and γ(s0, π) |= g. 2

Theorem 2 (HGN completeness). For every classical planning domain D, there is a set

of HGN methods M such that the classical planning problem P = (D, s0, g) and the

HGN planning problem P ′ = ((D,M), s0, g) have the same set of solutions.

Proof.

LetX be the set of all simple paths inD. For each path x inX , supposeM contains

methods that will specify goals for each state on x as subgoals. Thus, each subgoal will

be achieved by a single action such that when the sequence of actions applied from the

start of x, and the result will be the end state. Then the theorem follows. 2

The following two theorems show that the HGN formalism provides expressive

power equal to that of SHOP’s HTN formalism:
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Theorem 3 (HTN expressivity). For any HGN problem (D, s0, g0), there exists a totally-

ordered HTN problem (D′, s0, tg0) such that (D, s0, g0) is solvable if and only if (D′, s0, tg0)

is solvable.

Proof Sketch. We proceed to translate an HGN planning problem (D, s0, g0) into an

HTN planning problem as follows: each goal formula g inD is represented by a task sym-

bol tg; g0 is represented by the task symbol tg0 . For each HGN method 〈pre, 〈g1, . . . , gk〉〉,

we create a new HTN method accomplishing task tgk with preconditions pre and subtasks

〈tg1 , . . . , tgk〉. Then for each tg, we create an HTN method having a precondition of g and

no subtasks. Also for every method or operator u relevant to g, we have a method accom-

plishing tg having a precondition of ¬g and subtasks 〈tu, tg〉, tu being the task symbol

corresponding to u. We then return the HTN problem (D′∪O, s0, tg0) where D′ is the set

of translated HTN methods and O is the set of planning operators.

It is now easy to show that any HGN decomposition trace can be mapped to a cor-

responding trace of the HTN problem thus constructed and vice-versa. Thus the theorem

follows.

Theorem 4 (HGN expressivity). For any totally-ordered HTN planning problem (D, s0, t0),

there is an HGN planning problem (D′, s0, gt0) such that (D, s0, t0) is solvable if and only

if (D′, s0, gt0) is solvable.

Proof Sketch. To translate an HTN planning problem1 (D, s0, t0), we create pred-

icates fint(.) for each task t(.) to represent task completion. We add an extra predi-
1We assume a single task t0 in the initial task network; this is without loss of generality as we can replace

a totally-ordered initial task network with an artificial toptask and add an extra method decomposing the

toptask to the initial task network.
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cate lead that is asserted by an artificial operator with no preconditions. We have ar-

tificial operators assert-fin-t(.) for each task symbol t that has precondition 〈lead〉 and

effect 〈¬lead, fint(.)〉 Each HTN method for task t with subtasks 〈t1, t2, . . . , tn〉 is now

converted to an HGN method with the same preconditions and a sequence of subgoals

〈fint1 ,¬fint1 , fint2 ,¬fint2 , . . . fintn ,¬fintn , lead, fint〉. The ¬fin(.) subgoals are used to

cleanup the state for future decompositions. The HGN planning problem is (D′∪O, s0, fint0),

whereD′ is the set of translated HGN methods andO is the set of classical planning oper-

ators and additional artificial operators described above. It is now easy to show that every

HTN decomposition trace can be mapped to a corresponding trace of the HGN planning

problem thus constructed and vice-versa. The theorem follows.

The above theorems provide procedures to translate HGN planning problems to

HTN problems and vice-versa in low-order polynomial time. This proves that HGN plan-

ning has the same expressive power as totally-ordered HTN planning.

Let HGN-PLAN-EXISTENCE be the following problem: Given an HGN planning

problem P , is there a plan that solves P?

Theorem 5. HGN-PLAN-EXISTENCE is decidable.

Proof Sketch. Erol et al. [33] prove that the plan existence problem for totally-

ordered HTN planning is decidable. From this and Theorem 3, the result immediately

follows.
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3.2 Summary

The HGN planning formalism provides a decomposition semantics like HTN plan-

ning, but which readily corresponds to the goal semantics of classical planning and gives

stronger soundness guarantees when applied to classical planning domains.

Our proof that HGN planning is as expressive as totally-ordered HTN planning

means that it is capable of encoding complicated control knowledge, one of the main

strengths of HTN planning. This suggests that HGN planning has the potential to be very

useful both for research purposes and in practical applications.

In the next chapter, we shall develop GDP, a provably sound and complete algo-

rithm that solves HGN planning problems.
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Method for using truck ?t to move crate ?o from location ?l1 to location ?l2 in city ?c:

Head: (move-within-city ?o ?t ?l1 ?l2 ?l3 ?c)

Pre: ((obj-at ?o ?l1) (in-city ?l1 ?c)

(in-city ?l2 ?c) (truck ?t ?c) (truck-at ?t ?l3))

Sub: ((truck-at ?t ?l1) (in-truck ?o ?t)

(truck-at ?t ?l2) (obj-at ?o ?l2)))

Method for using airplane ?plane to move crate ?o from airport ?a1 to airport ?a2:

Head: (move-between-airports ?o ?plane ?a1 ?a2)

Pre: ((obj-at ?o ?a1) (airport ?a1) (airport ?a2) (airplane ?plane))

Sub: ((airplane-at ?plane ?a1) (in-airplane ?o ?plane)

(airplane-at ?plane ?a2) (obj-at ?o ?a2)))

Method for moving ?o from location ?l1 in city ?c1

to location ?l2 in city ?c2, via airports ?a1 and ?a2:

Head: (move-between-cities ?o ?l1 ?c1 ?l2 ?c2 ?a1 ?a2)

Pre: ((obj-at ?o ?l1) (in-city ?l1 ?c1) (in-city ?l2 ?c2) (different ?c1 ?c2)

(airport ?a1) (airport ?a2) (in-city ?a1 ?c1) (in-city ?a2 ?c2))

Sub: ((obj-at ?o ?a1) (obj-at ?o ?a2) (obj-at ?o ?l2)))

Figure 3.2: HGN methods for transporting a package to its goal location in the Logistics

domain.
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Chapter 4: The Goal Decomposition Planner (GDP)

This chapter introduces the Goal Decomposition Planner, an HGN planning algo-

rithm that is sound and complete with respect to Definition 1. As a result, it requires a

complete set of HGN methods: in other words, the user needs to provide methods for han-

dling every possible scenario that the planner could encounter in the target domain. This

is similar to restrictions that popular HTN planners like SHOP/SHOP2 [24, 25] impose.

GDP takes as input a HGN domain model D = (O,M) where O is the set of

planning operators and M is the set of HGN methods, the initial state s0 and the goal

network gn that needs to be achieved.

4.1 Algorithm

Algorithm 1 is GDP, our HGN planning algorithm. It works as follows:

In Line 2, if gn is empty then the goal has been achieved, so GDP returns π. Oth-

erwise, GDP selects a goal g in gn without any predecessors (Line 3). If g is already

satisfied, GDP removes g from gn and calls itself recursively on the resulting goal net-

work.

In Lines 7-8, if no actions or methods are applicable to s and relevant for g, then

GDP returns failure. Otherwise, GDP nondeterministically chooses an action/method u
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Algorithm 1: A high-level description of GDP. Initially, D is an HGN planning

domain, s is the initial state, gn is the goal network, and π is 〈〉, the empty plan.

Procedure GDP(D, s, gn, π)1

begin2

if gn is empty then return π3

g ← goal formula in gn with no predecessors4

if s |= g then5

remove g from gn and return GDP(D, s, gn, π)6

U ← {actions and method instances that are relevant for g and applicable to7

s}

if U = ∅ then return failure8

nondeterministically choose u ∈ U9

if u is an action then append u to π and set s← γ(s, u)10

else insert subgoals(u) as predecessors of g in gn11

return GDP(D, s, gn, π)12

end13
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from U .

If u is an action, then GDP computes the next state γ(s, u) and appends u to π.

Otherwise u is a method, so GDP inserts u’s subgoals at the front of g. Then GDP calls

itself recursively on gn.

4.1.1 Formal Properties

The following theorems show that GDP is sound and complete:

Theorem 6 (GDP soundness). Let P = (D, s0, g) be an HGN planning problem. If a

nondeterministic trace of GDP(D, s0, 〈g〉, 〈〉) returns a plan π, then π is a solution for P .

Proof Sketch. The proof is by induction on n, the length of π. When n = 0 (i.e.

π = 〈〉), this implies that s0 entails g. Hence, by Case 1 of the definition of a solution,

π is a solution for P . Suppose that if GDP returns a plan π of length k < n, then π is a

solution for P . At an invocation suppose GDP returns π of length n. The proof proceeds

by showing the following. When GDP chooses an action or a method for the current goal

at any invocation, then by induction, the plans returned from those calls are solutions to

the HGN planning problems in those calls. Hence, by definition of solutions for P , π is a

solution for P .

Theorem 7 (GDP completeness). Let P = (D, s0, g) be an HGN planning problem. If π

is a solution for P , then a nondeterministic trace of GDP(D, s0, 〈g〉, 〈〉) will return π.

Proof Sketch. The proof is by induction on n, the length of π. When n = 0, this

implies that the empty plan is a solution for P and that s0 |= g. Hence GDP would return

〈〉 as a solution. Suppose that if P has a solution of length k < n, then GDP will return
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it. At any invocation, the proof proceeds to show by induction the following. If GDP

chooses an action a, then one of the nondeterministic traces of the subsequent call to

GDP must return π = a ◦ π′ where π′ is a solution for the problem P ′ = (D, γ(s0, a), g).

If GDP chooses a method m relevant to g with subgoals g1, g2, . . . gl, then there must

exist a sequence of plans π1, π2, . . . , πl+1 that constitute π and GDP will return each πi

as a solution each goal gi from the state γ(s0, (π1 ◦ π2 ◦ · · · ◦ πi−1)). Then the theorem

follows.

4.1.2 Domain-Independent Heuristics

GDP can easily be modified to incorporate heuristic functions similar to those used

in classical planning. The modified algorithm, which we will call GDP-h (where h is

the heuristic function) in the experiments, is like Algorithm 1, except that Lines 9–12 are

replaced with the following:

sort U with h(u), ∀u ∈ U

foreach u ∈ U do

if u is an action then
append u to π; remove g from G;

s← γ(s, u)

else push subgoals(u) into G

π ← GDP(D, s,G, π)

if π 6= failure then return π

return failure

Intuitively, this replaces the nondeterministic choice in GDP with a deterministic

choice dictated by h. GDP-h uses h to order U , then attempts to decompose the current
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goal g in that order.

As an example, here is how we compute a variation of the Relaxed Graphplan

heuristic used by the FF planner [7]. At the start of the planning process, we generate

a relaxed planning graph PG from the start state s0 to its fixpoint. Let lPG(p) be the

first propositional level in which p appears in PG. Then hs,G(u), the heuristic value of

applying action/method u in a state s to achieve the goals in the list G, is as follows:

hs,G(u) =
1 + max

p∈G
lPG(p)− max

p∈γ(s,u)
lPG(p), if u is an action,

max
p∈G∪sub(u)

lPG(p)−max
p∈s

lPG(p), if u is a method.

Intuitively, what h estimates is the distance between the first level in which the

literals in G are asserted and the first level in which the current state is asserted. When

u is a method, since any plan generated via u has to achieve sub(u) enroute, it considers

the set G ∪ sub(u) instead as the goal.

Note that this gives weaker heuristic values than the original FF heuristic since

we do not generate a relaxed plan and use its length as the heuristic value. However,

we use this variant of the heuristic since it is much more efficiently computable without

compromising too much on search control. The strength of the heuristic is not as critical

here as in classical planning, since the HGN methods themselves constrain what part of

the space gets searched.
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4.2 Experimental Evaluation

We implemented GDP in Common Lisp, and compared it with SHOP2 and the

classical planner FF in five different planning domains:1 These included the well-known

Logistics [34], Blocks-World [35], Depots [36], and Towers of Hanoi [28] domains, and

a new 3-City Routing domain that we wrote in order to provide a domain in which the

planners’ domain models would not be of much help. The following questions motivated

our experiments:

• How does GDP’s performance (plan quality and running time) compare with SHOP2’s?

In order to investigate this question, we were careful to use domain models for SHOP2

and GDP that encoded basically the same control information.2

• What is the relative difficulty of writing domain models for GDP and SHOP2? We

had no good way to measure this directly;3 but as a proxy for it, we (i) measured the

relative sizes of the SHOP2 and GDP domain models, and (ii) examined the domain

models to find out the reasons for the difference in size.
1We used SHOP2 instead of SHOP for two reasons: (1) its algorithm is identical to SHOP’s when

restricted to totally-ordered subtasks, and (2) since its implementation includes many enhancements and

optimizations not present in SHOP, it provides a more rigorous test of GDP.
2An important aspect of SHOP2’s domain models is the use of Horn-clause inference to infer some of

the preconditions. So that we could write GDP domain models equivalent to SHOP2’s, we included an

identical Horn-clause inference engine in GDP.
3That would have required a controlled experiment on a large number of human subjects, each of whom

has equal amounts of training and experience with both GDP and SHOP2. We have no feasible way to

perform such an experiment.
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• How useful is GDP-h’s heuristic function when the domain model is strong? For this,

we compared GDP-h with GDP on the Logistics, Blocks World, and Depots domains.

• When the domain model is weak, how much help does GDP-h’s heuristic function

provide? For this, we compared GDP-h’s performance with GDP’s on the 3-City

Routing domain.

• Since GDP-h’s heuristic function is loosely based on FF’s, how does GDP-h’s per-

formance compare to FF’s? For this purpose, we included FF in our experiments.

• Is GDP as sensitive as SHOP2 is to the order in which the methods appear in the

domain model? To investigate this question, we took our domain models for SHOP2

and GDP, and rearranged the methods into a random order. In experimental results

that follow, we use the names SHOP2-r and GDP-r to refer to SHOP2 and GDP with

those domain models.

The GDP source code, and the HGN and HTN domain models used in our experiments,

are available at http://www.cs.umd.edu/projects/planning/data/shivashankar12hierarchical/.

4.2.1 Planning Performance

To compile and execute GDP, GDP-h, and SHOP2, we used Allegro Common Lisp

8.0. For FF, we used the open-source C implementation from the FF web site. All ex-

periments were run on 2GHz dual-core machines with 4GB RAM. We set a time limit

of two hours per problem, and data points not solved within the required time limit were

discarded.
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Figure 4.1: Average running times (in logscale) and plan lengths in the Logistics domain,

as a function of the number of packages. Each data point is an average of the 10 problems

from the SHOP2 distribution. There are no data points for SHOP2-r because it could not

solve any of the problems. GDP and GDP-r performed identically because the methods

had mutually exclusive preconditions.

The Logistics Domain. For SHOP2, we used the Logistics domain model in the

SHOP2 distribution. For GDP and GDP-h, we wrote the methods in Fig. 3.2 (these meth-

ods are easy to prove complete [37]). For the experiments, we used the Logistics Domain

problems in the SHOP2 distribution. These included ten n-package problems for each of

n = 15, 20, 25, . . . , 60.

Figure 4.1 shows a comparison of running times and plan lengths of the planners in

this domain. The running times of GDP, GDP-h and SHOP2 were very similar, showing

that even on easy domains with strong domain models, the heuristic does not add much

overhead to GDP-h’s running time. FF’s running times, however, grew much faster: with

60 packages, FF was nearly two orders of magnitude slower than SHOP2.

The plans produced by GDP and GDP-h were of nearly the same length, and the

plans produced by SHOP2 were slightly longer. FF produced the shortest plans; this
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indicates that its heuristic function was slightly stronger than the relaxed version we used

in GDP-h.

SHOP2-r did not terminate on any of the instances, while GDP-r performed iden-

tically to GDP. In fact, we observed that the same was true across all of the domains in

our experimental study. We defer the explanation of this to Section 4.2.3.
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Figure 4.2: Average running times (in logscale) and plan lengths in the Blocks World do-

main, as a function of the number of blocks. Each data point is an average of 25 randomly

generated problems. There are no data points for SHOP2-r because it could not solve any

of the problems. GDP and GDP-r performed identically because the preconditions of the

methods were mutually exclusive. FF was unable to solve problems involving more than

20 blocks.

The Blocks World. For SHOP2, we used the domain model included in SHOP2’s

distribution. For GDP and GDP-h we used a much more compact domain model consist-

ing of three methods (shown here as pseudocode):

• To achieve on(x, y)
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precond: y is in its final position4

subgoals: achieve clear(x), clear(y) and on(x, y)

• To achieve clear(x)

precond: on(y, x)

subgoals: achieve clear(y) and then clear(x)

• To achieve on-table(x)

precond: None

subgoals: achieve clear(x) and then on-table(x)

As shown in Figure 5.2, GDP and SHOP2 took nearly identical times to solve the

problems, with GDP-h taking slightly longer due to its heuristic computation overhead.

FF, which is known to have problems with the Blocks World [35], was unable to solve

problems with more than 20 blocks.

As shown in the figure, GDP, GDP-h and SHOP2 produced solution plans of similar

length, with GDP-h producing the shortest plans. FF produced significantly longer plans

than the other three planners, even for the problems it managed to solve.

The Depots Domain. For SHOP2, we used the Depots domain model from the

SHOP2 distribution. For GDP and GDP-h, we simply stitched together relevant parts

of the Logistics and Blocks-World domain models, and adapted them to obtain an HGN

Depots domain model that encoded the same control information.

As shown in Figure 5.3, GDP and SHOP2 took similar times to solve the problems.

However, GDP-h’s running times grew much faster than GDP or SHOP2, indicating that

4Inferred using Horn clauses (see footnote 2).
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Figure 4.3: Average running times (in logscale) and plan lengths in the Depots domain,

as a function of the number of crates. Each data point is an average of 25 randomly

generated problems. There are no data points for SHOP2-r because it could not solve any

of the problems. GDP and GDP-r performed identically because the preconditions of the

methods were mutually exclusive. FF was unable to solve problems involving more than

24 crates.
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the overhead of the heuristic can increase with the complexity of the domain. FF was

unable to solve any problems of size greater than 24 crates.

With respect to plan lengths, GDP and GDP-h produced almost identical plans, with

SHOP2 producing slightly longer plans than GDP. For the problem sizes it could handle,

FF produced significantly longer plans than the other three planners.
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Figure 4.4: Average running times (in logscale) and plan lengths in the Towers of Hanoi

domain, as a function of the number of rings. Each data point is an average of 10 runs.

There are no data points for SHOP2-r because it could not solve any of the problems.

GDP and GDP-r performed identically because the preconditions of the methods were

mutually exclusive.

Towers of Hanoi. We wrote domain models for SHOP2 and GDP that encoded an

algorithm to produce optimal solution plans (i.e., length 2n − 1 for an n-ring problem).

Figure 4.4 shows the planners’ runtimes and plan lengths. As expected, GDP, GDP-

h and SHOP2 returned optimal plans whereas FF returned significantly sub-optimal plans.

However, while GDP, GDP-h, SHOP2 and FF had similar runtimes up to problems

of size 12, SHOP2 could not solve the larger problems due to a stack overflow, and GDP

36



could not solve the 14-ring problem within the time limit. We believe this is basically an

implementation issue: both GDP and SHOP2 had recursion stacks of exponential size,

whereas FF (since it never backtracks) did not.
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Figure 4.5: Average running times (in logscale) and plan lengths in the 3-City Routing do-

main, as a function of the number of locations per city. Each data point is an average of 25

randomly generated problems. There are no data points for SHOP2-r because it couldn’t

solve any problems. FF couldn’t solve problems involving more than 60 locations while

GDP and SHOP2 could not solve problems with more than 10 locations. GDP and GDP-r

performed identically because there was only one method in the domain model.

3-City Routing. In the four planning domains discussed above, the GDP and

SHOP2 domain models pruned the search space enough that GDP-h’s heuristic func-

tion could not reduce it much further (if at all). In order to examine the performance of

the planners in a domain with a weak domain model, we constructed the 3-City Routing

domain. In this domain, there are three cities c1, c2 and c3, each containing n locations

internally connected by a network of randomly chosen roads. In addition, there is one

road between a randomly chosen location in c1 and a randomly chosen location in c2,

37



and similarly another road between locations in c2 and c3. The problem is to get from a

location in c1 or c3 to a goal location in c2.

We randomly generated 25 planning problems for each value of n, with n varying

from 10 to 100. For the road networks, we used near-complete graphs in which 20% of the

edges were removed at random. Note that while solutions to such problems are typically

very short, the search space has extremely high branching factor, i.e. of the order of n.

For GDP and GDP-h, we used a single HGN method, shown here as pseudocode:

• To achieve at(b)

precond: at(a), adjacent(c, b)

subgoals: achieve at(c) and then at(b)

By applying this method recursively, the planner can do a backward search recursively

from the goal location to the start location.

To accomplish the same backward search in SHOP2, we needed to give it three

methods, one for each of the following cases: (1) goal location same as the initial loca-

tion, (2) goal location one step away from the initial location, and (3) arbitrary distance

between the goal and initial locations.

As Figure 4.5 shows, GDP and SHOP2 did not solve the randomly generated prob-

lems except the ones of size 10, returning very poor solutions and taking large amounts of

time in the process. GDP-h, on the other hand solved all the planning problems quickly,

returning near-optimal solutions. The reason for the success of GDP-h is that the domain

knowledge specified above induce an unguided backward search in the state space and

the planner uses the domain-independent heuristic to select its path to the goal.
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Figure 4.6: Sizes (number of Lisp symbols) of the GDP and SHOP2 domain models.

FF was able to solve all problems up to n = 60 locations, after which it could not

even complete parsing the problem file. We believe this has to do with FF grounding all

the actions right in the beginning, which it could not do for the larger problems.

4.2.2 Domain Authoring

When writing the domain models for our experiments, it seemed to us that writing

the GDP domain models was easier than writing the SHOP2 domain models—so we made

measurements to try to verify whether this subjective impression was correct.

Figure 4.6 compares the sizes of the HGN and HTN domain descriptions of the

planning domains. In almost all of them, the domain models for GDP were much smaller

than those for SHOP2. There are three main reasons why:

• To specify how to achieve a logical formula p in the HTN formalism, one must create

a new task name t and one or more methods such that (i) the plans generated by these

methods will make p true and (ii) the methods have syntactic tags saying that they

are relevant for accomplishing t. If there is another method m′ that makes p true but

does not have such a syntactic tag, the planner will never consider using m′ when it is
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trying to achieve p. In contrast, relevance of a method in HGN planning is similar to

relevance of an action in classical planning: if the effects of m′ include p, then m′ is

relevant for p.

• Furthermore, suppose p is a conjunct p = p1 ∧ . . . ∧ pk and there are methods

m1, . . . ,mk that can achieve p1, . . . , pk piecemeal. In HGN planning, each of these

methods is relevant for p if it achieves some part of p and does not negate any other

part of p. In contrast, those methods are not relevant for p in HTN planning unless the

domain description includes (i) a method that decomposes t into tasks corresponding

to subsets of p1, . . . , pk, (ii) methods for those tasks, and (iii) an explicit check for

deleted-condition interactions.5 This can cause the number of HTN methods to be

much larger (in some cases exponentially larger) than the number of HGN methods.

• In recursive HTN methods, a “base-case method” is needed for the case where nothing

needs to be done. In recursive HGN methods, no such method is needed, because the

semantics of goal achievement already provide that if a goal is already true, nothing

needs to be done.

The Towers of Hanoi domain was the only one where the HGN domain model was

larger than the corresponding HTN domain model. In this domain, the HGN domain

model needed two extra actions, enable and disable, to alternately insert and delete a spe-

5In the HTN formalism in [22], one way to accomplish (iii) is to specify t as the syntactic form

achieve(p), which adds a constraint that p must be true after achieving t. But that approach is inefficient in

practice because it can cause lots of backtracking. In the blocks-world implementation in the SHOP2 dis-

tribution, (iii) is accomplished without backtracking by using Horn-clause inference to do some elaborate

reasoning about stacks of blocks.
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cial atom in the state. They were needed in order to control the applicability of the move

operator to ensure optimality. Thus, it seems like HGNs are a better fit for domains for

which domain knowledge can be specified in a declarative manner, while HTNs provide

more concise domain models for domains which require modeling procedural/operational

models.

is possibly easier than HTNs. However, this comes with a caveat; our study was

very rudimentary, and we didn’t control against various factors such as familiarity with

either HGN/HTN planning, order in which models were written, user intelligence, etc.

A more conclusive study would have been to conduct a user study and evaluate ease of

domain modeling for a number of different users with different degrees of familiarity with

either HGN or HTN planning. We didn’t have the resources to conduct such a study; so

while our measurements lend support to our claim, the proof isn’t conclusive.

4.2.3 Discussion

We have seen from our experimental study that HGN domain models are consider-

ably more succinct than the corresponding HTN models. We also saw that this compact-

ness came at no extra cost; GDP’s performance compared favorably to that of SHOP2’s

across all domains. Runtimes of the heuristic-enhanced planner GDP-h were, for the

most part, comparable to those of GDP’s and SHOP2’s, indicating that our heuristic does

not add a significant overhead to the planning time. Lengths of plans returned by GDP-h

were nearly always better than GDP’s and SHOP2’s. This difference was especially am-

plified in cases where the planners had weak domain models; in such cases, the heuristic
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provided critical search control to GDP-h, thus helping it terminate quickly with good

solutions.

In our experiments, SHOP2-r did not solve any of the problems. The reason for

this was SHOP2’s heavy reliance on the method order in its domain model, especially

the placement of “base-cases” for recursion. For GDP-r, shuffling HGN methods had no

effect at all on performance. This was because the methods in our HGN domain models

had mutually exclusive preconditions, hence at most one of them was applicable. In

domains where more than one method is applicable at once, GDP-r should (like SHOP2-

r) perform badly when presented with methods in the wrong order.

4.3 Summary

GDP is a HGN planning algorithm that solves planning problems by leveraging

domain-specific advice in the form of HGN methods, which decompose goals into se-

quences of subgoals. GDP uses these methods to recursively decompose the given prob-

lem into smaller and smaller subproblems until a plan can be generated. GDP is provably

sound and complete with respect to the definition of solutions in HGN planning (Defini-

tion 1).

Since GDP operates on hierarchies of goals, it can leverage heuristics from Classi-

cal Planning (which is also a goal-based planning formalism) to help make some of the

decisions GDP has to make during the planning process.

The experimental study across a variety of domains demonstrates that GDP not

only matches the performance of state-of-the-art HTN planners like SHOP2 when given
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sophisticated domain-specific advice, but also that in cases when we don’t have sophis-

ticated advice to provide, GDP can use its heuristic search capabilities to provide the

missing guidance. We also saw that HGN domain models are considerably more suc-

cinct than their HTN counterparts, due to the fact that HGN planners automatically infer

a number of facts that need to be explicitly provided to HTN planners.

An important disadvantage that GDP inherits from HTN planning, due to similar-

ities in the way problem decomposition is set up, is that it still requires a complete set

of HGN methods to guarantee solvability for the target domain. In the next chapter, we

shall see how GoDeL, another HGN planning algorithm, extends GDP to address these

limitations.
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Chapter 5: The Goal Decomposition with Landmarks Planner

(GoDeL): HGN Planning with Partial Domain Knowledge

The planning algorithm GDP proposed in Chapter 4 requires a complete set of HGN

methods; in other words, the domain author needs to design methods capable of gener-

ating plans for every possible planning problem in a given domain. This is hard to guar-

antee, especially in real-world domains, which can get very complicated. Moreover, the

completeness requirement is hard; even if a single method is missing, the planner can fail

and not find a solution, even if the action models allow one.

The purpose of this work is to provide a way of overcoming this difficulty. In

particular, the main contributions are the following:

• We describe a simple extension to the HGN planning formalism that allows falling

back to classical planning techniques whenever there are gaps in the methods pro-

vided. Like the strict version of HGN planning described in Chapter 4, this formal-

ism involves hierarchical decomposition, but goals may be achieved regardless of

whether there are methods for achieving them. This is described in Section 6.3.

• We present the GoDeL (Goal Decomposition with Landmarks) planning algorithm

which is sound and complete with respect to the abovementioned version of HGN

planning. So, GoDeL can generate plans using the given HGN methods, but can
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also find solutions without them; it accomplishes this by combining standard HGN

method decomposition with classical action chaining, domain-independent heuris-

tics and planning landmarks [38]. We present several theorems, including sound-

ness and completeness irrespective of whether GoDeL is given a complete set of

methods.

• We present experimental results for an implementation of GoDeL (for landmark

generation in GoDeL, we used code from the well-known LAMA planner [12]).

The results show that GoDeL works correctly with partial planning knowledge (i.e.,

an incomplete set of methods), and its performance improves as more planning

knowledge is given. When given complete domain knowledge, GoDeL performs as

well or better than the heuristic-enhanced planner GDP-h (from Chapter 4).

5.1 Formalism

The change to the HGN formalism needed to work with partial sets of HGN meth-

ods is quite simple; we simply remove the relevance requirement for applying actions in

Definition 1, Case 3. Therefore, given a planning problem P = (D, s0, gn) and an action

a applicable in the state s0, we can progress to the problem P ′ = (D, γ(s0, a), gn); thus

if π′ is a solution to P ′, then a ◦ π′ is a solution to P . Recall that the original formalism

would not allow this, unless a, in addition to being applicable in s0, was also immediately

relevant to some goal g in gn having no predecessors. Therefore, this change now allows

decoupling progressing the current state (via action application) from expanding the goal

network (via method decomposition).
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In fact, by removing the relevance requirement, we in effect reduce the definition

to one that is equivalent to classical planning. This is because the definition allows for

purely chaining actions together until we achieve the goal network, while ignoring the

methods provided altogether. Therefore, we can recast the definition as a simple extension

of classical planning that solves for goal networks, and treat HGN methods as auxiliary

advice provided to the algorithm.

Definition 2. The set of solutions for P is defined as follows:

Case 1. If T is empty, the empty plan is a solution for P .

Case 2. Let t be a node in T that has no predecessors. If s0 |= gt, then any solution for

P ′ = (D, s0, (T
′,≺′)) is also a solution for P , where T ′ = T − {t}, and ≺′ is the

restriction of ≺ to T ′.

Case 3. If action a is applicable in s0 and π is a solution for P ′′ = (D, γ(s0, a), gn), then

a ◦ π is a solution for P .

In cases where gn contains just a single node, the definitions of P and its solutions

reduce to the conventional definitions of a classical planning problem and its solutions.

In such cases we will say that P is classical.

Notice that unlike conventional definitions of HTN and HGN planning problems

(e.g., [39, Chapter 11]), in which methods are essential to the definition of a solution, our

definition of a planning problem and its solutions does not involve methods at all. In our

planning algorithm (see the next section), the purpose of methods is to provide guidance

for what parts of the search space to examine next.
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5.2 Planning Algorithm

Algorithm 2: A nondeterministic version of GoDeL. Initially, (D, s, gn) is

the planning problem, M is a set of methods, and π is 〈〉, the empty plan.

used methods, a global variable, is a mapping from states to methods applied

in those states; it is initially set to the empty map. subgoals inferred is a boolean

initially set to false.

Procedure GoDeL (D, s, gn,M, π)1

if gn is empty then return π2

nondeterministically choose a goal formula g in gn without any predecessors3

if s |= g then4

return GoDeL(D, s, gn− {g},M, π)5

U ← {operator and method instances applicable to s and relevant to g}6

U ← U − used methods[s]7

while U is not empty do8

nondeterministically remove a u from U9

if u is an action then10

res1← GoDeL(D, γ(s, u), gn,M, π ◦ u)11

else12

add u to used methods[s] and set subgoals inferred to false13

res1← GoDeL(D, s, subgoals(u) ◦ gn,M, π)14

if res1 6= failure then return res115

16

47



if subgoals inferred 6= true then17

subgoals inferred← true18

lm← Infer-Subgoals (D, s, g)19

if lm 6= ∅ then20

res2← GoDeL (D, s, lm ◦ gn,M, π)21

if res2 6= failure then return res222

A ← {operator instances applicable to s}23

if A = ∅ then return failure24

nondeterministically choose an a ∈ A25

return GoDeL (D, γ(s, a), gn,M, π ◦ a)26

The Goal Decomposition with Landmarks (GoDeL) planning algorithm, when given

a problem (D, s0, gn), works as follows: It chooses a g from gn that has no predecessors

and (1) first attempts to decompose g using one of the given methods, (2) if not, then it

automatically infers subgoals to insert into gn using landmark-based techniques, and (3)

if neither of the above steps work, it falls back to traditional action-chaining.

Algorithm 4 describes the GoDeL planning algorithm. It takes as input a planning

problem P = (D, s, gn), a set of methods M , and the partial plan π generated so far.

Lines 2 – 5 specify the base cases of GoDeL. If these are not satisfied, the algorithm

nondeterministically chooses a goal g with no predecessors and generates U , all method

and operator instances applicable in s and relevant to g. It then nondeterministically
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chooses a u ∈ U to progress the search (Lines 6 – 9). If u is an action, the state is

progressed to γ(s, u) (Line 20). If u is a method, the subgoals of u are added to gn,

adding edges to preserve the total order imposed by subgoals(u) (Line 24). In either case,

GoDeL is invoked recursively on the new planning problem.

If GoDeL fails to find a plan in the previous step, it then uses the Infer-Subgoals pro-

cedure to infer lm, a network of subgoals that are to be achieved enroute to achieving g

(Line 19). The subgoals are added to gn, adding edges to preserve the partial order in lm.

The algorithm is then recursively invoked on the new planning problem (Line 21). If this

call also returns failure, then the algorithm falls back to action chaining (Lines 23 – 26),

returning failure if no actions are applicable in s.

GoDeL maintains a global map used methods that keeps track of the set of method

instances already used in a given state s. This is used to prune out used methods from the

set of options U (Line 7) and is updated when a new method is applied (Line 13). Sim-

ilarly, GoDeL also uses subgoals inferred, a boolean variable that keeps track of whether

the goal network has been modified since the last time the Infer-Subgoals procedure is in-

voked, ensuring that the latter is invoked only once between changes to the goal network.

As we shall see in Section 5.3, these steps are critical in ensuring GoDeL’s completeness.

Subgoal Inference. We now describe the subgoal inference technique used in

GoDeL. This aspect of GoDeL is motivated by the fact that sometimes the planner may

have methods that tell how to solve some subproblems, but not the top-level problem. For

instance, the move-within-city method in Figure 3.2 would not be applicable to

problems involving transporting packages across cities, but it is applicable to the subprob-
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Algorithm 3: Procedure to deduce possible subgoals for GoDeL to use. It takes

as input a planning problem P = (D, s, g), and outputs a poset of subgoals.

It uses LMGEN, an abstract landmark generation algorithm that takes P and

generates a DAG of landmarks for it.

Procedure Infer-Subgoals (D, s, g)1

(V,E)← LMGEN(D, s, g)2

L← {v ∈ V : s 6|= v, g 6|= v and ∃ a method m s.t. goal(m) is relevant to v}3

if L = ∅ then return ∅4

EL ← {(u, v) : u, v ∈ L and v is reachable from u in (V,E)}5

return (L,EL)6

lems of moving the package between the start and goal locations and the corresponding

airports. A natural question that then arises is the following: How can we automatically

infer these subproblems for which the given methods are relevant?

To answer the above question, we use landmarks. A landmark for a planning prob-

lem P [12, 38] is a fact that is true at some point in every plan that solves P . A landmark

graph is a directed graph whose nodes are landmarks and edges denote orderings be-

tween these landmarks. Therefore, if there is an edge between two landmarks li and lj ,

this implies that li is true before lj in every solution to P .

Therefore, a landmark for a problem P can be thought of as a subgoal that every

solution to P must satisfy at some point. We can, as a result, use any landmark generation

algorithm (for example, [12, 38]) to automatically infer subgoals (and orderings between

them) for which the given methods are relevant.
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Algorithm 3 is Infer-Subgoals, the subgoal inference procedure. It uses an abstract

landmark generation procedure LMGEN that takes as input a classical planning problem

P and generates a DAG of landmarks.

Infer-Subgoals begins by computing the landmark graph (V,E) for the input prob-

lem P . It then computes L, the subset of landmarks in V that have relevant methods (Line

3). It does not consider trivial landmarks such as literals true in the state s or part of the

goal g. EL is the set of all edges between landmarks li, ij ∈ L such that there exists a

path from li to lj in (V,E) (Line 5). Infer-Subgoals then returns the resulting network of

landmarks lm = (L,EL).

5.3 Formal Properties

To show that GoDeL is sound and complete, it is necessary to show that GoDeL

deals correctly with some “corner cases” involving methods and landmarks, e.g., that it

can detect and recover from cases where the method recursion doesn’t terminate. To

keep the proof sketches simple, the following theorems all deal with the case where the

planning problem P = (D, s0, gn) is classical, i.e., gn contains one node, hence one goal

g. It is straightforward to generalize the theorems to arbitrary goal networks.

Theorem 8 (soundness). Let P = (D, s0, gn) be as described above, and M be a set of

methods. If a nondeterministic trace of GoDeL(D, s0, gn,M, 〈〉) returns a plan π, then π

is a solution for P .

Proof Sketch. The proof proceeds to show that π is executable by observing that

GoDeL inserts an action only in a state in which it is executable. Moreover, since the
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invariant that g is always the last node in the goal network is maintained throughout

GoDeL’s execution, it must have been the last goal to be removed from the goal network.

By Definition 1, Case 2, this must be in a state that satisfies gn’s goal g.

A planning problem P ′ is reachable by GoDeL from P if P ′ is in the search space

produced by invoking GoDeL on P , i.e., if one of GoDeL’s nondeterministic traces in-

cludes P ′.

Theorem 9 (search space finiteness). If P = (D, s0, gn) is as described above, M is a

set of methods, and LMGEN is a sound landmark generation algorithm, then the set of

planning problems reachable by GoDeL from P is finite.

Proof Sketch. Firstly, note that there are two ways by which goals get added to

the goal network, method application and subgoal inference. Let us first consider the

former. Note that GoDeL never uses the same method instance twice to decompose a goal

network in the same state (see Lines 7 and 13 in Algorithm 4). Since there are finitely

many methods and the size of the planning problem is finite, it follows that the size of the

largest goal network reachable via method decomposition from gn’s goal g in the state s

is bounded.

With respect to subgoal inference via landmarks, note that for any classical planning

problem Pc = (D, s, g), the set of landmarks L for Pc is finite. Since LMGEN is sound,

the subgoals it infers belongs to this set. Thus, it is easy to show that Infer-Subgoals can

be run only a finite number of times, adding at most |L| nodes to the goal network each

time. Therefore, we can place an upper bound on the goal network size in a given state s.

The bound on the size of the largest goal network reached by GoDeL is thus at most |S|
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times the previous bound, S being the set of reachable states. Using this bound, we can

subsequently bound the number of reachable goal networks. Since S is finite, the number

of reachable planning problems is also finite.

Theorem 10 (completeness). Let P = (D, s0, gn) be as described above, and M be

a set of methods. If P is solvable and LMGEN is sound, a nondeterministic trace of

GoDeL(D, s0, 〈g〉, 〈〉) will return a solution π for P .

Proof Sketch. From Theorem 9 and the fact that GoDeL can always fall back

to action-chaining to generate a solution if method decomposition does not work, the

theorem follows.

5.4 Implementation and Experiments

We implemented GoDeL in C++. The nondeterministic choice among the options

in the set U (Lines 6–9 in Algorithm 4) is implemented using depth-first search. We

sort U using a variant of the GDP heuristic (described in Chapter 4).1 For generating

landmarks in Infer-Subgoals, we use LAMA’s landmark generation code [12], which

generates sound, acyclic landmark graphs. GoDeL’s action chaining (line 23) uses depth-

first search with the various actions sorted by the FF heuristic [7] value.

1Note that the GDP heuristic, while being a HGN planning heuristic, doesn’t use the given methods in

its heuristic computation. So the possibility that GoDeL might have only a partial set of methods doesn’t

affect the heuristic computation.
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5.4.1 Experimental Design

The following research questions motivated our experiments:

• Does GoDeL’s performance improve as more planning knowledge is given to it?

• Does GoDeL’s technique of inferring subgoals help discover useful intermediate

goals which the domain knowledge can help solve?

• How well does GoDeL perform when given a complete set of methods?

Our benchmark planning domains, and our reasons for choosing them, were as follows:

• Logistics [34]. Problem decomposition works well for these problems: they decom-

pose neatly into (1) moving packages with the city, (2) moving packages between

airports and (3) moving packages across cities.

• Blocks-World [35]. Blocks-World problems, unlike Logistics problems, do not

decompose neatly. Instead, a good planning strategy needs to select actions to

apply on a state-by-state basis [39, Sect. 4.5].

• Depots [36]. This domain combines aspects of the above two domains, hence is

useful for evaluating the performance of planners with partial planning knowledge.

For each of these domains, we wrote three different method sets having complete

(C), moderate (M) and low (L) amounts of domain knowledge respectively, as described

below. We shall henceforth refer to GoDeL when using these various levels of knowl-

edge as GoDeL-C, GoDeL-M and GoDeL-L respectively. We compared these variants of

GoDeL against GDP-h [6] and LAMA [12], which are state-of-the-art hierarchical and
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domain-independent planners, respectively. We provided GDP-h the same methods given

to GoDeL-C in each domain.

All experiments were run on 2GHz machines with 4GB RAM. We set a time limit

of 30 minutes per problem, discarding data points not solved within this time.

5.4.2 Experimental Results

Logistics. For the Logistics domain, the complete method set required three meth-

ods: one each for (1) same-city delivery, (2) different-city delivery and (3) airport-to-

airport delivery. We constructed the moderate (M) method set by removing method 2.

The low (L) method set consisted of just method 1. We compared the planners across

10 n-package problems for each of n = 15, 20, . . . , 60, from the 1998/2000 International

Planning Competition distributions.
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Figure 5.1: Average plan lengths and running times (in logscale) in the Logistics domain,

as a function of the number of packages to be delivered. Each data point is the average

across 10 problems. GoDeL-L could not solve 60-package problems while LAMA could

not solve problems greater than 40.
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Figure 5.1 compares the plan lengths and running times of the various planners in

this domain. We see that GoDeL-C and GDP-h produced plans of similar length. GoDeL-

M was also able to perform at par with these planners; this was because the subgoal

inference algorithm automatically inserted the goals that method 2 (which is missing for

GoDeL-M ) would otherwise have inserted into the goal network. With regard to planning

times for these planners, GoDeL-C, GoDeL-M and GDP-h all reported similar running

times.

GoDeL-L, however, did not perform as well with its running times nearly an order

of magnitude higher and its plan lengths nearly twice as compared to GoDeL-C. This

is because it had to solve a larger portion of the problem via action-chaining due to the

missing methods. Since this part of GoDeL is relatively simplistic (depth-first search with

FF heuristic), GoDeL in a number of cases found it hard to recover from a bad action it

chose to apply in the previous step, thus leading to longer plans and running times.

LAMA solved the smaller logistics problems (up to 40-package problems) very

quickly, producing plans of roughly the same length as GDP-h, GoDeL-C and GoDeL-

M ; but it couldn’t solve the larger problems within the time limit.

Blocks World. For the Blocks World domain, the complete set of methods included

three methods: one each for (1) on(X, Y ), (2) clear(X) and (3) on-table(X). The mod-

erate (M) method set consisted of methods 1 and 2 while the low (l) method set consisted

of just method 1. In addition, all three method sets used a need-to-move(X) derived

predicate that determined whether X was in its final position. We compared the planners

across 25 randomly generated n-blocks problems for each of n = 10, 20, . . . , 100.
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Figure 5.2: Average plan lengths and running times (in logscale) in the Blocks domain,

as a function of the number of blocks. Each data point is the average of 25 randomly

generated problems. GoDeL-L and LAMA could not solve 100-block problems.

As shown in Figure 5.2, GoDeL-C, GoDeL-M and GDP-h have almost identical

planning times. GoDeL-M is able to perform as well as the other two planners because

on-table(X) (which the missing method 3 solves) is easily solvable through action chain-

ing. GoDeL-L on the other hand takes significantly longer to produce the same plans. As

with Logistics, this is because GoDeL-L has to generate a larger fraction of the plan via

action-chaining, thus slowing the planner down. LAMA solves the smaller problems very

quickly, but slows down on the larger problems, solving problems larger than 60 blocks

slower than GoDeL-M .

With respect to plan length, all the planners produce plans of similar length with

the exception of LAMA, which generates much longer plans than the others.

Depots. The complete method set for Depots consisted of five methods and the

same derived predicate used in Blocks World. The moderate (M) method set consisted

of the same set of methods, but with all knowledge related to the Logistics subproblem
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Figure 5.3: Average plan lengths and running times (both in logscale) in the Depots do-

main, as a function of the number of packages to be delivered. Each data point is an

average of 25 randomly generated problems. GoDeL-M could not solve 80-package prob-

lems; GDP-h, GoDeL-L and LAMA could not solve problems of size > 64, 32 and 16

respectively.

removed. The low (L) method set is identical to the low (L) method set of Blocks World,

consisting of just a single method achieving on(X). We compared the planners on 25

n-package problems for each n = 8, 16, . . . , 80.

As shown in Figure 5.3, GoDeL-C has the best running times, and is the only plan-

ner to solve all of the problems. Even GoDeL-M significantly outperformed GDP-h,

which had access to the full method set. GoDeL-L, which was given only one Blocks-

World method, solved significantly fewer problems. LAMA solved the fewest problems,

having not solved any problems containing 24 blocks or more.

With respect to plan lengths, GoDeL-C, GoDeL-M and GDP-h produced plans of

similar lengths for the problems they could solve. GoDeL-L and LAMA however gener-

ate significantly longer plans for the problems they could solve.
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Table 5.1: Amount of action chaining as a function of the domain and the amount of

domain-specific knowledge provided. The lower the fraction, the larger the fraction of

the plan that is generated via method decomposition.

Domain GoDeL-C GoDeL-M GoDeL-L

Logistics 0 0 0.66

Blocks World 0.09 0.48 0.59

Depots 0.08 0.59 0.75

5.4.3 Discussion

The main conclusions from our experimental study were:

• GoDeL performed at par or even better than GDP-h when given complete domain

knowlege.

• GoDeL’s technique of using subgoal inference and action-chaining in tandem helped

it to cope with incomplete domain knowledge. Table 5.1 gives the average fraction

of action-chaining (as opposed to method decomposition or relevant-action appli-

cation) used in generating plans as a function of the domain and amount of domain

knowledge given to GoDeL. We can see that as the amount of domain knowledge

is reduced, the fractions gradually increase, indicating that GoDeL is able to use

whatever little knowledge is given to it. The fraction for GoDeL-M in Logistics is

particularly striking; even with one of the methods removed, the plans were gener-

ated without resorting to any action chaining. This was because GoDeL was able
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to automatically infer the subgoals of the missing method and insert them into the

goal network using its subgoal inference algorithm.

• GoDeL’s performance improves as more planning knowledge is given to it. This is

evident from the fact that GoDeL-L (GoDeL with low knowledge) was outperformed

by GoDeL-M (GoDeL with moderate knowledge), which in turn was outperformed

by GoDeL-C (GoDeL with complete knowledge) across all three domains under

consideration.

5.4.4 Related Work

GoDeL’s goal semantics differs from the goal task semantics in [23]: for a task t and

goal g, Erol’s semantics can’t invoke arbitrary methods that achieve g but aren’t labeled

with t. It also differs from the semantics for tasks in [26], which requires manually an-

notating tasks with preconditions and effects, and making special designations to indicate

which conditions should be achieved via decomposition and how to achieve them.

[40] propose the use of articulation functions to translate literals in a higher level

of abstraction to a lower level and use partial-order planning algorithms to resolve these

open subgoals at each level. [41] also propose a similar framework; they annotate abstract

tasks with preconditions and effects and then use similar partial-order planning algorithms

to refine these tasks and generate primitive plans. Our approach differs from these both

in the kinds of solutions we consider (extension of classical planning) as well as the

techniques we use (forward state-space heuristic search; use of landmarks).

Duet [27] combined the SHOP2 HTN planner with the domain-independent LPG
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planner [42] to solve planning problems with partial knowledge. Analogously to [26]’s

formalism, it required annotations on non-primitive tasks to indicate whether tasks should

be solved by SHOP2 or by LPG.

[28] provided a technique for automatically translating a restricted form of HTN

methods into PDDL, so that classical planners can be used to solve HTN planning prob-

lems. This translation technique, can be used (subject to some restrictions) with partial

sets of HTN methods, but is correct only in domains where the recursion depth is bounded,

and this bound needs to be supplied manually.

Another related work is that of [43] who propose a landmark-based heuristic for

HTN planning. This is in contrast to our work, in which we use landmarks to generate

part of the hierarchy.

5.5 Summary

In the modified HGN formalism, methods provide suggestions for ways to accom-

plish classical goals (rather than impose requirements for how to accomplish tasks, as

in HTN planning formalism in [39, Chap. 11]). Thus, GoDeL can work correctly with

complete domain knowledge (a full set of methods for every task), no domain knowledge

(other than the basic actions, of course), or anything in between. It will terminate with

a correct solution if one exists; the amount of knowledge only determines how fast that

solution is found.

If GoDeL is given methods only for hard subproblems, its subgoal inference algo-

rithm can automatically figure out subgoals for which those methods are relevant. When
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given complete domain knowledge, GoDeL performs at par or better than GDP-h [6].

Thus, we believe that GoDeL naturally supports ‘incremental’ domain authoring; users

can build partial domain models, evaluate the planner’s performance with that, and then

incrementally improve the model if required.
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Chapter 6: Towards Integrating Hierarchical Goal Networks and Motion

Planners to Support Planning for Human-Robot Teams

6.1 Introduction

Low-level motion planning techniques must be combined with high-level task plan-

ning formalisms in order to generate realistic plans that can be carried out by humans and

robots. A representative application scenario is planning for fenceless assembly cells

where robots can collaborate seamlessly with humans to perform assembly tasks. The

advent of safer robots like Baxter and exteroceptive sensing based safety systems [44]

are making this human robot collaboration (HRC) paradigm feasible. Some of the com-

ponents required to achieve safe and efficient HRC include assembly sequence genera-

tion [45], task decomposition between human and robot [46], system state monitoring

(tracking human, robot, and assembly parts) [47], automated instruction generation for

human operations [48], ensuring human safety [44], and recovering from assembly er-

rors [47]. In order to enable a coherent integration among these modules, a high-level

planner, interleaved with low-level motion planners, is needed at several levels of the

system hierarchy.

For example, given a CAD model of a product to be assembled, RRT based motion
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planning methods can be used to generate improved assembly precedence constraints

[45]. In turn, these constraints can be compiled into a high-level planning problem.

Humans and robots share complimentary strengths in performing assembly operations.

Therefore, the planning framework must have the ability to incorporate this knowledge

in order to decompose the tasks effectively. Further, an integral planner must be able to

perform plan-repair in order to handle contingencies during assembly operations. The de-

viations causing these contingencies may be of two types: (1) low-level deviations in the

geometric state without affecting the corresponding symbolic state (e.g., human places

part in a wrong posture), which can be corrected at the motion planning level, or (2) de-

viations in the symbolic state itself (e.g., human picks an incorrect part, and an improved

alternative assembly sequence may or may not exist), which needs to be corrected at both

levels of planning.

Task planning formalisms typically used to achieve this integration are Classical

Planning ( [49–52]) and Hierarchical Task Network (HTN) Planning ( [53–55]). Classi-

cal planning is not scalable enough to handle complex problems since it can’t leverage

domain-specific knowledge, and HTNs impose stringent completeness requirements on

domain models, which are difficult to guarantee in open, dynamic environments. There-

fore, solutions attempting to integrate these AI planning techniques into domains involv-

ing real robots and humans are not very satisfactory.

In Chapter 3, we developed a new hierarchical planning formalism called Hierar-

chical Goal Networks (HGNs) that combines aspects of HTN and classical planning into a

single framework. This is a hierarchical planning formalism similar to HTN planning, but

operates over hierarchies of classical goals instead of tasks. It thus can combine the scal-
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ability and expressivity advantages of HTN planning with the heuristic-search/reasoning

capabilities of Classical planning.

This chapter now attempts to apply some of these task-level planning techniques

to Robotics domains; in particular, integrating HGNs with motion planners to develop

planning algorithms that can generate plans directly executable by robots. The aims of

this work are twofold:

1. Design a general-purpose planning-and-execution framework that combines HGN

planning and execution-time plan-repair algorithms with off-the-shelf motion plan-

ners

2. Formulate this planning framework in the context of planning for human-robot

teams in assembly cells.

The novelty in this approach comes from the interaction between the heuristic

search techniques of the HGN and motion planners, and the particular way in which they

guide each other towards high-quality solutions. The HGN planner, when invoking the

motion planner, also passes to it an upper bound τcost(a), where τ is a user-specified

tolerance parameter. The motion planner, being a heuristic search planner, can detect

when the lower bound on the best possible solution it can generate exceeds this bound,

and can return failure at that point. This is especially useful in cases when a bad goal

configuration has been sampled, leading to unsolvable problems. Similarly, motion plan

costs are also propagated to the task-planning level to update the heuristic estimates of the

symbolic actions, and used to determine whether other actions might lead to better plan

costs.
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Figure 6.1: System Architecture

The rest of this chapter is structured as follows. Section 6.2 describes the archi-

tecture of the overall planning-and-execution system we envision building in this line of

work. Formalisms and algorithms related to the Plan Generation component of the ar-

chitecture, which is the main focus of this chapter, is described in sections 6.3 and 6.4.

Section 6.5 then discusses the relevant literature. Finally, section 6.6 describes ways by

which the techniques developed can be applied to the Automated Manufacturing domain.

6.2 System Architecture

Figure 6.1 depicts our proposed architecture of the hybrid planning-and-execution

system. This is similar to the conceptual model of planning and execution proposed by
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Nau [56], but specifically instantiated for planning domains of interest in this paper, with

motion planning algorithms, HGN planning and plan-repair algorithms.

The system takes as input the planning problem P , which provides descriptions of

the (1) initial state, (2) goals to be achieved, (3) base action models at the task-planning

level, (4) control primitives at the motion planning level, and finally (5) procedures to

translate between symbolic and geometric state descriptions. Section 6.3 describes this in

more detail.

P is first input into the Plan Generation module. In this module, HGN planners and

low-level motion planners interactively synthesize an executable plan structure Π1 that

achieves the given goals when applied from the initial state of the system. See section 6.4

for more details on this module.

The plan Π is then input into the Execution-time Reasoner module to (1) monitor

plan execution, and (2) repair Π in case the deviations of the system state from expectation

render the current plan inexecutable. These deviations can be of two types: (1) low-level

deviations in the geometric state sgeom without affecting the corresponding symbolic state

ssym (e.g., human places part in a wrong posture) which can be corrected at the motion

planning level, or (2) deviations in the symbolic state itself (e.g., human picks an incorrect

part, and an improved alternative assembly sequence may or may not exist) which needs

1The uppercase Π is to differentiate it from the lowercase π, which in AI planning research typically

denotes a sequence of abstract actions that achieves the goal. Π on the other hand is a multi-layered plan,

consisting of HGN methods and actions in the upper layers, and the corresponding low-level plans they

refine to (i.e. motor commands that can be understood by the execution platform on the robot) at the lower

layers.
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to be corrected at both levels of planning. In both cases, Π is then updated with the new

plan and execution is resumed. We won’t discuss these considerations in this chapter;

these are instead discussed in the following chapter in Section 7.4.

6.3 Planning Formalism

When developing the integrated task and motion planning formalism, we need two

components: (1) the task-level planning formalism, which in our case is going to be HGN

planning, and (2) the motion planning formalism. We shall first summarize a version of

the HGN planning formalism, adapted slightly to work with Robotics domains. In par-

ticular, we shall represent states using collections of state variables instead of grounded

atoms in predicate logic. We shall then proceed to present the latter, as well as the inte-

grated planning formalism below.

6.3.1 Hierarchical Goal Network Planning

Task Planning Domain. We define the task planning model MTP as a five-tuple

(VD, VC ,O,M, γ). VD is the set of discrete state variables in the domain; they eval-

uate to either true/false (e.g. empty(arm1)=true) or to a discrete object in

the domain (e.g. pos(robot1)=loc1). VC on the other hand represents the set

of continuous state variables in the domain, which can evaluate to a real number (e.g.

cpos(robot1,joint3)=4.78).We refer to assignments to variables in VD and VC

as symbolic and geometric states; a system state s is a pair (ssym, sgeom).

O represents the set of primitive operator models in the domain, which are model
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actions that are executable in a single step at the task planning level. These are identical

to operators in Classical Planning (ref. Chapter 3), with one exception: each o ∈ O also

has an associated cost function that can evaluate to a non-negative value.

M represents the set of HGN methods, which models domain-specific knowledge

that suggests ways to decompose goals into subgoals. This is identical to HGN methods

defined in Chapter 3, and hence we shall elaborate any further here.

Finally, γ represents the state transition function, identical to the one defined in

Chapter 3.

Task Planning Problems. A HGN planning problem is a triple P = (MTP , s0, gn),

where MTP is a task planning model, s0 is the initial state, and gn = (T,≺) is a goal

network.

This formalism follows the same definition of solutions that is used by GoDeL (Chap-

ter 5, Definition 2); this is to exploit GoDeL’s advantages and plan robustly with partial

domain-specific advice.

6.3.2 Motion Planning

Let χ = Rd, d ≤ |VC | be the configuration space of the system. Let χobs be

the obstacle region; thus χfree = χ \ χobs represents the obstacle-free space. A motion

planning problem is a triple P = (χfree, x0, χgoal) where x0 is an element of χfree and

the goal χgoal is a subset of χfree.

A path σ : [0, 1] → Rd is a valid solution to P if (1) it is continuous, (2) it is

collision-free, i.e. σ(τ) ∈ χfree for all τ ∈ [0, 1], and (3) the boundary conditions are
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satisfied, i.e. σ(0) = x0 and σ(1) ∈ χgoal.

6.3.3 Connecting Task and Motion Planning Levels

HGN planning, being a task planning formalism, is primarily concerned with search

for a path through the symbolic state space induced by the discrete state variables VD,

while motion planners search for paths through the geometric state space induced by the

continuous variables in VC . In order to connect these two levels of planning, we must first

provide a way to switch between these two different state spaces: i.e. we must provide

a way to (1) generate candidate geometric states consistent with a symbolic state, and

conversely (2) generate the symbolic state corresponding to a given geometric state.

We assume the provision of the following domain-specific procedures as part of the

domain description:

• Gensymwhich takes as input a geometric state sgeom and generates the corresponding

symbolic state ssym

• Gengeomwhich takes as input a symbolic state ssym and generates a candidate geo-

metric state sgeom.

There is a lot of flexibility in the definition of Gensym and Gengeom. For instance,

Gensym could be a classifier that is learnt during the training stage [52] or a rule-based

generator. Similarly, Gengeom could be domain-specific geometric suggesters [53, 54] or

a simple sampling-based generator [55].

Thus, the overall planning problem P is a 3-tuple (〈MTP , χfree,Gensym,Gengeom〉, s0, gn)

where s0 and gn are the initial state and the goal network respectively.
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Definition 3. We can now provide the overall definition of solutions for a planning prob-

lem P as follows. Let πsym be a solution of the underlying HGN planning problem

Psym = (MTP , s0, gn).

Case 1 . If πsym is empty, then Π = 〈〉 is a solution for P .

Case 2 . Let πsym = a ◦ π′sym. Furthermore, let ssym1 be the symbolic state after a is

executed. Let sgeom0 be the projection of s0 onto the variables in VC , and sgeom1 be

the geometric state generated by Gengeom for s1. If there exists a valid solution σ

to the motion planning problem (χfree, s
geom
0 , sgeom1 ) and Π′ is a solution to P ′ =

(〈MTP ,Gensym,Gengeom〉, 〈ssym1 , sgeom1 〉, gn), then Π = σ ◦ Π′ is a solution to P .

6.4 The CHaMP Algorithm

Algorithm 4: A nondeterministic version of CHaMP. Initially, (D, s,G) is the

planning problem, and π is 〈〉.

Procedure CHaMP(D, s,G, π)1

if G is empty then return π2

nondeterministically choose a goal formula g in G without any predecessors3

if s |= g then4

return CHaMP(D, s,G− {g}, π)5

U ← {(u, 0) : u is an operator/method instance applicable to s and relevant to6

g}

sort U in ascending order of hHGN(s, u,G)7
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Algorithm 5: continued from Algorithm 4

while U is not empty do8

remove (u, n) with min h value (= hu) from U9

if u is an action then10

for i=n to NumSamples do11

σs,u ← RefineAction(D, s, u)12

if σs,u 6= failure then13

hnew = |σs,u| − cost(u) + hu insert (〈u, σs,u〉,−1) into U with14

h = hnew

if i < NumSamples then insert (u, i) into U , updating its15

heuristic value using hnew

break16

17

18

else if (u, σs,u) is action, mot. plan pair then19

res1← CHaMP (D,UpdateState(s′, σs,u), G, π ◦ 〈u, σs,s′〉)20

if res1 6= failure then return res121

else22

res1← CHaMP(D, s, subgoals(u) ◦G, π)23

if res1 6= failure then return res124

return failure25
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Algorithm 4 is the Combined HGN and Motion Planning(CHaMP) planning algo-

rithm, an integrated HGN and motion planning algorithm, which combines elements of

GoDeL2 (see Section 5), modified to integrate motion planning into the plan generation.

6.4.1 Task Planning in CHaMP

Lines 2 – 5 specify the base cases of CHaMP. If these are not satisfied, the algorithm

nondeterministically chooses a goal g with no predecessors and generates U , all method

and operator instances applicable in s and relevant to g. It then chooses a u ∈ U with

the lowest heuristic value to progress the search (Lines 6 – 9). If u is an action, the state

is progressed to γ(s, u) (Line 10) and u is further refined into an executable motion plan

(Lines 12–24). Section 6.4.2 talks about this in more detail. Else, the subgoals of u are

added to G, adding edges to preserve the total order imposed on subgoals(u) (Line 22).

In either case, CHaMP is invoked recursively on the new planning problem (Lines 20 and

24).

6.4.2 Motion Planning in CHaMP

Motion planners are used to refine actions at the task-planning level into executable

motion plans. CHaMP can use any off-the-shelf motion planner; the only requirement

is that the motion planner should be able to provide an anytime lower bound during the

search. In other words, the motion planner at any time should be able to provide a lower

2Simplified for ease of presentation; this version doesn’t include the auxiliary planning techniques

needed to work with incomplete/incorrect methods, as these aspects are orthogonal to the focus of this

chapter.

73



Algorithm 6: Procedure to refine an action at the task-planning level into an

executable motion plan. It takes as input the action u and the current state s,

and outputs either a valid motion plan σs,u or failure. It also takes as input two

user-specified parameters, τ and NumSamples.

Procedure RefineAction(D, s, u)1

begin2

s′ ← γ(s, u)3

xs′ ← Gengeom(s, s′sym)4

σs,u ← MotionPlanner(χfree, sgeom, xs′ , τ × cost(u))5

return σs,u6

end7

bound on the best solution its going to find henceforth. Therefore heuristic motion plan-

ners such as ARA∗ [57], R∗ [58], which do (weighted) A∗ search are ideally suited for

use here.

The motion planning in CHaMP is parametrized by two extra user-specified con-

stants, τ and NumSamples. The model of any action u at the task-planning level has a cost

function which provides a rough estimate of how much any refinement of u would cost.

τ is an upper bound on the number of times by which the motion plan cost is allowed to

overshoot cost(u). NumSamples is the maximum number of geometric configurations

the motion planner is invoked on for a given symbolic state before backtracking.

When it reaches an action u, CHaMP invokes RefineAction to generate a motion

plan that refines u (Line 12). RefineAction picks a geometric configuration consistent with
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u’s effects, and passes it to MotionPlanner along with the upper bound of τ × cost(u).

MotionPlanner thus either returns a plan within this bound or returns failure. This feature

in particular helps in cases when no motion plan exists, which RefineAction can now

automatically detect and stop the motion planner.

When CHaMP receives the motion plan σs,u, it inserts it into U with heuristic value

of σs,u (Line 14). It also reinserts the original action u annotated with the number of

samples remaining with the heuristic value updated with σs,u (Line 15), as this is a more

accurate estimate of the cost of u.

The purpose of this reinsertion is the following: suppose cost(u) was overly opti-

mistic and the real estimate of u, |σs,u|, is significantly larger, we would like to give other

actions a chance to refine to cheaper motion plans. If σs,u is indeed the best option, it

would be removed from U in the next iteration, and CHaMP will be recursively called

in the state resulting from it (Line 20). In this way, we are tightly integrating task and

motion planning search spaces by using results from one to help direct the search in the

other.

This process is repeated until either each action has been refined NumSamples times

and failed, in which case the planner backtracks, or a recursive call on the state resulting

from a particular motion plan generates a valid plan, in which case CHaMP succeeds and

returns the generated plan.
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6.5 Related Work

Most of the related work on integration of task and motion planning techniques

either use Classical Planning or Hierarchical Planning techniques.

Classical Planning & Robotics. The seminal work in integrating Classical Plan-

ning and Motion Planning is by Cambon et al [49]. They use the FF planner as a heuristic

estimator to guide the search of the motion planner. Erdem et al [50] integrate task and

motion planning by extending the C+ action description language to allow incorporation

of external predicates which allow interfacing with external programs; thus one could run

arbitrary domain-specific geometric reasoners and motion planners as part of precondition

checks of primitive actions. Similarly, Dornhege et al [51] propose a similar framework

to specify ’semantic attachments’ as part of PDDL domain descriptions and extend the FF

planner to generate plans for such problems. Burbridge et al [52] suggest a novel machine

learning approach to interface between the discrete and continuous state spaces, and use

this to integrate motion planners with classical planners. Our approach differs from these

by the use of hierarchical planning techniques which allow increased expressivity and

scalability, and by the particular ways in which flow of heuristic estimates from the task

planner to the motion planner and vice-versa allow for more robust search and explicit

plan cost optimization.

Hierarchical Planning & Robotics. Wolfe et al [55] combine HTN planners with

motion planners by discretizing the choice of geometric states via finite sampling during

refinement of a symbolic action. Another line of work [53, 54] builds a special-purpose

regression-based hierarchical planner that they combine with motion planners. Our ap-
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proach differs from these techniques by the use of HGN planners, which allow for use of

heuristics during hierarchical decomposition, and as explained in the previous paragraph,

by the novel way in which heuristic estimates from each level of planning guide the other.

6.6 Planning for Assembly Cells: A Potential Application of CHaMP

One of our aims is to ground our proposed architecture (described in Fig. 6.1) in a

manufacturing domain. Figure 6.2 shows a snapshot of such a system. The shop floor is

divided into four regions: (1) Part storage, (2) Tool storage, (3) Subassemblies building,

and (4) Final assembly.

The proposed system takes a CAD model of the product that needs to be assembled

as input and performs the following:

• Assembly Precedence Constraints Generation: automatically generate assembly

precedence constraints and detect useful subassemblies using techniques in [45]

and compile this into an HGN planning problem.

• Plan Generation: Use the integrated HGN and motion planning algorithm to gen-

erate an executable plan structure Π – actions to be performed by humans can be

provided at the symbolic level, while those performed by robots need to be refined

into motion plans. Factors that determine whether a particular task needs to be exe-

cuted by a human or robot can be modeled in the action and method preconditions;

the planner, based on the particulars of a given task, can use these conditions to

generate compatible assignments. Higher-level protocols that need to be followed

(such as reserving a tool before use) can be modeled as HGN methods.
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Construction

Zone
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human0

human1

obj0
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obj2 tool0

Figure 6.2: Sample assembly planning problem:MR0 and MR1 are mobile robots,

human0 and human1 are humans, and SR is a static robot. The goal is to assemble

obj0, obj1 and obj2 together using tool0. One of the solutions induced by the task

planning model is also shown.
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• Execution-time Reasoning: Execute Π, while continuously monitoring the ge-

ometric state of the system using sensors, both vision-based and otherwise, that

monitor locations of workers, tools and parts, as well as other information such as

battery levels of robots, stress in robot arms while carrying heavy loads, etc. The

system will repair Π using HGN and motion plan repair algorithms, when devia-

tions from both the expected symbolic and geometric states are observed.

As mentioned previously, the main focus of this chapter is on the Plan Generation

module in the overall architecture, and therefore developing these capabilities is

future work (more details on how this could be done in Chapter 7).

We model the action models of the domain in Planning Domain Description Language

(PDDL), a standard language to encode task-level planning domain descriptions.

The base actions in this domain are as follows:

1. Worker-Move (workerId start-loc goal-loc)

2. Worker-Pickup-Object (workerId objId obj-loc)

3. Worker-Putdown-Object (workerId objId goal-loc)

4. Worker-Move-Near-Object (workerId current-loc objId)

5. Worker-Move-Near-Location (workerId current-loc goal-loc)

6. Mark-Worker-Free (workerId)

7. Mark-Worker-Busy (workerId)

8. Asmbl-Objs (workerId obj1Id obj2Id)
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These action models, in addition to modeling causal preconditions and effects, also

model procedural and geometric preconditions over the continuous variables; for instance,

the Worker-Pickup-Object action checks if the object is graspable by the worker,

its weight is within the carrying capacity of the worker, etc. Thus, the planner can flexibly

assign humans or robots to execute actions based on their compatibility with the precon-

ditions. If a robot is assigned, only then is the action is further refined using motion

planners. If a human is assigned, the system then passes the symbolic action directly for

execution; however, since the system has no control over the exact geometric state that

results from the action execution, the planner chooses one nondeterministically and relies

on the plan-repair system to repair the plan if needed.

6.7 Summary

The ultimate objective of this work is to build a general-purpose planning-and-

execution system that enable long-term autonomous behavior by human-robot teams.

This chapter develops a possible approach towards realizing one of the components needed

to achieve this, a planning system that tightly integrates task and motion planning. The

main contribution of the techniques developed here lies in leveraging the advantages

of HGN planning, which allows combining hierarchical decomposition with heuristic

search, and heuristic search motion planners, which can provide useful information about

the status of their search as feedback to the HGN planner, to achieve this tight integration.

The combined planning algorithm allows for using search information from the task plan-

ner to guide the search for a high-quality motion plan by the motion planner, as well as
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using search results from the motion planner to revisit decisions made by the task planner,

thus potentially enabling tighter interleaving of the two levels of planning.
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Chapter 7: Looking Ahead: Discussion and Open Problems

As mentioned previously, there is a real need for efficient and scalable techniques

that can enable long-term autonomous behavior in realistic environments; popular plan-

ning techniques based on Classical and HTN Planning have critical limitations that limit

their usefulness in these situations. So one of the contributions of this thesis is a new plan-

ning formalism and associated algorithms that are better placed to handle the difficulties

in these kinds of environments.

Having said that, this is simply a first step; there are several other capabilities that

need to be developed to achieve robust autonomy. The following sections discusses some

of these research questions, as well as possible approaches one could take to solve them

from a HGN planning standpoint.

7.1 Computing Optimal and Near-Optimal Plans

GDP and GoDeL used a primitive version of heuristic search (inadmissible heuris-

tics combined with DFS) which worked well enough. However, there are many domains

in which it is critical to come up with a high-quality or even optimal solution. Depth-

first search based algorithms in general are not well-suited for these requirements, and

therefore we must look to other heuristics and search algorithms; for instance, A∗ [59] or
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depth-first branch-and-bound (DFBB) can explicitly optimize the solution. The key issue

then becomes designing good (or in the case of optimal planning, admissible) heuristics

to guide these search techniques. The good news is that we already have these in HGNs!

It is also fairly straightforward to adapt admissible classical planning heuristics (such as

the LA heuristic [13] or the LM-cut heuristic [14]) to provide admissible estimates in

HGN planning. This is in contrast to HTN planning, where it is unclear how to perform a

similar adaptation.

Optimal planning in classical planning literature is typically many orders of magni-

tude slower than satisficing planning, which concentrates on just finding a solution with-

out worrying about its optimality. So, another reason to look for optimal plans in the

context of HGN planning is that the extra domain-specific advice that HGN planners can

leverage will help improve the efficiency of optimal planning.

The above ideas could be generalized in a couple of ways:

1. Use the weighted version of A∗ [60], which allows for trading optimality for per-

formance.

2. Develop anytime versions of these algorithms that quickly generate a plan using

GDPor GoDeL, and then using these heuristics to iteratively improve the generated

plans by exploring parts of the search place thus far unexplored.

7.2 Execution-Time Plan Repair

One of the natural extensions to the offline planning techniques developed in this

thesis is to augment them with execution-time plan repair capabilities to handle unex-
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pected exogenous events that break plans during execution. Hierarachical planning ap-

proaches are particularly well-suited for this problem since the hierarchical structure gen-

erating during the planning process is invaluable localize the faults in the plan effectively

as demonstrated in previous HTN plan-repair algorithms [61, 62]. However, there are

two critical limitations with these algorithms: (1) just like while planning, the lack of

heuristics makes it difficult to find a high-quality plan during the plan-repair process, and

(2) due to the brittleness of HTN planners, the amount of knowledge that needs to be

provided to handle all possible contingencies during execution is prohibitively expensive.

HGN planning techniques can help address both of these limitations. Therefore, develop-

ing an execution semantics for HGNs and associated plan-repair techniques can be useful

for execution-time deliberation.

7.3 Learning Planning Strategies

Both HTN and HGN planners need sophisticated domain-specific strategies to be

provided. GoDeL can operate with partial amounts of planning advice, but at the cost of

planning performance. So automatically learning planning strategies from past plan traces

would be really useful. It also helps that we do have a HGN planner that can operate with

partial amounts of automatically-inferred domain knowledge.

There has already been some work on this in the context of HTN planning [63–65].

However, HGNs have a nice connection with landmarks, therefore there are interesting

possibilities in learning HGN methods from landmark graphs computed during the plan-

ning phase.
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7.4 Combined HGN and Motion Plan Repair Algorithm

The CHaMP algorithm described in Chapter 6, which combines HGN planning

techniques with heuristic search motion planning techniques from Robotics, is only re-

sponsible for generating executable plans. Additional machinery is required to repair

these multi-layered plans during execution. This would involve combining HGN plan

repair algorithms with incremental motion plan repair algorithms such as LPA* [66] and

D* [67].

A possible way to solve this problem would be to, like CHaMP, maintain two levels

of state information, the raw continuous state information required by motion planning

and plan-repair algorithms require, and the symbolic state information that HGN planning

and plan-repair algorithms need. Minor deviations in the raw state that don’t change the

corresponding symbolic state during execution (for example, wheel drift of mobile robots)

can be accounted for at the motion planning level itself. Larger deviations that result in

change in the symbolic state as well (for example, a robot breaking down, a pathway

being blocked, etc) require repairing the plan at both levels.

The main challenge, however, would be interleave the two levels of plan-repair

effectively (possibly similar to the way CHaMP interleaves the two levels of plan gener-

ation) in a way that the process is both tractable as well as generates high-quality plans.
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Chapter 8: Conclusion

This thesis makes three important contributions:

• Hierarchical Goal Networks Planning Formalism: This formalism combines ad-

vantages of Hierarchical Task Network planning and Classical planning, two of the

most popular AI planning frameworks. In particular, it allows one to leverage the

ability to specify domain-specific problem-solving strategies of HTNs along with

the heuristic search and other reasoning techniques from Classical planning.

• GDP and GoDeL- Offline Planning Algorithms: GDP is similar to state-of-the-

art HTN planners like SHOP/SHOP2, but leverages domain-independent heuristics

to automatically deduce a good order of method application. GoDeL combines

GDP with classical planning techniques to work with arbitrary amounts of plan-

ning knowledge , thus being robust to errors and inadequacies in the input domain

knowledge. GoDeL can thus perform at par with state-of-the-art classical plan-

ners when given only the action models, state-of-the-art HTN planners when given

complete planning knowledge, and everything in between. These two algorithms

therefore help realize the potential advantages the HGN formalism had to offer.

• A Combined HGN and Motion Planning Algorithm: The final piece of this the-
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sis describes CHaMP, an integrated planning algorithm that utilizes the advantages

of HGN planners and extends their scope to Robotics; in particular, it combines

the hierarchical task-level planning techniques developed in this thesis with off-

the-shelf motion and object manipulation planners used for low-level planning in

Robotics. CHaMP uses the unique properties of heuristic search motion planners

to tightly integrate the two planning levels. It achieves this by allowing the HGN

planner to monitor the search progress at the lower levels and proactively suspend

and switch to another option if needed.

There are a number of theoretical implications of the techniques developed in this

thesis. Firstly, the HGN formalism provides stronger correctness guarantees than HTNs.

In particular, it is possible to write HTN methods for your planning domain in such a

manner so as to allow unsound solutions. HGNs on the other hand do not allow this; plans

generated by HGN planners are always sound. Furthermore, the HGN formalism allows

for easier incorporation of Classical Planning techniques; for instance, it was possible

to adapt Classical Planning heuristics that could guide the planner towards high-quality

solutions and other useful reasoning techniques such as landmark generation to plan with

only partial amounts of domain-specific knowledge. The latter allowed us to develop

planning algorithms that provide stronger completeness guarantees than standard HTN

planners.

From a practical standpoint, the HGN planning formalism and algorithms remedies

several deficiencies present in hierarchical planning formalisms like HTNs, thus poten-

tially enabling more widespread use of automated planning research in practical appli-
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cations. Also, the integrated task-level and motion planning techniques proposed in this

thesis will help refine otherwise abstract plans that are generated by the HGN planners

into more concrete plans that are directly executable by robots.

There is a significant research effort underway in equipping robots to work with

minimal human intervention in diverse sectors such as in manufacturing plants, as per-

sonal assistants for the elderly in hospitals, and as servants at home. Given the unstruc-

tured nature of these environments and the obvious need for high-level deliberation ca-

pabilities, we believe the planning-and-acting systems that are developed as part of this

thesis could provide unique insights into ways to realize these systems in the real world.
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[63] Chad Hogg, Héctor Muñoz-Avila, and Ugur Kuter. HTN-MAKER: Learning HTNs
with minimal additional knowledge engineering required. In AAAI, pages 950–956,
2008.

[64] Hankz Hankui Zhuo, Derek Hao Hu, Chad Hogg, Qiang Yang, and Hector Munoz-
Avila. Learning htn method preconditions and action models from partial observa-
tions. In IJCAI, 2009.

[65] Chad Hogg, Ugur Kuter, and Hector Muñoz-Avila. Learning methods to generate
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