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The efficiency of planning greatly depends on the type of refinement strategy
the planner uses, but little is understood about the conditions under which each re-
finement strategy performs well. This is especially true of refinement strategies for
hierarchical task network (HTN) planning, even though many real-world planning
applications use the HTN planning technique.

This dissertation presents and analyzes three heuristics for refinement strategies

for HTN planning. Through these analyses, I have produced the following results:

e Least-commitment versus FAF. There are some planning domains where
the least commitment strategy, the most popular strategy in refinement plan-

ning, does not perform well. However, the problem can be resolved in many



cases by applying a different heuristic called the fewest alternative first (FAF)

heuristic.

Refinement as AND/OR tree search. Different refinement strategies
can be viewed as different ways to transform an AND/OR graph into an OR-
tree. The efficiency of a refinement strategy can then be evaluated by taking
the size of the OR-tree the strategy generates. In an empirical analysis, FAF

generated the smallest OR-tree possible by this evaluation method.

The ExCon heuristic. This refinement heuristic improves the efficiency
of planning by detecting and handling possibly problematic interactions be-
tween tasks. In a comparison of this heuristic against the FAF heuristic,
ExCon performed increasingly better than FAF on problems where there are

many task interactions.

Analysis of the effects of ordering constraints. The ordering con-
straints in HTN planning domains can make an impact on the planning
efficiency. In particular, a planner can use the left-to-right (LtoR) heuris-
tic, which plans in a way similar to a forward planner, to plan efficiently on
problems where there are many ordering constraints. Also, empirical tests
show how many ordering constraints are necessary for LtoR to perform well.
Furthermore, LtoR can be combined with ExCon to take advantage of both

heuristics. The resulting strategy performed well on most of the test domains.
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Chapter 1

Introduction

An Al planning system searches a space of partially-developed plans in order to
find a solution plan that satisfies every requirement of a problem. Since the search
space may be infinite, it is important to search for a solution plan efficiently.
One of the most important influences on the efficiency of a planner’s search is its
refinement strategy (defined in Section 1.1).

This dissertation addresses plan refinement strategies for HTN planning, in
order to understand how refinement strategies can improve the HTN planner’s
efficiency. I have analyzed the tradeoffs between problem characteristics and the
performance of refinement strategies as well as creating and improving existing

refinement strategies.

1.1 Background

Many planning systems are based on the idea of “refinement search” in which the
planner gradually ‘refines’ partially-developed plans into more and more detailed
plans, until it finds a plan that is fully detailed and consistent with the problem

requirements. Such planning systems are called refinement planners. During the



planning process, a refinement planner needs to choose what refinement operation
to apply to the current partially-developed plan. Such a decision is made by the
planner’s ‘plan refinement strategy’. Using an appropriate plan refinement strategy
is essential for the efficiency of any refinement planner because it defines the way
in which the planner plans.

There are currently two major refinement planning methodologies in Al plan-
ning. One is action-based planning and the other is hierarchical task-network
(HTN) planning. In action-based planning, a state of the world is specified by a
set of first-order logic predicates. The domain is described by a set of operators
specified with preconditions and effects. A precondition of an operator is a con-
dition that must be true in the world state for the operator to be applicable. For
example, for the operator open-door(Robot, Door), a precondition might be that the
Robot is at the Door and and another precondition might be that the Door is cur-
rently closed. An effect of an operator is the change in the world state as a direct
result of the operator execution. For example, the same operator open-door(Robot,
Door) might have an effect that Door is open and no longer closed. Given a fully
specified initial state and a partially specified final (goal) state, an action-based
planner generates a sequence of operators which, when sequentially applied to the
initial state, achieves the goal state.

In HTN planning, a problem is given as a rough plan which consists of tasks to
accomplish and goals to achieve. Each task or goal is then decomposed into smaller
tasks using one of the decomposition methods specified in the domain description,
transforming the rough plan into a more and more detailed plan. Similar to action-
based planning, tasks in HTN planning have conditions and effects. When all the

tasks in the plan are executable actions and consistent with the domain require-



ment, the planner outputs the plan as a solution to the problem. Compared with
action-based planning, HTN planning is more expressive and is capable of incor-
porating more domain knowledge. Many practical planning applications use some

type of HT'N planning [1, 53, 2, 43].

1.2 Motivation

Recently, many planning systems have made successes in real-world applications.
Many of these systems use the HTN planning approach, including applications
for computer bridge playing [43], space-craft operations [1] and military opera-
tions [53]. Most of these real-world planners need to incorporate temporal rea-
soning, numerical computation and geometrical reasoning, yet need to plan in
reasonable time. In order to do so, most of them use a planning framework that
is not based on a solid theoretical foundation. Also, while they provide various
search mechanisms, they require the user to make search control choices. Although
this may be quite effective if the user needs the efficiency and flexibility it offers,

it also poses the following problems:

o If the planner is not based on a sound and complete planning framework,
there is no guarantee that a generated plan is correct or that the planner can
find a plan if one exists. While this problem can be avoided in many cases by
carefully encoding the domain, it is preferable to use a sound and complete

algorithm.

o The user needs to be familiar with the particular planning system in order
to specify the application domain in such a way that (a) the planner will

generate desired solution plans, and (b) the planner will do so efficiently.



This puts too much burden on the user.

e The user may not know that the search control he provided is appropriate for
the domain problems unless he tracks the planning process in detail. This is a

time-consuming task for any application domain beyond small toy domains.

e Many real-world applications require updating. Often, this must be done
by someone who did not write the original domain specification. Doing so

without jeopardizing the consistency and efficiency of the domain can be

difficult.

For these reasons, it is better for a planner to have the capability to plan
efficiently with little or no search control input from the user while giving the user
the choice to control of the search if (s)he wants.

Improving the efficiency of planning by employing better search strategies has
been addressed in many literatures [4, 33, 26]. However, most of them are for
action-based planning; few studies have been done to analyze the efficiency of
search strategies for HT'N planning. This is mostly due to a historical reason; un-
like action-based planning, there had been no sound and complete HT'N planning
framework to test various search strategies until recently. The implementation of
a general domain HTN planning system called UMCP (Universal Method Compo-
sition Planner) based on Erol’s generalization of HT'N planning [13] enabled us to
analyze and evaluate many search strategies for various problem domains. I have
implemented all the strategies on the UMCP planner in order to empirically ana-
lyze and compare them. Since all the refinement strategies presented in this paper
are sound and complete as defined in Section 2.3, they preserve the soundness and

completeness of UMCP.



1.3 Approach

Many papers on search strategies present new strategies and compare them with
older strategies on several toy domains to show an improved performance. These
performance evaluations fail to examine the tradeoffs between the domain char-
acteristics and the performance of the particular strategies. Also, many of these
comparisons conclude with a statement “strategy A is better than strategy B”,
even though this is not true in all cases. Furthermore, most of these evaluations
lack statistical evaluations of the results and thus it is not clear whether or not the
new strategy is significantly better than other strategies with a high confidence
level. A more preferable way to compare strategies is with more controlled ex-
periments such as those shown by Kambhampati, et al [23], where they compared
different refinement planning strategies on an artificial domain. In those experi-
ments they tested different planning strategies on problems where they could vary
several factors in order to show the relationships between the performance of cer-
tain refinement strategies and the domain characteristics. Such evaluations show
why a strategy performs better in some problems and worse in other problems.
In my evaluations of refinement strategies, I often constructed artificial domains
where I could vary some factors in the problem that affected the performance of the
tested refinement strategies. In addition, I tested the same strategies on existing
domain problems such as the UM Translog problems. Often, the results from
experiments on the artificial domain helped us explain the performances of the
same strategies on these other test domains. These performance evaluations also
led us to realize where the strategies could be improved upon. In addition, we
performed statistical tests to see whether the differences in the performances of

two strategies were significant or not, when such tests were applicable.



1.4 Contributions

Through the analyses of refinement strategies for HT'N planning, I have produced

the following results:

e Least-commitment versus FAF. Since the least commitment strategy,
the most popular strategy in refinement planning, delays certain commit-
ments, it may make premature decisions on other elements of a plan. Thus,
the least commitment strategy may not perform well on all types of planning
problems. However, the problem can be resolved in many cases by applying
a different heuristic called the fewest alternative first (FAF) heuristic. Em-
pirical tests show that there is a domain where one type of least commitment
strategy performs well and another domain where another type of least com-
mitment strategy performs well, but neither of the strategies performs well
on both domains. However, a strategy called DVCS which chooses between
these least commitment strategies based on the FAF heuristic performs as
well as the least commitment strategy which performs best for each domain.
Furthermore, there is a domain where DVCS outperforms both of the least

commitment strategies.

¢ Refinement as AND/OR tree search. Different refinement strategies
can be viewed as different ways to transform an AND/OR tree into an OR-
tree. The efficiency of a refinement strategy can then be evaluated by taking
the size of the OR-tree the strategy generates. The difference between the
best and worst serializations can be as big as an exponential to the height
of the AND/OR tree. In an empirical analysis, FAF generated the smallest

OR-tree possible by this evaluation method.



e The ExCon heuristic. Interactions between tasks in HTN planning are
harder to handle than in action-based planning because an HTN planner may
not know the conditions and the effects a task has until it is decomposed
into a more detailed plan. On many planning problem domains, this causes
a major inefficiency. I found that most of these inefficiencies can be resolved
by handling a certain type of condition in plans. Also, the conditions of
this type, called external conditions, can be automatically detected by the
planner. Based on this study, I created a new refinement heuristic called
ExCon that improves the efficiency of planning by detecting and handling
possibly problematic interactions between tasks. In a comparison of this
heuristic against the FAF heuristic, ExCon performed increasingly better

than FAF on problems where there are many task interactions.

e Analysis of the effects of ordering constraints. The ordering con-
straints in HTN planning domains can make an impact on the planning
efficiency. In particular, a planner can use the left-to-right (LtoR) heuris-
tic, which plans in a way similar to a forward planner, to plan efficiently on
problems where there are many ordering constraints. Also, empirical tests
show that many ordering constraints are necessary for LtoR to perform well.
Furthermore, LtoR can be combined with ExCon to take advantages of both

heuristics. The resulting strategy performed well on most of the test domains.

1.5 Organization

Chapter 2 provides the background for my research. It describes many refinement

strategies for action-based planning that have been presented over the years. The



chapter presents basic refinement planning systems and summarizes the refine-
ment strategies for action-based planning. It also introduces the HTN planning
methodology.

Next, I present three different heuristics used for refinement strategies. Chapter
3 describes the “Fewest Alternative First” (FAF) heuristic and shows the empirical
results of FAF used to select between variable commitment and task instantia-
tion commitment. The chapter explains that the choices that FAF makes can be
thought of as serializing AND/OR graphs and analyzes the strategy from that
perspective.

Chapter 4 defines external conditions, a type of condition in HTN planning
which can be used to detect task interactions, and describes the “External Con-
dition” (ExCon) heuristic, which tries to deal with task interactions efficiently by
carefully selecting which task to decompose next. The performance of ExCon is
compared with the performance of the FAF heuristic on various problems.

Chapter 5 describes the third heuristic, the “Left-to-Right”(LtoR) heuristic.
This heuristic takes step ordering information into account when choosing which
task to decompose next. The heuristic works particularly well on problems where
orderings between many tasks are specified. This is supported by empirical tests
comparing LtoR, FAF and ExCon.

Finally, Chapter 6 summarizes the results of this dissertation.



Chapter 2

Refinement Planning

Many general-domain planning systems use refinement search, where a planner
takes a goal as a skeletal plan and gradually refines it (i.e. adds details) until
a detailed solution plan is found. Although how each planner represents and re-
fines partial plans varies from one to another, many refinement planners, be they
action-based or HTN, share basic structures. This chapter provides background

on refinement planning, various refinement strategies, and HTN planning.

2.1 Refinement Search

The concept of refinement search can be viewed as partitioning the search space
of possible solutions into smaller spaces until one containing a valid solution is
found. The refinement search process can be represented by a refinement search
tree where the root represents the whole search space and each child node in the
tree represents the different area resulting from a partition of the area represented
by the parent node. When a search area that contains only inconsistent possible
solutions is found, it can be pruned from the search.

For example, consider a partially developed plan P in Figure 2.1. The search
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Figure 2.1: A sample refinement operations applicable to the partial plan P.
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Figure 2.2: An illustration of a refinement search to construct a plan from the

partially developed plan P.
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space of possible solutions for P is a set of all possible sequences of actions in the
problem domain that can be derived from P. In order to develop P into a complete
plan, a planner may refine P by inserting an action to satisfy the goal g; or the goal
g2, constrain the variable x, or put an ordering between the two nodes n; and n,.
Suppose the planner chooses to constrain the variable x first, the refinement will
result in three different partial plans, each with a different value assigned to x (P,
Py, and P, in the refinement search tree in Figure 2.2(a)). However, upon examining
the plan P., the planner may find out that no consistent complete plan can derived
from it. In such a case, P, can be pruned from the search since no solution plan can
be found by working on P.. Figure 2.2(b) illustrates the corresponding partitioning
of the search space for P. Now, suppose the planner next chooses to insert an action
to satisfy the goal g;. This refinement will result in two partial plans (P; and P,
in Figure 2.2(a)).

Since searching an area that does not contain a valid solution is futile, the ability
to identify whole areas that can be pruned from the search is very important for
the efficiency of the refinement search. A refinement search algorithm often pre-
prunes a node from the search tree. It does not generate a child node if it is clear
that the node is inconsistent with the problem. Typically, the number of search
nodes generated in the refinement search tree corresponds to the efficiency of the
refinement algorithm. In addition, the efficiency of a refinement search algorithm is
affected by the order the refinements are done. For example, if the first refinement
operation for P was inserting an action to satisfy gy, then the planner might later
have to prune partial plans with x =v; twice at a later time, making the search less
efficient. The techniques used to choose the ordering of the refinements that will

improve the efficiency of planning are described in later chapters.
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The basic algorithm of refinement search is as follows: node-set is a set of search
nodes which need further refinements. In other words, the node-set represents
different search areas in the search space that have not been pruned from the
search. Initially, the node-set contains only a node with no refinements. The
algorithm then repeatedly does the following: If the node-set is empty, the search
is terminated with no solution because no solution exists for the given problem. If
the node-set is not empty, one node n is picked nondeterministically and removed
from the node-set. If n is a fully refined solution, the search is terminated with
a solution. If not, n is refined with some refinement operation and the resulting
nodes are put back in the node-set.

No pruning operations are explicitly done in the algorithm. Instead, inconsis-
tent nodes are pre-pruned as part of the refinement operations. Since there are
usually multiple refinement operations applicable to a node, a strategy, called a
refinement strategy, is used to determine what refinement operation should be ap-
plied. As in other search algorithms, a refinement search algorithm is sound and
complete if it returns a correct solution if and only if it exists.

Refinement planning uses refinement search to construct a solution plan. In
refinement planning, a search node is a partially developed plan which typically
consists of a set of action steps, orderings between the steps, a set of possible values
for each variable, and other auxiliary constraints. A completion of a partial plan is
obtained by instantiating every variable to one of its possible values and arranging
the step orderings into a linear sequence in a way that satisfies all the associated
constraints. A partial plan is inconsistent if it has no consistent completion. A

partial plan is a solution plan if every completion solves the given problem.
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2.2 Refinement Strategies for Action-based Plan-
ning

Many refinement planning systems, regardless of being action-based or HTN, use
least commitment strategy techniques, which make certain decisions only when
the planner thinks they are necessary. This section presents how action-based
refinement planners generate plans, describes various least commitment strategies
and discusses their advantages and disadvantages, and gives an outline of two other
types of strategies for action-based planning, called Graphplan and SATPLAN,

that are currently getting a lot of attention.

2.2.1 Refinements in action-based planning

Most planning formalisms, whether action-based or HT'N, are based on the follow-

ing assumptions:

e The planner has complete knowledge of the initial state of the world. Gen-
erally, an initial state is specified with a set of positive ground atoms, each
stating a condition that is true in the world initially. Any condition that is

not in the state is presumed to be false.

e The only thing that changes the state of the world is the execution of actions
in the plan generated by the planner. If some condition is true in a state and
some action is applied that does not affect the condition, then the condition

will remain true in the resulting state.

e The planner knows all the consequences that each action execution makes.
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o There is no gradual or delayed effect: all the effects of an action take place

the instant the action is executed.!

In action-based planning, a planning problem is specified by a tuple < I, g, D >
where [ is a initial state of the world, ¢ is a goal and D is a set of domain opera-
tors. A world state is a set of positive ground atoms which represent descriptions
of objects such as “BlockA is a block” or relationships between objects such as
“BlockA is on top of BlockB”. Any condition which does not appear in the state
is assumed Fualse. A goalis a partial description of the world state that a solution
plan should achieve. In other words, all the conditions in the goal should be true
in the state that can be achieved by executing the actions of a solution plan for
the problem. A domain operator in action-based planning is the specification of
an action in the domain. An operator is specified by preconditions which must be
true in the world state in order to execute the action, and effects which represent
the changes in the world state caused by the execution of the action. A solution
plan for a problem is a sequence of instantiated domain operators which, when
executed sequentially from the initial state, reach a final state where all goal con-
ditions are necessarily true. A refinement planner can plan forward by gradually
adding actions in the plan starting from the initial state, or plan backwards by

gradually inserting actions from the end of the plan which satisfy goal conditions.

Example: action-based planning domain

Consider the following problem P =< 1[I, g, D >:

I :Initial state = {(on-table a)(clear a)(on-table b)(on ¢ b)(clear c)}

!There are some planning formalisms that allow conditional or probabilistic effects [35, 39]

while some others allow gradual or delayed effects [51].

14



C |(unstack c b) (dostackab)| a
| >

Figure 2.3: A plan for Blocks World problem.

g :Goal = {(onab)}
D :Domain operators = {
unstack (?x ?y)
precondition: ((clear ?x )(on ?x ?y))
effect: ((~on ?x ?y)(on-table ?x)(clear ?y))
dostack (?x ?y)
precondition: ((clear ?x )(on-table ?x)(clear ?y))
effect: ((~on-table ?x)(on ?x ?y)(~clear ?y))
restack (?x ?y ?z)
precondition: ((clear ?x )(on ?x ?y)(clear ?z))

effect: ((~on ?x ?y)(on ?x ?z)(~clear ?z)(clear ?y))

There are three blocks, a, b and c. Initially, blocks a and b are on the table and
block ¢ is on top of block b. The goal of this problem is to stack block a on top of
block b. There are three domain operators available. unstack puts a block which is
on top of another block down on the table. dostack stacks a block from the table

on top of another block. restack moves a block from on top of a block to the top
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START

(on-table a) EINISH
(on-table b)
(on c b) — — — » | (onab)
(clear a)
(clear c)

Figure 2.4: An initial partial plan for the Blocks World sample problem.

(i) START |—® (unstack cb) — — —|FINISH

(il —» (dostackac) — — -
(iii) —p (restackcba)— —

Figure 2.5: Three alternative partial plans that can be obtained by asserting an

action applicable to the initial state.

of another block. One solution plan for the above problem is the sequence (unstack
c b);(dostack a b) which is illustrated in Figure 2.3. First, (unstack ¢ b) clears the top

of the block b, then (dostack a b) makes (on ab) true in the final state.

A refinement planner usually starts with an initial partial plan consisting of
two steps, START and FINISH as shown in Figure 2.4. START is a dummy action
with no preconditions and the effects establish all the conditions of the initial
state. FINISH is a dummy action with no effects and the goal conditions are its
preconditions. Every action the planner asserts is placed between START and
FINISH. The goal of the planner is to construct a sequence of actions where any
precondition of an action is made true by an effect of a preceding action without
any other action in between negating the effect.

Typically, a planner has two ways to assert an action in an partial plan. One

way is to ‘plan forwards’ by asserting an action that can be applied right after
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(iv) | START|— — —m (dostack a b)—# FINISH
(v) |START|— — —p(restack a c b)y—#|FINISH

Figure 2.6: Two alternative partial plans that can be obtained by asserting an

action that establishes the goal condition.

an item that needs Partial plan P

to be refined ...
... and the \
possible ways
to refine it constrain order nodes
l\}wl\gl goalg, | - |variable 7x| - n,andn,
=V X=V o

operator operator
0

o ?X promote | [demote

r
1 D

Figure 2.7: Various options for refinement operations.

the START action or the subsequent actions. Another is to ‘plan backwards’ by
asserting an action that can satisfy one of the preconditions of existing actions.
For example, a planner which plans forward would assert (unstack c b), (dostack a
c) or (restack ¢ b a) to the plan after START (Figure 2.5), while a planner which
plans backward would assert (dostack a b) or (restack a ?y b) to the plan before
FINISH (Figure 2.6). Typically, a planner only plans forward [7], or only plans
backward [31, 8], although some planners plan bi-directionally [16].

In addition to asserting actions, a planner needs to check the consistency of the
partial plan, bind variables, and detect and resolve conflicts. Thus, a planner has
various options for what to do during the planning process as shown by Figure 2.7.
As in general refinement search, a refinement strategy determines how and in what

order these refinements are done.
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2.2.2 Least Commitment Strategies

As Al planning evolved, various types of refinement strategies were introduced and
improved. The earliest planning systems like STRIPS [15] use the linear planning
method where partial plans are linear sequences of steps. Also, the variables in an
operator are instantiated into constants as soon as the operator is added as a step
in the plan.

The notion of ‘least commitments’ was first introduced by Sacerdoti [41]. In his
planning system called NOAH, he used a partially-ordered graph to represent the
step orderings in a partial plan. This provided a way to avoid premature commit-
ments to a particular step ordering when achieving subgoals. Compared with the
previous method of using only linear sequences of steps in partial plans, using par-
tially ordered steps has been shown to reduce the search space and thus improves
the planning efficiency [33]. Over the years, the “avoid premature commitments”
idea has been extended in various ways to many types of commitments, including
commitments to variable bindings and commitments to subgoal reductions. Since
many people have defined how and when a type of commitment is ‘premature’ in
so many different ways, a ‘least commitment strategy’ should be regarded not as
one unique strategy, but as a strategy that was created based on the “avoid prema-
ture commitments” concept. Thus, a ‘least commitment strategy’ generally refers
to any strategy that tries to avoid unnecessary branching in the search by either
postponing certain refinements or making only necessary changes to partial plans

by adapting a flexible representation of a partial plan.? We will revisit the issue of

?In contrast to least commitment, a refinement strategy which tries to make decisions as soon
as possible in the plan is called an ‘eager commitment’ strategy or a ‘maximum commitment’

strategy.

18



least commitment strategies in Chapter 3 and carefully examine their efficiency.
Least commitment strategies are the most popular strategies for refinement
planning. Below is a list of the major least commitment techniques. Some of the
techniques were introduced in the HTN planning framework, although they were
later used in action-based planning. Similarly, many of the techniques that were

created in action-based planning have been applied in HTN planning.

e Step orderings: Instead of always representing a partially developed plan
by a linear sequence of steps, Sacerdoti [41] used a partially ordered graph
to avoid unnecessary commitments to step orderings. In order to keep a
plan free of conflicts between steps that are not ordered with each other,
Chapman [8] presented the Modal Truth Criterion (MTC) for evaluating
conditions in his TWEAK planner. MTC determines if a condition p is nec-
essarily true to denote p is satisfied, possibly true to denote p can be possibly
satisfied later, or false to denote p cannot be satisfied. TWEAK terminates
with a solution plan when all the conditions in the plan are necessarily true.
An alternative to MTC is to use ‘causal links’ which were introduced by
Tate [47]. A causal link records a causality between two steps and can be
denoted by a tuple < p, s., s. > where s, is the establishing action step for
a condition p which is a precondition of the consuming step s.. A causal-
link based planner like SNLP [31] creates a causal link each time a subgoal
(i.e. an unsatisfied precondition of a step in the plan) is satisfied by another
step. Unlike MTC, which repairs threatening situations by inserting another
establishing step between the threatening step and the consuming step, the
causal links in a plan cannot be violated; when a causal link is found to

be violated in the plan, then the plan is considered inconsistent and pruned
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from the search.

Variable binding: In traditional planning system like STRIPS [15] and
Nonlin [47], the variables in an operator are instantiated into constant values
immediately after the operator is introduced in a partial plan. Yang and
Chan [56] pointed out that this approach to variable bindings has several
drawbacks. First of all, this approach creates 100 branches in the search tree
if a variable has 100 possible values. The large branching factor causes an
enormous search space. Second, if the planner employs chronological back-
tracking, the search might keep failing for the same variable binding decision.
The suggestion Yang and Chan presented is to maintain the sets of possible
values for the variables instead of binding them to constant values. They
presented a new planning algorithm FSNLP, an extension of SNLP, which
delays variable bindings until they become absolutely necessary. Instead of
instantiating variables into constant values as soon as a step is inserted to a
partial plan, FSNLP keeps the sets of possible values for variables. In order
to detect partial plans where there is no consistent instantiation, FSNLP oc-
casionally calls a CSP(Constraint Satisfaction Problem) algorithm to check
if there exists a consistent assignment of variables. Their experiments on the
Smith and Peot domain [42] with varying number of objects showed FSNLP

performed better than SNLP.

Subgoal reduction: Friedman and Weld [17] developed a least commitment
technique for subgoal reduction. Unlike other planners such as SNLP where
the search branches out for the number of operators applicable to the subgoal,
their planner FABIAN uses an abstract operator which represents applicable

operators when establishing a subgoal and the search branches out only when
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necessary. The abstract operator of a predicate represents a disjunction
of possible new establishing operators. Abstract operators are constructed
in polynomial time preprocessing for each predicate. Friedman and Weld
showed that this approach can lead to exponential savings while it never

explores more than a roughly logarithmic larger space than SNLP.

Constraint posting: Sometimes, fully satisfying constraints such as a vari-
able inequality constraint (i.e. ?x # ?y) results in many search branches.
In the MOLGEN [45] planner, Stefik introduced the constraint posting ap-
proach. Instead of the planner fully satisfying constraints immediately by
binding variables, the constraints are posted and updated in the plan so that
the planner can defer variable binding decisions until the variables are con-
strained more. Another example of constraint posting is the technique of

keeping causal links in a causal-link planner as described above.

Conflict resolution: In the SNLP planner, all threats are resolved at every
refinement cycle before satisfying the next open condition in the partial plan.
There are three ways to resolve a threat to a causal link in SNLP; demotion,
promotion and separation. Demotion moves the threatening step so it is be-
fore the step that produces the effect for the causal link. Promotion moves
the threatening step so it occurs after the step whose precondition the causal
link protects. Separation binds variables so that the effects of the threaten-
ing step and the corresponding condition of the causal link will not unify.
This method usually creates three or more partial plans in the search space.
Peot and Smith [37] observed that since other necessary planning operations
often make the threatening situations go away, it is often a good idea to de-

lay threat removals. They developed four threat removal strategies: ‘DSep’
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defers a threat removal until the threat cannot be removed by separation;
‘DUnft’ defers a threat removal until there is only one threat resolution op-
tion remaining; ‘DRes’ does no threat resolution, it simply discards a partial
plan when an unresolvable threat is found; and ‘DEnd’ resolves a threat only
when all the open conditions have been satisfied. Their empirical results on
several domains showed that DSep and DUnf did better than DRes, DEnd,

or the default strategy of SNLP.

Effectiveness of least commitment

There are several comparisons of least commitment against maximum commit-
ment. Minton, et al. [33] discussed ordering commitments from the perspective
of partial-order planning vs. total-order planning. They compared a total-order
planning algorithm TO against a partial-order planning algorithm UA. The two
algorithms are constructed such that each node of the search tree TO generates
represents a linearization of a node at the same depth of the search tree UA gener-
ates. Thus with breadth-first search, the two algorithms can be synchronized (i.e.
they search through the same parts of the plan space). It was shown that the size
of a search tree for UA is less than the one for TO regardless of the domain. There-
fore, the search space of UA is proven to be smaller than the search space of TO
with breadth-first search. The same analysis cannot be applied under depth-first
search, although experiments in the Blocks World domain showed UA performs
significantly better than TO. Minton, et al. also argued there is a correspondence
between search strategies and the performance of partial-order planning. They
showed that UA can take advantage of certain types of heuristics more effectively

than TO. Despite the analytical results of UA and TO, Minton, et al. pointed out
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a partial-order planner has a potentially much larger search space than a total-
order planner since there are many more partial orderings over a set of steps than
there are total orderings; thus, the performance of a partial-order planner relies on
more intelligent ordering choices. Barrett and Weld [4] also compared partial-order
vs. total-order planning. They used a causal-link total-order planning algorithm
TOCL and a causal-link partial-order planning algorithm POCL. In contrast to
Minton, et al’s work on domain independent analysis, Barrett and Weld focused
on the domain structures. More specifically, they argued the serializability of the
domain is the key factor in the performance difference between TOCL and POCL.

In many discussions of refinement strategies, the least commitment strategy
is generally favored over maximum commitment. Veloso and Stone [50], however,
showed by experimental results that delayed-decision commitments do not always
mean better performance in comparison with other commitment strategies. They
presented FLECS, an extension of the Prodigy planner, as a framework for their
analysis on ordering commitment strategy. Prodigy keeps a totally-ordered head
plan and a partially-ordered tail plan as an internal plan structure. Subgoaling
does backward chaining starting from the goal, using means-end analysis. The
operator introduced in the plan is then applied to the totally-ordered head plan
if the all operator’s preconditions are true in the end state of the head plan. In
FLECS, commitment strategies are defined by a 2-value toggle which decides be-
tween subgoaling or applying an operator to the totally-ordered plan. Veloso and
Stone ran the experiments in three domains. In the first domain, eager subgoaling
gave better CPU time than eager applying. In the second domain, eager applying
gave better CPU time than eager subgoaling. And in the third domain, a strategy

which makes a choice according to the current state of the plan worked significantly
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better than either eager subgoaling or eager applying. The results clearly showed
that the performances of commitment strategies are domain dependent.
Kambhampati, et al. [23] provided a unified framework for partial-order plan-
ners as a convenient base for analyzing different design choices in partial-order
planning algorithms. The algorithm Refine-Plan-PO is a planning framework which
can be used to implement planning algorithms by providing the methods for termi-
nation, goal selection, precondition establishment, bookkeeping, consistency check
and conflict resolution. Using the Refine-Plan-PO framework, Kambhampati, et
al. compared major existing domain independent partial-order planners including
UA, SNLP, Tweak [8], UCPOP [36] and several other hybrid planning algorithms.
They argued that the relative performances of an eager commitment strategy and a
least commitment strategy depend on the presence of high-frequency conditions—
conditions that have many establishers (i.e. steps that can establish the condition)
and threats (i.e. steps that deny the condition). They hypothesized that if none of
the conditions in the domain are high-frequency conditions, least commitments do
better than eager commitments while if most of the conditions in the domain are
high-frequency conditions, eager commitments do better than least commitments.

These hypotheses were supported by their experimental results.

2.2.3 Other strategies

Recently, graph-based planning and SAT-based planning for action-based opera-
tors have been getting much attention because their planning speed was shown to
be much faster than classical action-based planners.

In Graphplan [7], developed by Blum and Furst, the planner constructs a plan-

ning graph which represents every possible state that can be achieved from the
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initial state. When the all goal conditions are found in a state, the planner re-
traces the graph to find a solution. In SATPLAN [25], an action-based planning
problem is first translated into an equivalent propositional logic problem, and then
solved by a fast general propositional satisfiability solver.

Although there have been several efforts to combine Graphplan and HTN plan-
ning [28] or SATPLAN and HTN planning [30], it has not yet been shown how
effective they are compared with traditional HTN planning. Another concern is
that many planning applications need to interleave planning and execution. One
advantage of an HTN planning framework is that it allows the planner to work on
a portion of a plan more easily than an action-based framework would. However,
while most refinement strategies, including the ones presented in this paper, can
be applied to the portion of a plan, it is not clear if the Graphplan or SATPLAN
technique can be applied likewise. Thus, using the Graphplan or SATPLAN tech-
nique in HTN planning may probably be effective in some applications but not
feasible in others.

Recently, Kambhampati [22] presented the view that both Graphplan and SAT-
PLAN are a special type of refinement planning where they use refinements to
prune the search space but not to partition it. Overall, whether or not these new
techniques are better than traditional refinement planning techniques is still an

open question.

2.3 HTN Planning

HTN planning started with Sacerdoti’s use of ‘procedural nets’ in his planning
system called NOAH [41]. A procedural net is a network of tasks representing a

partial plan where each node represents a particular action at some level of detail.
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NOAH plans by repeatedly (1) decomposing abstract tasks in a plan into more
detailed tasks, and (2) detecting and removing conflicts in the resulting partial
plans. The latter operation is done by what are called ‘critics’. The term ‘task
network’, introduced by McDermott [32], refers to a set of tasks linked together by
plan properties such as temporal ordering and state conditions. Thus, hierarchical
task network (HTN) planning refers to a planning methodology where partial plans
are represented by task networks and actions in a plan are acquired by decomposing
abstract tasks.

In action-based planning, domain operators are specified by their precondi-
tions and effects. An action-based planner plans by adding operators into a plan
so that the goal conditions are achieved and the plan is conflict-free. An HTN plan-
ner proceeds by decomposing abstract tasks into more detailed tasks by applying
decomposition methods. Even though HTN planning is used more in practical
applications, most studies in Al planning have been done in the action-based plan-
ning framework. This was in part due to the lack of a solid framework for HTN
planning until recently; for example, there was no sound and complete HTN al-
gorithm until the work by Erol, et al. [12]. Their UMCP algorithm is provably
sound, complete and systematic. We have used its implementation, the UMCP
planner, as a testbed to test various refinement strategies.

In this section we present the basic mechanism of HTN planning and the basic
planning methods in UMCP. We also describe other HTN planning frameworks
and compare the advantages and disadvantages of action-based planning and HTN

planning.
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2.3.1 Illustration of HTN planning

Take a problem we call “a college student’s dinner problem”. The goal of the
problem here is to eat pizza. Assume this takes place when one is in his apartment
and he does not have a box of frozen pizza in the freezer. There are several
alternative ways he considers; (a) eat in a pizza restaurant, (b) order by phone
for a delivery, or (¢) buy frozen pizza and heat it. Upon deciding which one of
the alternative ways to use, more detailed plans can be made; for example, option
(b) above can be accomplished by getting the phone number of a pizza place,
calling and ordering a pizza, paying for the pizza when delivered, and eating the
pizza. Moreover, each of these actions, such as getting the phone number, needs
to be expanded into more detailed actions, until the entire plan consists of only
executable actions. An illustration of this planning process is shown in Figure 2.8.
Also, planning has to take into account various constraints associated with the
actions. For example, if he wants to watch TV that night, then the option (a) of
eating out may not be applicable. Also, if one’s microwave or oven is out of order,
then the option (c) of buying frozen pizza and heating it would not work.

Many plans can be created in a hierarchical manner similar to the above plan-
ning process. An HTN planner generates plans the same way but more method-
ically. As such, HTN planning is suitable for many real-world planning domains
since many planning decisions made in the real world are done in a hierarchi-
cal manner. Also, it is easy to transform a domain specification for action-based
planning into an equivalent HTN domain specification [12].

For an HTN planner, there are two types of actions. One is a primitive ac-
tion (also called a primitive task) which a robot or a human can execute without

further planning. The other is a non-primitive action (also called a non-primitive
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Goal: Eat pizza
Current situation: In the partment, no frozen pizza

\1, How?

Alternative ways to eat pizza:
(a) Eat in a restaurant

(b) Order for a delivery

(c) Buy frozen pizza and heat it

\L Choose (b)

Abstract plan:
Get phone number —» Call and order 9 Pay — Eat pizza

¢ How? \L How? \H ow?

Alternative ways to Alternative ways to

get phone#: order:

(d) Yellow page (g) With coupon

(e) Ads (h) Without coupon
¢ Choose (e) ¢ Choose (g)

Figure 2.8: A college student’s dinner problem
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Decompose: eat pizza

Actions: label action
nl get phone number
n2 call and order
n3 pay
n4 eat pizza
Temporal order:
nl—»n2
n2 —n3
n3 —»n4
Constraints:
- want a whole pizza
- have enough money to pay at n3

Figure 2.9: An informal description of a decomposition method for the action ‘eat

pizza’

task or abstract action), which the planner needs to ‘decompose’ into more de-
tailed actions. Decomposing a non-primitive action is accomplished by applying a
decomposition method for the action. A decomposition method prescribes the ac-
tions that the non-primitive action is decomposed into, the orderings between these
actions, and various other constraints that need to be satisfied by the planner.
For example, consider describing the actions for option (b) in a decomposition
method. One method description might be something like Figure 2.9. There are
four actions necessary to accomplish the action ‘eat pizza’. Every action in a plan
or a decomposition method has a unique label to distinguish between multiple
instances of an action, and also to simplify the specifications. So, for example,
the action ‘get phone number’ is labeled nl1 in this decomposition method. The

temporal ordering of actions are also specified in the method using action labels.
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In this method, expressing ‘get phone number’ should be done before ‘call and
order’, which should be done before ‘pay’, which should be done before ‘eat pizza’.
Also, there are two constraints: that the student wants a whole pizza (not a slice)

and that there is enough money to pay for the pizza when paying.

2.3.2 Basic HTN planning mechanism

An HTN planner generates a plan by decomposing tasks into more detailed tasks,
enforcing constraints and resolving conflicts until all the tasks in the plan are prim-
itive (i.e. executable actions) and there are no conflicts between tasks. Figure 2.10
shows a basic HT'N algorithm. The same assumptions as in action-based planning
about the world state, as described in section 2.2.1, hold in HTN planning. In
HTN planning, two types of goals can be expressed in a problem. One is a condi-
tion goal which must be made true at the end of the solution plan, and the other
is an abstract action which must be accomplished by a solution plan. An HTN
problem can contain one or more goals and also specific constraints associated with
the goals.

In general there are two types of tasks in HT'N planning. A primitive task is an
executable action which does not need any decomposition. A solution plan should
contain only primitive tasks. A non-primitive task is an abstract task which needs
to be decomposed. Given a planning problem P, the planner repeatedly checks
if P is a solution or if P is inconsistent (Step 2) and terminates in either case,
picks a non-primitive task in P and a decomposition method for the task (Steps 3
and 4), applies the decomposition method to the task (Step 5), and handles task
interactions (Steps 6 and 7). Normally, there is more than one way to decompose

a task, and there is more than one way to handle task interactions in a plan, thus
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Algorithm Refine-HTN()
1. Input a planning problem P.

2. If P contains only primitive tasks, then resolve the conflicts in P and

return the result. If the conflicts cannot be resolved, return failure.
3. Choose a non-primitive task t in P.
4. Choose a decomposition for t. (backtracking point)
5. Replace t with the decomposition.

6. Use critics to find the interactions among the tasks in P, and suggest

ways to handle them.
7. Apply one of the ways suggested in step 6. (backtracking point)

8. Go to step 2.

Figure 2.10: Basic HTN planning algorithm. [13]

making choice points in the search.

2.3.3 UMCP Formalism

The UMCP algorithm is based on a generalization of HTN planning [12]. This
section presents the UMCP formalism [11] and shows the types of refinement
operations used in HTN planning. This section is also intended to provide the

terminology which is used in later chapters.
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task node ordering

\ constraint
/
@ / task label

n2

(@ostack ?x YD
, (clear ?y) — =~
\égﬂ;%em\ Constraints: task

& (before (on-table ?x) nl)
& (between (clear ?x) n1 n3)

& (betwe [ ?y) n2 n3)
&(after (on ?x ?y) n3

state constraint

Figure 2.11: A method for (on ?x ?y) in Blocks World (in UMCP specification).

Task Networks

In UMCP, both partial plans and decomposition methods are represented in the
form of task networks. A task network is a partially specified plan that contains
partially ordered tasks and various constraints associated with them. Figure 2.11
shows a sample task network; a decomposition method to achieve the condition
(on ?x ?y) in the Blocks World domain which was used as an example of action-
based planning domain in Section 2.2.1. The decomposition uses the same three
predicates on, clear and on-table to specify state conditions. So (on ?x ?y) refers to
“block ?x is on block ?y”, (clear ?x) refers to “there is no block on top of block 2x”,
and (on-table ?x) refers to “block ?x is placed on the table”. In order to accommodate
goal conditions and preconditions that are used in action-based planning, UMCP
has a special type of non-primitive task called predicate tasks. A predicate task
has the form of a positive or negative literal, and its main purpose is to satisfy

the condition referred by the literal. For example, the above sample method is
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a method for the predicate task (on ?x ?y) that will make the condition (on ?x ?y)
true.® Also, there are two predicate tasks (clear 2x) and (clear ?y) in the method
to specify that the conditions (clear ?x) and (clear ?y) need to be made true before
doing the task (dostack ?x ?y). A predicate task is similar to a supervised condition
introduced by Tate [47] in 1977. In order to distinguish other non-primitive tasks
from predicate tasks, non-primitive tasks that are not predicate tasks in UMCP
are called compound tasks.

In the above decomposition method, each task is labeled ni for some 2. In
UMCP, every task in a partial plan or decomposition method has a unique label,
in order to distinguish multiple instances of the same task. These labels are used
in the constraint specification to specify various constraints associated with the
related tasks.

There are four constraints specified in the method. The constraint ?x # ?y
specifies that the variables ?x and ?y cannot have the same value. The constraint
(before (on-table ?x) n1) specifies that the block ?x must be on the table before doing
the task referred to by nl (i.e. (clear ?x)). The constraint (between (clear ?x) nl n3)
specifies that the block 7x must have no blocks on top anytime after doing the
task referred to by nl (i.e. (clear ?x)) until starting the task referred to by n3 (i.e.
(dostack ?x ?y)). Similarly, the constraint (between (clear ?y) n2 n3) specifies that the
condition (clear ?y) must persist between the time interval between task n2 and task
n3. The fourth constraint (after (on ?x ?y) n3) states that after finishing the execution
of the task referred by n3 (i.e. (dostack ?x ?y)), the condition (on ?x ?y) must be true.

Notice the similarity between predicate tasks and some of the constraints. In

3In order to distingnish tasks from state conditions, predicate names are written in italics.

For example, (on ?X ?y) is a predicate task while (on ?x ?y) is a state condition.
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the above method, the predicate task (clear ?x) specifies “the condition (clear ?x)
needs to be made true before doing the task (dostack ?x ?y)”. The constraint (before
(on-table ?x) n1) specifies that “the block ?x must be on the table before doing the
task referred to by nl (i.e. (clear ?x))”. Both conditions ((clear ?x) and (on-table ?x))
need to be satisfied in the specific state in order for the decomposition method
to work. Why is one specified by a predicate task and another specified in a
constraint? The difference between using a predicate task and using a constraint
is how the condition should be made true. If a condition is specified by a predicate
task and the condition is not true in the initial state or by the effects of other tasks,
then the planner actively tries to make it true by inserting actions specified in the
decomposition method for the predicate task. On the other hand, a condition
specified in a constraint has to be true without the planner inserting actions into
the plan. The planner can try to satisty the condition in a constraint by ordering
tasks in the plan or binding variables, but the planner cannot assert new actions
to satisty it. Having these two types of condition specification is useful for many
reasons. For example, in the above Blocks World example, the planner does not
use the method if block ?x is not placed on the table. Because, if it is on the table,
then the planner should use a method that specifies a restack action instead of a
dostack action. On the other hand, specifying the condition (clear ?x) by a predicate
task is convenient because the planner can then plan for the necessary actions to
prepare that the task (dostack ?x ?y) would work if the condition is not true.

More formal definitions of the elements of a task network are as follows:

e Tasks: A task t(xy---x) is either primitive, predicate, or compound. A
primitive task is an atomic action that can take place in the world. When

executed, it may have effects {l1,l, -+, 1.} where each [; is a literal whose
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arguments are either constants or variables x;. A predicate task has the
form p(xy---x) where p is a positive or negative predicate symbol. Its
main purpose is to achieve the condition p(xy --- x)) and it has one or more
decomposition methods which specify how to achieve the condition. If the
condition is already achieved in the plan without executing specific actions
to make it true, then the task is phantomized, i.e. the task is replaced by an
empty action. A compound task is an abstract action. Like a predicate task,
it can be decomposed into more detailed tasks by applying a decomposition

method.

Constraints: There are four types of atomic constraints: Variable binding
constraints are of the form (vl = ¢), (vl = v2), (vl # ¢) or (vl # v2) where
vl, v2 are variables and ¢ is a constant. They represent constraints on vari-
able (non-)codesignations; Ordering constraints are of the form (ord n n'),
where n and n’ are either a node label, which represents a specific task
in the task network, or a node expression. The constraint specifies that
the task labeled with n must finish before the beginning of the task la-
beled with n/. A node expression is either of the form (first n; n; ---) or
(last n; n; ---), referring to the node whose task starts first or end lasts
among the tasks in the list; State constraints are of the form (before [ n),
(after [ n) or (between [ n n') where n and n’ are node labels and and [ is
a literal. (before [ n) or (after [ n) is true if [ is true immediately before
n, or immediately after n. (between [ n n') is true if [ is true from the end
of n through the beginning of n'; Initial state constraints are of the form
(initially /) where [ is a literal which has to be true in the initial state. A

constraint formula is a Boolean formula constructed from atomic constraints
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described above and conjunctive, disjunctive and negative operators.

Task Networks: A task network has the form < T, ¢ >, where T is a set
of task nodes and ¢ is a constraint formula. A task node is a tuple < n;, t; >
where n; is the node label for the task ¢;. If a task network contains only

primitive tasks, then it is called primitive task network.

Decomposition Methods: A decomposition method for a non-primitive
task ¢ is a task network m = < T}, ¢; >. Decomposing an instance of  in a
partial plan (i.e. task network) P = < T, ¢ > results in a new partial plan
Poew = < (T—{< ns, t >}) U Thpew, & A Ginew > where ny is the label for
the task ¢ in P, Tj,c and ¢jne, are T; and ¢, respectively, with necessary

variable bindings.

Initial states: An initial state [ is a set of ground positive atoms which
represent what conditions are true initially. The planner assumes any atom

which is not in [ to be false.

Refinement Search in UMCP

Figure 2.12 shows the algorithm for high-level refinement search in the UMCP

planner. A problem is a tuple < ¢, I, D > where [ is an initial state, ¢ is a task

network representing the goal, and D is the problem domain. A world state in HTN

planning is the same as one in action-based planning; it is a set of ground atoms

in which only the execution of an action can make changes. A domain consists

of a set of primitive task specifications, and a set of decomposition methods for

non-primitive tasks. In the UMCP planner, a task-network contains an auxiliary

data structure which stores step orderings, sets of possible values for variables, and

36



a list of delayed constraints called the Promissory List, in addition to a set of task
nodes and a constraint formula.

UMCP gradually refines task-networks representing partial plans, by decom-
posing non-primitive tasks, enforcing constraints, and checking consistency, until a
task network is found where every task is primitive and all the constraints are sat-
isfied in the data structure of the task network. The high-level refinement search
is implemented with the A* algorithm where un-explored search nodes are kept in
Openlist. UMCP repeatedly removes a task network from OpenList, and applies
a refinement strategy R which may do any combination of planning operations
such as task decomposition and consistency checking. The task networks returned
by R are put back into OpenList. UMCP allows the user to choose depth-first
search, breadth-first search, or best-first search by changing the method used to
pick a node in Step 4.

Since the refinement strategy R can make any changes to the task network, it
needs to satisfy the following requirements in order for the UMCP algorithm to be

sound and complete.

e Soundness: Any solution to any task network in R(tn) must also be a solu-
tion for tn. UMCP is sound if the refinement strategy that is used satisfies
this property because commitments in task networks grow monotonically,
and constraints in the Promissory List are removed only as they become

necessarily true.

e Completeness: Any solution for ¢n must also be a solution for some task
network in R(tn). UMCP is complete if the refinement strategy that is
used satisfies this property. Any time a constraint is selected in the con-

straint selection phase, its negation is also selected (unless it contradicts the
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Algorithm UMCP()
1. Input a planning problem P = < g, 1, D >.
2. Initialize OpenlList to contain only g¢.
3. If Openlist is empty, then halt and return “no solutions”.
4. Pick and remove a task network ¢n from OpenlList.
5. If tn is completely refined into a solution then halt and return tn.
6. Pick a refinement strategy R for in.
7. Apply R to tn and insert the resulting set of task networks into OpenList.

8. Go to step 3.

Figure 2.12: High-level refinement search in UMCP algorithm. [13]

commitments or the constraint formula), and all possible ways of making a

constraint true are tried in the constraint update phase.

The Default Refinement Strategy in UMCP

The default refinement strategy in UMCP employs several least commitment tech-
niques. Each partial plan (task-network) keeps an auxiliary data structure in order

to facilitate these techniques.

e Possible values: Similar to the method used in FSNLP [56], each variable
in UMCP has a set of possible values associated with it in order to postpone
premature variable instantiation. UMCP constrains the set when enforcing

constraints. Suppose the variable v has the possible value set S. Then,
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enforcing the constraint (v = ¢), where v is a variable and ¢ is a constant,
sets S ={c} if cisin S, and returns nil otherwise to report the inconsistency.
Enforcing (v # ¢) removes ¢ from S if ¢ is in S, and make no changes
otherwise. Enforcing (v = v2), where v2 is also a variable, sets S to the
intersection of S and the possible value set for v2 and also replaces the
occurencies of v2 in the partial plan with v. It returns nil if the intersection
is empty. Enforcing (v # v2) makes no change if the intersection of S and the
possible value set for v2 is empty. Otherwise, the constraint (v # v2) is put
into the Promissory List of the partial plan. Also, enforcing state constraints
or initial state constraints can constrain the set S if the constraint contains

.

e Partially ordered steps: As described before, step orderings in a partial
plan are represented in the form of a partially ordered graph. If enforcing
a constraint makes a cycle in the graph, UMCP prunes the partial plan for

inconsistency.

e Constraint posting: One of the major differences in constraint enforce-
ment between an action-based planner and an HTN planner is that some
constraints cannot be immediately enforced in a partial plan of an HTN
planner if the partial plan contains non-primitive tasks. Some constraints
can only be made true by further decomposing tasks in the partial plan.*
In UMCP, some state constraints and ordering constraints may not be fully
enforced immediately. UMCP keeps such constraints in the Promissory List

of the partial plan. The Promissory List also contains non-codesignation

*Some HTN planners such as SIPE require users to formulate the domain specification such

that all constraints can be established in a planning level.

39



variable constraints. Similar to the constraint posting technique used by
Stefik [45], the constraints in the Promissory List are constantly updated

and propagated.

Based on the current partial plan (i.e. task network), UMCP’s default refine-
ment strategy does one of the following actions: (1) Decompose a non-primitive
task; (2) Enforce each of the newly inserted constraints; (3) Evaluate and simplify
the constraint formula; or (4) Propagate previously postponed constraints. Fig-
ure 2.13 shows the algorithm that UMCP uses to decide which refinement to do
next. It takes a partial plan as input and returns a set of partial plans as the result
of the refinement performed.

If the constraint formula of the partial plan is False, then UMCP prunes the
partial plan by returning an empty set in Step 1. When the constraint formula
is True, UMCP decomposes a non-primitive task ¢ in the partial plan at Step 2.
Decomposing ¢ involves, for each decomposition method M of ¢, (a) replacing ¢
with the subtasks in M, and (b) replacing the current constraint formula C'in the
partial plan with the conjunction of ' and the constraint formula in M. If ¢ is a
predicate task, ¢ is also phantomized by creating a plan with the task ¢ replaced
with the do-nothing task and the constraint formula specifying that the predicate
is accomplished at the beginning of the do-nothing task. Step 3 checks if the partial
plan is a solution plan or not. If there are no non-primitive tasks in the partial plan
and the constraint formula is True, then UMCP satisfies the remaining auxiliary
constraints by instantiating variables and ordering steps, and returns the solution
plans. If the constraint formula is neither True nor False, then UMCP enforces
the constraints in the partial plan at Step 4. Enforcing constraints involves adding

step orderings to the tasks and/or binding variables, according to the constraint
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Algorithm refine( PartialPlan)

1. (Pruning) If the constraint formula of PartialPlan is False then prune

this plan by returning empty set.

2. (Task decomposition) Otherwise, if the constraint formula is True and
there are non-primitive tasks in PartialPlan, then decompose a task and

return the resulting partial plans.

3. (Solution check) If the constraint formula is True and there are no non-
primitive tasks in PartialPlan, then satisfy the auxiliary constraints and

return the resulting plans as solutions.

4. (Constraint enforcement) If the constraint formula is neither True nor
False, then satisfy constraints, simplify constraint formula, and propa-

gate auxiliary constraints. Return the resulting partial plans.

Figure 2.13: The default refinement strategy in the UMCP planner.
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types. If it requires further task decomposition to fully enforce some constraint, the
constraint will be put into the Promissory List to be enforced later. If a constraint

is not enforceable, then an empty plan is returned.

2.3.4 Other HTN formalisms:

UMCP is the first HTN planning formalism to be provably sound and complete.
There are other HTN formalisms presented in the planning literature. This section

summarizes some of these formalisms.

o Tate [47] introduced several notable techniques in his planning system Nonlin.
Previously, Sacerdoti’s NOAH [41] had decomposition schemas that were
written using a procedural language. In Nonlin, decomposition schemas are
specified using a declarative language. He defined three types of conditions
which the planner can use for different purposes: use-when conditions are
to be used to filter out decomposition schemas inapplicable to the problem:;
supervised conditions specify conditions which must be made true by the
planner; and unsupervised conditions indicate that other parts of the plan
would satisfy the conditions. Some of these condition types are described
later in Chapter 4, where they are compared to a new condition type. He
also introduced ‘causal links’, as described in the previous section, as a way

to keep track of which step establishes which condition.

Following Nonlin, two general-domain HTN planners were developed. SIPE [54]
and O-Plan [10] employ many techniques similar to the ones used in Nonlin.
They were developed with real-world planning applications in mind. Thus,
they have extensive capabilities to deal with real-world requirements. Both

of them are capable of execution monitoring as well as plan generation. Both
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have added more condition types to specify a domain, thus allowing domain

experts more control of the search.

Yang [55] used a rather restrictive hierarchical planning formalism in order
to satisfy conditions in a plan at higher levels. He analyzed that in some
situations, conflicts in a plan can only be resolved by further decompos-
ing non-primitive actions in the plan. However, since there is no guarantee
that the conflicts can be resolved at the primitive level, such decompositions
may turn out to be redundant. He suggested, by modifying decomposition
schemas in a certain way, the planner can improve its planning efficiency by

avoiding such redundant decompositions.

In their DPOCL formalism, Young, et al. [57] present a way to combine
causal planning and HTN planning which include action-based operators that
can be used to establish un-satisfied conditions in a plan and non-primitive
tasks that must be decomposed by applying decomposition schemas. At each
cycle, the DPOCL algorithm non-deterministically chooses between causal
planning and decompositional planning. Although their restrictions on the
preconditions and effects of non-primitive tasks are less strict than the ones
used by Yang described above, it still does not allow users to specify some

conditions, such as “user intent” conditions [24] that can be specified in

UMCP.

Kambhampati, et al. [24] also present a planning formalism for partially hier-
archical domains. The combination of HT'N and action-based planning allows
the planner to plan both by task decomposition and condition satisfaction.

Unlike DPOCL where both abstract actions and primitive actions are tried
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in order to establish a goal, Kambhampati, et al. use dominance relations
between actions when determining which actions to use to establish a goal.
An action ¢ is dominated by another action t' if there exists a decomposi-
tion of ¢’ that contains ¢. If both ¢ and ¢’ establish the same goal and ¢ is
dominated by t/, then ¢ will not be used to establish the goal. This method

ensures the systematicity of the algorithm.

2.3.5 Comparison between HTN and action-based plan-
ning

There are many differences in HTN planning and action-based planning. The
following are some discussions of advantages and disadvantages of HI'N planning

and action-based planning from various points.

e Expressivity: Erol, et al. [12], in their formal analyses of HTN planning,
have shown that HTN planning is provably more expressive than action-based

planning using the analogy with context-free grammar [12].

Compared with action-based operators where users can specify domain re-
strictions only in the preconditions and effects of atomic actions, HTN plan-
ning operators allow users to specify many more types of domain restrictions.
Thus, HT'N operators have ways to filter out undesirable plans that action-
based operators do not. For example, in order to get money, an action-based
planner may generate a plan which opens an account at a certain bank in
order to use a specific ATM. This may be a feasible plan and its operational
cost can be lower than a plan which directs you to an ATM further away,

except many of us do not want to have too many bank accounts. One can
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easily specify conditions to prune out such feasible-but-not-realistic plans in

HTN operators.

Efficiency: HTN planning is capable of using more domain knowledge to
guide the search. However, there have been no extensive comparisons be-
tween the efficiencies of HTN planning and action-based planning, although
the experimental results by Barrett and Weld [5] suggests that HT'N planning

is faster than classical action-based planning.

Domain Modeling: Action-based operators can only be used for condition-
goals (i.e. conditions which must be true after the execution of a plan), while
HTN planners can plan not only for condition-goals but also for action-goals
(i.e. abstract actions that needs to be performed). While action-goals (do-
X) can be expressed as condition-goals (X-done), such a roundabout way of

specifying domains is often not desirable.

One of the difficulties domain experts face when modeling their domain in
HTN planning is that they need to decide what kind of abstract tasks they
want to specify in advance, which may not be quite clear. Ideally, abstract
tasks should be specified such that they are intuitive to users yet efficient for
the planner. Hybrid algorithms such as the one by Kambhampati, et al. [24]
that allow gradually building the hierarchy of a domain may help domain

experts specify abstract tasks wisely.

Extensibility: One important aspect of a planning formalism is extens-
ability. Many real-world problem domains require abilities to do temporal
reasoning and numeric calculations while other applications require interleav-

ing planning and execution. HT'N planning formalism makes it easier to work
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on some parts of a plan which do not affect the entire plan. Such changes
are quite difficult to be integrated in action-based planning. For example,
Smith, et al. [44] have used HTN planning techniques for their computer
bridge playing program in order to reason about possible moves by other

players in addition to the moves the program can make.
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Chapter 3

Fewest Alternative First Method

As mentioned in the previous chapter, one popular refinement strategy is some
type of least commitment strategy in which the planner postpones making some
particular kind of refinement until it is forced to do so. For example, if a planner
uses a "least commitment to step orderings” strategy, then whenever more than one
ordering is possible among the steps of a plan, the planner will avoid committing
to a particular ordering unless it must do so in order to proceed with the rest of
the planning. One reason why the least-commitment idea is useful is that if the
planner can avoid making refinements prematurely, this can reduce the number
of alternative plans it might need to examine. However, it is not necessarily a
good idea to apply the “least commitment” idea to the same kind of refinement
throughout the entire planning process. In order to do planning at all, a planner
has to refine something—and thus, when a planner postpones refining one aspect of
the plan it is generating, this may make it prematurely refine some other aspects
of the plan. This suggests that it may be better to choose dynamically among
different kinds of refinements throughout the planning process.

One way to choose what kind of refinement to make next is to look at all of

the items that need to be refined in the current partial plan, and choose whichever
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one has the fewest number of alternative possible refinements. This strategy is
called the “fewest alternatives first” (FAF) strategy. For partial-order planning
with STRIPS-style operators, Joslin and Pollack [20, 21] found that a version of
this strategy outperformed the “least commitment to open conditions” strategies.
The same heuristic as FAF was used in constraint satisfaction problems as early as
1975 [6] as a search rearrangement method and Purdom [40] analyzed its applica-
tion to SAT problems. Although the heuristic has been used in planning for some
time [10], there was little analysis on how the heuristic is effective in Al planning.

In this chapter, the FAF heuristic is addressed from various aspects. First,
a version of the FAF heuristic is compared with a “least commitment to task
achievement” strategy and a “least commitment to variable bindings” strategy in
HTN planning. The experimental results show that the version of FAF does as well
as or better than either one of the two least commitment strategies. In Section 3.2,
refinement strategies are modeled as methods to serialize AND/OR graphs. The
efficiency of a strategy can then be measured by the size of the serialized graph.
The FAF heuristic is compared with the best and worst serializations theoretically
and empirically. Section 3.3 presents related work and Section 3.4 summarizes the

results.

3.1 Commitments to Variable Bindings

Many planners use a “least commitment to variable bindings” strategy where vari-
able instantiation is delayed until it is necessary. The experimental results shown
by Yang and Chan [56] seem to imply that their “least commitment to variable
bindings” strategy always performs better than (or at least as well as) the default

strategy of the SNLP planner in which a variable is instantiated with a constant
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value when there is a condition on the variable.

This section investigates the effects of variable commitments for HT'N planning,
to see if it also has a strong performance effect, as indicated by the results of Yang
and Chan in action-based planning. Many planners, including UMCP, keep a set
of possible values for each variable. When enforcing a constraint that affects a
variable, the planner tries to constrain the set of possible values for the variable
instead of immediately instantiating it. For example, suppose a condition (p X)
will be satisfied in the specified world state if the value of x is a, b or c. the
planner creates a partial plan where x has the possible value set {a, b, c}, instead
of creating three partial plans with alternate variable assignments (i.e. x=a, x=Db
or x =c¢). Such a refinement strategy helps to keep the size of the search space
small by avoiding unnecessary branching in the search. However, some constraints
that involve two or more variables cannot be enforced without branching. For
example, suppose in the current partial plan P, the possible values for x and the
possible values for y are both {a, b}. Then in order to enforce the non-codesignation
constraint (x #y), the planner has to create two partial plans, one with x =a and
y = b, and another with x = b and y = a. Another example would be enforcing
the state constraint (before (color ?ball ?color) n), when both the conditions (color
balll blue) and (color ball2 green) are true in the state just before the task referred
to by n. In either case, the planner can enforce the constraint by instantiating
the variables involved, resulting in two partial plans. Upon encountering such
constraints, a planner has to determine whether to enforce them now or delay
the enforcement. Some planners delay the enforcement of the constraints until the
time when the variables are constrained enough (by some other constraints) for the

planner to avoid branching, or until the time when there are no other refinements
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applicable to the partial plan. The UMCP planner delays the enforcement of non-
codesignation constraints but enforces state constraints immediately if they are
enforceable in the current partial plan. The problem with the delaying method is
that the deferred constraints may not be establishable, and in that case delaying the
enforcement of constraints could incur a large backtracking cost.! On the other
hand, additional constraints may constrain variables in a way the planner can
avoid unnecessary branching. Consider the above example of the state constraint
(before (color ?ball ?color) n) again. If the planner later encounters a constraint that
binds the variable ?color to green, then it can satisfy the condition by binding the
variable ?ball to ball2. Since it is difficult for the planner to foresee what types
of constraints it will encounter later, it needs some heuristic to aid the decision
process.

We compared the relative performance of three variable commitment strategies
for HTN planning: the Reluctant Variable Binding Strategy (RVBS), which does
least commitment to variable bindings, the FEager Variable Instantiation Strat-
egy (EVIS), in which no non-primitive task is expanded until all variable con-
straints are committed; and the Dynamic Variable Commitment Strategy (DVCS),
a FAF strategy which chooses between expansion and variable instantiation based
on the number of branches that will be created in the search tree. The results show
that there are planning domains in which EVIS does well, and planning domains
where it does poorly. The same is true for RVBS. However, DVCS, which can
choose between eager variable commitment and reluctant variable commitment
depending on what looks best for the task at hand, does well over a broader range

of planning domains.

1This problem is also investigated in [21] using action-based planning framework.

30



3.1.1 Strategies

As argued above, avoiding refinements to one aspect of planning can lead to pre-
mature refinements to other aspects of planning. Thus, what a planner needs is
some way to find a balance between the refinements of different aspects of planning.
One way is to use the FAF heuristic which chooses a refinement which generates
fewer immediate search nodes. We created an implementation of such a “dynamic
commitment” strategy and compared it experimentally with implementations of
a “least commitment to variable bindings” strategy and a “least commitments to
task instantiation” strategy. More specifically, the commitment strategies are as

follows:

e Fager Variable Instantiation Strategy (EVIS). This is an HTN version of the
eager variable commitment strategy. When there are constraints on vari-
ables in the current partial plan, don’t expand any non-primitive task until
all constraints are satisfied. Instantiate variables into constants whenever

necessary to resolve constraints.

e Reluctant Variable Binding Strategy (RVBS). This is basically the opposite
strategy. Delay instantiating variables as much as possible. If a constraint
cannot be satisfied without generating more than one partial plan, expand

all tasks before committing to such constraints.

e Dynamic Variable Commitment Strategy (DVCS). This strategy attempts to
minimize the branching factor as discussed earlier. Suppose T is the current
partial plan and there is a constraint C in T which cannot be satisfied without
generating more than one partial plan. For each variable x in C, let v(x)

be the number of possible values for v; and for each task t in T, let m(t)
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be the number of methods that unify with t. Let V = min v(x) : x is a
variable in C; and let M = min m(t) : tis a task in T. If V. < M, then
choose to instantiate the variable x for which v(x) is smallest. If M <V,
then choose to expand the task t for which m(t) is smallest. Although this
decision criterion may seem more complicated than EVIS and RVBS, the
overhead involved in computing it is negligible. When M = V| expansions
are favored over instantiations because further constraint refinements might
constrain the possible value set but not limit the number of methods. Unless
the task network is pruned, expansion will eventually take place with the
same number of methods. On the other hand, it is possible to instantiate a

variable with fewer possible values if the instantiation is delayed.

To make the comparison between strategies easier, RVBS and EVIS use the
same selection methods that DVCS uses to choose tasks and variables. More
specifically, when the strategy decides to expand a task, it expands the task t with
the minimum number of methods in the current partial plan. When the strategy
decides to instantiate a variable to satisfy a constraint C, it instantiates the variable

v in C that has the minimum number of possible values.

3.1.2 Experiments

We compared the EVIS, RVBS, and DVCS refinement strategies by using them
in the UMCP planner on randomly chosen problems in three different planning
domains. The three planning domains—and the experimental results in those
domains—are described below. The experiments were run using Allegro Common
Lisp on a SUN Sparc station, and running UMCP1.0 with a depth-first search

strategy. For each problem and each refinement strategy, both the CPU time and
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(toptask) Method 1

n:
(ctask ?v1 ?v2)

Constraints:

?vlm?v2 & (initially (obj ?v1))
&(initially (obj ?v2))

(ctask ?vl ?v2) Method 1 (ctask ?vl ?v2) Method 10
n: n:
(ptaskl ?v1 ?v2 ) (ptask10 ?v1 ?v2 )
Constraints: | ¢ Constraints:

(initially (type ?v2 t1)) (initially (type ?v2 t10))

Figure 3.1: Methods for Domain A

the number of nodes (i.e., the number of task networks) generated were counted.

Since both measurements gave similar results, only the CPU time is shown.

3.1.3 Domain A

In Domain A the goal is to find a way to accomplish a 0-ary task (toptask). As shown
in Figure 3.1, (toptask) expands into a 2-ary task (ctask ?vl ?v2), where ?vl and ?v2
are variables; and there are ten different methods for expanding (ctask ?vl ?v2).

The initial state is the set

{ (obj obj1), (obj obj2), - - -, (obj obj10), (type o t) }

where o € {objl, - - -, 0bj10} and ¢ € {t1, ---, t10}. Different planning problems
are specified by choosing different values for o and ¢. Since the initial state has
exactly one type literal, there is only one successful way to bind the variable ?v2

and expand the task (ctask ?vl ?v2). The planning problem is to find the method
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Figure 3.2: CPU time (in seconds) in Domain A

that works. EVIS, RVBS, and DVCS were compared in Domain A by running them
on a suite of 100 randomly generated problems. Figure 3.2 shows the performance
of UMCP with the three commitment strategies. There is exactly one solution
for each problem. For each problem, RVBS and DVCS always find this solution
after creating 14 task networks. Depending on the problem, EVIS creates between
24 and 114 task networks. UMCP’s average CPU times were 2.88 seconds using
EVIS, 0.71 seconds using RVBS, and 0.66 seconds using DVCS.

able ?v2 before expanding the task ctask, and this tends to bind ?v2 to an object

o4



that does not meet the constraint found in the methods of ctask. On the other
hand, RVBS does not instantiate ?v2 until after enforcing the constraint (type ?v21)
so it does not make an instantiation of ?v2 which eventually fails. DVCS chooses
to expand ctask before the instantiation of ?v2 since the values of V and M are the

same (10), and thus performs identically to RVBS.

3.1.4 Domain B

Domain B is basically an encoding of the well known arc-consistency problem [27].
As in Domain A, the goal is to accomplish toptask; but the methods are different.
As shown in Figure 3.3, toptask expands into ctaskl, ctaskl expands into ctask2, and
ctask2 expands into ctask3. The methods for ctaskl specify that ?vi, ?v2 and ?v3
must have different values but the same type. ctask2 and ctask3 each have four
identical methods, which increases the branching factor when UMCP does task

expansion. The initial state is the set

{ (obj obj1), (0bj 0bj2), - - -, (0bj obj7),

(type obj1 #1), (type obj2 t5), - - -, (type obj7 7) },

where each #; is t1, t2 or t3. Different planning problems in this domain are
specified by choosing different values for each of the ¢;. The problem is to find
three different objects which share the same object type. In Domain B, a suite
of 50 problems was created by randomly assigning types to each object obj; in
the initial state. Each problem had at least one solution. The results are shown
in Figure 3.4. EVIS and DVCS created the same number of task networks for
each test problem, and incurred about the same amount of CPU time. UMCP

averaged 1.09 seconds and 1.10 seconds, respectively. RVBS never did better than
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(toptask)

Method 1

n:

(étaskl ?vl ?v2)
Constraints:
(initially (obj ?v1))

&(initially (obj ?v2))

(ctaskl ?vl ?v2)  Method 1

n:

(ctask2 t1 ?v1 ?v2 ?v3)
Constraints:
?2vin?v2 & ?v21?v3 & ?vim?v3
&(initially (type ?v1 t1))
&(initially (type ?v2 t1))
&(initially (type ?v341))

(ctask2 ?t ?vl ?v2 ?v3) Method 1

n:
(ctask3 ?t ?vl ?v2 ?v3)

Constraints: none

(ctask3 ?t ?vl ?v2 ?v3) Method 1

n:
(ptask ?t ?vl ?v2 ?v3)

Constraints: none

(ctaskl ?vl ?v2) Method 3

n:

(ctask2 t3 ?v1 ?v2 ?v3)
Constraints:
2vin?v2 & ?v21?v3 & ?vim?v3
&(initially (type ?v1 t3))
&(initially (type ?v2 t3))
&(initially (type ?v3 t3))

ctask2 ?t ?vl ?v2 ?v3) Method 4

n:
(ctask3 ?t ?2v1 ?v2 ?v3)

Constraints: none

(ctask3 ?t ?2vl ?v2 ?v3) Method 4

n:
(ptask ?t ?2vl ?v2 ?v3)

Constraints: none

Figure 3.3: Methods for Domain B
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EVIS or DVCS, and usually did much worse. On the average, UMCP’s CPU time
with RVBS was 2.54 seconds. The reason for these results is that when ctaskl is
decomposed by using a particular method, each variable ?v1, ?2v2 or ?v3 has to be an
object that is of the particular type. If there are only two or less obj;’s in the initial
state that are of the particular type, the partial plan will fail. Thus, it is better to
instantiate the variables if the variable has two or less possible values. Thus, since
EVIS instantiates variables ?v1, ?2v2 and ?v3 before expanding the task ctask2, EVIS
can prune the partial plans which cannot satisfy the constraints imposed in the
methods for ctaskl. Also, since DVCS chooses to instantiate variables when they
have three or less possible values, rather than decomposing ctask2, DVCS also can
prune such partial plans. On the other hand, RVBS does not instantiate variables
until they are fully expanded into primitive task networks. Thus RVBS generates

task networks that would not be generated by EVIS.

3.1.5 Domain C

As shown in Figures 3.5 and 3.6, Domain C contains tasks and methods similar
to those from both Domains A and B. Solving the problem involves combining
methods similar to those in Domain A with methods similar to those in Domain
B-—but the order in which these methods should be used depends on whether the

goal is toptaska or toptaskb. The initial state contains the atoms

{ (obj obj1), (obj 0bj2), - - -, (0bj obj10) },

and also fifteen atoms of the form (type ot) where type € {typel,type2}; o € {obj1,
...,00j10 }; and ¢t € {t1,t2,t3}. Different planning problems are specified by choosing

different values for o and ¢, as well as by choosing either toptaska or toptaskb as the
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Figure 3.4: CPU time (in seconds) in Domain B
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(toptaska) Method 1

n:

(ctaskal ?v1 ?v2)
Constraints:
(initially (obj ?v1))
&(initially (obj ?v2))

(ctaskal ?vl ?v2)  Method 1

n:
(ctaska2 t1 ?v1 ?v2 ?v3)

Constraints:

(initially (typel ?v1 t1))
&(initially (typel ?v2 t1))
&(initially (typel ?v3 tl1))
&?v1T?v2&?vIT?v3&?v2TT?v3

(ctaska2 ?t ?vl ?v2 ?v3) Method

=

n:
(ctaska3 ?t ?vl ?v2 ?v3)

Constraints:
none

(ctaska3 ?t ?vl ?v2 ?v3) Method

=

n:
(ptaska ?t ?v1 ?v2 ?v3)

Constraints:
(initially (type2 ?v1 t1))

(ctaskal ?vl ?v2) Method 3

n:
(ctaska2 t3 ?v1 ?v2 ?v3)

Constraints:

(initially (typel ?v1 t3))

&(initially (typel ?v2 t3))

&(initially (typel ?v3 t3))

&?v1T?v2&?2v1T?v3&?v2T1?Vv3

ctaska2 ?t ?vl ?v2 ?v3) Method 4

n:
(ctaska3 ?t ?2vl ?v2 ?v3)

Constraints:
none

ctaska3 ?t ?vl ?v2 ?v3) Method 3

n:
(ptaska ?t ?vl ?v2 ?v3)

Constraints:

(initially (type2 ?v1 t1))

Figure 3.5: Methods for the decomposition of (toptaska) in Domain C
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(toptaskb) Method 1

n:
(ctaskbl ?v1 ?v2)
Constraints:
(initially (obj ?v1))
&(initially (obj ?v2))
&?vimv2

(ctaskbl ?v1 ?v2) Method 1

(ctaskbl ?v1 ?v2) Method 3

n:
(ctaskb2 t1 ?v1 ?v2)

Constraints:
(initially (typel ?v2 t1))

n:
(ctaskb2 t3 ?v1 ?v2)

Constraints:
(initially (typel ?v2 t3))

(ctaskb2 ?t ?vl ?v2) Method 1

(ctaskb2 ?t ?vl ?v2) Method 3

n:
(ctaskb3 ?t t1 ?vl ?v2 ?v3)

Constraints:

(initially (obj ?v3))

&(initially (type2 ?v1 t1))
&(initially (type2 ?v2 tl1))
&(initially (type2 ?v3 tl1))
&?v1T?v2&?v1iT?v3&?v2T1?Vv3

n:
(ctaskb3 2t t3 ?v1 ?2v2 ?v3)

Constraints:

(initially (obj ?v3))

&(initially (type2 ?v1 t3))
&(initially (type2 ?v2 t3))
&(initially (type2 ?v3 t3))
&?v1T?v2&?v1T?v3&?v2T1?Vv3

(ctaskb3 ?t 2w ?v1 ?v2 ?v3) Method 1

(ctaskb3 ?t 2w ?v1 ?v2 ?v3) Method 4

n:
(ptaskb t1 ?vl ?v2 ?v3)

Constraints:
none

n:
(ptaskb t3 ?v1 ?v2 ?v3)

Constraints:
none

Figure 3.6: Methods for the decomposition of (toptaskb) in Domain C

60




EVIS RVBS

8 8
7 7
6 6
gs g5
Sa Sa
&3 &3
2 2
1 1
0 20 40 60 80 100 0 20 40 60 80 100
Problem Number Problem Number
s DVCS
.
6
gs
S
%3
2
1
0 20 40 60 80 100

Problem Number

Figure 3.7: CPU time (in seconds) in Domain C

goal. In Domain C, a suite of 100 problems were created by randomly selecting
the goal tasks and initial states. Of these problems, 44 problems had the goal task
toptaska and 56 problems had the goal task toptaskb. Seven of the 100 problems had
no solutions. As shown in Figure 3.7, DVCS had the best performance overall.
UMCP’s average CPU times were 2.15 seconds using EVIS, 1.83 seconds using
RVBS, and 1.38 seconds using DVCS.
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T-test

To test whether or not the differences shown in Figure 3.7 were statistically signif-
icant, a paired sample t-test was applied to the results. Let pp be UMCP’s mean
CPU time using DVCS and gr be UMCP’s mean CPU time using RVBS. The null
hypothesis Hy is that pr — up = 0 (or Hy: pp = pp); the alternative hypothesis
H; is that pp — up > 0. The t statistic computed from the results is 5.569. This
is greater than the value 2.626 of the t-distribution with probability 0.995 where
the degrees of freedom is 100. Thus we can reject Hy and say that the difference of
the means is significant. Similarly, the difference of the mean CPU time for DVCS
and the mean CPU time for EVIS is significant with the t statistic 8.155 and the
confidence level greater than 0.999. The reason why DVCS outperformed EVIS
and RVBS is that even while solving a single planning problem, which refinement
strategy is best can vary from task to task—and DVCS can select between the
EVIS and RVBS strategies on the fly.

3.1.6 Weighed DVCS

The above experimental results show that neither RVBS nor EVIS performs well
for all kinds of domains. The DVCS strategy can outperform RVBS and EVIS
by alternating between the two strategies. The selection of a strategy in DVCS is
made by calculating the number of immediate search nodes each strategy generates
and choosing the strategy which generates fewer search nodes. The question re-
mains that if this method of selection is the best selection. In order to investigate
the strategy selection methods, We modified DVCS to create a weighed DVCS
strategy (WDVCS) which takes a valuer (0 < r < 1) to put weights on EVIS and

RVBS when selecting a strategy. More specifically, WDVCS chooses a refinement
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Figure 3.8: The results for the problems in Domains A, B and C by applying the
WDVCS strategies. The x-axis shows the r-value and the y-axis shows the average

number of nodes generated.

as follows: For each variable x in T, let v(x) be the number of possible values for
v; and for each task t in T, let m(t) be the number of methods that unify with
t. Let V = min v(x) : x is a variable in T; and let M = min m(t) : t is a task
in T. If (1-1)*V < ™M, then choose to instantiate the variable x for which v(x)
is smallest. If (1-1)*V > r*M, then choose to expand the task t for which m(t) is
smallest. Thus, WDVCS simulates RVBS when r = 0, DVCS when r = 0.5 and
EVIS when r = 1.

Figure 3.8 shows the results of WDVCS on Domains A, B and C problems
that were generated in the experiments of RVBS, EVIS and DVCS. The r-value is
varied from 0 to 1 with an increment of 0.1. The results show that WDVCS does
best when r < 0.5 on Domain A, when r > 0.4 on Domain B, and when r = 0.4

on Domain C. This suggests that DVCS is not always the best strategy to choose
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between the two strategies, although we suspect that the WDVCS strategy with

r = 0.4 does not perform best in all types of domains.

3.1.7 Summary

Many planning papers are devoted to various least commitment strategies which
postpone some types of refinements during planning process. However, least com-
mitment does not necessarily do well on all kinds of problems. In order to plan,
a planner needs to make decisions; if it postpones some type of refinements, it
has to work on other types of refinements. Thus, a planner cannot apply least
commitments to all aspects of planning.

Three strategies were tested: EVIS and RVBS are two least commitment strate-
gies where each tries to delay different type of commitments. EVIS uses a “least
commitment to task instantiation” strategy, while RVBS uses a “least commit-
ment to variable bindings” strategy. DVCS uses the FAF heuristic to dynamically
switch between EVIS and RVBS. The experiments on Domains A and B showed
that neither one of the two strategies can perform well on all kinds of problems.
The third strategy, DVCS, uses the FAF heuristic to switch between EVIS and
RVBS. More specifically, DVCS chooses to work on the refinement which gener-
ates fewest immediate search nodes. On Domain A, where RVBS outperformed
EVIS, DVCS performed as well as RVBS. On Domain B, where EVIS outperformed
RVBS, DVCS performed as well as EVIS. And on Domain C, which is a combina-
tion of the Domains A and B, DVCS outperformed either EVIS or RVBS for most
of the problems.

Although the three test domains contain only non-codesignation constraints as

constraints that cannot be fully established without branching, similar performance
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of the three variable commitment strategies can be expected on the domains that
contain state constraints such as the one described at the beginning of this section.
The performance of a variable commitment strategy depends on many factors

including:

e The probability of a variable instantiation succeeding: If a variable has many
values the variable can be instantiated with, but only one value leads to a
solution plan, then a strategy that delays instantiating the variable performs
better than a strategy that eagerly instantiates variables. On the other hand,
the opposite is true if a variable may have many values that the variable can

be instantiated with and each value heads to a solution plan.

e The probability of a decomposition method succeeding: Like variable instan-
tiations, a task may have many decomposition methods but only one of them
may work in the current problem, or all of them may succeed in the current

problem.

o Existence of inconsistent variable bindings: As in Domain B, some problems
may make the planner handle constraints that do not have a consistent set
of variable bindings. In order to find such inconsistency, a planner can in-
stantiate variables, as EVIS does, or run a constraint satisfaction problem
solver, as FSNLP [56] does. Either way, if there is no inconsistency, these

operations could impose big CPU time.

Also, many of these factors can influence each other. For example, choosing
some decomposition method may add new constraints to the partial plan that

make the variable bindings in the plan inconsistent. Considering all the factors,
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a dynamic variable commitment strategy that switches between different strate-
gies depending on the current situation is necessary to maximize the efficiency of
variable commitments in planning.

We also tested the WDVCS strategy which switches between EVIS and RVBS
with varying amount of weight for each strategy. DVCS can be viewed as the
WDVCS strategy which put the same amounts of weights to both EVIS and RVBS.
The experimental results on WDVCS show that DVCS is not the best strategy for
all of the domains; on Domain C, WDVCS performed best when the r-value is
0.4 and the RVBS is slightly more preferred than EVIS. However, we doubt that
WDVCS with the r-value = 0.4 always performs best in all types of problems.
Rather, WDVCS would probably perform best with different r-values in different
sets of problems, depending on the factors listed above. However, the results
strongly imply the best strategy lies in somewhere in the middle, considering the
worst performance in each domain appears at the end (i.e. r-value = 0 or 1). Thus,

DVCS seems to be the best bet for many types of problems.

3.2 Graph Serialization

The experimental results shown in the previous section seems to indicate that the
FAF heuristic performs well in choosing between task instantiations and variable
bindings. This section examines the FAF strategy in more detail, to try to un-
derstand whether it can be expected to perform well in general—and if so, then
why.

The search process that is carried out by an Al planning system can be seen as
taking an AND/OR graph and generating from it an equivalent state-space graph,

one OR-branch at a time. This process is called serializing the AND/OR graph.
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Different refinement strategies for planning correspond to different strategies for
serializing the AND/OR graph. Since different serialization strategies produce
different search spaces, they contain different numbers of nodes. This section
analyzes the size of search space the FAF strategy by looking at the the sizes of
serialized trees that can be obtained by applying the FAF strategy to serialize
various AND/OR graphs.

3.2.1 Partial-Order Planning and AND/OR Graphs

The space searched by a partial-order planner may be thought of as an AND/OR

graph in the following manner:

e Given a partially developed plan, there may be several elements of the plan
that need to be refined in one way or another. These could include both
unachieved goals or tasks (which would be refined by finding ways to achieve
them), and unsatisfied constraints (which might be satisfied by binding vari-
ables or specifying node orderings). All of these elements will sooner or later
need to be refined-and thus the choice of which refinement to make next

corresponds to an AND-branch in the planner’s search space.

o For each element that needs refining, there may be more than one way to re-
fine it (for example, several ways to instantiate a variable, or several operators
or methods applicable to an unachieved goal or task), generating different
partial plans. Any applicable refinement will be satisfactory provided that it
produces a satisfactory plan-and thus the choice of how to reduce an element

corresponds to an OR-branch in the planner’s search space.
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Figure 3.9: A tree T, and the trees nT and Tn (where n is a node not in T).

If the refinements performed on a plan were independent in their effects on the
plan, a partial-order planner could search the AND/OR graph directly, building
up a solution to the planning problem straightforwardly by finding independent
solutions to subproblems and composing them into solutions to higher-level prob-
lems. However, since the goals usually are not independent, partial-order planners
usually do not decompose the search space. Instead, when they refine some ele-
ment of a plan, they keep track not only of the element that is being refined, but
also of the entire rest of the plan. Thus, the planner searches a search tree that is
a "serialization” of the AND/OR graph.

Although the concept of serializing an AND/OR graph is conceptually straight-
forward, the formal definition is rather complicated notationally. To keep the
notation simple a formal definition is given only for the special case where the
AND/OR graph is binary (i.e., each non-leaf node has exactly two children). How-
ever, it should be obvious to the reader how to generalize this definition for the
non-binary case.

First, look at the following notation (see Figure 3.9 for examples).

It T is a tree whose node set is N and whose edge set is E; and n is any node

not in N, then:
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Tn is the tree whose node set is {np : n € N} and whose edge set is

{(mp,np) : (m,n) € L};

nT is the tree whose node set is {pn : n € N} and whose edge set is

{(pm,pn) : (m,n) € E}.

If G is a binary AND/OR graph, there are three possible cases for what its

serializations are:

Case 1:

Case 2:

Case 3:

G consists of a single node. Then the only serialization of G is G itself.

G contains more than one node, and the branch emanating from G’s root
node g is a binary OR-branch. Let H and I be the AND/OR graphs rooted
at the two children of g; and let S and T be any serializations of H and I,
respectively. Then as shown in Figure 3.10, the tree R whose root is g and

whose subtrees are S and T is a serialization of G.

G’s root node g is not a leaf, and the branch emanating from g is a binary
AND-branch. Let H and I be the AND/OR graphs rooted at the two children
of g. Let S be any serialization of H, and let T be any serialization of I. Let
S’s root be s and its leaf nodes be sy, sg, ..., s,; and let T’s root be t and its
leaf nodes be tq, t2, ..., t,. Then as shown in Figure 3.11, the following trees

are serializations of G:

— the tree Ry formed by taking the tree St, and attaching to its leaves s;t,

sat, ..., spt the trees s, T, ;T ..., s, T, respectively;

— the tree Ry formed by taking the tree sT, and attaching to its leaves

st1, stq, ..., st, the trees Sty, Stq, ..., St,, respectively.
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Figure 3.10: Case 2 of serializing an AND/OR graph.

G: R: R:

oSt /St\ ’ ST:/St\
" . st st st
= 1 B2 N2 2 2N
it T Sltl A sltq SDtl e sth S1t1 e SDtl Sltq e Sptq

Figure 3.11: Case 3 of serializing an AND/OR graph.

In Figure 3.11, both serializations of the AND/OR graph have the same number
of nodes-but this needs not always be the case. As an example, Figure 3.12 shows
another AND/OR graph, and three possible serializations of it. Note that in each
serialization, the set of leaf nodes is exactly the same. Furthermore, for each leaf
node, the number of paths-and the set of operations along each corresponding
path-are also the same. What differs is the order in which these operations are
performed-and since different operations produce different numbers of children,
this means that different serializations contain different numbers of nodes.

The idea of serializing an AND/OR graph occurs in a number of search pro-
cedures, although the first case we know of where such a technique was described
explicitly was in the SSS* game-tree search procedure [46]. One well known exam-
ple is Prolog’s search procedure (for example, see Clocksin and Mellish [9]), which
serializes AND/OR graphs in a depth-first left-to-right manner. For example, in
graph G of Figure 3.12, suppose that each node corresponds to a logical atom,

each AND-branch corresponds to a Horn clause, and each OR-branch corresponds
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Figure 3.12: A simple AND/OR graph G, and three serializations Sy, Sy, and S5.

to the different ways a literal might match the head of a Horn clause. Then Prolog
would do a depth-first search of the tree S;. In general, the number of possible se-
rializations of an AND/OR graph can be combinatorially large; for example, there
are ten possible serializations of the graph G of Figure 3.12. Which serialization
will actually be used depends on the search procedure. For example, a procedure
that achieves goals and subgoals in a depth-first left-to-right fashion (as Prolog
does) would serialize (7 into S7, but a procedure that achieves goals and subgoals
in a depth-first right-to-left fashion would serialize G into S5 instead.

Obviously, a planner will not necessarily examine every node in its serialized
search tree. It may prune some of these nodes as infeasible, and it may find
its desired solution before it examines all of the unpruned nodes. However, in the
worst case, the planner will need to examine every one of the nodes in the serialized
search tree. In such a case, a planner that searches the tree S3 of Figure 3.12 will

likely be more efficient than a planner that searches the trees S; or Ss.
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b

(a) Basic pattern. (b) AND/OR tree G, produced by the pattern whenb =2 and k = 3.

(c) The smallest possible serialization T-,; of G,5.

Figure 3.13: A basic pattern consisting of an AND-branch leading to two OR-
branches, an AND/OR tree formed by repeating this pattern, and the smallest

possible serialization of the AND/OR tree.
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3.2.2 Best and Worst Serializations

It a serialization strategy that would always find the smallest serialization of an
AND/OR graph could be found, how much would this help? To get an idea of the
answer, take the pattern shown in Figure 3.13a, and use it repeatedly to form an

AND/OR tree Gy of height 2k, as shown in Figure 3.13b. In G}, the number of

occurrences of the pattern is
ar=1+0+1)+b+1)2+...+ b+ 1)t =0(b),
so the total number of nodes in Gy 4 is
n(Gog) =1+ (b+3)eps = O(bF).

Let T}, and Tb‘!'k be the serializations of GGy, ;, that have the smallest and largest
node counts, respectively. Both of these trees have the same height, which can be

calculated recursively as follows:

WTo) = h(T) 2 ifk =1,
bk) — bk —
Zh(Tb'!'k_l) + 2 otherwise,

3
= Y 20=2M1_2
=1
Ty, and Tb'!'k both consist of 257! levels of unary OR-branches interspersed with
2F=1 levels of b-ary OR-branches. However, Ty, has its unary OR-branches as near
the top as possible and its b-ary OR-branches as near the bottom as possible; and
vice versa for Tb'!'k. As shown in Figure 3.13c, the branches at the top k levels of

Ty, are all unary, and those at its bottom 2F=1 Jevels are all b-ary; the reverse is

_I_
true for Tb,k‘
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We can calculate the node counts for Ty} by tracing at which levels b-ary

OR-branches branches appear. The total number of nodes in Ty is

b
n(T) = 1+k+0k+0(1+b)(k—1)+--+0* ﬁ

2t—1

= 1+k+2{52’ Zb’“

_ 1+k+z{bz’f k=) = 6

Similarly, we can calculate the node counts for Tb'!'k by tracing at which levels

unary OR-branches branches appear. The total number of nodes in Tb‘!'k is

pEL — 1 b —1 b1 —1 .
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Thus, the numbers of nodes in the worst possible serialization and the best

possible serialization differ by a multiplicative factor of ©(2%).

3.2.3 Fewest Alternatives First

During the course of its operation, an Al planning algorithm will generate a seri-
alization of an AND/OR graph one OR-branch at a time. For example, starting
from the node a in the AND/OR graph G shown in Figure 3.12, the first choice

is whether to expand the OR-branch rooted at b or the OR-branch rooted at f.
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Figure 3.14: A situation where the FAF heuristic fails to produce the best serial-
ization of an AND/OR graph. FAF chooses to expand i before b, thus producing

S1; but 52 contains fewer nodes.

It we choose b then we will end up producing a state space similar to 57 or Sy;
and if we choose f then we will end up producing a state space similar to S3. One
way to choose which OR-branch to expand next is to use the fewest alternatives
first (FAF) heuristic. In many cases, this simple heuristic produces optimal results.
For example, in Figure 3.12, this heuristic would choose to expand f, h, and j before
expanding b, thereby producing the tree Sjs.

FAF is also easy to compute. The cost of computing FAF at any node n is
O(e(n) + g(n)), where ¢(n) is the number of n’s children, and g(n) is the number
of n’s grandchildren. Thus, if one assumes (as is typical in analyses of Al search
algorithms) that the branching factor of each node is bound by some constant b,
then the cost of computing FAF is O(b 4 b*) = O(1).

Despite its good empirical performance, the FAF heuristic does not always
produce optimal results. For example, consider the graph GG shown in Figure 3.14.
To serialize (G, the FAF heuristic would choose to expand i before expanding b, thus
producing the tree S;. However, if it had chosen to expand b first, it would have

been able to produce the smaller tree S;. This counter-example is reminiscent
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of what happens in a number of NP-hard optimization problems, in which the
obvious hill-climbing heuristics for the problems will make the best choice in a
large number of situations, but will sometimes make choices that cause greater
costs to be incurred later on. At least one example of this occurs in the Al planning
literature, involving a greedy heuristic for the block-stacking problem [19].

To formalize the notion of “optimal results” in the previous paragraph, first
we defined a “minimal serialization” of an AND/OR graph G to be a serialization
T of GG such that no other serialization of (¢ contains fewer nodes than 7. Now,
suppose there is an AND/OR graph GG whose root branch is an AND branch. Let
the children of the root node be ny, ny, ---,ng. Then for ¢+ = 1,---k, the node n;
is an optimal candidate for expansion if there is a minimal serialization of T' of
(G whose root branch is formed by expanding n;. For example, f is the optimal
candidate in Figure 3.12, and b is the optimal candidate in Figure 3.14. Finding

an optimal candidate for expansion is probably NP-hard.

3.2.4 Experimental Studies of FAF

As the experimental results in the previous section and the other studies [20]
show, FAF performs well in many domains, but there exist cases where it does
poorly. This raises two important questions. First, although FAF performs well
in comparison with other popular heuristics, it is not known how close it comes
(on the average) to finding the best possible serialization. Second, it is useful
to know how it compares, on the average, with the best, worst, and/or average
serializations. To try to answer these questions, this subsection presents the results
of an experimental exploration.

The performance of FAF was compared with an average serialization performed
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on 50 different randomly generated AND/OR trees. The sample trees were gen-
erated using a tree generation algorithm based on [29]. These trees had 1 to 5
branches at each node, with a maximum depth of 8. All nodes at even depths were
AND-nodes, while all nodes at odd depths were OR-nodes. Thus, leaves were only
placed at even depths. The algorithm was set to generate 50 random trees with an
average number of nodes close to 30 and the average depth close to the maximum.
In the population that was actually generated, the average tree size (number of
nodes) is 32.32 and the average depth is 7.64. The smallest tree is of size 19 and
the largest tree is of size 51. The number of serializations for the trees varied from
1 through to over half a million.

To find the best and worst serializations, a program is used to exhaustively
enumerate all serializations, keeping track of minimum, maximum and average size.
Due to the extreme number of serializations for many of the trees, this program
was run for up to 50,000 serializations. If the first program had not enumerated
all serializations by this cut off (i.e. there were more 50,000 serializations for the
given tree), a separate algorithm is used which randomly generated 50,000 trials
instead. The minimum, maximum and average were again collected.

The FAF algorithm was also run on each tree, by applying the heuristic at
each AND-node expansion (When there were more than two smallest branches,
the leftmost one was chosen). Data on the number of serializations, minimum,

maximum, average, and FAF sizes are all shown in Table 3.1.

77



No. of Size of Size of Average Size of

Tree possible smallest largest  serialization serialization
serializations serializations serializations size found by FAF

1 4228 38 64 43.6 39
2 4 33 34 33.2 33
3 >50000 156 275 185.0 154
4 352 64 73 66.3 64
5 >50000 123 204 143.6 121
6 >50000 71 126 86.0 71
7 7 18 25 20.0 18
8 56 19 30 22.1 19
9 >50000 259 321 277.6 259
10 17424 156 175 162.0 159
11 5284 61 67 62.9 61
12 >50000 1488 2170 1697.0 1450
13 >50000 267 340 292.7 267
14 >50000 253 463 331.0 255
15 >50000 229 274 246.8 235
16 >50000 158 254 196.6 158
17 >50000 744 861 791.5 746
18 16777 56 93 71.2 56
19 180 29 44 35.4 29
20 >50000 109 157 129.8 111
21 4 36 38 36.8 36
22 >50000 117 136 125.4 117
23 14 17 23 19.6 17
24 >50000 84 122 101.2 84
25 5792 49 56 52.1 49
26 >50000 334 434 374.0 322
27 146 40 49 44.2 40
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No. of Size of Size of Average Size of

Tree possible smallest largest  serialization serialization
serializations serializations serializations size found by FAF

28 100 106 115 110.2 108
29 8992 71 83 76.6 71
30 44 32 41 36.4 34
31 >50000 335 434 381.4 330
32 4 33 34 33.5 33
33 3 28 29 28.5 28
34 20 27 33 30.0 28
35 >50000 354 462 405.9 348
36 >50000 162 184 173.2 165
37 28 40 45 42.5 40
38 >50000 226 327 280.9 239
39 >50000 249 310 282.4 278
40 >50000 173 225 201.5 173
41 >50000 237 355 300.6 232
42 >50000 659 929 803.1 643
43 >50000 80 86 83.5 83
44 >50000 520 621 580.2 525
45 60 27 36 32.7 27
46 >50000 161 226 207.6 161
47 1014 70 82 79.6 82
48 1 15 15 15.0 15
49 2 17 17 17.0 17
50 4 24 24 24.0 24
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Table 3.1: Experimental results.
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smallest and largest serialization sizes.

The large variance in the sizes of the serializations makes comparison of the
raw data difficult. It is easy to see, however, that in 32 of the 47 cases where there
was more than a single serialization size, the FAF algorithm found the optimal
solution. To see how the algorithm performs overall, and to compare the algorithm
to the averages, a means to measure performance is necessary. In this case, the
normalized results were used, with 0 representing the best overall serialization
and 1 representing the worst. Figure 3.15 shows the performance of FAF vs. the
average.

In 46 of the 47 cases, FAF performs better than the average. In 32 cases, the
optimal is found, and in 44 cases, the algorithm performs better than half way
between optimal and average. They seem to be quite encouraging results, showing
that the FAF algorithm performs quite well in the average case.

There was, however, one case in which FAF produced the worst serialization
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Figure 3.16: The one tree in which FAF produced the worst serialization.

(and, in fact, this is also the only case where FAF did worse than average). The
cause of this can be analyzed by looking at the particular tree (shown in Fig-
ure 3.16). In this case, FAF could have produced the best serialization if it chose
the right child of the root to expand first instead of the left child. Since the pro-
gram used simply chose leftmost in the case of the tie, FAF did poorly in the
test. This does, however, show a potential weakness in implementations of FAF
for planning, since it needs to have an additional heuristic to use in these cases.
An examination of what to do in this case could lead to further improvement of

planning choice mechanisms.

3.2.5 Summary

The search process that is carried out by an Al planning system is shown to
correspond to ‘serializing” an AND/OR graph-mapping it into an equivalent state-
space graph. Different refinement strategies for planning thus correspond to differ-

ent strategies for serializing the AND/OR graph representing the planning choice
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points. Different serialization strategies produce state spaces of different sizes, and
the smallest serialization of an AND/OR graph can be exponentially smaller than
the largest one. A planner whose serialization strategy produces a small state space
is likely to be more efficient than a planner whose serialization strategy produces a
large state space. The above studies has shown that choosing an efficient strategy
can save exponential time.

Like most greedy heuristics, the FAF strategy does not always produce the
smallest possible serialization—but in the experimental results, it usually pro-
duced a serialization that was either optimal or near-optimal. The studies pre-
sented above suggest that the FAF strategy provides a good balance between the
complexity of computing the heuristic and the size of the resulting state space.

These results explain why FAF performs well in the previous studies, and opens
several interesting issues for exploration. First, as was noted, better serializations
lead to smaller search spaces, thus potentially improving planning behavior. How-
ever, the exact relationship between a given planner and this search space is quite
complex to describe, and there may be cases where certain planners interact bet-
ter with certain serializations. Second, while FAF performs quite well, it is clear
that there is still plenty of room for improvement. This can include looking for
algorithms that can better optimize search space (serialization) size, improvements
on FAF (for example better tie-breaking rules), and identification of analytic tech-
niques that could analyze the tree formed by the operators and better select or
prune the search spaces. Overall, the FAF heuristic seems to be a good selection

method when there is no good reason to prefer one refinement over others.
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3.3 Related Work

As mentioned before, the FAF heuristic was used in constraint satisfaction prob-
lems as early as 70s. Bitner and Reingold [6] provided the ‘search rearrangement’
method as one way to increase the speed of the search: Instead of setting the vari-
ables in a fixed order, the search is rearranged by choosing a variable that offers the
fewest alternatives. Purdom [40] did statistical analyses on the search rearrange-
ment method applied to SAT problems. By varying the number of clauses and the
probability that a literal appears in the clause, he found a class of problems where
the search rearrangement method can probably save exponential time compared
with the ordinary backtracking method.

The O-Plan planner [10] uses the branch-1/branch-N heuristic as one of the
assessment measures to decide which planning operation should be done during
the planning process. Branch-1 is a version of FAF which gives the number of
immediate search branches the operation generates. Branch-N gives an estimate
of the number of distinct alternatives that might be generated by working on the
operation. Operations with lower branch-1/branch-N estimates take high priority
when O-Plan is choosing an operation.

In action-based planning, Joslin and Pollack studied their least-cost flaw re-
pair (LCFR) strategy, a version of FAF, which was introduced in [20] as a good
strategy to determine which refinement operations to do next in a causal-link based
planner. In the following studies, Pollack, et al. [38] investigated the performances
of LCFR compared with many other strategies. From the experiments they per-
formed, they found that, except for the Tileworld domain problems, LCFR was
generally outperformed by a modified LCFR strategy that always delays threat

removal operations when the threats are resolved by separation. They reasoned
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that this is because those threats are often partially resolved by other refinement
operations if they are postponed. In the Tileworld domain, the planner has to plan
for moving from one location to the other in order to pick up tiles and fill holes
with them. Since a plan contains many instances of the operator (GO X, Y) to move
around, it is important to put orderings between these actions by resolving threats.
Without it, the planner has to handle partial plans with many GO actions without
knowing which location each GO originates from. Thus, doing those threat re-
moval operations early is essential to the planner’s efficiency. The modified LCFR
strategy, which delays those threat removal operations when they are separatable,
also delays the pruning, while the LCFR strategy resolves the threats earlier and

performs better.
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Chapter 4

External Conditions Method

In the previous chapter, the FAF heuristic was shown to do well in minimizing
the size of the search tree when it was applied to select alternative refinements
in the refinement search. These analyses suggested that if the FAF heuristic was
used throughout the planning process, it should perform well for many problems.
In reality, it did not. The reason is that the outcome of a refinement operation
does not always remain the same during the planning process, because many plan
refinement operations are inter-dependent. A refinement operation r which results
in N partial plans if it is applied to the partial plan P may result in M partial
plans where N # M if it is applied to a partial plan P’ which is a consequence of
another refinement s applied to P. This motivated us to look at interactions that
occur during the planning process.

This chapter presents a refinement strategy that reduces the cost of the back-
tracking that results from a certain kind of task interaction. The strategy, called
ExCon, performs better than FAF when used to select which task to decompose
next. The first section looks carefully at why FAF does not always work well, and
what a refinement strategy should do to perform better than FAF. We analyze

how tasks interact in HTN planning in Section 4.2. Section 4.3 defines a type of
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constraint called an external condition that an HTN planner can use to detect
possible task interactions during the planning process. Section 4.4 presents the
ExCon strategy that uses external conditions in order to handle task interactions
more efficiently. We implemented the ExCon strategy in the UMCP planner. The
implementation details are in Section 4.5. Section 4.6 compares FAF and Ex-
Con empirically. Related work is presented in Section 4.7. Finally, Section 4.8

summarizes the chapter.

4.1 Why FAF does not always perform well

As presented in Section 3.3, the empirical study by Pollack et al. [38] in action-
based planning shows that a modified FAF strategy which delays certain refine-
ments does better than their default FAF strategy. This is because a delayed
refinement is often resolved as a result of doing other refinements. In other words,
other refinements applied during the interval it was delayed often prune the search
space in such a way that the delayed refinement will not partition the refinement
search space. Similarly, refining a partial plan in HTN planning often fully or
partially resolves the other refinement operations. Also, doing several refinements
in combination may help the planner prune the search space more efficiently. Con-

sider the following examples:

e Suppose there are two refinements r; and ry, among many others, that are
applicable to the current partial plan P (see Figure 4.1(a)). r; enforces a
constraint ¢; that can be satisfied by binding a variable ?x with a constant a.
ro enforces another constraint ¢, that can be satisfied by binding the variable

?x with a, b, or ¢ (i.e. by setting the possible values for ?x with {a, b, c}). If
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Figure 4.1: The outcome of a refinement may change if it is delayed. In (a), the
planner does not need to do ry if 7y was applied first. In (b), doing r; and ry
will prune the search space represented by the partial plan Q. However, if the
planner works on refinements other than r; or ry, it may have to spend a lot of

time backtracking for those refinements.
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the planner’s refinement strategy chooses to do ry first, then the constraint
¢o will be satisfied and the planner no longer needs to work on enforcing the
constraint ¢;. On the other hand, if the refinement strategy chooses to do ry,
the planner still needs to enforce ¢; later. Since each of r; and ry generates

one immediate partial plan, FAF may do the former or latter.

Suppose there are two refinements r3 and ry, among many others, that are
applicable to the current partial plan Q (see Figure 4.1(b)). rs enforces a
constraint ¢z that can be satisfied by binding variables so that either ?x =
aand ?y = b, or ?x=c and ?y =d. ry enforces a constraint ¢, that can be
satisfied by binding variables so that either ?2x = ¢ and ?y = b, or ?x = a and
?y =d. Thus, doing either r; or r; generates two immediate partial plans.
However, applying the two refinements results in pruning any partial plans
that are derived from @Q, because of the inconsistency. If there are other
refinements that generate less than two immediate partial plans, FAF will
choose to do those refinements before choosing ry or ry although doing so

will later result in bigger backtracking costs.

As shown by the above examples, the number of partial plans generated by

a refinement may not remain the same if the refinement is postponed. Since the

FAF heuristic takes into account only the number of immediate partial plans that

result from each refinement, it may not perform as well as strategies that look

at the interactions between refinements operations. This is not to say that FAF

should not be used at all. It is very difficult for any planner to know the outcome

of a refinement if it is postponed, since that depends on what other refinements

are performed in the meanwhile. The FAF heuristic has a good chance of reducing

the size of the search space when the planner does not have a particular reason
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Grocery Store

I

1) Go to grocery store; (2) Buy fruit;
3) Go home; (4) Go to post office;
5) Buy stamps; (6) Go home.

(1) Go to grocery store; (2) Buy fruit;
(3) Buy stamps; (4) Go home.

|
|
|
|
|
|
|
|
|
Post Office :
|
1
|
|
|
|
|
|

Figure 4.2: Two possible plans to buy fruit and stamps.

to expect other refinements to do better. However, this motivated us to look at
possible interactions that occur during the planning process in HTN planning.
Specifically. we investigated interactions between task decompositions since our
preliminary study showed that much of the backtracking costs result from failures

to resolve task interactions efficiently.

4.2 Task Interactions

Gupta and Nau [19] presented two types of task interactions that pose efficiency
problems. A deleted-condition interaction is a situation where one action, which
is inserted into a plan to achieve one goal, deletes a condition necessary to accom-
plish another goal. This type of interaction has already been addressed in many
literatures [41, 14, 26]. The common approach to handle it is to detect possible
threats (i.e. actions that can delete necessary conditions), and remove threats by
constraining variable bindings or step orderings. If a threat cannot be removed,
the planner backtracks. A planner can reduce such backtracking costs by detecting

and handling threats as soon as possible.
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An enabling-condition interaction is a completely different kind of interaction.
It occurs when an action that is introduced into a plan to accomplish one goal
makes it easier to achieve another goal. Unlike a deleted-condition interaction, it
is, in a way, beneficial because it is usually desirable to do one action for more than
two purposes, rather than do actions for each purpose separately. For example,
consider a situation where you want to get fruit and stamps and be back at home. !
One plan to accomplish it is to go to a post office, buy stamps, go home, leave for
a grocery store, buy fruit and come back (as shown in Plan A of Figure 4.2). But
if you know a grocery store which sells stamps, then you probably would rather go
to the store and buy both fruit and stamps there, and then come back as shown in
Plan B of Figure 4.2. In other words, Plan A shows a plan where the task of buying
fruit and the task of buying stamps are not interleaved, and Plan B shows a plan
where they are. In this thesis, “tasks X and Y are interleaved” means that the
planner has put orderings between X and Y in order to utilize enabling-condition
interactions, even if it resulted in a sequential ordering between X and Y (i.e. every
action for X comes before any action for Y, or vice versa).

In their analysis of complexities, Gupta and Nau [19] show that finding an
optimal solution in Blocks World is NP-hard. Moreover, they show that the NP-
hardness is due to enabling-condition interactions, not to deleted-condition inter-
actions. This result motivated us to look at enabling-condition interactions in
HTN planning more carefully.

Figure 4.3 shows two alternative decomposition methods for the Get-Stamps

task. Method 1 specifies buying stamps in a store which sells stamps. One usually

does not go to a grocery store solely to buy stamps. Method 1 is applicable only

!This example is based on Wilensky [52].
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(Get-Stamps)  Method 1 (Get-Stamps)  Method 2

ni: ni: n2:
(Buy stamps) (Goto postoffice) > (Buy stamps)

Constraints: Constraints:

(before (at ?store) nl) & (before (~at ?store) nl) &

(initially (sells ?store stamps)) || ~(Petween (at postoffice) nl n2) &
(initially (sells ?store stamps))

Figure 4.3: Two methods to get stamps

when one is at the store for some other reason and has the condition (at ?store)
as a ‘before’ state constraint instead of as a predicate task. Method 2 specifies a
procedure of buying stamps in a post office when one is not at a store which sells
stamps. Thus, decomposing a Get-Stamps task creates two partial plans; one using
method 1 and one using method 2. Suppose the planner explores the one using
method 1 in the next step. In order to decide if the method used is applicable, the
planner needs to examine the initial state and actions that come before the (Buy
stamps) task to see that the condition (at ?store) can be satisfied. However, if there
are non-primitive tasks that could come before the (Buy stamps) task, a planner
may not be able to decide whether the condition can be satisfied or whether it
is unsatisfiable at that time. Of course, the planner will eventually work on (i.e
decompose) each one of these non-primitive tasks and thus be able to tell if the
condition is satisfiable or not. But the cost of backtracking can be high if the
planner finds the condition unsatisfiable (i.e. the method inapplicable) long after

it is inserted into the plan.
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4.3 External Conditions

We can separate state constraints into three types based on what establishes them.
One type of constraint is a constraint on the state conditions that never change
throughout the plan. These constraints can only be established by the initial
state. Conditions of this type are called initial state constraints. An initial state
constraint can only be established by binding variables in the constraint to match
what is true in the initial state. The second type of constraint is a constraint that
can be established within the subtasks of the decomposition method. The third
type of constraint is a constraint that must be established externally, either by the

initial state or a task. We call constraints of this type external conditions.

4.3.1 Definition

An external condition of a decomposition method M is a state constraint that has
to be established for the method M to be applicable to the problem and yet cannot
be established by any task that may result from M. Thus, the plan must establish
this state constraint by something external to M, such as the initial state or some

other task in the plan.

Definition (External condition) Let M =< T, ¢ > be a decomposition method,
where T is the set of subtasks created by the method and ¢ is the set of constraints
for the method. Then a condition ¢ is an external condition of M if:

1. ¢ is a state constraint other than an initial state constraint;

2. ¢ must be necessarily true to satisty ¢; and

3. no descendent of any task in 7' can establish c.

In the definition, external conditions are constraints that definitely have to be
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established by something external to the method. Since what the tasks in T' are
decomposed into depends on the context of each problem, there can be a state
constraint that can be established by a descendent of T" in some problems and yet
cannot be established by a descendent in other problems. Such a constraint will
not be considered as an external conditions of the method.

Notice that an external condition of a method M is not external to the task
M is decomposing; when a non-primitive task has more than one decomposition
method, each method may have different set of external conditions.

As an example, consider the external conditions of each method for the Get-
Stamps tasks shown above. For method 1, there are two conditions. The con-
straints, (before (at ?store) nl) and (initially (sells ?store stamps)), are state constraints
that must be necessarily true to satisfy the constraint formula and cannot be sat-
isfied by a descendent of any task in the method. However (initially (sells ?store
stamps)) is an initial state constraint which is never affected by other tasks. So,
(before (at ?store) nl1) is the only external condition for method 1. For method
2, there are three conditions and all of them must be true to satisfy the con-
straint formula. The constraint (before (~at ?store) nl1) is an external condition of
the method as no descendent of any task in the method possibly can establish
it. On the other hand, (between (at postoffice) n1 n2) is not an external condition
because the task ni:(Goto postoffice) can make the condition (at postoffice) true. (ini-
tially (sells ?store stamps)) is not an external condition since it i1s an initial state

constraint.
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4.4 ExCon Strategy

When a decomposition method is instantiated, the external conditions in the meth-
ods become applicability conditions of the plan, i.e. conditions that must be estab-
lished for the partial plan to work for the current problem. Since these conditions
cannot be established by any task introduced by the method, they must be estab-
lished by either another task or the initial state. If there are non-primitive tasks
that can come before the point where the condition must be true, the planner may
not be able to fully establish the applicability condition at the current time. How-
ever, postponing the establishment of applicability conditions may lead to huge
backtracking costs when some condition turns out not to be establishable. In or-
der to reduce such backtracking costs, the planner needs to work first on tasks that
might effect the establishment of the applicability conditions of the partial plan
it is working on. This section describes the strategy that selects which tasks to

decompose next based on the current applicability conditions of the partial plan.

4.4.1 TIllustration

Consider the situation presented in in Section 2.3 where you have to (1) get stamps,
(2) get fruit, and (3) then go home. This goal can be represented as a partial plan
as shown in Figure 4.4 (a). If a planner chooses to work on the task (Get-Stamps)
first, decomposing (Get-Stamps) in this partial plan will result in two partial plans,
one using Method 1 (as shown in Figure 4.4 (b)) and another using Method 2 (not
shown). Now, consider the one using Method 1. Suppose the task (Get-Fruit) can
be decomposed into a sub-plan that includes going to a store which sells stamps,
then the condition (at ?store) can be satisfied at the beginning of the task (Buy

stamps). However, the planner cannot know if such a sub-plan for the task (Get-
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GOAL (Get-stamps) expanded using Method1

(at ?store) : applicability condition

S /(Get-Stamps) \
T
(Go-Home)—»

A
R \ (Get-Fruit) /

T

B t
T /( Y stamps) A (Go-Home) —+

A
_I? \ (Get-Fruit)/

(a) A partial plan specifying the goal (b) A partial plan resulting from

ITwnw—2—mT

TTw—2—T

of getting stamps, fruit and gas and the (Get-Stamps) task expanded using

going home. method 1.
Figure 4.4: A sample applicability condition in a partial plan

Fruit) is applicable to the current problem until after it has worked on (i.e. fully
decomposed) the task.

The planner has to choose a non-primitive task such as (Get-Fruit) or (Go-Home)
in the partial plan to work on next. If sometime later the planner finds that in the
current problem, accomplishing the task (Get-Fruit) does not include an action of
going to a store which sells stamps, then the entire search derived from the partial
plan fails and the planner has to backtrack. The cost of such backtracking can be
significantly high if the planner worked on the task (Go-Home) down to the detailed
level and then found the failure while working on the task (Get-Fruit).

The idea of the ExCon strategy is to work first on the tasks which can help
the planner establish the applicability conditions, thus reducing the cost of back-

tracking when the planner finds conditions that cannot be established.

4.4.2 Method

The ExCon strategy requires the following:
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1. When it loads its knowledge base containing the domain specification, the
planner must precompute external conditions for every decomposition method
in the domain and store the information. The planner only needs to do this
once for a domain. While the complexity of extracting every external con-
dition is probably undecidable, we can extract most external conditions in
polynomial time using a simple algorithm. We describe this algorithm later

when describing the implementation of the ExCon strategy.

2. The data structure for a partial plan keeps a stack of applicability conditions.
Initially, the partial plan has no applicability conditions. During a method
instantiation, the external conditions of the method are pushed onto the top

of this stack. The condition on top is the current priority to the planner.

3. When selecting a task to decompose, the priorities are given to (1) tasks
which can possibly establish the current top condition, or (2) tasks which
can possibly threaten the current top condition, based on the presence of a

primitive establisher.

The algorithm for the third step (selecting a task to decompose) is shown in
Figure 4.5. For selecting tasks in Steps 1, 4, and 5, the algorithm uses what-
ever task-selection strategy the user wishes (FAF is used for this purpose in the
experiments described in this section).

In Step 1, if there are no applicability conditions to achieve, then the planner
selects and returns a task. When there are applicability conditions, Step 2 picks up
the one on top of the stack. If the current condition is already established without
threats in the partial plan, then Step 3 removes the condition from the stack and

goes back to select something else. Otherwise, Step 4 computes the non-primitive
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Algorithm select-task-ExCon( PartialPlan)

1. If the applicability condition stack of PartialPlan is empty, then select a

task from PartialPlan and return the result.

2. Else, set ¢ to the first element of the applicability condition stack in
Partial Plan.

3. If ¢ is true in PartialPlan, then remove ¢ from the applicability condition

stack and go back to Stepl.

4. If there is no primitive task that establishes ¢, then compute possible

establishers for ¢. Select a task among them and return the result.

5. Else, compute possible threats for ¢. Select a task among them and

return the result.

6. If there are no possible establishers or possible threats, remove ¢ from

the applicability condition stack of PartialPlan and go back to Step 1.

Figure 4.5: The task selection algorithm for ExCon.
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tasks in the plan that can possibly establish the condition, provided the condition
is not established by any primitive task currently in the plan. If it is established
by a primitive task, then possible threats are computed and one is selected in Step
5. Otherwise, there are only primitive tasks that might affect this condition, so
Step 6 will remove it from the stack and go back to select another one.

Note that since ExCon’s task-selection strategy merely specifies the order in
which a planner will prefer to expand tasks, it has no effect on the planner’s
completeness: a planner that is sound and complete without it will also be sound

and complete with it.

4.5 Implementation

We implemented FAF? and ExCon using the UMCP planning system, a domain-
independent HTN planning system [11], and compared their performances. For the
experiments, we ran UMCP version 1.2% on Sun ULTRA workstations using Allegro
Common Lisp 4.3. We incorporated each task selection strategy into UMCP’s
default commitment strategy, which is described in Section 2.3.3. The domain
descriptions used in the experiments are available at

(http://www.cs.umd.edu/projects/plus/umcp/domains/).

?In the implementation of FAF, the FP heuristic as the tie-breaking rule for FAF. The FP
heuristic is describe in Section 5.
3Note: The previous experiments on ExCon used UMCP1.0. UMCP1.2 is capable of pruning

more plans than UMCP1.0 by looking at possible effects in more detailed level.
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4.5.1 Automatically extracting external conditions

Computing precisely which state constraints are external conditions is not a trivial
matter since it requires the planner to know the exact variable bindings that can
occur during the planning. To see which tasks affect which constraints, UMCP1.2
uses a possible effects table to store information about which non-primitive tasks
are capable of causing various kinds of effects. Since the exact effect of each non-
primitive task depends on which decomposition methods are used and how the
variables bound, the table only specifies which non-primitive task can possibly
affect each predicate. The table is a table of pairs < p,t > which p is a positive
or negative atom and ? is a non-primitive task. An argument of p can be bound
to some argument of ¢ only if the effects of ¢ on the predicate is limited to it.
Otherwise, the arguments will be indicated as “??”. For example, it a task (move
?robot ?loc) has a possible effects of (at ?robot ??), then the task (move Robotl RoomA)
may cause the effect (at Robotl Hallway), but never cause the effect (at Box RoomA).

A possible effects table is computed by exploring all possible decompositions
of each non-primitive task. A pair < p,f > is in the table if one of the possible
decompositions of the task ¢ contains a primitive task s such that one of s’s effects
is the literal p.

The possible effects table can be constructed by a planner by preprocessing
the domain. During the planning, the planner can look in the table to see which
non-primitive task in the current partial plan can possibly establish or threaten
certain constraints in order to prune partial plans that have no way of satisfying
necessary state constraints.

In order to extract the external conditions of each method in the domain, the

planner needs to do the following for any method M = < T, ¢ > in the domain:
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o First, all the non-initial state constraints in ¢ are pushed onto a set C'. If
a constraint is specified in a disjunctive form (i.e. ¢ Vea V --+) in ¢, it is

removed from C'.
e Then, for every constraint ¢ in (', do the following:

— Determine at which state s, the condition in ¢ must be satisfied. For
example, for the condition (before (at ?store) n1), the constraint (at ?store)
must be satisfied at the beginning of the task nl. Similarly, for the
constraint (between (at postoffice) n1 n2), the condition must be satisfied

in the state immediately following the task ni.

— Look for a task t; € T' where (1) there are no ordering constraints in
¢ that order t; after s, and (2) there is a pair < p,t; > in the possible

effects table where the literal p can be unified with the condition in c.

— If such ¢; cannot be found, ¢ is marked as an external condition to M.

This algorithm takes only polynomial time (to the size of the domain). It will
not necessarily extract all external conditions, since the variable bindings are not
fully examined. We are currently trying to find a better way to extract them.
However, in all of our test domains, the above algorithm extracted most of the
external conditions. Furthermore, as will be shown below, this set is enough to

significantly improve planning behavior.

4.5.2 Computing possible establishers and possible threats

As shown in Figure 4.5, Steps 4 and 5 of ExCon’s task-selection compute the
possible establishers and the possible threats of the applicability condition. In our

implementation, the planner uses the possible effects table to compute these. First,
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the planner finds all non-primitive tasks in the partial plan that are not ordered
after the point where the condition needs to be true. It then looks in the possible
effects table to see if any of them can possibly establish or threaten the condition,
and returns the result. Although this method returns (as possible establishers or
possible threats) some tasks that can never establish nor threaten the conditions,

it finds every possible establisher and possible threat to the condition.

4.5.3 Plan selection

Since Blocks-World has recursive tasks where the search space can be infinite, our
experiments used best-first search for Block-World problems and depth-first search
for all the other problems.* For best-first search, plan selection is based on the
value computed by,
f( PartialPlan) = (number of non-primitive tasks)
+ (number of tasks, both primitive and non-primitive)
+ (number of ordering and variable constraints that
are postponed).

The plan with the lowest value is selected for next refinement. This function was
created based on the heuristic presented by Gerevini and Schubert [18] and seems

to perform well on many problems with infinite search space.

We used depth-first search for finite search space problems because (1) it is easier to trace

the search and (2) it generally does as well as or better than best-first search on our test domains.
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4.6 Experiments

Since both the FAF and ExCon strategies merely specify the order in which a
planner will prefer to decompose tasks, they have no effect on the planner’s sound-
ness and completeness. However, they do affect the planner’s efficiency; and the
ExCon strategy should outperform the FAF strategy, especially on problems where
the goal tasks are highly interleaved.

We tested ExCon against FAF on three domains. One is an artificial domain
where the amount of interleaving can be controlled to some degree. The second
domain is UM Translog. We tested the two strategies on various types of one-, two-
, and three-package problems. The third domain is Blocks World. We used tower
inversion problems with different number of blocks. We measured the number of

partial plans the planner created before finding a solution plan.

4.6.1 Artificial Domain

The test domain contains methods for accomplishing compound tasks called p-task,
g-task, and r-task. As shown in Figure4.6, these methods decompose the compound
tasks into other tasks. Most of the other tasks are primitive tasks, but a few of
them (p, g, and r) are predicate tasks. Most of the primitive tasks (do-p1, do-p2,
do-ql do-g2, do-rland do-r2) have no preconditions and effects. Each predicate task
has two methods that are capable of achieving it: one of the methods shown in
Figure 4.6(d)—(f), and a Do-Nothing method.

The primitive task (del-p ?x ?y) has the effects (~p ?y) and (prep p). The task
(set-p ?x) has the effects (p ?x) and (~prep p). The predicate task (p W) for some
value W can be achieved in two ways; by phantomizing it if the literal (p W) is true

at the beginning of the task (p W); or by doing (del-p W 2) followed by (set-p W) if at
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(a) amethod for (p-task 2X) (d) amethod for (p ?X)

no: nl: n2: no: nl:
Constraints: E;?;\Stfal(nts:%() )

bet ) nl n2 ore (~p ?x) n0) &
(between (p ) n1 n2) A

(between (prepp) nO nl)

(b) amethod for (grtask 2x) () amethod for (r 2)
no: nl: n2: n0: nl:
(do-g1) (g 2x) > (do-g2) (del-r 2x 2y) - (set-r 2X)
Constraints: Constraints:
(between (g 2X) N1 n2) (before (~r 2x) n0) &

(before (r ?y) n0) &
(between (prepr) n0O nl)

(c) amethod for (r-task ?2x) (e) amethod for (g ?x)
no: ni: n2: no: ni:
(do-r1)-(r ?x) - (do-r2) (del-g 2 ?y) - (set-q ?X)
Constraints: Constraints:
(between (1 ) n1n2) (before (~q ?x) n0) &

(before (q ?y) nO) &
(between (prepq) N0 nl)

Figure 4.6: The decomposition methods for the test domain. Each non-primitive
task has exactly one method specified. The tasks shown in boldface are primitive

tasks.
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Initial State:

(p C6) (q C5) (r C4)
Goal Taks:
gl: (g-task C2) —»g2: (r-task C3) —g3: (p-task C6)
g4: (p-task C4) —»-0g5: (g-task C6)—s g6: (r-task C4)

Figure 4.7: A sample problem with 2 goals, 3 predicates and 50% overlap. We

represents the initial state which consists of (p C6), (q C5) and (r C4).

the beginning of the task (p W) the literal (p W) is false and the literal (p 2) is true
for some value Z. The tasks del-q and del-r are defined similarly to the task del-p,
and the tasks set-q and set-r are defined similarly to the task set-p. An initial state
for this domain consists of three ground atoms (p w,), (qw,) and (r w,), where w,,
w, and w, are constant values randomly chosen from the set { C1, C2, C3, C4, C5,
C6 }.

In this test domain, the amount of interleaving can be altered by varying the
arguments of the goal tasks: a problem is highly interleaved if the arguments of
most p-task goal tasks are the same and it is less interleaved if the arguments of
most p-task goal tasks are different.

We generated test problems as follows. Goals were random sequences of one
(p-task only), two (p-task and g-task) or three (p-task, g-task and r-task) different tasks
that needed to be done. How many different tasks were in the goal decided the
number of predicates in the problems. A problem consisted of two or three goals,
with no ordering constraints across them. We randomly assigned arguments to
the tasks based on an “overlap rate” of 10%, 50% or 90%. For example, if the

overlap rate were 100%, all the arguments of the p-task tasks would be identical
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FAF | ExCon p | FAF | ExCon p | FAF | ExCon P

2 goals 1 predicate 2 predicates 3 predicates
90% | 10.3 10.3 - 1227 21.5| 955% | 33.3 32.0 | >99.9%
50% | 11.2 11.2 — | 24.5 23.7 1 >99.9% | 39.1 34.7 | >99.9%
0% | 11.7 11.7 — | 24.8 24.6 | 92.7% | 374 | 36.4 | >99.9%
3 goals 1 predicate 2 predicates 3 predicates

90% | 16.3 16.0 | 99.5% | 36.0 35.6 67.1% | 63.1 49.6 | >99.9%

50% | 26.3 25.5 | 98.1% | 81.9 48.5 | >99.9% | 420 78.9 | >99.9%

10% | 32.6 32.7 1 66.7% | 141 66.9 | >99.9% | 515 91.0 | >99.9%

Table 4.1: The average numbers of search nodes created over the 100 randomly
generated problems in the artificial test domain. p represents the confidence levels

of paired t-test.

to the p value in the initial state. If the overlap rate were 0%, the arguments for
p-task and the p value in the initial state would all be unique. If the overlap rate
were 30%, there would be 30% probability that the argument of a p-task is used
in another p-task or the atom p in the initial state. We varied the overlap rate to
create problems with various degrees of interleaving. We also varied the number
of predicates appearing in the problems to change the chances that the planner
would try to interleave multiple predicate tasks. A sample problem is shown in
Figured.7.

We created and tested 100 problems of 1, 2 or 3 predicates used, 10%, 50%
or 90% overlap, and 2 or 3 goals, totaling 1800 problems tested. We counted the
number of partial plans created during planning and computed the average for

each type of problem. The results are shown in Table 4.1.
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90% overlap 50% overlap 10% overlap
200% 600% 600%

150% 350% / 350% /
100% / 100%

T 1 100% T 1

Figure 4.8: The relative performances of FAF and ExCon for 3-goal problems. The
x-axis gives the number of predicates in the goals, and the y-axis gives the ratio

(#search nodes by FAF)/(#search nodes by ExCon).

Figure 4.8 shows graphs of the 3-goal data in Table 1, that show how the
relative performance of FAF and ExCon depends on number of predicates in the
goal. Note that as the number of predicates increases, FAF’s performance degrades
much more quickly than ExCon’s. This is because FAF creates many more partial
plans in order to interleave goal tasks. Since ExCon works on one predicate at a
time until it i1s established or fails, the planner does not have to backtrack over
multiple predicates as it does with FAF.

The graphs in Figure 4.9 show how the relative performances of FAF and ExCon
depend on the overlap rate. For problems with 1 predicate, the difference between
FAF and ExCon is not large regardless of the overlap rate. For the problems with
2 or 3 predicates in the goals, FAF is clearly spending more time backtracking
than ExCon. At 90% overlap, most attempts to interleave tasks succeed. So the
amount of backtracking is minimal. Thus, the performances of the two strategies
are similar. As the overlap rate decreases to 50% and 10%, less and less attempts
to interleave tasks succeed and the planner has to backtrack on many more failures.

Since seeing average numbers alone can be misleading in some cases, we did a
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1 predicate 2 predicates 3 predicates

150% 200% = 350% ///

100% = ; » 100% . | 100% 1 . |
90% 50% 10% 90% 50% 10% 90% 50% 10%

200% 300% 600%

Figure 4.9: The relative performances of FAF and ExCon on 3-goal problems.
The x-axis gives the overlap rate, and the y-axis gives the ratio (#search nodes by
FAF)/(#search nodes by ExCon). Note: the x-axis must be changed to 90%, 50%
and 10%.

one-tailed paired t-test to test the statistical significance of the results. The null
hypothesis is Hy : gpar = pEzcon and the counter hypothesis is Hy : ppap >
UEsCon , Where upap and pigzco., are the means of the numbers of partial plans
created by using FAF and ExCon, respectively. The p values in Table 4.1 show
the confidence level of rejecting Hy in favor of taking Hy. If ExCon constantly
outperforms FAF, the confidence level is high.

For problems with 2 goals and 1 predicate, there is no difference in the perfor-
mance of FAF and ExCon, so t-values cannot be computed. For all other prob-
lems except 3-goal, 2 predicate, 90% overlap problems and 3-goal 1 predicate, 10%
overlap problems, we can reject the hypothesis with a confidence level higher than
90%. On 3-goal, 2 predicate, 90% overlap problems, the planner can successfully
interleave many goal tasks without any backtracking for most of the problems.
However, for two out of the hundred problems generated, ExCon creates about
twice as many partial plans as FAF does to have tasks ordered consistently. (If

we do the t-test ignoring these two results, the confidence level is 99.5%.) As for
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3-goal, 1 predicate, 10% overlap problems, many problems have goal tasks which
cannot be interleaved at all. Since there is only one type of goal task (p-task), FAF
can easily identify failures to interleave tasks, thus begins backtracking earlier.
So the backtracking costs are small for FAF as well for ExCon. Thus, the t-test
results also confirm that the performance of ExCon is significantly better than the
performance of FAF when the overlap rate is low and when there are more predi-
cates in the problems. Therefore, ExCon is shown to perform better than FAF on

problems where the tasks are highly interleaved.

4.6.2 UM Translog

UM Translog[3] is a transport logistics domain where the methods of transporta-
tion are specified based on the locations, the types of the package, and availabilities
of the necessary equipments. It is a considerably larger domain than many other
toy domains. It is specified with 17 compound tasks, 42 primitive actions, and 29
predicates. We have tested FAF and ExCon on one-, two- and three-package trans-
portation problems. For two- and three-package problems, we differ the possibility
of interleaving between different packages by altering initial locations, destinations

and package types.

(a) - The package types are of the same type and have the same initial location

and destination.

(b) - The package types are of the same type. The destination of one package
is the same as the initial location of the other package, so that one truck

delivering one package can pick up another package at the place.
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Problem | Types FAF ExCon FAF/ExCon p
Plans | Time Plans | Time | (Plans)

Ipack - 76.00 | 0.31 76.00 | 0.35 1.00 -
2pack(a) | same 151.75 | 1.40 178.20 | 1.98 0.85 <0.1%
2pack(b) | same 382.30 | 4.04 229.65 | 3.04 1.66 >99.9%
2pack(c) | same 1163.20 | 13.48 536.25 | 10.37 2.17 >99.9%
2pack(d) | diff 1448.80 | 16.74 633.40 | 9.90 2.29 >99.9%
3pack(a) | same 253.60 | T7.45 238.15 | 6.28 1.06 >99.9%
3pack(b) | same | 81140.65 | 1,961 | 33639.15 | 1,075 2.41 >99.9%
3pack(c) | same | 132418.00 | 3,361 | 57692.10 | 1,937 2.30 >99.9%
3pack(d) | diff 44080.45 991 | 20733.55 556 2.13 >99.9%

Table 4.2: The results for FAF and ExCon on Translog problems. Plans are

average number of partial plans created. Time is non-garbage collection CPU time

in seconds. For multiple package problems, “Types” shows whether the packages

have the same type and so can be carried by the same delivery truck. p represents

the confidence levels of paired t test.

(c) - The package types are of the same type but none of the initial locations or

the destinations are the same.

(d) - The packages are of different types and so it requires different types of vehicles

to transport each package.

We randomly created 20 problems for each problem type, with various package

types (regular, bulky, granular, liquid, or livestock) and locations (among 15 locations).

The results are shown in Table 4.2.
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e For one package problems (1pack), there is almost no interleaving between
any tasks in the problem, so the performances of FAF and ExCon are simi-
lar. For two-package delivery problems and three-package delivery problems,
the performances of the two strategies depends on how much tasks can be

successfully interleaved between two goal tasks.

e For the problems where the package are of the same type and have the same
initial location and destination (2pack(a) and 3pack(a)), the task of moving
trucks to the necessary locations can be completely interleaved between the
goals. So FAF can perform as well as ExCon on these problems. In fact,
for 2pack(a), FAF outperforms ExCon on the test problems. This is because
that the planner instantiates some variables earlier with ExCon, generating
many search branches which eventually fail while with FAF, the same vari-
ables are instantiated later when the variables are more constrained and thus

instantiating them generates less search branches.

e For the problems where the package are of the same type but interleaving
tasks between goals work only partially or not at all (2pack(b), 2pack(c),
3pack(b) and 3pack(c)) ExCon outperformed FAF.

e For the problems where the package are of the different types (2pack(d) and
3pack(d)), ExCon outperformed FAF.

We also performed the same one-tailed paired t-test on the Translog results. The
results are shown as p in the table. Since the performances of FAF and ExCon are
the same for one-package problems, a t-test cannot be done for this problem type.
Except for 2pack(a) where ExCon is outperformed by FAF, the performances of

FAF and ExCon are significantly different at the 99.9% level. Thus, except for one
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Problems FAF ExCon FAF/ExCon
Plans | Time Plans Time | (Plans)
tower-invert3 45 0.23 52 0.33 0.87
tower-invert4 169 2.73 138 2.17 1.22
tower-invert) 798 | 33.15 521 | 16.65 1.53
tower-invert6 | 4921 | 438.43 2505 | 184.90 1.96

Table 4.3: The results on the Blocks World problems. Plans are number of partial

plans created. Time is non-garbage collection CPU time in seconds.

package problems (1pack), the performance of ExCon is significantly better than

the performance of FAF.

4.6.3 Blocks World

We also ran FAF and ExCon on tower inversion problems in the Blocks World
domain. We used 4 problems (tower invert3, tower invert4, tower invert5 and
tower invert6) each with a different number of blocks involved. We hypothesized
that as the number of blocks increases, ExCon should increasingly outperform
FAF because as more blocks are involved, the amount of interleaving increases.
The results are shown in Table 4.3. Although FAF outperformed ExCon on tower
invert3, ExCon outperformed FAF on problems with more blocks.

As we were testing the strategies, we noticed that the results change if we
modify the order in which the goal tasks are specified in the problem. This is
understandable for FAF since FAF does not prefer which instance of a task to
decompose because every instance has the same number of methods. In such a

case, FAF returns the one that happens to be found in the partial plan first. For
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Problems FAF ExCon FAF/ExCon
Plans Time Plans Time | (Plans)
tower-invert3 44 0.54 32 0.22 1.38
tower-invert4 403 14.66 70 1.12 5.75
tower-invert) 9992 | 1,548.40 370 | 16.61 27.01
tower-invert6 | > 10,000 - 1465 | 136.64 -

Table 4.4: The results on the same Blocks World problems where the goal tasks
are specified in the reversed order. A number in boldface indicates the best result

(either in CPU time or number of partial plans created) for the problem.

instance, the goals of the tower-invert4 problem used for the above experiments
are ordered as nl:(on B C) n2:(on C D) n3:(on D A). The planner using FAF decomposes
the goal nl:(on B C) first and and then later decomposes the goal n2(on C D) before
decomposing the goal task n3:(on D A).

In order to see if the relative performance of FAF and ExCon changes with
the different orderings of the goal tasks, we ran the same test, except that the
goals were specified in reverse order. Table 4.4 lists the results. Interestingly, the
performance of ExCon was even better for this type of goal specification, while it
was far worse for FAF. Notice that the difference between the results of ExCon
shown in Tables 4.3 and 4.4 is relatively small; it is never more than double. This
is because ExCon chooses tasks based on which task establishes (or threatens) the
current applicability condition in the partial plan, and is able to resolve the task

interactions efficiently no matter what order the goal tasks happen to be specified.
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4.7 Related Work

4.7.1 External conditions in other HTN planners

Nonlin [47], O-Plan2 [10] and SIPE-2 [54] use condition typing. In these planners,
state constraints are specified with condition types, which not only specify the
conditions that must be satisfied in the plan, but also specify how the conditions
can be used. Using condition typing, the domain writer has more power to control
the search for a plan. Some types of conditions in these three planners are defined
similarly to the external conditions we use. Since most condition types in Nonlin,
O-Plan2, and SIPE-2 are defined and used quite alike, we discuss only the condition
types in O-Plan2 in this section. For a summary and comparisons of condition
types used in Nonlin, O-Plan2 and SIPE-2, see [48].

In O-Plan2, there are three types of conditions that may satisfy the definition
of external conditions. Unsupervised conditions are conditions that are satisfied
by other tasks for other goals. Unlike external conditions, however, unsupervised
conditions may also specify a condition that can be established by a subtask in
the decomposition method. Only_use_if conditions are conditions that are used to
filter out inapplicable decomposition methods. If the conditions are for non-static
state conditions (i.e. the conditions that may change as results of other actions),
then they are considered external conditions by our definition. Only_use_for_query
conditions are to bind variables. Similarly to only_use_if conditions, some conditions
may be considered external conditions.

Even though these conditions are similar to external conditions, they are used
quite differently in these planners, compared with how external conditions are used

in our ExCon strategy. For example, it a condition is specified as a unsupervised
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condition in O-Plan2, the planner assumes that the condition is satisfied by some
other task. Thus, satisfying the condition has a low priority during the planning
process. On the other hand, satisfying any external condition has a high priority

in the ExCon strategy since the planner cannot make such assumptions.

Automatic Extraction

As opposed to condition types explicitly specified by the domain writer, our imple-
mentation of ExCon automatically extracts external condition from the domain.
Comparing the two approaches, each one has advantages and disadvantages.

The explicit specification of the condition types allows a domain expert more
power to control the search as well as defining the application domain. Since a
domain expert naturally has the knowledge as to how plans can be constructed
efficiently, this approach can make the planning highly efficient. Also, it is currently
not possible to extract all the external conditions as mentioned in Section 4.3.1.
It is possible that external conditions not extracted may help prune the search
furthermore. Meanwhile, it is highly possible that some external conditions as
defined in this paper do not help the pruning.

However, modeling and specifying an application domain to work correctly for a
planning system requires a lot of effort on the side of a domain expert. Specifying
the domain so that the planning would be efficient requires even further efforts
and deep understanding of how the planning algorithm works. Our method of
preprocessing the knowledge base to extract interesting conditions makes it easier

for domain experts to maintain the domain.
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4.7.2 High-level effects

Some HTN planners use ‘primary effects’ of non-primitive tasks (1) to establish
conditions of other non-primitive tasks, and (2) to prune partial plans where a
condition establishment is threatened by them. Such primary effects are also called
‘high-level effects’ to distinguish them from the primary effects of action-based
operators used in some literatures. For example, the task (Go ?i ?2d) - go from ?i
to ?2d - may have the high-level effect of (at 2d). By using high-level effects, an
HTN planner can establish many, or most, conditions specified for non-primitive
tasks. However, using high-level effects has some drawbacks as well as benefits. In
this section, we discuss the use of high-level effects in HT'N planning and how our

ExCon strategy would perform.

Soundness and completeness

Some HTN planners use high-level effects in a way that makes the planning un-
sound and/or incomplete.
Using high-level effects can threaten the soundness of HI'N planning if one of

the following situations occurs:

(a) A high-level effect e associated with a task ¢. does not appear in some de-

compositions of ..

(b) A high-level effect e associated with a task ?. is inserted by a task in some

decompositions of #., but removed by another task.

(c) A high-level effect e associated with a task t. is inserted by a descendent of

t. but clobbered by an action in the decompositions of other tasks.
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Using high-level effects can threaten the completeness of HTN planning if the

following situation occurs:

(d) If a high-level effect e associated with a task ¢. is used to establish a condition
for another task ., most planners which use high-level effects usually put
an ordering from the end of #. to the beginning of ¢.. However, such an
ordering excludes these plans which have ¢, after the action that gives e in

the decomposition of #. but before the last action for ..

There are two ways which have been suggested on how to incorporate high-
level effects into the HTN planning formalism in a way that does not threaten
the properties of the planner such as soundness and completeness. One way is to
require the domain expert to specify the domain such that for each high-level effect
e associated with a task 7., every decomposition of ¢. must contain a subtask with
the effect e, which is not clobbered by any other subtask in the same decomposi-
tion [55]. A similar approach is used in the DPOCL planner by [57]. Although this
approach solves situations (a) and (b) above, it does not solve situation (¢) nor (d).
Another way is to impose constraints on decompositions such that a planner weeds
out the sub-plans that do not give the intended effects. So situations described by
(a) or (b) never occur. In most HTN formalisms that use this approach, condition
establishments using high-level effects are also protected by similar constraints to
avoid situation (c¢). This approach is used in the UMCP formalism [11] and hybrid
planning by [24]. In UMCP, high-level effects cannot be used to fully establish
conditions in order to avoid situations described by (d); only a primitive action

can establish a condition.
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The ExCon strategy and high-level effects

The purpose of using high-level effects is to allow the planner to construct more
consistent partial plans at higher levels of abstraction and to reduce the chance of
backtracking later because of decisions made for these non-primitive partial plans.

As described above, the UMCP planner does not use high-level effects to fully
establish conditions, making backtracking cost bigger than in other planners that
use high-level effects to establish conditions. However, the ExCon strategy can
compensate for such inefficiency by reducing the backtracking cost incurred by not
using high-level effects.

Furthermore, we believe the ExCon strategy could also improve the efficiency
of an HTN planner that uses high-level effects to establish conditions. Here are

the reasons:

o High-level effects can specify only certain effects of a non-primitive task.
Many conditions have to be established by effects not specified as high-level
effects.” Establishing these conditions may involve interleaving tasks. ExCon

can reduce the backtracking costs in such cases.

o Using high-level effects to establish conditions does not mean every condition
can be established immediately. The planner still may need to decompose
tasks until it finds a task with a high-level effect that can establish the

condition. ExCon can identify which task to decompose in such cases.

®Some call them the side effects of a task.
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4.8 Summary

Although FAF helps the planner reduce the size of the search space, it can be out-
performed by a strategy that recognizes the opportunities to prune the search. For
multi-goal problems, a lot of backtracking cost can be incurred by not recognizing
the futility of interleaving tasks in the partial plan early during the planning pro-
cess. The ExCon strategy can greatly reduce such backtracking costs by detecting
and completing task interleaving as soon as possible. The strategy does this by
keeping track of external conditions.

In the empirical studies, ExCon outperformed FAF on complex problems, doing
increasingly well on problems where the task interactions occurred recursively and
where multiple goals were involved. However, ExCon did not outperform FAF on

two points:

1. ExCon can be outperformed by FAF for reasons not directly related to task
interactions. For example, on 2pack(a) problems in UM Translog, FAF out-
performed ExCon because of a big backtracking cost on a variable instanti-
ation. This suggests that we need to investigate a whole refinement strategy

instead of focusing on task selection decisions.

2. Since ExCon is designed to do well on problems where interleaving tasks
fails, 1t does not do as well on problems where such failures do not occur.
For example, there is little difference between the results of FAF and ExCon
on 2-goal 1-predicate problems in the artificial domain. However, we can
improve ExCon on some of such problems by utilizing ordering constraints

specified for tasks. This method is described in the next chapter.

Since ExCon enables the planner to establish conditions in the plan at less
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detailed levels, it produces some of the same improvements in planning efficiency
that one might try to get using planning constructs such as high-level effects. In

addition, it has the following advantages:

e External conditions do not have to be specified explicitly by the user, but
instead are found automatically by the planning system when it pre-computes
its knowledge based. This will make it much easier for users to maintain the

knowledge base.

o ExCon is a task selection strategy, not a search-space pruning heuristic: it
simply specifies the order in which a planner will prefer to expand tasks.
Thus, it has no effect on the planner’s soundness and completeness: a planner
that is sound and complete without it will also be sound and complete with

it.
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Chapter 5

Left-to-Right Method

The ExCon strategy presented in the previous chapter reduces the backtracking
costs that are caused by failing to establish applicability conditions by interleaving
tasks. Another way to resolve task interactions efficiently is to simply plan the
tasks in an order similar to the one used when tasks are executed. By doing so,
the planner can easily follow the changes the execution of the tasks make in the
state and thus be able to establish many state constraints associated with the tasks
that come later. This chapter presents the Left-to-Right heuristic that selects tasks

to decompose in a left (the initial state) to right (the final state) manner.

5.1 Forward HTN planning

Some planning applications use forward HTN planning. For example, Smith, et
al. [44] cite two such practical planning application domains, computer bridge and
microwave module process planning. Although both domains have a lot of step
ordering constraints and the planner gets the complete initial state, they have to
handle additional requirements: the bridge program has to deal with imperfect

information of not knowing what cards each opponent has, and the microwave
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module process program has to interact with external information sources and
do numeric computation. For planning, they use total-order forward HTN plan-
ning which is shown to be more suitable than the traditional backward planning
approach. Their reason for doing forward planning is that it can reduce the com-
plexity caused by the additional requirements. By doing total-order forward HTN
planning, the planner can explicate the current world state a lot more easily since
it knows the complete initial state of the world and all the action steps that are
going to be in the plan up until the state. If either program used a backward-
chaining planning approach, any number of actions could be inserted anywhere in
the plan. Thus, it would be extremely difficult to evaluate or validate a partial
plan during the planning process. For these reasons, even for domains that do not
require numeric computation or do not have to handle imperfect information, it
still may be a good idea to do forward planning.

In action-based planning, there are three ways to plan actions: plan forward,
plan backward and a combination of both. Constructing plans starting from the
initial state gives the planner the advantage of having more information about the
world state the planner is dealing with and thus makes it easier to solve interactions
between actions. Planning backward from the goals has the advantage of produc-
ing lower branching factors because there are usually fewer actions applicable to
satisfy a goal than a state. Although both the approaches of forward planning and
bi-directional planning have been used successfully by some planners [16, 7], the
backward planning approach has been the most popular. For HTN planning, the
backward planning approach does not have an obvious advantage since the planner
constructs plans by decomposing tasks into subtasks by applying decomposition

methods. So planning backward will not reduce the branching factors. On the
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other hand, the forward planning approach has an advantage similar to action-
based planning. First, like action-based planning, the initial state is a complete
description of the world state. Since only actions can affect the world state, insert-
ing actions starting from the initial state can provide more state information that
is useful in reasoning about later actions. Furthermore, an HTN domain can con-
tain explicit step orderings between subtasks, which make it easier for the planner

to select earlier tasks.

5.2 Left-to-Right heuristic

In HTN planning, the Left-to-Right (LtoR) task selection strategy will decompose
a non-primitive task only when there are no other non-primitive tasks ordered to
come before it. As a tie-breaking rule to handle the case where more than one
non-primitive task has only primitive tasks ordered before it, we use the Fewest
Predecessors (FP) heuristic, which selects non-primitive tasks which have the least
number of tasks ordered before them. This heuristic has the advantage that it
does not have to check if the preceding tasks are primitive or not because a non-
primitive task A has fewer tasks ordered before it than a non-primitive task B if
A precedes B. So using the FP heuristic automatically implements LtoR and each
computation takes polynomial time with respect to the number of tasks in the
partial plan.

As mentioned in the previous chapter, one class of problems where ExCon does
not perform well is the one where the no tasks can be interleaved. The planner
cannot interleave non-primitive tasks in a problem if (a) the tasks in the problems
are independent of each other, and/or (b) the tasks in the problem are totally

ordered. For the problems of type (a), decisions made for one task do not affect
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decisions that must be made for another task. Thus, we conjuncture that the choice
of task selection method will have little effect on the planning efficiency. For the
problems of type (b), LtoR should do well for the reasons stated above. Therefore,
if we use LtoR as a tie-breaker in ExCon, the resulting ExCon strategy should do
well both on problems where the tasks can be interleaved and on problems where
the tasks are totally ordered.

While LtoR has an advantage similar to forward planning in action-based plan-
ning, the LtoR strategy we present does not necessarily “plan forward” unless the
goal tasks and their subtasks are totally ordered. For example, LtoR may select
to decompose a non-primitive task A before it selects a non-primitive task B, yet
the subtasks of A may be ordered after the subtasks of B as a result of satisfying
some state constraints. An alternative way is to use the algorithm Nau, et al. [34]
suggest, which commits to a certain ordering between non-primitive tasks when

decomposing tasks.

5.2.1 Implementation

We implemented LtoR' and another version of ExCon with LtoR as a tie-breaker.
In order to distinguish between the two versions of ExCon with different tie-
breakers, we call them ExCon-FAF and ExCon-LtoR for ExCon with FAF and

ExCon with LtoR, respectively.

I'We used FAF as a tie-breaker for LtoR.
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5.3 Experiments

In order to see how the task selection methods affect the planning efficiency on
problems with different amounts of ordering constraints and different amounts of
tasks that can be interleaved, we ran FAF, LtoR, ExCon-FAF and ExCon-LtoR

on a small artificial domain and UM Translog. We hypothesize the following:

e Similarly to ExCon-FAF and FAF, we hypothesize that the ExCon-LtoR
strategy should outperform the LtoR strategy especially on problems where

the goal tasks are highly interleaved.

e In planning domains in which there are many constraints on the ordering
of the subtasks, the LtoR heuristic should be able to outperform the FAF
heuristic by expanding the tasks in an order that facilitates the pruning
of infeasible plans. Similarly, the ExCon-LtoR strategy should be able to

outperform the ExCon-FAF strategy in such problem domains.

5.3.1 Random Travel Planning domain

In our description of the LtoR strategy earlier, we pointed out that the explicit
step orderings given in the task descriptions make it easier for the planner to select
the tasks in a left-to-right manner. To see how much this can help the performance
of the planner, we created a small domain called Random Travel Planning where
there is only one level of hierarchy (i.e. no non-primitive task is decomposed into
another non-primitive task). In this domain, there are three types of goal tasks,

Sightsee, Travel and Eat. Their decomposition methods are shown in Figure 5.1.2

2The domain is slightly different from the one we used in [49] since the change from UMCP1.0

to UMCP1.2 made the problems on Random Travel Planning domain easier to solve for most of
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The task Sightsee is to go sightseeing ourselves (Method 1 in the figure) or to join a
tour bus (Method 2), depending on if we are tired or not. Going sightseeing makes
us tired. Taking a flight, or eating a food makes us recover from tiredness. In
other words, the primitive task (go-sightseeing ?city) has an effect (tired ?city) and the
primitive tasks (fly ?city0 ?cityl) and (have ?food ?city0) have an effect (~tired ?city0).
The task (fly ?city0 2cityl) also has effects (~in ?city0) and (in ?cityl). Other primitive
tasks have no effects. The task Travel is to move to another city, if it’s different
from the current location. The task Eat is to go to a restaurant for a type of food
we want and eat there. If the type of food we want is local to the location, such
as Italian food if the current location is Rome, then going to a local restaurant
suffices (Method 1). If not, we go to a good restaurant if we are not tired (Method
2), or we go to a closer restaurant if we are (Method 3). In these methods, every
‘before” and ‘between’ state constraint is an external condition.

A problem in this domain consists of 10 goal tasks, randomly generated. A
goal task is either (Sightsee), (Travel ?city), or (Eat ?food). where ?city is a value
randomly chosen from {LosAngeles, NewYork, London, Paris, Rome}, and ?food is
a value randomly chosen from {American-food, English-food, French-food, Italian-
food}. Since the subtasks in each method are totally ordered, how the problems
are ordered depends on the step orderings between the goal tasks. If the goal tasks
are totally ordered, then every partial plan generated from the goal also has the
tasks totally ordered. The step orderings between the goal tasks are randomly
generated based on the parameter w. w defines the maximum number of pairs
of goal tasks that can be left unordered. Lower values of w indicate that there

are more ordering constraints among the goal tasks. The initial state consists of

the problems.
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Sightsee() Method 1 Sightsee() Method 2

n: n:

(go-sightseeing ?city) (join-tourbus  ?city)
Constraints: Constraints:

(before (in ?city) n) (before (in ?city) n)
&(before (~tired ?city) n) &(before (tired ?city) n)

Travel(?city) Method 1

n:
(stay-more ?cityl)
Constraints:

(before (in ?cityl) n)
&(?city = ?cityl)

Travel(?city) Method 2

ni: n2: n3:
(goto-airport ?city0)—#- (fly ?city0 ?cityl)—s(goto-downtown  ?city1)

Constraints:
(before (in ?city0) n1)&(?city0 £ 2city1)&(?city = ?cityl)

Eat(?food) Method 1

nl: n2:
(goto-local-restaurant ) —# (have ?food ?city)

Constraints:
(initially (local-food ?food ?city)
&(before (in ?city) n1)&(between (in ?city) n1 n2)

Eat(?food) Methad 2

nl: n2:
(goto-good-restaurant  ?food) —#-(have ?food ?city)

Constraints:
(initially (~local-food ?food ?city) &(before (~tired ?city) nl)
&(before (in ?city) n1)&(between (in ?city) n1 n2)

Eat(?food) Method 3

ni: n2:
(goto-closer-restaurant  ?food)—#- (have ?food ?city)

Constraints:
(initially (~local-food ?food ?city) &(before (tired ?city) n1)
&(before (in ?city) n1)&(between (in ?city) nl1 n2)

Figure 5.1: The decomposition methods for the Random Travel Planning domain.

The tasks shown in boldface are primitive tasks.
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Initial State:

(local-food American-food NewYork) (local-food American-food LosAngeles)
(local-food French-food Paris) (local-food English-food London)

(local-food Italian-food Rome)

(in LosAngels)

Goal tasks: Gl
(Eat French-food)
G3:
G4 (Eat American-food) \
(Sightsee) \‘ G5 G2
G6: (Eat Italian-food)  (Travel Rome)
(Travel LosAngeles)
GO:

(Travel London)

Figure 5.2: A problem of 7-goals, w = 10 (the actual number of unordered pairs

of task is 9) in the Random Travel Planning domain.

the food-city pairs for each city such as (local-food Italian-food Rome) and the current
location, i.e. (in ?city), which is randomly assigned. A sample 7-goal problem of
w = 10 is shown in Figure 5.2

We created 20 10-goal problems each for w = 5, 10, 15, 20 or 25 and solved
them using FAF, LtoR, ExCon-FAF and ExCon-LtoR strategies. The results are
shown in the Table 5.1 and Figure 5.3. For low w values, LtoR does better than
FAF because L.toR can use the step orderings to correctly choose the earliest tasks.
Many applicability conditions considered by ExCon-LtoR can be easily established
at the time the conditions are inserted into the plan by using LtoR selection. Also,
there are fewer non-primitive tasks that may affect the establishment of the current
applicability condition, so the performance of ExCon-LtoR is similar to that of
LtoR.

The performances of FAF and ExCon-FAF are also similar for the low w value

problems. Since FAF uses the LtoR heuristic for tie-breaking, FAF picks up the

127



—_e—FAF —m LtoR ExCon-FAF ——ExCon-LtoR

4506 ¥ 70
400 60 X
/
300 7 vz
250 7 40 E———
200 / 30
150 >, A 20
100
50 -%‘f#/ 10
0 T T T T 1 0 T T T T 1
0 5 10 15 20 25 0 5 10 15 20 25
(a) FAF and LtoR (b) ExCon-FAF and ExCon-LtoR
—e—FAF ExCon-FAF —=—LtoR ——ExCon-LtoR
180 450
160 2 400 /7
140 / 350 /
120 / 300 /
100 / 250 /
80 /// 200 /
60 10 \(\/ —_——— 150 /
40 100
20 50 'ﬁ*@;
0 T T T T 1 O T T T T 1
0 5 10 15 20 25 0 5 10 15 20 25
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Figure 5.3: The results of the Random Travel Planning problems. The x-axis
shows the average number of pairs of unordered goal tasks and the y-axis shows

the average number of partial plans created.

128



w | Actual FAF LtoR ExCon-FAF ExCon-LtoR

Plans | Time | Plans | Time | Plans | Time | Plans | Time

3 2.95 63.55 | 0.33 | 36.95 | 0.16 | 63.60 | 0.36 | 36.90 | 0.18

10| 7.35 51.25 | 0.28 | 41.00 | 0.21 | 50.45 | 0.30 | 38.40 | 0.20

15| 11.85 58.55 | 0.34 | 50.80 | 0.27 | 46.90 | 0.28 | 41.05 | 0.22

20 | 15.8 66.65 | 0.49 | 131.85 | 1.23 | 53.75 | 0.35 | 54.15 | 0.35

25 | 222 | 168.10 | 2.84 | 431.55 | 6.20 | 62.15 | 0.45 | 62.00 | 0.42

Table 5.1: The results of the Random Travel Planning problems. The actual
average number of unordered pairs is shown next to w values. Plans is the average
number of partial plans created. Time is average non-garbage collection CPU time

in seconds.

tasks relatively from left-to-right, although it skips Eat in preference to Sightsee or
Travel. So, similarly to ExCon-LtoR, only a few possible non-primitive tasks exist
that may affect the establishment of the current applicability condition. Since the
performance of the ExCon strategy greatly depends on its tie-breaking strategy for
low w value problems (i.e. problems where goal tasks are not interleaved much),
ExCon-LtoR does better than ExCon-FAF.

For the high w value problems, there are not very many ordering constraints
among the goal tasks, so there can be many more interactions among goal tasks. In
these problems, the performance of LtoR is worse than any other strategy because
LtoR does not have enough step ordering information to correctly work in a left-
to-right manner and thus cannot identify constraints that can never be established
early. FAF performs better than LtoR, but not as well as ExCon-FAF or ExCon-

LtoR. The performances of ExCon-LtoR and ExCon-FAF are similar because for
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w 3 10 15 20 25

ExCon-FAF/ExCon-LtoR | 1.72 | 1.31 1.14 | 0.99 | 1.00

p 96.3% | 81.6% | 94.7% | 40.4% | 51.2%

Table 5.2: Comparison of ExCon-FAF and ExCon-LtoR on the Random Travel

Planning problems.

problems with highly interleaved goal tasks, ExCon selects tasks and does not have
to use its tie-breaking strategy (i.e. LtoR or FAF).

We also performed a one-tailed paired t-test on the Random Travel Planning
results to compare the performance of ExCon-FAF and ExCon-LtoR. Similarly
to the test in the previous chapter, the null hypothesis is Hy : pgrcon—rar =
UEsCon—Ltor and the counter hypothesis is Hy @ pigecon—FAF > [EzCon—LtoR , Where
UEsCon—FAF and lpzcon—Ltor are the mean numbers of partial plans created by
using ExCon-FAF and ExCon-LtoR, respectively. The resulting p values are shown
in Table 5.2.

For w = 5, we can reject the null hypothesis with a confidence level 96.5%.
For w = 10 and 15, the confidence level is lower. And for w > 20, the p-value
shows that neither of the two strategies is significantly doing better than the other.
Thus, ExCon-LtoR outperforms ExCon-FAF on problems with many ordering con-
straints, while their performances are similar on problems where more tasks can

be interleaved.

5.3.2 UM Translog

Next, we looked at the performance of the task selection methods on problems in

the UM Translog domain. For one-package problems in the UM Translog domain,
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Problem LtoR ExCon-FAF ExCon-LtoR | E-F/E-L p

Plans | Time | Plans | Time | Plans | Time | (Plans)

Ipack | 73.40 | 0.30 | 76.00 | 0.35| 73.40 | 0.37 1.04 >99.9%

Table 5.3: The results for LtoR, ExCon-FAF and ExCon-LtoR for one-package UM
Translog problems. Plans is the average number of partial plans created. Time is

non-garbage collection CPU time in seconds. p represents the confidence levels of

paired t-test for ExCon-FAF and ExCon-LtoR.

almost all the subtasks of a goal task are ordered with each other. Hence, we hy-
pothesized LtoR should do well for these problems. For multiple-package problems,
there are no ordering constraints. So, LtoR should do worse for these problems.
However, ExCon-LtoR should do well for the same reason that ExCon-FAF did
well on these problems. We ran the same UM Translog problems we used in the
previous chapter. For one-package problems, LtoR, ExCon-FAF, and ExCon-LtoR
were tested. For multiple-package problems, only ExCon-FAF and ExCon-LtoR

were tested because LtoR performed far worse than any other strategies.

One-package problems

Table 5.3 shows small differences between the performances of three strategies on
one-package problems in Translog. In terms of the number of partial plans created,
LtoR and ExCon-LtoR constantly outperformed ExCon-FAF. However, in terms
of CPU time, LtoR performed best although FAF sometimes outperformed it. This
is probably because FAF needs less computation overhead to compute which task
has the fewest decomposition methods. On the other hand, the ExCon strategy
needs more overhead to keep track of external conditions and figure out which task

can establish which constraint. Thus, even though ExCon-LtoR did well in terms
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of the number of partial plans, it did not do so in terms of CPU time.

The table also shows the results of the t-test used to compare the result of
ExCon-FAF and ExCon-FAF using the number of partial plans. Since ExCon-
LtoR constantly outperformed ExCon-FAF in terms of the number of partial plans,
we can say that ExCon-LtoR creates less partial plans than ExCon-FAF with a

confidence level of 99.9%.

Multiple-package problems

Table 5.4 shows the results of two- and three-package problems for ExCon-FAF
and ExCon-LtoR. We did not show LtoR for these problems because it performed
significantly worse than other strategies. For example, LtoR created 2129.6 partial
plans on average for the 2pack(a) problems.

The table shows the mixed results: in terms of the number of partial plans,
ExCon-FAF outperformed ExCon-LtoR on 4 problem types (2pack(a),(c)-(d) and
3pack(a)) and ExCon-LtoR outperformed ExCon-FAF on the remaining 4 prob-
lem types (2pack(b), 3pack(b)-(d)). For problems with the same itinerary (i.e.
2pack(a) and 3pack(a)), ExCon-LtoR is outperformed by both FAF (shown in
Table 4.2) and ExCon-FAF, although ExCon-LtoR outperformed FAF for all the
other problem types. Since the planner can successfully interleave goal tasks for
these problems, ExCon does not have the advantage. Thus, the performance of
ExCon depends on its tie-breaking strategy. Since there are no ordering constraints
between goal tasks in multiple package problems, the LtoR heuristic does not have
an advantage. Thus, ExCon-FAF outperforms ExCon-LtoR.

For 2pack(b)-(d), the difference between the ExCon-LtoR and ExCon-FAF

is small, but the t-test shows it is significant. Which strategy is better varies
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Problem | Types ExCon-FAF ExCon-LtoR E-F/E-L p
Plans | Time Plans | Time | (Plans)

2pack(a) | same 178.20 | 1.98 179.90 | 1.98 | 0.99 2.5%
2pack(b) | same 229.65 | 3.04 227.55 | 2.82 | 1.01 99.8%
opack(c) | same | 536.25 1037 | 55110 | 10.12 | 097 | <0.01%
opack(d) | different | 633.40 | 9.90 | 67235 | 10.11| 0.99 | <0.01%
3pack(a) | same 238.15 | 6.28 814.90 | 26.77 | 0.29 | <0.01%
3pack(b) | same | 33639.15 | 1,075 | 18657.70 687 | 1.80 | >99.9%
3pack(c) | same | 57692.10 | 1,937 | 33053.50 | 1,428 | 1.75 | >99.9%
3pack(d) | different | 20733.55 556 | 13087.75 419 | 1.58 | >99.9%

Table 5.4: The results of ExCon-FAF and ExCon-LtoR for multiple-package prob-

lems in UM Translog. Plans is the average number of partial plans created. Time is

non-garbage collection CPU time in seconds. “Types” shows whether the packages

have the same type and so can be carried by the same delivery truck. p represents

the confidence levels of paired t-test.

between problem sets. For 3pack(b)-(d), the difference is bigger, and ExCon-LtoR

outperformed ExCon-FAF. These results show that the tie-breaking strategy plays

a big role in ExCon. Since the tie-breaker determines which task to decompose at

the start of the planning process, it also determines which applicability conditions

ExCon will first look at. We need to further investigate which tie-breaking strategy

should be used for highly interleaved problems.
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5.4 Summary

This chapter investigated LtoR, a task selection heuristic that takes advantage
of ordering constraints in the domain. If the planner knows the order in which
tasks are later executed, it can plan efficiently by planning in the same order
because it can establish most state constraints associated with tasks immediately
by examining the changes made in the world state by the tasks that come before
them. We implemented LtoR, which selects tasks to decompose if there are no
non-primitive tasks ordered before them.

We have compared LtoR, FAF, ExCon-FAF and ExCon-LtoR on two test do-

mains. The primary results are as follows:

e LtoR and ExCon-LtoR perform better than FAF and ExCon-FAF on prob-

lems where there are many ordering constraints.

o LtoR performs far worse than any other strategies on problems where there

are less ordering constrains.

o ExCon-FAF and ExCon-LtoR perform better than FAF and LtoR on prob-

lems where there are less ordering constraints and tasks can be interleaved.

The above results seem to show that ExCon-LtoR is preferable to ExCon-
FAF because it can perform well on problems where there are a lot of ordering
constraints (i.e. LtoR performs well) as well as on problems where many tasks
can be interleaved (i.e. ExCon performs well). However, the results also show
that the range of problems that LtoR can perform well on is quite limited. LtoR
and ExCon-LtoR performed better than FAF and ExCon-FAF for problems of w
= 5 and 10 in the Random Travel Planning domain. Still, the t-test applied to

the results of ExCon-FAF and ExCon-LtoR can only reject the null hypothesis at
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a confidence level of 96.5% for w = 5, a rather low level. This implies that the
difference between FExCon-FAF and ExCon-LtoR even on problems with w =5
is not that significant. Considering that the actual average w value is 2.95, the
goal tasks in those problems are almost linearly ordered. Thus, the advantage
presented by using the LtoR heuristic applies only to a small range of problems.
Even though, we believe the LtoR heuristic would do well on many real-world
problems because there are many domains that have only linearly ordered tasks,
as Smith, et al. [44] suggest.

Although the experiments on LtoR and ExCon-LtoR showed that LtoR per-
forms well on problems where tasks are almost linearly ordered, there remain

questions regarding the four strategies tested:

o ExCon-FAF and ExCon-LtoR perform better than FAF and LtoR on prob-
lems where many tasks can be interleaved. However, the tie-breaking strategy
seems to affect the performance of ExCon. We need to study further what

tie-breaking strategy is best for ExCon for what types of problems.

e Both of the results of experiments in the Translog domain and the Ran-
dom Travel Planning domain seem to indicate that LtoR does perform well
on problems where subtasks have many ordering constraints between them.
However, the savings from using LtoR are not large compared with FAF or
ExCon-FAF in either of the two domains. This may be due to the fact that
FAF uses the LtoR heuristic to break ties. Further investigation is necessary

to fully evaluate how well LtoR does compared with FAF or ExCon-FAF.
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Chapter 6

Conclusion

6.1 Research Contributions

The goal of this dissertation was to analyze refinement strategies for HT'N planning
and address issues on the efficiency of HI'N planning. In each analysis, strategies
were evaluated systematically: they were tested both on artificial domains as well
as on more realistic domains, and statistical tests were performed on the results.

The primary research contributions of this work are summarized below.

6.1.1 Problems with Least Commitments

Most refinement planning systems use some type of least commitment strategy,
which tries to delay commitments to certain elements of a plan in order to avoid
making premature commitments. Many studies on least commitments show that
the least commitment strategy is better than other previous strategies. A problem
exists, however, in choosing which commitments should be delayed. Since a plan-
ner has to commit to something in order to plan, it cannot delay committing to

every element of a plan. Thus, a least commitment strategy may make premature
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decisions by delaying some other decisions.
[ compared three strategies, RVBS (least commitment to variable instanti-
ation), EVIS (least commitment to task instantiation), and DVCS (a dynamic

strategy which chooses between RVBS and EVIS using the FAF heuristic). The

results were the following:

o A least commitment strategy which consistently delays commitments to cer-
tain elements of a plan throughout the planning process can make premature

commitments to other elements of a plan.

o The decision of which elements of a plan to delay committing to should be

altered during the planning process, depending on the current partial plan.

e The FAF heuristic can be used to make such decisions. In the experiments
of the two least commitment strategies, RVBS and EVIS, and of DVCS, 1
have shown that neither RVBS nor EVIS can perform best in all types of
problem domains. On the other hand, DVCS performed better than or as
well as RVBS and EVIS in all of our test domains by choosing between the

two strategies using the FAF heuristic.

6.1.2 AND/OR Serialization

During refinement search, a refinement strategy needs to decide which refinement
to do among many refinements that are applicable to the current search node.
This choice process that a refinement strategy makes can be viewed as the process
of serializing an AND/OR graph into an OR-tree. Thus, the performance of a
refinement strategy can be evaluated by the size of the serialized tree it makes.

While this evaluation ignores the effects of pruning that a refinement strategy can
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make during the search process, it provides a good estimate of the size of search
space in the worst case.

The difference between the best possible serialization and worst possible seri-
alization can be as big as the factor of 2¥ where 2k is the height of the AND/OR
tree. Also, in this model, the best serialization can be obtained by using the FAF
heuristic. In general, the FAF heuristic does not always generate the best serial-
ization; in fact, it can generate the worst serialization if given the right AND/OR
tree. However, the experiments using randomly generated AND/OR trees show

FAF generated the best or near-best serialization in most cases.

6.1.3 Task Interactions in HTN Planning

The various analyses of FAF indicate that it works well on many problems. How-
ever, since FAF does not prune the search space, a refinement strategy that effec-
tively prunes the search space can outperform FAF.

In HTN planning, the planner interleaves non-primitive tasks in order to gen-
erate a plan that contains less redundant actions. In order to do so, the planner
typically tries to interleave tasks as much as possible. However, in many cases, the
planner cannot interleave tasks for reasons such as that the task does not produce
the necessary effect or that some other task interferes with the necessary effect.
The ExCon strategy tries to detect and deal with task interleaving as early as
possible, in order to prune the search space when it finds the task interleaving
futile. The empirical results on ExCon and FAF show that ExCon increasingly

outperformed FAF on problems where the planner fails to interleave tasks.
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6.1.4 Ordering Constraints in HTN Problems

Unlike action-based planning, the user can provide ordering constraints between
tasks in an HTN planning domain. An HTN planner can prune the search space
by using such ordering constraints to limit orderings between tasks. The LtoR
strategy expands the tasks in an order similar to the order that the tasks are later
executed. If the tasks for the given problem have many ordering constraints, L.toR
can establish most state constraints immediately after they are asserted into the
plan.

In a comparison of LtoR, FAF, ExCon-FAF (ExCon with FAF as a tie-breaker)

and ExCon-LtoR (ExCon with LtoR as a tie-breaker), the results show the follow-

ing:

e Both LtoR and ExCon-LtoR outperformed FAF and ExCon-FAF on prob-
lems where there are ordering constraints between almost all the tasks. How-

ever, the range of problems where LtoR can perform well is quite limited.

o ExCon-LtoR and ExCon-FAF outperformed FAF and LtoR on problems

where there are less ordering constraints and tasks can be interleaved.

6.2 Future Research Directions
The work described in this dissertation suggests several topics for future work:

e Improving ExCon The study of the two versions of ExCon (ExCon-FAF
and ExCon-LtoR) shows that the tie-breaker can make a big difference on
the performance of ExCon. Thus, an extensive study of the tie-breaking

strategy for ExCon is needed to improve ExCon. Also, it is not clear in
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what order external conditions should be looked at in ExCon to improve
the efficiency. For example, if a decomposition method has more than one
external condition, which external condition should be considered first by
ExCon? Currently, external conditions are considered in the order that the
planner extracts them. It is necessary to examine how much the order in
which external conditions are considered during the planning process affects

the performance.

Combining refinement heuristics On some problems, ExCon’s perfor-
mance is worse than FAF. This is due to wrong decisions for variable bind-
ings rather than the decision of task selection. However, this suggests an
analysis of the whole refinement strategy is needed instead of focusing on
task selection as was done for the studies of ExCon and LtoR. In order to do
so, combinations of heuristics for the different refinement planning elements
(tasks selection, variable constraints, step orderings) should be evaluated to

see if there are any combined effects on the efficiency of planning.

Choosing an appropriate refinement strategy for a given problem.
One refinement strategy cannot perform well on every kind of problem. Even
when strategy A is shown to do better than strategy B, a minor change to
A may make multiple versions of strategy A that may perform differently
on different problems as shown by the study of ExCon-FAF and ExCon-
LtoR. Thus, each strategy should be evaluated in such a way that shows the
conditions of the planning problems under which each strategy performs well.
Using such information, the user or the planner can make decisions to choose
appropriate refinement strategies based on problem features. This requires

a systematic way to categorize problems based on their characteristics.
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