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cases by applying a di�erent heuristic called the fewest alternative �rst (FAF)heuristic.� Re�nement as AND/OR tree search. Di�erent re�nement strategiescan be viewed as di�erent ways to transform an AND/OR graph into an OR-tree. The e�ciency of a re�nement strategy can then be evaluated by takingthe size of the OR-tree the strategy generates. In an empirical analysis, FAFgenerated the smallest OR-tree possible by this evaluation method.� The ExCon heuristic. This re�nement heuristic improves the e�ciencyof planning by detecting and handling possibly problematic interactions be-tween tasks. In a comparison of this heuristic against the FAF heuristic,ExCon performed increasingly better than FAF on problems where there aremany task interactions.� Analysis of the e�ects of ordering constraints. The ordering con-straints in HTN planning domains can make an impact on the planninge�ciency. In particular, a planner can use the left-to-right (LtoR) heuris-tic, which plans in a way similar to a forward planner, to plan e�ciently onproblems where there are many ordering constraints. Also, empirical testsshow how many ordering constraints are necessary for LtoR to perform well.Furthermore, LtoR can be combined with ExCon to take advantage of bothheuristics. The resulting strategy performed well on most of the test domains.



E�cient Re�nement Strategies for HTN PlanningbyReiko TsunetoDissertation submitted to the Faculty of the Graduate School of theUniversity of Maryland, College Park in partial ful�llmentof the requirements for the degree ofDoctor of Philosophy1999Advisory Committee:Professor James Hendler, Chairman/AdvisorProfessor Dana Nau, Co-AdvisorProfessor Michael BallProfessor V.S. SubrahmanianProfessor Martha Pollack



c
 Copyright byReiko Tsuneto1999



DEDICATIONTo Dave for his support and enscouragement

ii



ACKNOWLEDGEMENTSMy greatest gratitude goes to my mother, father, and sisters, whosupported me in every way. Their continuous encouragement has givenme the strength to go through the doctoral program.I was so fortunate to have two great advisors, Prof. Jim Hendler andProf. Dana Nau. I have enjoyed working with them both. I also wantto thank other members of my defense committee for their guidance.Edna Walker helped me with many processes associated with graduateresearch. Like every other graduate student in this department, I amgrateful to Nancy Lindley, who has done a great job of making us feela part of the department. She always had an answer when I had aquestion.I want to thank previous and current members of the PLUS groupand the DSN group. They taught me what real Americans are like.Kutluhan Erol was a mentor to me when I �rst started my research inplanning. Sean has been a great help with graphs and �gures, and manycomputer troubles I encountered. Amnon gave me helpful feedback onmy practice talks. iii



I also want to thank my best friends I have made at the Maryland.Yahui gave me a lot of support when I was writing the thesis proposal.We had fun together on many weekends, away from our graduate work.Leliane de Barros and I had a lot of discussions about our research inplanning. She cheered up our o�ce during the year she stayed with us.Finally, I owe so much to Dave Rager, who proofread this thesis andlistened patiently to my whining. He gave me the support and encour-agement when I most needed it.

iv



TABLE OF CONTENTSList of Tables ixList of Figures xi1 Introduction 11.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Re�nement Planning 92.1 Re�nement Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2 Re�nement Strategies for Action-based Planning . . . . . . . . . . . 132.2.1 Re�nements in action-based planning . . . . . . . . . . . . . 132.2.2 Least Commitment Strategies . . . . . . . . . . . . . . . . . 182.2.3 Other strategies . . . . . . . . . . . . . . . . . . . . . . . . . 242.3 HTN Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.3.1 Illustration of HTN planning . . . . . . . . . . . . . . . . . . 272.3.2 Basic HTN planning mechanism . . . . . . . . . . . . . . . . 30v



2.3.3 UMCP Formalism . . . . . . . . . . . . . . . . . . . . . . . . 312.3.4 Other HTN formalisms: . . . . . . . . . . . . . . . . . . . . 422.3.5 Comparison between HTN and action-based planning . . . . 443 Fewest Alternative First Method 473.1 Commitments to Variable Bindings . . . . . . . . . . . . . . . . . . 483.1.1 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 523.1.3 Domain A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533.1.4 Domain B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553.1.5 Domain C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573.1.6 Weighed DVCS . . . . . . . . . . . . . . . . . . . . . . . . . 623.1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643.2 Graph Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 663.2.1 Partial-Order Planning and AND/OR Graphs . . . . . . . . 673.2.2 Best and Worst Serializations . . . . . . . . . . . . . . . . . 733.2.3 Fewest Alternatives First . . . . . . . . . . . . . . . . . . . . 743.2.4 Experimental Studies of FAF . . . . . . . . . . . . . . . . . 763.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834 External Conditions Method 854.1 Why FAF does not always perform well . . . . . . . . . . . . . . . . 864.2 Task Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894.3 External Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 924.3.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92vi



4.4 ExCon Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944.4.1 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . 944.4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 984.5.1 Automatically extracting external conditions . . . . . . . . . 994.5.2 Computing possible establishers and possible threats . . . . 1004.5.3 Plan selection . . . . . . . . . . . . . . . . . . . . . . . . . . 1014.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024.6.1 Arti�cial Domain . . . . . . . . . . . . . . . . . . . . . . . . 1024.6.2 UM Translog . . . . . . . . . . . . . . . . . . . . . . . . . . 1084.6.3 Blocks World . . . . . . . . . . . . . . . . . . . . . . . . . . 1114.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134.7.1 External conditions in other HTN planners . . . . . . . . . . 1134.7.2 High-level e�ects . . . . . . . . . . . . . . . . . . . . . . . . 1154.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185 Left-to-Right Method 1205.1 Forward HTN planning . . . . . . . . . . . . . . . . . . . . . . . . . 1205.2 Left-to-Right heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 1225.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 1235.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245.3.1 Random Travel Planning domain . . . . . . . . . . . . . . . 1245.3.2 UM Translog . . . . . . . . . . . . . . . . . . . . . . . . . . 1305.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1346 Conclusion 136vii



6.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 1366.1.1 Problems with Least Commitments . . . . . . . . . . . . . . 1366.1.2 AND/OR Serialization . . . . . . . . . . . . . . . . . . . . . 1376.1.3 Task Interactions in HTN Planning . . . . . . . . . . . . . . 1386.1.4 Ordering Constraints in HTN Problems . . . . . . . . . . . . 1396.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 139Bibliography 141

viii



LIST OF TABLES3.1 Experimental results. . . . . . . . . . . . . . . . . . . . . . . . . . . 794.1 The average numbers of search nodes created over the 100 randomlygenerated problems in the arti�cial test domain. p represents thecon�dence levels of paired t-test. . . . . . . . . . . . . . . . . . . . 1054.2 The results for FAF and ExCon on Translog problems. Plans areaverage number of partial plans created. Time is non-garbage collec-tion CPU time in seconds. For multiple package problems, \Types"shows whether the packages have the same type and so can be car-ried by the same delivery truck. p represents the con�dence levelsof paired t test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1094.3 The results on the Blocks World problems. Plans are number ofpartial plans created. Time is non-garbage collection CPU time inseconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1114.4 The results on the same Blocks World problems where the goaltasks are speci�ed in the reversed order. A number in boldfaceindicates the best result (either in CPU time or number of partialplans created) for the problem. . . . . . . . . . . . . . . . . . . . . 112ix



5.1 The results of the Random Travel Planning problems. The actualaverage number of unordered pairs is shown next to ! values. Plansis the average number of partial plans created. Time is averagenon-garbage collection CPU time in seconds. . . . . . . . . . . . . . 1295.2 Comparison of ExCon-FAF and ExCon-LtoR on the Random TravelPlanning problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1305.3 The results for LtoR, ExCon-FAF and ExCon-LtoR for one-packageUM Translog problems. Plans is the average number of partial planscreated. Time is non-garbage collection CPU time in seconds. prepresents the con�dence levels of paired t-test for ExCon-FAF andExCon-LtoR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315.4 The results of ExCon-FAF and ExCon-LtoR for multiple-packageproblems in UM Translog. Plans is the average number of partialplans created. Time is non-garbage collection CPU time in seconds.\Types" shows whether the packages have the same type and so canbe carried by the same delivery truck. p represents the con�dencelevels of paired t-test. . . . . . . . . . . . . . . . . . . . . . . . . . . 133
x



LIST OF FIGURES2.1 A sample re�nement operations applicable to the partial plan P. . . 102.2 An illustration of a re�nement search to construct a plan from thepartially developed plan P. . . . . . . . . . . . . . . . . . . . . . . 102.3 A plan for Blocks World problem. . . . . . . . . . . . . . . . . . . . 152.4 An initial partial plan for the Blocks World sample problem. . . . 162.5 Three alternative partial plans that can be obtained by asserting anaction applicable to the initial state. . . . . . . . . . . . . . . . . . 162.6 Two alternative partial plans that can be obtained by asserting anaction that establishes the goal condition. . . . . . . . . . . . . . . 172.7 Various options for re�nement operations. . . . . . . . . . . . . . . 172.8 A college student's dinner problem . . . . . . . . . . . . . . . . . . 282.9 An informal description of a decomposition method for the action`eat pizza' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292.10 Basic HTN planning algorithm. [13] . . . . . . . . . . . . . . . . . . 312.11 A method for (on ?x ?y) in Blocks World (in UMCP speci�cation). . 322.12 High-level re�nement search in UMCP algorithm. [13] . . . . . . . . 382.13 The default re�nement strategy in the UMCP planner. . . . . . . . 413.1 Methods for Domain A . . . . . . . . . . . . . . . . . . . . . . . . . 533.2 CPU time (in seconds) in Domain A . . . . . . . . . . . . . . . . . 54xi



3.3 Methods for Domain B . . . . . . . . . . . . . . . . . . . . . . . . . 563.4 CPU time (in seconds) in Domain B . . . . . . . . . . . . . . . . . 583.5 Methods for the decomposition of (toptaska) in Domain C . . . . . . 593.6 Methods for the decomposition of (toptaskb) in Domain C . . . . . . 603.7 CPU time (in seconds) in Domain C . . . . . . . . . . . . . . . . . 613.8 The results for the problems in Domains A, B and C by applyingthe WDVCS strategies. The x-axis shows the r-value and the y-axisshows the average number of nodes generated. . . . . . . . . . . . 633.9 A tree T, and the trees nT and Tn (where n is a node not in T). . . 683.10 Case 2 of serializing an AND/OR graph. . . . . . . . . . . . . . . . 703.11 Case 3 of serializing an AND/OR graph. . . . . . . . . . . . . . . . 703.12 A simple AND/OR graph G, and three serializations S1, S2, and S3. 713.13 A basic pattern consisting of an AND-branch leading to two OR-branches, an AND/OR tree formed by repeating this pattern, andthe smallest possible serialization of the AND/OR tree. . . . . . . . 723.14 A situation where the FAF heuristic fails to produce the best seri-alization of an AND/OR graph. FAF chooses to expand i before b,thus producing S1; but S2 contains fewer nodes. . . . . . . . . . . . 753.15 Sizes of FAF(�) and average(+) serializations normalized with thesmallest and largest serialization sizes. . . . . . . . . . . . . . . . . 803.16 The one tree in which FAF produced the worst serialization. . . . . 81
xii



4.1 The outcome of a re�nement may change if it is delayed. In (a), theplanner does not need to do r2 if r1 was applied �rst. In (b), doingr1 and r2 will prune the search space represented by the partial planQ. However, if the planner works on re�nements other than r1 or r2,it may have to spend a lot of time backtracking for those re�nements. 874.2 Two possible plans to buy fruit and stamps. . . . . . . . . . . . . . 894.3 Two methods to get stamps . . . . . . . . . . . . . . . . . . . . . . 914.4 A sample applicability condition in a partial plan . . . . . . . . . . 954.5 The task selection algorithm for ExCon. . . . . . . . . . . . . . . . 974.6 The decomposition methods for the test domain. Each non-primitivetask has exactly one method speci�ed. The tasks shown in boldfaceare primitive tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034.7 A sample problem with 2 goals, 3 predicates and 50% overlap. Werepresents the initial state which consists of (p C6), (q C5) and (r C4). 1044.8 The relative performances of FAF and ExCon for 3-goal problems.The x-axis gives the number of predicates in the goals, and they-axis gives the ratio (#search nodes by FAF)/(#search nodes byExCon). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064.9 The relative performances of FAF and ExCon on 3-goal problems.The x-axis gives the overlap rate, and the y-axis gives the ratio(#search nodes by FAF)/(#search nodes by ExCon). Note: thex-axis must be changed to 90%, 50% and 10%. . . . . . . . . . . . . 1075.1 The decomposition methods for the Random Travel Planning do-main. The tasks shown in boldface are primitive tasks. . . . . . . . 126xiii



5.2 A problem of 7-goals, ! = 10 (the actual number of unordered pairsof task is 9) in the Random Travel Planning domain. . . . . . . . . 1275.3 The results of the Random Travel Planning problems. The x-axisshows the average number of pairs of unordered goal tasks and they-axis shows the average number of partial plans created. . . . . . . 128

xiv



Chapter 1IntroductionAn AI planning system searches a space of partially-developed plans in order to�nd a solution plan that satis�es every requirement of a problem. Since the searchspace may be in�nite, it is important to search for a solution plan e�ciently.One of the most important in
uences on the e�ciency of a planner's search is itsre�nement strategy (de�ned in Section 1.1).This dissertation addresses plan re�nement strategies for HTN planning, inorder to understand how re�nement strategies can improve the HTN planner'se�ciency. I have analyzed the tradeo�s between problem characteristics and theperformance of re�nement strategies as well as creating and improving existingre�nement strategies.1.1 BackgroundMany planning systems are based on the idea of \re�nement search" in which theplanner gradually `re�nes' partially-developed plans into more and more detailedplans, until it �nds a plan that is fully detailed and consistent with the problemrequirements. Such planning systems are called re�nement planners. During the1



planning process, a re�nement planner needs to choose what re�nement operationto apply to the current partially-developed plan. Such a decision is made by theplanner's `plan re�nement strategy'. Using an appropriate plan re�nement strategyis essential for the e�ciency of any re�nement planner because it de�nes the wayin which the planner plans.There are currently two major re�nement planning methodologies in AI plan-ning. One is action-based planning and the other is hierarchical task-network(HTN) planning. In action-based planning, a state of the world is speci�ed by aset of �rst-order logic predicates. The domain is described by a set of operatorsspeci�ed with preconditions and e�ects. A precondition of an operator is a con-dition that must be true in the world state for the operator to be applicable. Forexample, for the operator open-door(Robot, Door), a precondition might be that the
Robot is at the Door and and another precondition might be that the Door is cur-rently closed. An e�ect of an operator is the change in the world state as a directresult of the operator execution. For example, the same operator open-door(Robot,

Door) might have an e�ect that Door is open and no longer closed. Given a fullyspeci�ed initial state and a partially speci�ed �nal (goal) state, an action-basedplanner generates a sequence of operators which, when sequentially applied to theinitial state, achieves the goal state.In HTN planning, a problem is given as a rough plan which consists of tasks toaccomplish and goals to achieve. Each task or goal is then decomposed into smallertasks using one of the decomposition methods speci�ed in the domain description,transforming the rough plan into a more and more detailed plan. Similar to action-based planning, tasks in HTN planning have conditions and e�ects. When all thetasks in the plan are executable actions and consistent with the domain require-2



ment, the planner outputs the plan as a solution to the problem. Compared withaction-based planning, HTN planning is more expressive and is capable of incor-porating more domain knowledge. Many practical planning applications use sometype of HTN planning [1, 53, 2, 43].1.2 MotivationRecently, many planning systems have made successes in real-world applications.Many of these systems use the HTN planning approach, including applicationsfor computer bridge playing [43], space-craft operations [1] and military opera-tions [53]. Most of these real-world planners need to incorporate temporal rea-soning, numerical computation and geometrical reasoning, yet need to plan inreasonable time. In order to do so, most of them use a planning framework thatis not based on a solid theoretical foundation. Also, while they provide varioussearch mechanisms, they require the user to make search control choices. Althoughthis may be quite e�ective if the user needs the e�ciency and 
exibility it o�ers,it also poses the following problems:� If the planner is not based on a sound and complete planning framework,there is no guarantee that a generated plan is correct or that the planner can�nd a plan if one exists. While this problem can be avoided in many cases bycarefully encoding the domain, it is preferable to use a sound and completealgorithm.� The user needs to be familiar with the particular planning system in orderto specify the application domain in such a way that (a) the planner willgenerate desired solution plans, and (b) the planner will do so e�ciently.3



This puts too much burden on the user.� The user may not know that the search control he provided is appropriate forthe domain problems unless he tracks the planning process in detail. This is atime-consuming task for any application domain beyond small toy domains.� Many real-world applications require updating. Often, this must be doneby someone who did not write the original domain speci�cation. Doing sowithout jeopardizing the consistency and e�ciency of the domain can bedi�cult.For these reasons, it is better for a planner to have the capability to plane�ciently with little or no search control input from the user while giving the userthe choice to control of the search if (s)he wants.Improving the e�ciency of planning by employing better search strategies hasbeen addressed in many literatures [4, 33, 26]. However, most of them are foraction-based planning; few studies have been done to analyze the e�ciency ofsearch strategies for HTN planning. This is mostly due to a historical reason; un-like action-based planning, there had been no sound and complete HTN planningframework to test various search strategies until recently. The implementation ofa general domain HTN planning system called UMCP (Universal Method Compo-sition Planner) based on Erol's generalization of HTN planning [13] enabled us toanalyze and evaluate many search strategies for various problem domains. I haveimplemented all the strategies on the UMCP planner in order to empirically ana-lyze and compare them. Since all the re�nement strategies presented in this paperare sound and complete as de�ned in Section 2.3, they preserve the soundness andcompleteness of UMCP. 4



1.3 ApproachMany papers on search strategies present new strategies and compare them witholder strategies on several toy domains to show an improved performance. Theseperformance evaluations fail to examine the tradeo�s between the domain char-acteristics and the performance of the particular strategies. Also, many of thesecomparisons conclude with a statement \strategy A is better than strategy B",even though this is not true in all cases. Furthermore, most of these evaluationslack statistical evaluations of the results and thus it is not clear whether or not thenew strategy is signi�cantly better than other strategies with a high con�dencelevel. A more preferable way to compare strategies is with more controlled ex-periments such as those shown by Kambhampati, et al [23], where they compareddi�erent re�nement planning strategies on an arti�cial domain. In those experi-ments they tested di�erent planning strategies on problems where they could varyseveral factors in order to show the relationships between the performance of cer-tain re�nement strategies and the domain characteristics. Such evaluations showwhy a strategy performs better in some problems and worse in other problems.In my evaluations of re�nement strategies, I often constructed arti�cial domainswhere I could vary some factors in the problem that a�ected the performance of thetested re�nement strategies. In addition, I tested the same strategies on existingdomain problems such as the UM Translog problems. Often, the results fromexperiments on the arti�cial domain helped us explain the performances of thesame strategies on these other test domains. These performance evaluations alsoled us to realize where the strategies could be improved upon. In addition, weperformed statistical tests to see whether the di�erences in the performances oftwo strategies were signi�cant or not, when such tests were applicable.5



1.4 ContributionsThrough the analyses of re�nement strategies for HTN planning, I have producedthe following results:� Least-commitment versus FAF. Since the least commitment strategy,the most popular strategy in re�nement planning, delays certain commit-ments, it may make premature decisions on other elements of a plan. Thus,the least commitment strategy may not perform well on all types of planningproblems. However, the problem can be resolved in many cases by applyinga di�erent heuristic called the fewest alternative �rst (FAF) heuristic. Em-pirical tests show that there is a domain where one type of least commitmentstrategy performs well and another domain where another type of least com-mitment strategy performs well, but neither of the strategies performs wellon both domains. However, a strategy called DVCS which chooses betweenthese least commitment strategies based on the FAF heuristic performs aswell as the least commitment strategy which performs best for each domain.Furthermore, there is a domain where DVCS outperforms both of the leastcommitment strategies.� Re�nement as AND/OR tree search. Di�erent re�nement strategiescan be viewed as di�erent ways to transform an AND/OR tree into an OR-tree. The e�ciency of a re�nement strategy can then be evaluated by takingthe size of the OR-tree the strategy generates. The di�erence between thebest and worst serializations can be as big as an exponential to the heightof the AND/OR tree. In an empirical analysis, FAF generated the smallestOR-tree possible by this evaluation method.6



� The ExCon heuristic. Interactions between tasks in HTN planning areharder to handle than in action-based planning because an HTN planner maynot know the conditions and the e�ects a task has until it is decomposedinto a more detailed plan. On many planning problem domains, this causesa major ine�ciency. I found that most of these ine�ciencies can be resolvedby handling a certain type of condition in plans. Also, the conditions ofthis type, called external conditions, can be automatically detected by theplanner. Based on this study, I created a new re�nement heuristic calledExCon that improves the e�ciency of planning by detecting and handlingpossibly problematic interactions between tasks. In a comparison of thisheuristic against the FAF heuristic, ExCon performed increasingly betterthan FAF on problems where there are many task interactions.� Analysis of the e�ects of ordering constraints. The ordering con-straints in HTN planning domains can make an impact on the planninge�ciency. In particular, a planner can use the left-to-right (LtoR) heuris-tic, which plans in a way similar to a forward planner, to plan e�ciently onproblems where there are many ordering constraints. Also, empirical testsshow that many ordering constraints are necessary for LtoR to perform well.Furthermore, LtoR can be combined with ExCon to take advantages of bothheuristics. The resulting strategy performed well on most of the test domains.1.5 OrganizationChapter 2 provides the background for my research. It describes many re�nementstrategies for action-based planning that have been presented over the years. The7



chapter presents basic re�nement planning systems and summarizes the re�ne-ment strategies for action-based planning. It also introduces the HTN planningmethodology.Next, I present three di�erent heuristics used for re�nement strategies. Chapter3 describes the \Fewest Alternative First"(FAF) heuristic and shows the empiricalresults of FAF used to select between variable commitment and task instantia-tion commitment. The chapter explains that the choices that FAF makes can bethought of as serializing AND/OR graphs and analyzes the strategy from thatperspective.Chapter 4 de�nes external conditions, a type of condition in HTN planningwhich can be used to detect task interactions, and describes the \External Con-dition"(ExCon) heuristic, which tries to deal with task interactions e�ciently bycarefully selecting which task to decompose next. The performance of ExCon iscompared with the performance of the FAF heuristic on various problems.Chapter 5 describes the third heuristic, the \Left-to-Right"(LtoR) heuristic.This heuristic takes step ordering information into account when choosing whichtask to decompose next. The heuristic works particularly well on problems whereorderings between many tasks are speci�ed. This is supported by empirical testscomparing LtoR, FAF and ExCon.Finally, Chapter 6 summarizes the results of this dissertation.
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Chapter 2Re�nement PlanningMany general-domain planning systems use re�nement search, where a plannertakes a goal as a skeletal plan and gradually re�nes it (i.e. adds details) untila detailed solution plan is found. Although how each planner represents and re-�nes partial plans varies from one to another, many re�nement planners, be theyaction-based or HTN, share basic structures. This chapter provides backgroundon re�nement planning, various re�nement strategies, and HTN planning.2.1 Re�nement SearchThe concept of re�nement search can be viewed as partitioning the search spaceof possible solutions into smaller spaces until one containing a valid solution isfound. The re�nement search process can be represented by a re�nement searchtree where the root represents the whole search space and each child node in thetree represents the di�erent area resulting from a partition of the area representedby the parent node. When a search area that contains only inconsistent possiblesolutions is found, it can be pruned from the search.For example, consider a partially developed plan P in Figure 2.1. The search9



Partial plan P

goal g1 goal g2 constrain
variable x

order nodes
n1 and n2

operator
o1

operator
o2

x=v1 x=v2 x=v3 promote demote

an item that needs
to be refined ...

 ... and the
possible ways
to refine itFigure 2.1: A sample re�nement operations applicable to the partial plan P.

P

Pa Pb

x=v1

(a) The top of a refinement search tree

pruned

The seach space for P
(all possible seqeunces of
actions that can be derived
from P).

The area
represented
by Pa

Pc

The area
represented
by Pb

The area
represented
by Pc

(b) The search space of possible solutions

x=v2 x=v3

Pd Pe

insert o1 insert o2

constrain x

satisfy g1

order
n1 and n2

x=v3
x=v2

x=v1

Figure 2.2: An illustration of a re�nement search to construct a plan from thepartially developed plan P. 10



space of possible solutions for P is a set of all possible sequences of actions in theproblem domain that can be derived from P. In order to develop P into a completeplan, a planner may re�ne P by inserting an action to satisfy the goal g1 or the goal
g2, constrain the variable x, or put an ordering between the two nodes n1 and n2.Suppose the planner chooses to constrain the variable x �rst, the re�nement willresult in three di�erent partial plans, each with a di�erent value assigned to x (Pa,
Pb, and Pc in the re�nement search tree in Figure 2.2(a)). However, upon examiningthe plan Pc, the planner may �nd out that no consistent complete plan can derivedfrom it. In such a case, Pc can be pruned from the search since no solution plan canbe found by working on Pc. Figure 2.2(b) illustrates the corresponding partitioningof the search space for P. Now, suppose the planner next chooses to insert an actionto satisfy the goal g1. This re�nement will result in two partial plans (Pd and Pein Figure 2.2(a)).Since searching an area that does not contain a valid solution is futile, the abilityto identify whole areas that can be pruned from the search is very important forthe e�ciency of the re�nement search. A re�nement search algorithm often pre-prunes a node from the search tree. It does not generate a child node if it is clearthat the node is inconsistent with the problem. Typically, the number of searchnodes generated in the re�nement search tree corresponds to the e�ciency of there�nement algorithm. In addition, the e�ciency of a re�nement search algorithm isa�ected by the order the re�nements are done. For example, if the �rst re�nementoperation for P was inserting an action to satisfy g1, then the planner might laterhave to prune partial plans with x = v3 twice at a later time, making the search lesse�cient. The techniques used to choose the ordering of the re�nements that willimprove the e�ciency of planning are described in later chapters.11



The basic algorithm of re�nement search is as follows: node-set is a set of searchnodes which need further re�nements. In other words, the node-set representsdi�erent search areas in the search space that have not been pruned from thesearch. Initially, the node-set contains only a node with no re�nements. Thealgorithm then repeatedly does the following: If the node-set is empty, the searchis terminated with no solution because no solution exists for the given problem. Ifthe node-set is not empty, one node n is picked nondeterministically and removedfrom the node-set. If n is a fully re�ned solution, the search is terminated witha solution. If not, n is re�ned with some re�nement operation and the resultingnodes are put back in the node-set.No pruning operations are explicitly done in the algorithm. Instead, inconsis-tent nodes are pre-pruned as part of the re�nement operations. Since there areusually multiple re�nement operations applicable to a node, a strategy, called are�nement strategy, is used to determine what re�nement operation should be ap-plied. As in other search algorithms, a re�nement search algorithm is sound andcomplete if it returns a correct solution if and only if it exists.Re�nement planning uses re�nement search to construct a solution plan. Inre�nement planning, a search node is a partially developed plan which typicallyconsists of a set of action steps, orderings between the steps, a set of possible valuesfor each variable, and other auxiliary constraints. A completion of a partial plan isobtained by instantiating every variable to one of its possible values and arrangingthe step orderings into a linear sequence in a way that satis�es all the associatedconstraints. A partial plan is inconsistent if it has no consistent completion. Apartial plan is a solution plan if every completion solves the given problem.12



2.2 Re�nement Strategies for Action-based Plan-ningMany re�nement planning systems, regardless of being action-based or HTN, useleast commitment strategy techniques, which make certain decisions only whenthe planner thinks they are necessary. This section presents how action-basedre�nement planners generate plans, describes various least commitment strategiesand discusses their advantages and disadvantages, and gives an outline of two othertypes of strategies for action-based planning, called Graphplan and SATPLAN,that are currently getting a lot of attention.2.2.1 Re�nements in action-based planningMost planning formalisms, whether action-based or HTN, are based on the follow-ing assumptions:� The planner has complete knowledge of the initial state of the world. Gen-erally, an initial state is speci�ed with a set of positive ground atoms, eachstating a condition that is true in the world initially. Any condition that isnot in the state is presumed to be false.� The only thing that changes the state of the world is the execution of actionsin the plan generated by the planner. If some condition is true in a state andsome action is applied that does not a�ect the condition, then the conditionwill remain true in the resulting state.� The planner knows all the consequences that each action execution makes.13



� There is no gradual or delayed e�ect: all the e�ects of an action take placethe instant the action is executed.1In action-based planning, a planning problem is speci�ed by a tuple< I; g; D >where I is a initial state of the world, g is a goal and D is a set of domain opera-tors. A world state is a set of positive ground atoms which represent descriptionsof objects such as \BlockA is a block" or relationships between objects such as\BlockA is on top of BlockB". Any condition which does not appear in the stateis assumed False. A goal is a partial description of the world state that a solutionplan should achieve. In other words, all the conditions in the goal should be truein the state that can be achieved by executing the actions of a solution plan forthe problem. A domain operator in action-based planning is the speci�cation ofan action in the domain. An operator is speci�ed by preconditions which must betrue in the world state in order to execute the action, and e�ects which representthe changes in the world state caused by the execution of the action. A solutionplan for a problem is a sequence of instantiated domain operators which, whenexecuted sequentially from the initial state, reach a �nal state where all goal con-ditions are necessarily true. A re�nement planner can plan forward by graduallyadding actions in the plan starting from the initial state, or plan backwards bygradually inserting actions from the end of the plan which satisfy goal conditions.Example: action-based planning domainConsider the following problem P = < I; g; D > :I :Initial state = f(on-table a)(clear a)(on-table b)(on c b)(clear c)g1There are some planning formalisms that allow conditional or probabilistic e�ects [35, 39]while some others allow gradual or delayed e�ects [51].14
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a
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a bb b
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c cFigure 2.3: A plan for Blocks World problem.g :Goal = f(on a b)gD :Domain operators = f
unstack (?x ?y)

precondition: ((clear ?x )(on ?x ?y))

effect: ((�on ?x ?y)(on-table ?x)(clear ?y))

dostack (?x ?y)

precondition: ((clear ?x )(on-table ?x)(clear ?y))

effect: ((�on-table ?x)(on ?x ?y)(�clear ?y))

restack (?x ?y ?z)

precondition: ((clear ?x )(on ?x ?y)(clear ?z))

effect: ((�on ?x ?y)(on ?x ?z)(�clear ?z)(clear ?y))gThere are three blocks, a, b and c. Initially, blocks a and b are on the table andblock c is on top of block b. The goal of this problem is to stack block a on top ofblock b. There are three domain operators available. unstack puts a block which ison top of another block down on the table. dostack stacks a block from the tableon top of another block. restack moves a block from on top of a block to the top15
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(on a b)Figure 2.4: An initial partial plan for the Blocks World sample problem.
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FINISHFigure 2.5: Three alternative partial plans that can be obtained by asserting anaction applicable to the initial state.of another block. One solution plan for the above problem is the sequence (unstack

c b);(dostack a b) which is illustrated in Figure 2.3. First, (unstack c b) clears the topof the block b, then (dostack a b) makes (on a b) true in the �nal state.A re�nement planner usually starts with an initial partial plan consisting oftwo steps, START and FINISH as shown in Figure 2.4. START is a dummy actionwith no preconditions and the e�ects establish all the conditions of the initialstate. FINISH is a dummy action with no e�ects and the goal conditions are itspreconditions. Every action the planner asserts is placed between START andFINISH. The goal of the planner is to construct a sequence of actions where anyprecondition of an action is made true by an e�ect of a preceding action withoutany other action in between negating the e�ect.Typically, a planner has two ways to assert an action in an partial plan. Oneway is to `plan forwards' by asserting an action that can be applied right after16
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FINISHFigure 2.6: Two alternative partial plans that can be obtained by asserting anaction that establishes the goal condition.
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goal g 2…Figure 2.7: Various options for re�nement operations.the START action or the subsequent actions. Another is to `plan backwards' byasserting an action that can satisfy one of the preconditions of existing actions.For example, a planner which plans forward would assert (unstack c b), (dostack a

c) or (restack c b a) to the plan after START (Figure 2.5), while a planner whichplans backward would assert (dostack a b) or (restack a ?y b) to the plan beforeFINISH (Figure 2.6). Typically, a planner only plans forward [7], or only plansbackward [31, 8], although some planners plan bi-directionally [16].In addition to asserting actions, a planner needs to check the consistency of thepartial plan, bind variables, and detect and resolve con
icts. Thus, a planner hasvarious options for what to do during the planning process as shown by Figure 2.7.As in general re�nement search, a re�nement strategy determines how and in whatorder these re�nements are done. 17



2.2.2 Least Commitment StrategiesAs AI planning evolved, various types of re�nement strategies were introduced andimproved. The earliest planning systems like STRIPS [15] use the linear planningmethod where partial plans are linear sequences of steps. Also, the variables in anoperator are instantiated into constants as soon as the operator is added as a stepin the plan.The notion of `least commitments' was �rst introduced by Sacerdoti [41]. In hisplanning system called NOAH, he used a partially-ordered graph to represent thestep orderings in a partial plan. This provided a way to avoid premature commit-ments to a particular step ordering when achieving subgoals. Compared with theprevious method of using only linear sequences of steps in partial plans, using par-tially ordered steps has been shown to reduce the search space and thus improvesthe planning e�ciency [33]. Over the years, the \avoid premature commitments"idea has been extended in various ways to many types of commitments, includingcommitments to variable bindings and commitments to subgoal reductions. Sincemany people have de�ned how and when a type of commitment is `premature' inso many di�erent ways, a `least commitment strategy' should be regarded not asone unique strategy, but as a strategy that was created based on the \avoid prema-ture commitments" concept. Thus, a `least commitment strategy' generally refersto any strategy that tries to avoid unnecessary branching in the search by eitherpostponing certain re�nements or making only necessary changes to partial plansby adapting a 
exible representation of a partial plan.2 We will revisit the issue of2In contrast to least commitment, a re�nement strategy which tries to make decisions as soonas possible in the plan is called an `eager commitment' strategy or a `maximum commitment'strategy. 18



least commitment strategies in Chapter 3 and carefully examine their e�ciency.Least commitment strategies are the most popular strategies for re�nementplanning. Below is a list of the major least commitment techniques. Some of thetechniques were introduced in the HTN planning framework, although they werelater used in action-based planning. Similarly, many of the techniques that werecreated in action-based planning have been applied in HTN planning.� Step orderings: Instead of always representing a partially developed planby a linear sequence of steps, Sacerdoti [41] used a partially ordered graphto avoid unnecessary commitments to step orderings. In order to keep aplan free of con
icts between steps that are not ordered with each other,Chapman [8] presented the Modal Truth Criterion (MTC) for evaluatingconditions in his TWEAK planner. MTC determines if a condition p is nec-essarily true to denote p is satis�ed, possibly true to denote p can be possiblysatis�ed later, or false to denote p cannot be satis�ed. TWEAK terminateswith a solution plan when all the conditions in the plan are necessarily true.An alternative to MTC is to use `causal links' which were introduced byTate [47]. A causal link records a causality between two steps and can bedenoted by a tuple < p; se; sc > where se is the establishing action step fora condition p which is a precondition of the consuming step sc. A causal-link based planner like SNLP [31] creates a causal link each time a subgoal(i.e. an unsatis�ed precondition of a step in the plan) is satis�ed by anotherstep. Unlike MTC, which repairs threatening situations by inserting anotherestablishing step between the threatening step and the consuming step, thecausal links in a plan cannot be violated; when a causal link is found tobe violated in the plan, then the plan is considered inconsistent and pruned19



from the search.� Variable binding: In traditional planning system like STRIPS [15] andNonlin [47], the variables in an operator are instantiated into constant valuesimmediately after the operator is introduced in a partial plan. Yang andChan [56] pointed out that this approach to variable bindings has severaldrawbacks. First of all, this approach creates 100 branches in the search treeif a variable has 100 possible values. The large branching factor causes anenormous search space. Second, if the planner employs chronological back-tracking, the search might keep failing for the same variable binding decision.The suggestion Yang and Chan presented is to maintain the sets of possiblevalues for the variables instead of binding them to constant values. Theypresented a new planning algorithm FSNLP, an extension of SNLP, whichdelays variable bindings until they become absolutely necessary. Instead ofinstantiating variables into constant values as soon as a step is inserted to apartial plan, FSNLP keeps the sets of possible values for variables. In orderto detect partial plans where there is no consistent instantiation, FSNLP oc-casionally calls a CSP(Constraint Satisfaction Problem) algorithm to checkif there exists a consistent assignment of variables. Their experiments on theSmith and Peot domain [42] with varying number of objects showed FSNLPperformed better than SNLP.� Subgoal reduction: Friedman and Weld [17] developed a least commitmenttechnique for subgoal reduction. Unlike other planners such as SNLP wherethe search branches out for the number of operators applicable to the subgoal,their planner FABIAN uses an abstract operator which represents applicableoperators when establishing a subgoal and the search branches out only when20



necessary. The abstract operator of a predicate represents a disjunctionof possible new establishing operators. Abstract operators are constructedin polynomial time preprocessing for each predicate. Friedman and Weldshowed that this approach can lead to exponential savings while it neverexplores more than a roughly logarithmic larger space than SNLP.� Constraint posting: Sometimes, fully satisfying constraints such as a vari-able inequality constraint (i.e. ?x 6= ?y) results in many search branches.In the MOLGEN [45] planner, Ste�k introduced the constraint posting ap-proach. Instead of the planner fully satisfying constraints immediately bybinding variables, the constraints are posted and updated in the plan so thatthe planner can defer variable binding decisions until the variables are con-strained more. Another example of constraint posting is the technique ofkeeping causal links in a causal-link planner as described above.� Con
ict resolution: In the SNLP planner, all threats are resolved at everyre�nement cycle before satisfying the next open condition in the partial plan.There are three ways to resolve a threat to a causal link in SNLP; demotion,promotion and separation. Demotion moves the threatening step so it is be-fore the step that produces the e�ect for the causal link. Promotion movesthe threatening step so it occurs after the step whose precondition the causallink protects. Separation binds variables so that the e�ects of the threaten-ing step and the corresponding condition of the causal link will not unify.This method usually creates three or more partial plans in the search space.Peot and Smith [37] observed that since other necessary planning operationsoften make the threatening situations go away, it is often a good idea to de-lay threat removals. They developed four threat removal strategies: `DSep'21



defers a threat removal until the threat cannot be removed by separation;`DUnf' defers a threat removal until there is only one threat resolution op-tion remaining; `DRes' does no threat resolution, it simply discards a partialplan when an unresolvable threat is found; and `DEnd' resolves a threat onlywhen all the open conditions have been satis�ed. Their empirical results onseveral domains showed that DSep and DUnf did better than DRes, DEnd,or the default strategy of SNLP.E�ectiveness of least commitmentThere are several comparisons of least commitment against maximum commit-ment. Minton, et al. [33] discussed ordering commitments from the perspectiveof partial-order planning vs. total-order planning. They compared a total-orderplanning algorithm TO against a partial-order planning algorithm UA. The twoalgorithms are constructed such that each node of the search tree TO generatesrepresents a linearization of a node at the same depth of the search tree UA gener-ates. Thus with breadth-�rst search, the two algorithms can be synchronized (i.e.they search through the same parts of the plan space). It was shown that the sizeof a search tree for UA is less than the one for TO regardless of the domain. There-fore, the search space of UA is proven to be smaller than the search space of TOwith breadth-�rst search. The same analysis cannot be applied under depth-�rstsearch, although experiments in the Blocks World domain showed UA performssigni�cantly better than TO. Minton, et al. also argued there is a correspondencebetween search strategies and the performance of partial-order planning. Theyshowed that UA can take advantage of certain types of heuristics more e�ectivelythan TO. Despite the analytical results of UA and TO, Minton, et al. pointed out22



a partial-order planner has a potentially much larger search space than a total-order planner since there are many more partial orderings over a set of steps thanthere are total orderings; thus, the performance of a partial-order planner relies onmore intelligent ordering choices. Barrett and Weld [4] also compared partial-ordervs. total-order planning. They used a causal-link total-order planning algorithmTOCL and a causal-link partial-order planning algorithm POCL. In contrast toMinton, et al's work on domain independent analysis, Barrett and Weld focusedon the domain structures. More speci�cally, they argued the serializability of thedomain is the key factor in the performance di�erence between TOCL and POCL.In many discussions of re�nement strategies, the least commitment strategyis generally favored over maximum commitment. Veloso and Stone [50], however,showed by experimental results that delayed-decision commitments do not alwaysmean better performance in comparison with other commitment strategies. Theypresented FLECS, an extension of the Prodigy planner, as a framework for theiranalysis on ordering commitment strategy. Prodigy keeps a totally-ordered headplan and a partially-ordered tail plan as an internal plan structure. Subgoalingdoes backward chaining starting from the goal, using means-end analysis. Theoperator introduced in the plan is then applied to the totally-ordered head planif the all operator's preconditions are true in the end state of the head plan. InFLECS, commitment strategies are de�ned by a 2-value toggle which decides be-tween subgoaling or applying an operator to the totally-ordered plan. Veloso andStone ran the experiments in three domains. In the �rst domain, eager subgoalinggave better CPU time than eager applying. In the second domain, eager applyinggave better CPU time than eager subgoaling. And in the third domain, a strategywhich makes a choice according to the current state of the plan worked signi�cantly23



better than either eager subgoaling or eager applying. The results clearly showedthat the performances of commitment strategies are domain dependent.Kambhampati, et al. [23] provided a uni�ed framework for partial-order plan-ners as a convenient base for analyzing di�erent design choices in partial-orderplanning algorithms. The algorithm Refine-Plan-PO is a planning framework whichcan be used to implement planning algorithms by providing the methods for termi-nation, goal selection, precondition establishment, bookkeeping, consistency checkand con
ict resolution. Using the Refine-Plan-PO framework, Kambhampati, etal. compared major existing domain independent partial-order planners includingUA, SNLP, Tweak [8], UCPOP [36] and several other hybrid planning algorithms.They argued that the relative performances of an eager commitment strategy and aleast commitment strategy depend on the presence of high-frequency conditions|conditions that have many establishers (i.e. steps that can establish the condition)and threats (i.e. steps that deny the condition). They hypothesized that if none ofthe conditions in the domain are high-frequency conditions, least commitments dobetter than eager commitments while if most of the conditions in the domain arehigh-frequency conditions, eager commitments do better than least commitments.These hypotheses were supported by their experimental results.2.2.3 Other strategiesRecently, graph-based planning and SAT-based planning for action-based opera-tors have been getting much attention because their planning speed was shown tobe much faster than classical action-based planners.In Graphplan [7], developed by Blum and Furst, the planner constructs a plan-ning graph which represents every possible state that can be achieved from the24



initial state. When the all goal conditions are found in a state, the planner re-traces the graph to �nd a solution. In SATPLAN [25], an action-based planningproblem is �rst translated into an equivalent propositional logic problem, and thensolved by a fast general propositional satis�ability solver.Although there have been several e�orts to combine Graphplan and HTN plan-ning [28] or SATPLAN and HTN planning [30], it has not yet been shown howe�ective they are compared with traditional HTN planning. Another concern isthat many planning applications need to interleave planning and execution. Oneadvantage of an HTN planning framework is that it allows the planner to work ona portion of a plan more easily than an action-based framework would. However,while most re�nement strategies, including the ones presented in this paper, canbe applied to the portion of a plan, it is not clear if the Graphplan or SATPLANtechnique can be applied likewise. Thus, using the Graphplan or SATPLAN tech-nique in HTN planning may probably be e�ective in some applications but notfeasible in others.Recently, Kambhampati [22] presented the view that both Graphplan and SAT-PLAN are a special type of re�nement planning where they use re�nements toprune the search space but not to partition it. Overall, whether or not these newtechniques are better than traditional re�nement planning techniques is still anopen question.2.3 HTN PlanningHTN planning started with Sacerdoti's use of `procedural nets' in his planningsystem called NOAH [41]. A procedural net is a network of tasks representing apartial plan where each node represents a particular action at some level of detail.25



NOAH plans by repeatedly (1) decomposing abstract tasks in a plan into moredetailed tasks, and (2) detecting and removing con
icts in the resulting partialplans. The latter operation is done by what are called `critics'. The term `tasknetwork', introduced by McDermott [32], refers to a set of tasks linked together byplan properties such as temporal ordering and state conditions. Thus, hierarchicaltask network (HTN) planning refers to a planning methodology where partial plansare represented by task networks and actions in a plan are acquired by decomposingabstract tasks.In action-based planning, domain operators are speci�ed by their precondi-tions and e�ects. An action-based planner plans by adding operators into a planso that the goal conditions are achieved and the plan is con
ict-free. An HTN plan-ner proceeds by decomposing abstract tasks into more detailed tasks by applyingdecomposition methods. Even though HTN planning is used more in practicalapplications, most studies in AI planning have been done in the action-based plan-ning framework. This was in part due to the lack of a solid framework for HTNplanning until recently; for example, there was no sound and complete HTN al-gorithm until the work by Erol, et al. [12]. Their UMCP algorithm is provablysound, complete and systematic. We have used its implementation, the UMCPplanner, as a testbed to test various re�nement strategies.In this section we present the basic mechanism of HTN planning and the basicplanning methods in UMCP. We also describe other HTN planning frameworksand compare the advantages and disadvantages of action-based planning and HTNplanning. 26



2.3.1 Illustration of HTN planningTake a problem we call \a college student's dinner problem". The goal of theproblem here is to eat pizza. Assume this takes place when one is in his apartmentand he does not have a box of frozen pizza in the freezer. There are severalalternative ways he considers; (a) eat in a pizza restaurant, (b) order by phonefor a delivery, or (c) buy frozen pizza and heat it. Upon deciding which one ofthe alternative ways to use, more detailed plans can be made; for example, option(b) above can be accomplished by getting the phone number of a pizza place,calling and ordering a pizza, paying for the pizza when delivered, and eating thepizza. Moreover, each of these actions, such as getting the phone number, needsto be expanded into more detailed actions, until the entire plan consists of onlyexecutable actions. An illustration of this planning process is shown in Figure 2.8.Also, planning has to take into account various constraints associated with theactions. For example, if he wants to watch TV that night, then the option (a) ofeating out may not be applicable. Also, if one's microwave or oven is out of order,then the option (c) of buying frozen pizza and heating it would not work.Many plans can be created in a hierarchical manner similar to the above plan-ning process. An HTN planner generates plans the same way but more method-ically. As such, HTN planning is suitable for many real-world planning domainssince many planning decisions made in the real world are done in a hierarchi-cal manner. Also, it is easy to transform a domain speci�cation for action-basedplanning into an equivalent HTN domain speci�cation [12].For an HTN planner, there are two types of actions. One is a primitive ac-tion (also called a primitive task) which a robot or a human can execute withoutfurther planning. The other is a non-primitive action (also called a non-primitive27



Abstract plan:
Get phone number       Call and order       Pay       Eat pizza

Alternative ways to eat pizza:
(a) Eat in a restaurant
(b) Order for a delivery
(c) Buy frozen pizza and heat it

Goal:  Eat pizza
Current situation:  In the partment, no frozen pizza

How?

Choose (b)

How? How? How?

Alternative ways to
get phone#:
(d) Yellow page
(e) Ads

Alternative ways to
order:
(g) With coupon
(h) Without coupon

Choose (e)

..........

Choose (g)

..........

..........

Figure 2.8: A college student's dinner problem
28



Decompose: eat pizza

Actions:  label action
n1 get phone number
n2 call and order
n3 pay
n4 eat pizza

Temporal order:
n1 n2
n2 n3
n3 n4

Constraints:
- want a whole pizza
- have enough money to pay at n3Figure 2.9: An informal description of a decomposition method for the action `eatpizza'task or abstract action), which the planner needs to `decompose' into more de-tailed actions. Decomposing a non-primitive action is accomplished by applying adecomposition method for the action. A decomposition method prescribes the ac-tions that the non-primitive action is decomposed into, the orderings between theseactions, and various other constraints that need to be satis�ed by the planner.For example, consider describing the actions for option (b) in a decompositionmethod. One method description might be something like Figure 2.9. There arefour actions necessary to accomplish the action `eat pizza'. Every action in a planor a decomposition method has a unique label to distinguish between multipleinstances of an action, and also to simplify the speci�cations. So, for example,the action `get phone number' is labeled n1 in this decomposition method. Thetemporal ordering of actions are also speci�ed in the method using action labels.29



In this method, expressing `get phone number' should be done before `call andorder', which should be done before `pay', which should be done before `eat pizza'.Also, there are two constraints: that the student wants a whole pizza (not a slice)and that there is enough money to pay for the pizza when paying.2.3.2 Basic HTN planning mechanismAn HTN planner generates a plan by decomposing tasks into more detailed tasks,enforcing constraints and resolving con
icts until all the tasks in the plan are prim-itive (i.e. executable actions) and there are no con
icts between tasks. Figure 2.10shows a basic HTN algorithm. The same assumptions as in action-based planningabout the world state, as described in section 2.2.1, hold in HTN planning. InHTN planning, two types of goals can be expressed in a problem. One is a condi-tion goal which must be made true at the end of the solution plan, and the otheris an abstract action which must be accomplished by a solution plan. An HTNproblem can contain one or more goals and also speci�c constraints associated withthe goals.In general there are two types of tasks in HTN planning. A primitive task is anexecutable action which does not need any decomposition. A solution plan shouldcontain only primitive tasks. A non-primitive task is an abstract task which needsto be decomposed. Given a planning problem P, the planner repeatedly checksif P is a solution or if P is inconsistent (Step 2) and terminates in either case,picks a non-primitive task in P and a decomposition method for the task (Steps 3and 4), applies the decomposition method to the task (Step 5), and handles taskinteractions (Steps 6 and 7). Normally, there is more than one way to decomposea task, and there is more than one way to handle task interactions in a plan, thus30



Algorithm Re�ne-HTN()1. Input a planning problem P.2. If P contains only primitive tasks, then resolve the con
icts in P andreturn the result. If the con
icts cannot be resolved, return failure.3. Choose a non-primitive task t in P.4. Choose a decomposition for t. (backtracking point)5. Replace t with the decomposition.6. Use critics to �nd the interactions among the tasks in P, and suggestways to handle them.7. Apply one of the ways suggested in step 6. (backtracking point)8. Go to step 2.Figure 2.10: Basic HTN planning algorithm. [13]making choice points in the search.2.3.3 UMCP FormalismThe UMCP algorithm is based on a generalization of HTN planning [12]. Thissection presents the UMCP formalism [11] and shows the types of re�nementoperations used in HTN planning. This section is also intended to provide theterminology which is used in later chapters.31



n1:
(clear ?x)

Constraints:
?x=?y & (before (on-table ?x) n1)
& (between (clear ?x) n1 n3)
& (between (clear ?y) n2 n3)
& (after (on ?x ?y) n3)

n2:
(clear ?y)

n3:
(dostack ?x ?y)

task label

task

task node ordering
constraint

variable
constraint

state constraintFigure 2.11: A method for (on ?x ?y) in Blocks World (in UMCP speci�cation).Task NetworksIn UMCP, both partial plans and decomposition methods are represented in theform of task networks. A task network is a partially speci�ed plan that containspartially ordered tasks and various constraints associated with them. Figure 2.11shows a sample task network; a decomposition method to achieve the condition
(on ?x ?y) in the Blocks World domain which was used as an example of action-based planning domain in Section 2.2.1. The decomposition uses the same threepredicates on, clear and on-table to specify state conditions. So (on ?x ?y) refers to\block ?x is on block ?y", (clear ?x) refers to \there is no block on top of block ?x",and (on-table ?x) refers to \block ?x is placed on the table". In order to accommodategoal conditions and preconditions that are used in action-based planning, UMCPhas a special type of non-primitive task called predicate tasks. A predicate taskhas the form of a positive or negative literal, and its main purpose is to satisfythe condition referred by the literal. For example, the above sample method is32



a method for the predicate task (on ?x ?y) that will make the condition (on ?x ?y)true.3 Also, there are two predicate tasks (clear ?x) and (clear ?y) in the methodto specify that the conditions (clear ?x) and (clear ?y) need to be made true beforedoing the task (dostack ?x ?y). A predicate task is similar to a supervised conditionintroduced by Tate [47] in 1977. In order to distinguish other non-primitive tasksfrom predicate tasks, non-primitive tasks that are not predicate tasks in UMCPare called compound tasks.In the above decomposition method, each task is labeled ni for some i. InUMCP, every task in a partial plan or decomposition method has a unique label,in order to distinguish multiple instances of the same task. These labels are usedin the constraint speci�cation to specify various constraints associated with therelated tasks.There are four constraints speci�ed in the method. The constraint ?x 6= ?yspeci�es that the variables ?x and ?y cannot have the same value. The constraint
(before (on-table ?x) n1) speci�es that the block ?x must be on the table before doingthe task referred to by n1 (i.e. (clear ?x)). The constraint (between (clear ?x) n1 n3)speci�es that the block ?x must have no blocks on top anytime after doing thetask referred to by n1 (i.e. (clear ?x)) until starting the task referred to by n3 (i.e.
(dostack ?x ?y)). Similarly, the constraint (between (clear ?y) n2 n3) speci�es that thecondition (clear ?y) must persist between the time interval between task n2 and task
n3. The fourth constraint (after (on ?x ?y) n3) states that after �nishing the executionof the task referred by n3 (i.e. (dostack ?x ?y)), the condition (on ?x ?y) must be true.Notice the similarity between predicate tasks and some of the constraints. In3In order to distinguish tasks from state conditions, predicate names are written in italics.For example, (on ?x ?y) is a predicate task while (on ?x ?y) is a state condition.33



the above method, the predicate task (clear ?x) speci�es \the condition (clear ?x)needs to be made true before doing the task (dostack ?x ?y)". The constraint (before

(on-table ?x) n1) speci�es that \the block ?x must be on the table before doing thetask referred to by n1 (i.e. (clear ?x))". Both conditions ((clear ?x) and (on-table ?x))need to be satis�ed in the speci�c state in order for the decomposition methodto work. Why is one speci�ed by a predicate task and another speci�ed in aconstraint? The di�erence between using a predicate task and using a constraintis how the condition should be made true. If a condition is speci�ed by a predicatetask and the condition is not true in the initial state or by the e�ects of other tasks,then the planner actively tries to make it true by inserting actions speci�ed in thedecomposition method for the predicate task. On the other hand, a conditionspeci�ed in a constraint has to be true without the planner inserting actions intothe plan. The planner can try to satisfy the condition in a constraint by orderingtasks in the plan or binding variables, but the planner cannot assert new actionsto satisfy it. Having these two types of condition speci�cation is useful for manyreasons. For example, in the above Blocks World example, the planner does notuse the method if block ?x is not placed on the table. Because, if it is on the table,then the planner should use a method that speci�es a restack action instead of a
dostack action. On the other hand, specifying the condition (clear ?x) by a predicatetask is convenient because the planner can then plan for the necessary actions toprepare that the task (dostack ?x ?y) would work if the condition is not true.More formal de�nitions of the elements of a task network are as follows:� Tasks: A task t(x1 � � �xk) is either primitive, predicate, or compound. Aprimitive task is an atomic action that can take place in the world. Whenexecuted, it may have e�ects fl1; l2; � � � ; lng where each li is a literal whose34



arguments are either constants or variables xj. A predicate task has theform p(x1 � � �xk) where p is a positive or negative predicate symbol. Itsmain purpose is to achieve the condition p(x1 � � � xk) and it has one or moredecomposition methods which specify how to achieve the condition. If thecondition is already achieved in the plan without executing speci�c actionsto make it true, then the task is phantomized, i.e. the task is replaced by anempty action. A compound task is an abstract action. Like a predicate task,it can be decomposed into more detailed tasks by applying a decompositionmethod.� Constraints: There are four types of atomic constraints: Variable bindingconstraints are of the form (v1 = c), (v1 = v2), (v1 6= c) or (v1 6= v2) wherev1, v2 are variables and c is a constant. They represent constraints on vari-able (non-)codesignations; Ordering constraints are of the form (ord n n0),where n and n0 are either a node label, which represents a speci�c taskin the task network, or a node expression. The constraint speci�es thatthe task labeled with n must �nish before the beginning of the task la-beled with n0. A node expression is either of the form (�rst ni nj � � �) or(last ni nj � � �), referring to the node whose task starts �rst or end lastsamong the tasks in the list; State constraints are of the form (before l n),(after l n) or (between l n n0) where n and n0 are node labels and and l isa literal. (before l n) or (after l n) is true if l is true immediately beforen, or immediately after n. (between l n n0) is true if l is true from the endof n through the beginning of n0; Initial state constraints are of the form(initially l) where l is a literal which has to be true in the initial state. Aconstraint formula is a Boolean formula constructed from atomic constraints35



described above and conjunctive, disjunctive and negative operators.� Task Networks: A task network has the form < T; � >, where T is a setof task nodes and � is a constraint formula. A task node is a tuple < ni; ti >where ni is the node label for the task ti. If a task network contains onlyprimitive tasks, then it is called primitive task network.� Decomposition Methods: A decomposition method for a non-primitivetask t is a task network m = < Ti; �i >. Decomposing an instance of t in apartial plan (i.e. task network) P = < T; � > results in a new partial planPnew = < (T�f< nt; t >g) [ Tinew; � ^ �inew > where nt is the label forthe task t in P , Tinew and �inew are Ti and �i, respectively, with necessaryvariable bindings.� Initial states: An initial state I is a set of ground positive atoms whichrepresent what conditions are true initially. The planner assumes any atomwhich is not in I to be false.Re�nement Search in UMCPFigure 2.12 shows the algorithm for high-level re�nement search in the UMCPplanner. A problem is a tuple < g; I; D > where I is an initial state, g is a tasknetwork representing the goal, andD is the problem domain. A world state in HTNplanning is the same as one in action-based planning; it is a set of ground atomsin which only the execution of an action can make changes. A domain consistsof a set of primitive task speci�cations, and a set of decomposition methods fornon-primitive tasks. In the UMCP planner, a task-network contains an auxiliarydata structure which stores step orderings, sets of possible values for variables, and36



a list of delayed constraints called the Promissory List, in addition to a set of tasknodes and a constraint formula.UMCP gradually re�nes task-networks representing partial plans, by decom-posing non-primitive tasks, enforcing constraints, and checking consistency, until atask network is found where every task is primitive and all the constraints are sat-is�ed in the data structure of the task network. The high-level re�nement searchis implemented with the A* algorithm where un-explored search nodes are kept inOpenList. UMCP repeatedly removes a task network from OpenList, and appliesa re�nement strategy R which may do any combination of planning operationssuch as task decomposition and consistency checking. The task networks returnedby R are put back into OpenList. UMCP allows the user to choose depth-�rstsearch, breadth-�rst search, or best-�rst search by changing the method used topick a node in Step 4.Since the re�nement strategy R can make any changes to the task network, itneeds to satisfy the following requirements in order for the UMCP algorithm to besound and complete.� Soundness: Any solution to any task network in R(tn) must also be a solu-tion for tn. UMCP is sound if the re�nement strategy that is used satis�esthis property because commitments in task networks grow monotonically,and constraints in the Promissory List are removed only as they becomenecessarily true.� Completeness: Any solution for tn must also be a solution for some tasknetwork in R(tn). UMCP is complete if the re�nement strategy that isused satis�es this property. Any time a constraint is selected in the con-straint selection phase, its negation is also selected (unless it contradicts the37



Algorithm UMCP()1. Input a planning problem P = < g; I;D >.2. Initialize OpenList to contain only g.3. If OpenList is empty, then halt and return \no solutions".4. Pick and remove a task network tn from OpenList.5. If tn is completely re�ned into a solution then halt and return tn.6. Pick a re�nement strategy R for tn.7. ApplyR to tn and insert the resulting set of task networks into OpenList.8. Go to step 3.Figure 2.12: High-level re�nement search in UMCP algorithm. [13]commitments or the constraint formula), and all possible ways of making aconstraint true are tried in the constraint update phase.The Default Re�nement Strategy in UMCPThe default re�nement strategy in UMCP employs several least commitment tech-niques. Each partial plan (task-network) keeps an auxiliary data structure in orderto facilitate these techniques.� Possible values: Similar to the method used in FSNLP [56], each variablein UMCP has a set of possible values associated with it in order to postponepremature variable instantiation. UMCP constrains the set when enforcingconstraints. Suppose the variable v has the possible value set S. Then,38



enforcing the constraint (v = c), where v is a variable and c is a constant,sets S =fcg if c is in S, and returns nil otherwise to report the inconsistency.Enforcing (v 6= c) removes c from S if c is in S, and make no changesotherwise. Enforcing (v = v2), where v2 is also a variable, sets S to theintersection of S and the possible value set for v2 and also replaces theoccurencies of v2 in the partial plan with v. It returns nil if the intersectionis empty. Enforcing (v 6= v2) makes no change if the intersection of S and thepossible value set for v2 is empty. Otherwise, the constraint (v 6= v2) is putinto the Promissory List of the partial plan. Also, enforcing state constraintsor initial state constraints can constrain the set S if the constraint containsv.� Partially ordered steps: As described before, step orderings in a partialplan are represented in the form of a partially ordered graph. If enforcinga constraint makes a cycle in the graph, UMCP prunes the partial plan forinconsistency.� Constraint posting: One of the major di�erences in constraint enforce-ment between an action-based planner and an HTN planner is that someconstraints cannot be immediately enforced in a partial plan of an HTNplanner if the partial plan contains non-primitive tasks. Some constraintscan only be made true by further decomposing tasks in the partial plan.4In UMCP, some state constraints and ordering constraints may not be fullyenforced immediately. UMCP keeps such constraints in the Promissory Listof the partial plan. The Promissory List also contains non-codesignation4Some HTN planners such as SIPE require users to formulate the domain speci�cation suchthat all constraints can be established in a planning level.39



variable constraints. Similar to the constraint posting technique used bySte�k [45], the constraints in the Promissory List are constantly updatedand propagated.Based on the current partial plan (i.e. task network), UMCP's default re�ne-ment strategy does one of the following actions: (1) Decompose a non-primitivetask; (2) Enforce each of the newly inserted constraints; (3) Evaluate and simplifythe constraint formula; or (4) Propagate previously postponed constraints. Fig-ure 2.13 shows the algorithm that UMCP uses to decide which re�nement to donext. It takes a partial plan as input and returns a set of partial plans as the resultof the re�nement performed.If the constraint formula of the partial plan is False, then UMCP prunes thepartial plan by returning an empty set in Step 1. When the constraint formulais True, UMCP decomposes a non-primitive task t in the partial plan at Step 2.Decomposing t involves, for each decomposition method M of t, (a) replacing twith the subtasks in M, and (b) replacing the current constraint formula C in thepartial plan with the conjunction of C and the constraint formula in M. If t is apredicate task, t is also phantomized by creating a plan with the task t replacedwith the do-nothing task and the constraint formula specifying that the predicateis accomplished at the beginning of the do-nothing task. Step 3 checks if the partialplan is a solution plan or not. If there are no non-primitive tasks in the partial planand the constraint formula is True, then UMCP satis�es the remaining auxiliaryconstraints by instantiating variables and ordering steps, and returns the solutionplans. If the constraint formula is neither True nor False, then UMCP enforcesthe constraints in the partial plan at Step 4. Enforcing constraints involves addingstep orderings to the tasks and/or binding variables, according to the constraint40



Algorithm re�ne(PartialPlan)1. (Pruning) If the constraint formula of PartialPlan is False then prunethis plan by returning empty set.2. (Task decomposition) Otherwise, if the constraint formula is True andthere are non-primitive tasks in PartialPlan, then decompose a task andreturn the resulting partial plans.3. (Solution check) If the constraint formula is True and there are no non-primitive tasks in PartialPlan, then satisfy the auxiliary constraints andreturn the resulting plans as solutions.4. (Constraint enforcement) If the constraint formula is neither True norFalse, then satisfy constraints, simplify constraint formula, and propa-gate auxiliary constraints. Return the resulting partial plans.Figure 2.13: The default re�nement strategy in the UMCP planner.
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types. If it requires further task decomposition to fully enforce some constraint, theconstraint will be put into the Promissory List to be enforced later. If a constraintis not enforceable, then an empty plan is returned.2.3.4 Other HTN formalisms:UMCP is the �rst HTN planning formalism to be provably sound and complete.There are other HTN formalisms presented in the planning literature. This sectionsummarizes some of these formalisms.� Tate [47] introduced several notable techniques in his planning systemNonlin.Previously, Sacerdoti's NOAH [41] had decomposition schemas that werewritten using a procedural language. In Nonlin, decomposition schemas arespeci�ed using a declarative language. He de�ned three types of conditionswhich the planner can use for di�erent purposes: use-when conditions areto be used to �lter out decomposition schemas inapplicable to the problem;
supervised conditions specify conditions which must be made true by theplanner; and unsupervised conditions indicate that other parts of the planwould satisfy the conditions. Some of these condition types are describedlater in Chapter 4, where they are compared to a new condition type. Healso introduced `causal links', as described in the previous section, as a wayto keep track of which step establishes which condition.Following Nonlin, two general-domain HTN planners were developed. SIPE [54]and O-Plan [10] employ many techniques similar to the ones used in Nonlin.They were developed with real-world planning applications in mind. Thus,they have extensive capabilities to deal with real-world requirements. Bothof them are capable of execution monitoring as well as plan generation. Both42



have added more condition types to specify a domain, thus allowing domainexperts more control of the search.� Yang [55] used a rather restrictive hierarchical planning formalism in orderto satisfy conditions in a plan at higher levels. He analyzed that in somesituations, con
icts in a plan can only be resolved by further decompos-ing non-primitive actions in the plan. However, since there is no guaranteethat the con
icts can be resolved at the primitive level, such decompositionsmay turn out to be redundant. He suggested, by modifying decompositionschemas in a certain way, the planner can improve its planning e�ciency byavoiding such redundant decompositions.� In their DPOCL formalism, Young, et al. [57] present a way to combinecausal planning and HTN planning which include action-based operators thatcan be used to establish un-satis�ed conditions in a plan and non-primitivetasks that must be decomposed by applying decomposition schemas. At eachcycle, the DPOCL algorithm non-deterministically chooses between causalplanning and decompositional planning. Although their restrictions on thepreconditions and e�ects of non-primitive tasks are less strict than the onesused by Yang described above, it still does not allow users to specify someconditions, such as \user intent" conditions [24] that can be speci�ed inUMCP.� Kambhampati, et al. [24] also present a planning formalism for partially hier-archical domains. The combination of HTN and action-based planning allowsthe planner to plan both by task decomposition and condition satisfaction.Unlike DPOCL where both abstract actions and primitive actions are tried43



in order to establish a goal, Kambhampati, et al. use dominance relationsbetween actions when determining which actions to use to establish a goal.An action t is dominated by another action t0 if there exists a decomposi-tion of t0 that contains t. If both t and t0 establish the same goal and t isdominated by t0, then t will not be used to establish the goal. This methodensures the systematicity of the algorithm.2.3.5 Comparison between HTN and action-based plan-ningThere are many di�erences in HTN planning and action-based planning. Thefollowing are some discussions of advantages and disadvantages of HTN planningand action-based planning from various points.� Expressivity: Erol, et al. [12], in their formal analyses of HTN planning,have shown that HTN planning is provably more expressive than action-basedplanning using the analogy with context-free grammar [12].Compared with action-based operators where users can specify domain re-strictions only in the preconditions and e�ects of atomic actions, HTN plan-ning operators allow users to specify many more types of domain restrictions.Thus, HTN operators have ways to �lter out undesirable plans that action-based operators do not. For example, in order to get money, an action-basedplanner may generate a plan which opens an account at a certain bank inorder to use a speci�c ATM. This may be a feasible plan and its operationalcost can be lower than a plan which directs you to an ATM further away,except many of us do not want to have too many bank accounts. One can44



easily specify conditions to prune out such feasible-but-not-realistic plans inHTN operators.� E�ciency: HTN planning is capable of using more domain knowledge toguide the search. However, there have been no extensive comparisons be-tween the e�ciencies of HTN planning and action-based planning, althoughthe experimental results by Barrett and Weld [5] suggests that HTN planningis faster than classical action-based planning.� Domain Modeling: Action-based operators can only be used for condition-goals (i.e. conditions which must be true after the execution of a plan), whileHTN planners can plan not only for condition-goals but also for action-goals(i.e. abstract actions that needs to be performed). While action-goals (do-

X) can be expressed as condition-goals (X-done), such a roundabout way ofspecifying domains is often not desirable.One of the di�culties domain experts face when modeling their domain inHTN planning is that they need to decide what kind of abstract tasks theywant to specify in advance, which may not be quite clear. Ideally, abstracttasks should be speci�ed such that they are intuitive to users yet e�cient forthe planner. Hybrid algorithms such as the one by Kambhampati, et al. [24]that allow gradually building the hierarchy of a domain may help domainexperts specify abstract tasks wisely.� Extensibility: One important aspect of a planning formalism is extens-ability. Many real-world problem domains require abilities to do temporalreasoning and numeric calculations while other applications require interleav-ing planning and execution. HTN planning formalismmakes it easier to work45



on some parts of a plan which do not a�ect the entire plan. Such changesare quite di�cult to be integrated in action-based planning. For example,Smith, et al. [44] have used HTN planning techniques for their computerbridge playing program in order to reason about possible moves by otherplayers in addition to the moves the program can make.
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Chapter 3Fewest Alternative First MethodAs mentioned in the previous chapter, one popular re�nement strategy is sometype of least commitment strategy in which the planner postpones making someparticular kind of re�nement until it is forced to do so. For example, if a planneruses a "least commitment to step orderings" strategy, then whenever more than oneordering is possible among the steps of a plan, the planner will avoid committingto a particular ordering unless it must do so in order to proceed with the rest ofthe planning. One reason why the least-commitment idea is useful is that if theplanner can avoid making re�nements prematurely, this can reduce the numberof alternative plans it might need to examine. However, it is not necessarily agood idea to apply the \least commitment" idea to the same kind of re�nementthroughout the entire planning process. In order to do planning at all, a plannerhas to re�ne something|and thus, when a planner postpones re�ning one aspect ofthe plan it is generating, this may make it prematurely re�ne some other aspectsof the plan. This suggests that it may be better to choose dynamically amongdi�erent kinds of re�nements throughout the planning process.One way to choose what kind of re�nement to make next is to look at all ofthe items that need to be re�ned in the current partial plan, and choose whichever47



one has the fewest number of alternative possible re�nements. This strategy iscalled the \fewest alternatives �rst" (FAF) strategy. For partial-order planningwith STRIPS-style operators, Joslin and Pollack [20, 21] found that a version ofthis strategy outperformed the \least commitment to open conditions" strategies.The same heuristic as FAF was used in constraint satisfaction problems as early as1975 [6] as a search rearrangement method and Purdom [40] analyzed its applica-tion to SAT problems. Although the heuristic has been used in planning for sometime [10], there was little analysis on how the heuristic is e�ective in AI planning.In this chapter, the FAF heuristic is addressed from various aspects. First,a version of the FAF heuristic is compared with a \least commitment to taskachievement" strategy and a \least commitment to variable bindings" strategy inHTN planning. The experimental results show that the version of FAF does as wellas or better than either one of the two least commitment strategies. In Section 3.2,re�nement strategies are modeled as methods to serialize AND/OR graphs. Thee�ciency of a strategy can then be measured by the size of the serialized graph.The FAF heuristic is compared with the best and worst serializations theoreticallyand empirically. Section 3.3 presents related work and Section 3.4 summarizes theresults.3.1 Commitments to Variable BindingsMany planners use a \least commitment to variable bindings" strategy where vari-able instantiation is delayed until it is necessary. The experimental results shownby Yang and Chan [56] seem to imply that their \least commitment to variablebindings" strategy always performs better than (or at least as well as) the defaultstrategy of the SNLP planner in which a variable is instantiated with a constant48



value when there is a condition on the variable.This section investigates the e�ects of variable commitments for HTN planning,to see if it also has a strong performance e�ect, as indicated by the results of Yangand Chan in action-based planning. Many planners, including UMCP, keep a setof possible values for each variable. When enforcing a constraint that a�ects avariable, the planner tries to constrain the set of possible values for the variableinstead of immediately instantiating it. For example, suppose a condition (p x)will be satis�ed in the speci�ed world state if the value of x is a, b or c. theplanner creates a partial plan where x has the possible value set fa, b, cg, insteadof creating three partial plans with alternate variable assignments (i.e. x = a, x = bor x = c). Such a re�nement strategy helps to keep the size of the search spacesmall by avoiding unnecessary branching in the search. However, some constraintsthat involve two or more variables cannot be enforced without branching. Forexample, suppose in the current partial plan P, the possible values for x and thepossible values for y are both fa, bg. Then in order to enforce the non-codesignationconstraint (x 6= y), the planner has to create two partial plans, one with x = a and
y = b, and another with x = b and y = a. Another example would be enforcingthe state constraint (before (color ?ball ?color) n), when both the conditions (color

ball1 blue) and (color ball2 green) are true in the state just before the task referredto by n. In either case, the planner can enforce the constraint by instantiatingthe variables involved, resulting in two partial plans. Upon encountering suchconstraints, a planner has to determine whether to enforce them now or delaythe enforcement. Some planners delay the enforcement of the constraints until thetime when the variables are constrained enough (by some other constraints) for theplanner to avoid branching, or until the time when there are no other re�nements49



applicable to the partial plan. The UMCP planner delays the enforcement of non-codesignation constraints but enforces state constraints immediately if they areenforceable in the current partial plan. The problem with the delaying method isthat the deferred constraints may not be establishable, and in that case delaying theenforcement of constraints could incur a large backtracking cost.1 On the otherhand, additional constraints may constrain variables in a way the planner canavoid unnecessary branching. Consider the above example of the state constraint
(before (color ?ball ?color) n) again. If the planner later encounters a constraint thatbinds the variable ?color to green, then it can satisfy the condition by binding thevariable ?ball to ball2. Since it is di�cult for the planner to foresee what typesof constraints it will encounter later, it needs some heuristic to aid the decisionprocess.We compared the relative performance of three variable commitment strategiesfor HTN planning: the Reluctant Variable Binding Strategy (RVBS), which doesleast commitment to variable bindings, the Eager Variable Instantiation Strat-egy (EVIS), in which no non-primitive task is expanded until all variable con-straints are committed; and the Dynamic Variable Commitment Strategy (DVCS),a FAF strategy which chooses between expansion and variable instantiation basedon the number of branches that will be created in the search tree. The results showthat there are planning domains in which EVIS does well, and planning domainswhere it does poorly. The same is true for RVBS. However, DVCS, which canchoose between eager variable commitment and reluctant variable commitmentdepending on what looks best for the task at hand, does well over a broader rangeof planning domains.1This problem is also investigated in [21] using action-based planning framework.50



3.1.1 StrategiesAs argued above, avoiding re�nements to one aspect of planning can lead to pre-mature re�nements to other aspects of planning. Thus, what a planner needs issome way to �nd a balance between the re�nements of di�erent aspects of planning.One way is to use the FAF heuristic which chooses a re�nement which generatesfewer immediate search nodes. We created an implementation of such a \dynamiccommitment" strategy and compared it experimentally with implementations ofa \least commitment to variable bindings" strategy and a \least commitments totask instantiation" strategy. More speci�cally, the commitment strategies are asfollows:� Eager Variable Instantiation Strategy (EVIS). This is an HTN version of theeager variable commitment strategy. When there are constraints on vari-ables in the current partial plan, don't expand any non-primitive task untilall constraints are satis�ed. Instantiate variables into constants whenevernecessary to resolve constraints.� Reluctant Variable Binding Strategy (RVBS). This is basically the oppositestrategy. Delay instantiating variables as much as possible. If a constraintcannot be satis�ed without generating more than one partial plan, expandall tasks before committing to such constraints.� Dynamic Variable Commitment Strategy (DVCS). This strategy attempts tominimize the branching factor as discussed earlier. Suppose T is the currentpartial plan and there is a constraint C in T which cannot be satis�ed withoutgenerating more than one partial plan. For each variable x in C, let v(x)be the number of possible values for v; and for each task t in T, let m(t)51



be the number of methods that unify with t. Let V = min v(x) : x is avariable in C; and let M = min m(t) : t is a task in T. If V < M, thenchoose to instantiate the variable x for which v(x) is smallest. If M � V,then choose to expand the task t for which m(t) is smallest. Although thisdecision criterion may seem more complicated than EVIS and RVBS, theoverhead involved in computing it is negligible. When M = V, expansionsare favored over instantiations because further constraint re�nements mightconstrain the possible value set but not limit the number of methods. Unlessthe task network is pruned, expansion will eventually take place with thesame number of methods. On the other hand, it is possible to instantiate avariable with fewer possible values if the instantiation is delayed.To make the comparison between strategies easier, RVBS and EVIS use thesame selection methods that DVCS uses to choose tasks and variables. Morespeci�cally, when the strategy decides to expand a task, it expands the task t withthe minimum number of methods in the current partial plan. When the strategydecides to instantiate a variable to satisfy a constraint C, it instantiates the variablev in C that has the minimum number of possible values.3.1.2 ExperimentsWe compared the EVIS, RVBS, and DVCS re�nement strategies by using themin the UMCP planner on randomly chosen problems in three di�erent planningdomains. The three planning domains|and the experimental results in thosedomains|are described below. The experiments were run using Allegro CommonLisp on a SUN Sparc station, and running UMCP1.0 with a depth-�rst searchstrategy. For each problem and each re�nement strategy, both the CPU time and52



(toptask) Method 1

n:
(ctask ?v1 ?v2)

Constraints:
?v1π?v2 & (initially (obj ?v1))
&(initially (obj ?v2))

(ctask ?v1 ?v2) Method 1

n:
(ptask1 ?v1 ?v2 )

Constraints:
(initially (type ?v2 t1))

(ctask ?v1 ?v2) Method 10

n:
(ptask10 ?v1 ?v2 )

Constraints:
(initially (type ?v2 t10))

.......Figure 3.1: Methods for Domain Athe number of nodes (i.e., the number of task networks) generated were counted.Since both measurements gave similar results, only the CPU time is shown.3.1.3 Domain AIn Domain A the goal is to �nd a way to accomplish a 0-ary task (toptask). As shownin Figure 3.1, (toptask) expands into a 2-ary task (ctask ?v1 ?v2), where ?v1 and ?v2are variables; and there are ten di�erent methods for expanding (ctask ?v1 ?v2).The initial state is the setf (obj obj1), (obj obj2), � � �, (obj obj10), (type o t) gwhere o 2 fobj1, � � �, obj10g and t 2 ft1, � � �, t10g. Di�erent planning problemsare speci�ed by choosing di�erent values for o and t. Since the initial state hasexactly one type literal, there is only one successful way to bind the variable ?v2and expand the task (ctask ?v1 ?v2). The planning problem is to �nd the method53
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Figure 3.2: CPU time (in seconds) in Domain Athat works. EVIS, RVBS, and DVCS were compared in Domain A by running themon a suite of 100 randomly generated problems. Figure 3.2 shows the performanceof UMCP with the three commitment strategies. There is exactly one solutionfor each problem. For each problem, RVBS and DVCS always �nd this solutionafter creating 14 task networks. Depending on the problem, EVIS creates between24 and 114 task networks. UMCP's average CPU times were 2.88 seconds usingEVIS, 0.71 seconds using RVBS, and 0.66 seconds using DVCS.EVIS has more trouble than RVBS and DVCS because it instantiates the vari-able ?v2 before expanding the task ctask, and this tends to bind ?v2 to an object54



that does not meet the constraint found in the methods of ctask. On the otherhand, RVBS does not instantiate ?v2 until after enforcing the constraint (type ?v2 t)so it does not make an instantiation of ?v2 which eventually fails. DVCS choosesto expand ctask before the instantiation of ?v2 since the values of V and M are thesame (10), and thus performs identically to RVBS.3.1.4 Domain BDomain B is basically an encoding of the well known arc-consistency problem [27].As in Domain A, the goal is to accomplish toptask; but the methods are di�erent.As shown in Figure 3.3, toptask expands into ctask1, ctask1 expands into ctask2, and
ctask2 expands into ctask3. The methods for ctask1 specify that ?v1, ?v2 and ?v3must have di�erent values but the same type. ctask2 and ctask3 each have fouridentical methods, which increases the branching factor when UMCP does taskexpansion. The initial state is the setf (obj obj1), (obj obj2), � � �, (obj obj7),

(type obj1 t1), (type obj2 t2), � � �, (type obj7 t7)g,where each ti is t1, t2 or t3. Di�erent planning problems in this domain arespeci�ed by choosing di�erent values for each of the ti. The problem is to �ndthree di�erent objects which share the same object type. In Domain B, a suiteof 50 problems was created by randomly assigning types to each object obji inthe initial state. Each problem had at least one solution. The results are shownin Figure 3.4. EVIS and DVCS created the same number of task networks foreach test problem, and incurred about the same amount of CPU time. UMCPaveraged 1.09 seconds and 1.10 seconds, respectively. RVBS never did better than55



(toptask) Method 1

n:
(ctask1 ?v1 ?v2)

Constraints:
(initially (obj ?v1))
&(initially (obj ?v2))

(ctask1 ?v1 ?v2) Method 1

n:
(ctask2 t1 ?v1 ?v2 ?v3)

Constraints:
?v1π?v2 & ?v2π?v3 & ?v1π?v3
&(initially (type ?v1 t1))
&(initially (type ?v2 t1))
&(initially (type ?v3 t1))

(ctask1 ?v1 ?v2) Method 3

n:
(ctask2 t3 ?v1 ?v2 ?v3)

....... Constraints:
?v1π?v2 & ?v2π?v3 & ?v1π?v3
&(initially (type ?v1 t3))
&(initially (type ?v2 t3))
&(initially (type ?v3 t3))

(ctask2 ?t ?v1 ?v2 ?v3) Method 1

n:
(ctask3 ?t ?v1 ?v2 ?v3)

Constraints: none

Method 4

n:
(ctask3 ?t ?v1 ?v2 ?v3).......

(ctask2 ?t ?v1 ?v2 ?v3)

Constraints: none

(ctask3 ?t ?v1 ?v2 ?v3) Method 1

n:
(ptask  ?t ?v1 ?v2 ?v3)

Constraints: none

Method 4

n:
(ptask  ?t ?v1 ?v2 ?v3).......

(ctask3 ?t ?v1 ?v2 ?v3)

Constraints: noneFigure 3.3: Methods for Domain B
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EVIS or DVCS, and usually did much worse. On the average, UMCP's CPU timewith RVBS was 2.54 seconds. The reason for these results is that when ctask1 isdecomposed by using a particular method, each variable ?v1, ?v2 or ?v3 has to be anobject that is of the particular type. If there are only two or less obji's in the initialstate that are of the particular type, the partial plan will fail. Thus, it is better toinstantiate the variables if the variable has two or less possible values. Thus, sinceEVIS instantiates variables ?v1, ?v2 and ?v3 before expanding the task ctask2, EVIScan prune the partial plans which cannot satisfy the constraints imposed in themethods for ctask1. Also, since DVCS chooses to instantiate variables when theyhave three or less possible values, rather than decomposing ctask2, DVCS also canprune such partial plans. On the other hand, RVBS does not instantiate variablesuntil they are fully expanded into primitive task networks. Thus RVBS generatestask networks that would not be generated by EVIS.3.1.5 Domain CAs shown in Figures 3.5 and 3.6, Domain C contains tasks and methods similarto those from both Domains A and B. Solving the problem involves combiningmethods similar to those in Domain A with methods similar to those in DomainB|but the order in which these methods should be used depends on whether thegoal is toptaska or toptaskb. The initial state contains the atomsf (obj obj1), (obj obj2), � � �, (obj obj10) g,and also �fteen atoms of the form (type o t) where type 2 ftype1,type2g; o 2 fobj1,

. . . , obj10 g; and t 2 ft1,t2,t3g. Di�erent planning problems are speci�ed by choosingdi�erent values for o and t, as well as by choosing either toptaska or toptaskb as the57
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Figure 3.4: CPU time (in seconds) in Domain B
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(toptaska) Method 1

n:
(ctaska1 ?v1 ?v2)

Constraints:
(initially (obj ?v1))
&(initially (obj ?v2))

(ctaska1 ?v1 ?v2) Method 1

n:
(ctaska2 t1 ?v1 ?v2 ?v3)

Constraints:
(initially (type1 ?v1 t1))
&(initially (type1 ?v2 t1))
&(initially (type1 ?v3 t1))
&?v1π?v2&?v1π?v3&?v2π?v3

(ctaska1 ?v1 ?v2) Method 3

n:
(ctaska2 t3 ?v1 ?v2 ?v3)

.......
Constraints:
(initially (type1 ?v1 t3))
&(initially (type1 ?v2 t3))
&(initially (type1 ?v3 t3))
&?v1π?v2&?v1π?v3&?v2π?v3

(ctaska2 ?t ?v1 ?v2 ?v3) Method 1

n:
(ctaska3 ?t ?v1 ?v2 ?v3)

Constraints:
   none

(ctaska2 ?t ?v1 ?v2 ?v3) Method 4

n:
(ctaska3 ?t ?v1 ?v2 ?v3)

Constraints:
   none

.......

(ctaska3 ?t ?v1 ?v2 ?v3) Method 1

n:
(ptaska  ?t ?v1 ?v2 ?v3)

Constraints:
(initially (type2 ?v1 t1))

(ctaska3 ?t ?v1 ?v2 ?v3) Method 3

n:
(ptaska  ?t ?v1 ?v2 ?v3)

.......
Constraints:
(initially (type2 ?v1 t1))Figure 3.5: Methods for the decomposition of (toptaska) in Domain C59



(toptaskb) Method 1

n:
(ctaskb1 ?v1 ?v2)

Constraints:
(initially (obj ?v1))
&(initially (obj ?v2))
&?v1π?v2

(ctaskb2 ?t ?v1 ?v2) Method 1

n:
(ctaskb3 ?t t1 ?v1 ?v2 ?v3)

Constraints:
(initially (obj ?v3))
&(initially (type2 ?v1 t1))
&(initially (type2 ?v2 t1))
&(initially (type2 ?v3 t1))
&?v1π?v2&?v1π?v3&?v2π?v3

.......

(ctaskb1 ?v1 ?v2) Method 1

n:
(ctaskb2 t1 ?v1 ?v2)

Constraints:
 (initially (type1 ?v2 t1))

.......

(ctaskb3 ?t ?w ?v1 ?v2 ?v3) Method 1

n:
(ptaskb   t1 ?v1 ?v2 ?v3)

Constraints:
   none

.......

(ctaskb1 ?v1 ?v2) Method 3

n:
(ctaskb2 t3 ?v1 ?v2)

Constraints:
 (initially (type1 ?v2 t3))

(ctaskb2 ?t ?v1 ?v2) Method 3

n:
(ctaskb3 ?t t3 ?v1 ?v2 ?v3)

Constraints:
(initially (obj ?v3))
&(initially (type2 ?v1 t3))
&(initially (type2 ?v2 t3))
&(initially (type2 ?v3 t3))
&?v1π?v2&?v1π?v3&?v2π?v3

.......

(ctaskb3 ?t ?w ?v1 ?v2 ?v3) Method 4

n:
(ptaskb   t3 ?v1 ?v2 ?v3)

Constraints:
   noneFigure 3.6: Methods for the decomposition of (toptaskb) in Domain C60
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Figure 3.7: CPU time (in seconds) in Domain Cgoal. In Domain C, a suite of 100 problems were created by randomly selectingthe goal tasks and initial states. Of these problems, 44 problems had the goal task
toptaska and 56 problems had the goal task toptaskb. Seven of the 100 problems hadno solutions. As shown in Figure 3.7, DVCS had the best performance overall.UMCP's average CPU times were 2.15 seconds using EVIS, 1.83 seconds usingRVBS, and 1.38 seconds using DVCS.
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T-testTo test whether or not the di�erences shown in Figure 3.7 were statistically signif-icant, a paired sample t-test was applied to the results. Let �D be UMCP's meanCPU time using DVCS and �R be UMCP's mean CPU time using RVBS. The nullhypothesis H0 is that �R � �D = 0 (or H0 : �R = �D); the alternative hypothesisH1 is that �R � �D > 0 . The t statistic computed from the results is 5.569. Thisis greater than the value 2.626 of the t-distribution with probability 0.995 wherethe degrees of freedom is 100. Thus we can reject H0 and say that the di�erence ofthe means is signi�cant. Similarly, the di�erence of the mean CPU time for DVCSand the mean CPU time for EVIS is signi�cant with the t statistic 8.155 and thecon�dence level greater than 0.999. The reason why DVCS outperformed EVISand RVBS is that even while solving a single planning problem, which re�nementstrategy is best can vary from task to task|and DVCS can select between theEVIS and RVBS strategies on the 
y.3.1.6 Weighed DVCSThe above experimental results show that neither RVBS nor EVIS performs wellfor all kinds of domains. The DVCS strategy can outperform RVBS and EVISby alternating between the two strategies. The selection of a strategy in DVCS ismade by calculating the number of immediate search nodes each strategy generatesand choosing the strategy which generates fewer search nodes. The question re-mains that if this method of selection is the best selection. In order to investigatethe strategy selection methods, We modi�ed DVCS to create a weighed DVCSstrategy (WDVCS) which takes a value r ( 0 � r � 1) to put weights on EVIS andRVBS when selecting a strategy. More speci�cally, WDVCS chooses a re�nement62
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RVBS EVISDVCSFigure 3.8: The results for the problems in Domains A, B and C by applying theWDVCS strategies. The x-axis shows the r-value and the y-axis shows the averagenumber of nodes generated.as follows: For each variable x in T, let v(x) be the number of possible values forv; and for each task t in T, let m(t) be the number of methods that unify witht. Let V = min v(x) : x is a variable in T; and let M = min m(t) : t is a taskin T. If (1-r)*V < r*M, then choose to instantiate the variable x for which v(x)is smallest. If (1-r)*V � r*M, then choose to expand the task t for which m(t) issmallest. Thus, WDVCS simulates RVBS when r = 0, DVCS when r = 0.5 andEVIS when r = 1.Figure 3.8 shows the results of WDVCS on Domains A, B and C problemsthat were generated in the experiments of RVBS, EVIS and DVCS. The r-value isvaried from 0 to 1 with an increment of 0.1. The results show that WDVCS doesbest when r � 0.5 on Domain A, when r � 0.4 on Domain B, and when r = 0.4on Domain C. This suggests that DVCS is not always the best strategy to choose63



between the two strategies, although we suspect that the WDVCS strategy withr = 0.4 does not perform best in all types of domains.3.1.7 SummaryMany planning papers are devoted to various least commitment strategies whichpostpone some types of re�nements during planning process. However, least com-mitment does not necessarily do well on all kinds of problems. In order to plan,a planner needs to make decisions; if it postpones some type of re�nements, ithas to work on other types of re�nements. Thus, a planner cannot apply leastcommitments to all aspects of planning.Three strategies were tested: EVIS and RVBS are two least commitment strate-gies where each tries to delay di�erent type of commitments. EVIS uses a \leastcommitment to task instantiation" strategy, while RVBS uses a \least commit-ment to variable bindings" strategy. DVCS uses the FAF heuristic to dynamicallyswitch between EVIS and RVBS. The experiments on Domains A and B showedthat neither one of the two strategies can perform well on all kinds of problems.The third strategy, DVCS, uses the FAF heuristic to switch between EVIS andRVBS. More speci�cally, DVCS chooses to work on the re�nement which gener-ates fewest immediate search nodes. On Domain A, where RVBS outperformedEVIS, DVCS performed as well as RVBS. On Domain B, where EVIS outperformedRVBS, DVCS performed as well as EVIS. And on Domain C, which is a combina-tion of the Domains A and B, DVCS outperformed either EVIS or RVBS for mostof the problems.Although the three test domains contain only non-codesignation constraints asconstraints that cannot be fully established without branching, similar performance64



of the three variable commitment strategies can be expected on the domains thatcontain state constraints such as the one described at the beginning of this section.The performance of a variable commitment strategy depends on many factorsincluding:� The probability of a variable instantiation succeeding: If a variable has manyvalues the variable can be instantiated with, but only one value leads to asolution plan, then a strategy that delays instantiating the variable performsbetter than a strategy that eagerly instantiates variables. On the other hand,the opposite is true if a variable may have many values that the variable canbe instantiated with and each value heads to a solution plan.� The probability of a decomposition method succeeding: Like variable instan-tiations, a task may have many decomposition methods but only one of themmay work in the current problem, or all of them may succeed in the currentproblem.� Existence of inconsistent variable bindings: As in Domain B, some problemsmay make the planner handle constraints that do not have a consistent setof variable bindings. In order to �nd such inconsistency, a planner can in-stantiate variables, as EVIS does, or run a constraint satisfaction problemsolver, as FSNLP [56] does. Either way, if there is no inconsistency, theseoperations could impose big CPU time.Also, many of these factors can in
uence each other. For example, choosingsome decomposition method may add new constraints to the partial plan thatmake the variable bindings in the plan inconsistent. Considering all the factors,65



a dynamic variable commitment strategy that switches between di�erent strate-gies depending on the current situation is necessary to maximize the e�ciency ofvariable commitments in planning.We also tested the WDVCS strategy which switches between EVIS and RVBSwith varying amount of weight for each strategy. DVCS can be viewed as theWDVCS strategy which put the same amounts of weights to both EVIS and RVBS.The experimental results on WDVCS show that DVCS is not the best strategy forall of the domains; on Domain C, WDVCS performed best when the r-value is0.4 and the RVBS is slightly more preferred than EVIS. However, we doubt thatWDVCS with the r-value = 0.4 always performs best in all types of problems.Rather, WDVCS would probably perform best with di�erent r-values in di�erentsets of problems, depending on the factors listed above. However, the resultsstrongly imply the best strategy lies in somewhere in the middle, considering theworst performance in each domain appears at the end (i.e. r-value = 0 or 1). Thus,DVCS seems to be the best bet for many types of problems.3.2 Graph SerializationThe experimental results shown in the previous section seems to indicate that theFAF heuristic performs well in choosing between task instantiations and variablebindings. This section examines the FAF strategy in more detail, to try to un-derstand whether it can be expected to perform well in general|and if so, thenwhy.The search process that is carried out by an AI planning system can be seen astaking an AND/OR graph and generating from it an equivalent state-space graph,one OR-branch at a time. This process is called serializing the AND/OR graph.66



Di�erent re�nement strategies for planning correspond to di�erent strategies forserializing the AND/OR graph. Since di�erent serialization strategies producedi�erent search spaces, they contain di�erent numbers of nodes. This sectionanalyzes the size of search space the FAF strategy by looking at the the sizes ofserialized trees that can be obtained by applying the FAF strategy to serializevarious AND/OR graphs.3.2.1 Partial-Order Planning and AND/OR GraphsThe space searched by a partial-order planner may be thought of as an AND/ORgraph in the following manner:� Given a partially developed plan, there may be several elements of the planthat need to be re�ned in one way or another. These could include bothunachieved goals or tasks (which would be re�ned by �nding ways to achievethem), and unsatis�ed constraints (which might be satis�ed by binding vari-ables or specifying node orderings). All of these elements will sooner or laterneed to be re�ned-and thus the choice of which re�nement to make nextcorresponds to an AND-branch in the planner's search space.� For each element that needs re�ning, there may be more than one way to re-�ne it (for example, several ways to instantiate a variable, or several operatorsor methods applicable to an unachieved goal or task), generating di�erentpartial plans. Any applicable re�nement will be satisfactory provided that itproduces a satisfactory plan-and thus the choice of how to reduce an elementcorresponds to an OR-branch in the planner's search space.67
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Figure 3.9: A tree T, and the trees nT and Tn (where n is a node not in T).If the re�nements performed on a plan were independent in their e�ects on theplan, a partial-order planner could search the AND/OR graph directly, buildingup a solution to the planning problem straightforwardly by �nding independentsolutions to subproblems and composing them into solutions to higher-level prob-lems. However, since the goals usually are not independent, partial-order plannersusually do not decompose the search space. Instead, when they re�ne some ele-ment of a plan, they keep track not only of the element that is being re�ned, butalso of the entire rest of the plan. Thus, the planner searches a search tree that isa "serialization" of the AND/OR graph.Although the concept of serializing an AND/OR graph is conceptually straight-forward, the formal de�nition is rather complicated notationally. To keep thenotation simple a formal de�nition is given only for the special case where theAND/OR graph is binary (i.e., each non-leaf node has exactly two children). How-ever, it should be obvious to the reader how to generalize this de�nition for thenon-binary case.First, look at the following notation (see Figure 3.9 for examples).If T is a tree whose node set is N and whose edge set is E; and n is any nodenot in N, then: 68



� Tn is the tree whose node set is fnp : n 2 Ng and whose edge set isf(mp; np) : (m;n) 2 Eg;� nT is the tree whose node set is fpn : n 2 Ng and whose edge set isf(pm; pn) : (m;n) 2 Eg.If G is a binary AND/OR graph, there are three possible cases for what itsserializations are:Case 1: G consists of a single node. Then the only serialization of G is G itself.Case 2: G contains more than one node, and the branch emanating from G's rootnode g is a binary OR-branch. Let H and I be the AND/OR graphs rootedat the two children of g; and let S and T be any serializations of H and I,respectively. Then as shown in Figure 3.10, the tree R whose root is g andwhose subtrees are S and T is a serialization of G.Case 3: G's root node g is not a leaf, and the branch emanating from g is a binaryAND-branch. Let H and I be the AND/OR graphs rooted at the two childrenof g. Let S be any serialization of H, and let T be any serialization of I. LetS's root be s and its leaf nodes be s1, s2, ..., sp; and let T's root be t and itsleaf nodes be t1, t2, ..., tq. Then as shown in Figure 3.11, the following treesare serializations of G:{ the tree R1 formed by taking the tree St, and attaching to its leaves s1t,s2t, ..., spt the trees s1T, s2T, ..., spT, respectively;{ the tree R2 formed by taking the tree sT, and attaching to its leavesst1, st2, ..., stq the trees St1, St2, ..., Stq, respectively.69
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… …Figure 3.11: Case 3 of serializing an AND/OR graph.In Figure 3.11, both serializations of the AND/OR graph have the same numberof nodes-but this needs not always be the case. As an example, Figure 3.12 showsanother AND/OR graph, and three possible serializations of it. Note that in eachserialization, the set of leaf nodes is exactly the same. Furthermore, for each leafnode, the number of paths-and the set of operations along each correspondingpath-are also the same. What di�ers is the order in which these operations areperformed-and since di�erent operations produce di�erent numbers of children,this means that di�erent serializations contain di�erent numbers of nodes.The idea of serializing an AND/OR graph occurs in a number of search pro-cedures, although the �rst case we know of where such a technique was describedexplicitly was in the SSS* game-tree search procedure [46]. One well known exam-ple is Prolog's search procedure (for example, see Clocksin and Mellish [9]), whichserializes AND/OR graphs in a depth-�rst left-to-right manner. For example, ingraph G of Figure 3.12, suppose that each node corresponds to a logical atom,each AND-branch corresponds to a Horn clause, and each OR-branch corresponds70
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   (a) Basic pattern.  (b) AND/OR tree G2,3 produced by the pattern when b = 2 and k = 3.

 (c) The smallest possible serialization T–
2,3 of G2,3.Figure 3.13: A basic pattern consisting of an AND-branch leading to two OR-branches, an AND/OR tree formed by repeating this pattern, and the smallestpossible serialization of the AND/OR tree.
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3.2.2 Best and Worst SerializationsIf a serialization strategy that would always �nd the smallest serialization of anAND/OR graph could be found, how much would this help? To get an idea of theanswer, take the pattern shown in Figure 3.13a, and use it repeatedly to form anAND/OR tree Gb;k of height 2k, as shown in Figure 3.13b. In Gb;k, the number ofoccurrences of the pattern iscb;k = 1 + (b+ 1) + (b+ 1)2 + :::+ (b+ 1)k�1 = �(bk),so the total number of nodes in Gb;k isn(Gb;k) = 1 + (b+ 3)cb;k = �(bk).Let T�b;k and T+b;k be the serializations of Gb;k that have the smallest and largestnode counts, respectively. Both of these trees have the same height, which can becalculated recursively as follows:h(T�b;k) = h(T+b;k) = 8>><>>: 2 if k = 1,2h(T+b;k�1) + 2 otherwise,= kXi=1 2i = 2k+1 � 2T�b;k and T+b;k both consist of 2k�1 levels of unary OR-branches interspersed with2k�1 levels of b-ary OR-branches. However, T�b;k has its unary OR-branches as nearthe top as possible and its b-ary OR-branches as near the bottom as possible; andvice versa for T+b;k. As shown in Figure 3.13c, the branches at the top k levels ofT�b;k are all unary, and those at its bottom 2k�1 levels are all b-ary; the reverse istrue for T+b;k. 73



We can calculate the node counts for T�b;k by tracing at which levels b-aryOR-branches branches appear. The total number of nodes in T�b;k isn(T�b;k) = 1 + k + bk + b2(1 + b)(k � 1) + � � �+ b2k�1 b2k�1 � 1b� 1= 1 + k + k�1Xi=0fb2i[2i�1Xj=0 bk](k � 1)g= 1 + k + k�1Xi=0fb2i b2i � 1b� 1 (k � i)g = �(b2k)Similarly, we can calculate the node counts for T+b;k by tracing at which levelsunary OR-branches branches appear. The total number of nodes in T+b;k isn(T+b;k) = bk+1 � 1b� 1 + bk bk � 1b� 1 + b2k�1(1 + bk�2)bk�1 � 1b� 1 + � � �+ 2k�1b2k�1= bk+1 � 1b� 1 + k�1Xi=0fb(k�i+1)2i�1[2i�1Xj=0 bj(k�i�1)]bk�i � 1b� 1 g= bk+1 � 1b� 1 + k�1Xi=0fb(k�i+1)2i�1 (b2i(k�i�1) � 1)bk�i�1 � 1 (bk�i � 1)b� 1 g = �(2kb2k)Thus, the numbers of nodes in the worst possible serialization and the bestpossible serialization di�er by a multiplicative factor of �(2k).3.2.3 Fewest Alternatives FirstDuring the course of its operation, an AI planning algorithm will generate a seri-alization of an AND/OR graph one OR-branch at a time. For example, startingfrom the node a in the AND/OR graph G shown in Figure 3.12, the �rst choiceis whether to expand the OR-branch rooted at b or the OR-branch rooted at f.74
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of what happens in a number of NP-hard optimization problems, in which theobvious hill-climbing heuristics for the problems will make the best choice in alarge number of situations, but will sometimes make choices that cause greatercosts to be incurred later on. At least one example of this occurs in the AI planningliterature, involving a greedy heuristic for the block-stacking problem [19].To formalize the notion of \optimal results" in the previous paragraph, �rstwe de�ned a \minimal serialization" of an AND/OR graph G to be a serializationT of G such that no other serialization of G contains fewer nodes than T . Now,suppose there is an AND/OR graph G whose root branch is an AND branch. Letthe children of the root node be n1, n2, � � �,nk. Then for i = 1,� � �,k, the node niis an optimal candidate for expansion if there is a minimal serialization of T ofG whose root branch is formed by expanding ni. For example, f is the optimalcandidate in Figure 3.12, and b is the optimal candidate in Figure 3.14. Findingan optimal candidate for expansion is probably NP-hard.3.2.4 Experimental Studies of FAFAs the experimental results in the previous section and the other studies [20]show, FAF performs well in many domains, but there exist cases where it doespoorly. This raises two important questions. First, although FAF performs wellin comparison with other popular heuristics, it is not known how close it comes(on the average) to �nding the best possible serialization. Second, it is usefulto know how it compares, on the average, with the best, worst, and/or averageserializations. To try to answer these questions, this subsection presents the resultsof an experimental exploration.The performance of FAF was compared with an average serialization performed76



on 50 di�erent randomly generated AND/OR trees. The sample trees were gen-erated using a tree generation algorithm based on [29]. These trees had 1 to 5branches at each node, with a maximumdepth of 8. All nodes at even depths wereAND-nodes, while all nodes at odd depths were OR-nodes. Thus, leaves were onlyplaced at even depths. The algorithm was set to generate 50 random trees with anaverage number of nodes close to 30 and the average depth close to the maximum.In the population that was actually generated, the average tree size (number ofnodes) is 32.32 and the average depth is 7.64. The smallest tree is of size 19 andthe largest tree is of size 51. The number of serializations for the trees varied from1 through to over half a million.To �nd the best and worst serializations, a program is used to exhaustivelyenumerate all serializations, keeping track of minimum,maximumand average size.Due to the extreme number of serializations for many of the trees, this programwas run for up to 50,000 serializations. If the �rst program had not enumeratedall serializations by this cut o� (i.e. there were more 50,000 serializations for thegiven tree), a separate algorithm is used which randomly generated 50,000 trialsinstead. The minimum, maximum and average were again collected.The FAF algorithm was also run on each tree, by applying the heuristic ateach AND-node expansion (When there were more than two smallest branches,the leftmost one was chosen). Data on the number of serializations, minimum,maximum, average, and FAF sizes are all shown in Table 3.1.
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No. of Size of Size of Average Size ofTree possible smallest largest serialization serializationserializations serializations serializations size found by FAF1 4228 38 64 43.6 392 4 33 34 33.2 333 >50000 156 275 185.0 1544 352 64 73 66.3 645 >50000 123 204 143.6 1216 >50000 71 126 86.0 717 7 18 25 20.0 188 56 19 30 22.1 199 >50000 259 321 277.6 25910 17424 156 175 162.0 15911 5284 61 67 62.9 6112 >50000 1488 2170 1697.0 145013 >50000 267 340 292.7 26714 >50000 253 463 331.0 25515 >50000 229 274 246.8 23516 >50000 158 254 196.6 15817 >50000 744 861 791.5 74618 16777 56 93 71.2 5619 180 29 44 35.4 2920 >50000 109 157 129.8 11121 4 36 38 36.8 3622 >50000 117 136 125.4 11723 14 17 23 19.6 1724 >50000 84 122 101.2 8425 5792 49 56 52.1 4926 >50000 334 434 374.0 32227 146 40 49 44.2 4078



No. of Size of Size of Average Size ofTree possible smallest largest serialization serializationserializations serializations serializations size found by FAF28 100 106 115 110.2 10829 8992 71 83 76.6 7130 44 32 41 36.4 3431 >50000 335 434 381.4 33032 4 33 34 33.5 3333 3 28 29 28.5 2834 20 27 33 30.0 2835 >50000 354 462 405.9 34836 >50000 162 184 173.2 16537 28 40 45 42.5 4038 >50000 226 327 280.9 23939 >50000 249 310 282.4 27840 >50000 173 225 201.5 17341 >50000 237 355 300.6 23242 >50000 659 929 803.1 64343 >50000 80 86 83.5 8344 >50000 520 621 580.2 52545 60 27 36 32.7 2746 >50000 161 226 207.6 16147 1014 70 82 79.6 8248 1 15 15 15.0 1549 2 17 17 17.0 1750 4 24 24 24.0 24Table 3.1: Experimental results.79
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Figure 3.16: The one tree in which FAF produced the worst serialization.(and, in fact, this is also the only case where FAF did worse than average). Thecause of this can be analyzed by looking at the particular tree (shown in Fig-ure 3.16). In this case, FAF could have produced the best serialization if it chosethe right child of the root to expand �rst instead of the left child. Since the pro-gram used simply chose leftmost in the case of the tie, FAF did poorly in thetest. This does, however, show a potential weakness in implementations of FAFfor planning, since it needs to have an additional heuristic to use in these cases.An examination of what to do in this case could lead to further improvement ofplanning choice mechanisms.3.2.5 SummaryThe search process that is carried out by an AI planning system is shown tocorrespond to `serializing' an AND/OR graph-mapping it into an equivalent state-space graph. Di�erent re�nement strategies for planning thus correspond to di�er-ent strategies for serializing the AND/OR graph representing the planning choice81



points. Di�erent serialization strategies produce state spaces of di�erent sizes, andthe smallest serialization of an AND/OR graph can be exponentially smaller thanthe largest one. A planner whose serialization strategy produces a small state spaceis likely to be more e�cient than a planner whose serialization strategy produces alarge state space. The above studies has shown that choosing an e�cient strategycan save exponential time.Like most greedy heuristics, the FAF strategy does not always produce thesmallest possible serialization|but in the experimental results, it usually pro-duced a serialization that was either optimal or near-optimal. The studies pre-sented above suggest that the FAF strategy provides a good balance between thecomplexity of computing the heuristic and the size of the resulting state space.These results explain why FAF performs well in the previous studies, and opensseveral interesting issues for exploration. First, as was noted, better serializationslead to smaller search spaces, thus potentially improving planning behavior. How-ever, the exact relationship between a given planner and this search space is quitecomplex to describe, and there may be cases where certain planners interact bet-ter with certain serializations. Second, while FAF performs quite well, it is clearthat there is still plenty of room for improvement. This can include looking foralgorithms that can better optimize search space (serialization) size, improvementson FAF (for example better tie-breaking rules), and identi�cation of analytic tech-niques that could analyze the tree formed by the operators and better select orprune the search spaces. Overall, the FAF heuristic seems to be a good selectionmethod when there is no good reason to prefer one re�nement over others.82



3.3 Related WorkAs mentioned before, the FAF heuristic was used in constraint satisfaction prob-lems as early as 70s. Bitner and Reingold [6] provided the `search rearrangement'method as one way to increase the speed of the search: Instead of setting the vari-ables in a �xed order, the search is rearranged by choosing a variable that o�ers thefewest alternatives. Purdom [40] did statistical analyses on the search rearrange-ment method applied to SAT problems. By varying the number of clauses and theprobability that a literal appears in the clause, he found a class of problems wherethe search rearrangement method can probably save exponential time comparedwith the ordinary backtracking method.The O-Plan planner [10] uses the branch-1/branch-N heuristic as one of theassessment measures to decide which planning operation should be done duringthe planning process. Branch-1 is a version of FAF which gives the number ofimmediate search branches the operation generates. Branch-N gives an estimateof the number of distinct alternatives that might be generated by working on theoperation. Operations with lower branch-1/branch-N estimates take high prioritywhen O-Plan is choosing an operation.In action-based planning, Joslin and Pollack studied their least-cost 
aw re-pair (LCFR) strategy, a version of FAF, which was introduced in [20] as a goodstrategy to determine which re�nement operations to do next in a causal-link basedplanner. In the following studies, Pollack, et al. [38] investigated the performancesof LCFR compared with many other strategies. From the experiments they per-formed, they found that, except for the Tileworld domain problems, LCFR wasgenerally outperformed by a modi�ed LCFR strategy that always delays threatremoval operations when the threats are resolved by separation. They reasoned83



that this is because those threats are often partially resolved by other re�nementoperations if they are postponed. In the Tileworld domain, the planner has to planfor moving from one location to the other in order to pick up tiles and �ll holeswith them. Since a plan contains many instances of the operator (GO X, Y) to movearound, it is important to put orderings between these actions by resolving threats.Without it, the planner has to handle partial plans with many GO actions withoutknowing which location each GO originates from. Thus, doing those threat re-moval operations early is essential to the planner's e�ciency. The modi�ed LCFRstrategy, which delays those threat removal operations when they are separatable,also delays the pruning, while the LCFR strategy resolves the threats earlier andperforms better.
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Chapter 4External Conditions MethodIn the previous chapter, the FAF heuristic was shown to do well in minimizingthe size of the search tree when it was applied to select alternative re�nementsin the re�nement search. These analyses suggested that if the FAF heuristic wasused throughout the planning process, it should perform well for many problems.In reality, it did not. The reason is that the outcome of a re�nement operationdoes not always remain the same during the planning process, because many planre�nement operations are inter-dependent. A re�nement operation r which resultsin N partial plans if it is applied to the partial plan P may result in M partialplans where N 6= M if it is applied to a partial plan P' which is a consequence ofanother re�nement s applied to P. This motivated us to look at interactions thatoccur during the planning process.This chapter presents a re�nement strategy that reduces the cost of the back-tracking that results from a certain kind of task interaction. The strategy, calledExCon, performs better than FAF when used to select which task to decomposenext. The �rst section looks carefully at why FAF does not always work well, andwhat a re�nement strategy should do to perform better than FAF. We analyzehow tasks interact in HTN planning in Section 4.2. Section 4.3 de�nes a type of85



constraint called an external condition that an HTN planner can use to detectpossible task interactions during the planning process. Section 4.4 presents theExCon strategy that uses external conditions in order to handle task interactionsmore e�ciently. We implemented the ExCon strategy in the UMCP planner. Theimplementation details are in Section 4.5. Section 4.6 compares FAF and Ex-Con empirically. Related work is presented in Section 4.7. Finally, Section 4.8summarizes the chapter.4.1 Why FAF does not always perform wellAs presented in Section 3.3, the empirical study by Pollack et al. [38] in action-based planning shows that a modi�ed FAF strategy which delays certain re�ne-ments does better than their default FAF strategy. This is because a delayedre�nement is often resolved as a result of doing other re�nements. In other words,other re�nements applied during the interval it was delayed often prune the searchspace in such a way that the delayed re�nement will not partition the re�nementsearch space. Similarly, re�ning a partial plan in HTN planning often fully orpartially resolves the other re�nement operations. Also, doing several re�nementsin combination may help the planner prune the search space more e�ciently. Con-sider the following examples:� Suppose there are two re�nements r1 and r2, among many others, that areapplicable to the current partial plan P (see Figure 4.1(a)). r1 enforces aconstraint c1 that can be satis�ed by binding a variable ?x with a constant a.r2 enforces another constraint c2 that can be satis�ed by binding the variable
?x with a, b, or c (i.e. by setting the possible values for ?x with fa, b, cg). If86
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?y = dFigure 4.1: The outcome of a re�nement may change if it is delayed. In (a), theplanner does not need to do r2 if r1 was applied �rst. In (b), doing r1 and r2will prune the search space represented by the partial plan Q. However, if theplanner works on re�nements other than r1 or r2, it may have to spend a lot oftime backtracking for those re�nements.
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the planner's re�nement strategy chooses to do r1 �rst, then the constraintc2 will be satis�ed and the planner no longer needs to work on enforcing theconstraint c2. On the other hand, if the re�nement strategy chooses to do r2,the planner still needs to enforce c1 later. Since each of r1 and r2 generatesone immediate partial plan, FAF may do the former or latter.� Suppose there are two re�nements r3 and r4, among many others, that areapplicable to the current partial plan Q (see Figure 4.1(b)). r3 enforces aconstraint c3 that can be satis�ed by binding variables so that either ?x =

a and ?y = b, or ?x = c and ?y = d. r2 enforces a constraint c4 that can besatis�ed by binding variables so that either ?x = c and ?y = b, or ?x = a and
?y = d. Thus, doing either r1 or r1 generates two immediate partial plans.However, applying the two re�nements results in pruning any partial plansthat are derived from Q, because of the inconsistency. If there are otherre�nements that generate less than two immediate partial plans, FAF willchoose to do those re�nements before choosing r1 or r2 although doing sowill later result in bigger backtracking costs.As shown by the above examples, the number of partial plans generated bya re�nement may not remain the same if the re�nement is postponed. Since theFAF heuristic takes into account only the number of immediate partial plans thatresult from each re�nement, it may not perform as well as strategies that lookat the interactions between re�nements operations. This is not to say that FAFshould not be used at all. It is very di�cult for any planner to know the outcomeof a re�nement if it is postponed, since that depends on what other re�nementsare performed in the meanwhile. The FAF heuristic has a good chance of reducingthe size of the search space when the planner does not have a particular reason88
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(1) Go to grocery store; (2) Buy fruit;
(3) Go home; (4) Go to post office;
(5) Buy stamps; (6) Go home.

Plan B

Grocery Store

Home

(1) Go to grocery store; (2) Buy fruit;
(3) Buy stamps; (4) Go home.

32Figure 4.2: Two possible plans to buy fruit and stamps.to expect other re�nements to do better. However, this motivated us to look atpossible interactions that occur during the planning process in HTN planning.Speci�cally. we investigated interactions between task decompositions since ourpreliminary study showed that much of the backtracking costs result from failuresto resolve task interactions e�ciently.4.2 Task InteractionsGupta and Nau [19] presented two types of task interactions that pose e�ciencyproblems. A deleted-condition interaction is a situation where one action, whichis inserted into a plan to achieve one goal, deletes a condition necessary to accom-plish another goal. This type of interaction has already been addressed in manyliteratures [41, 14, 26]. The common approach to handle it is to detect possiblethreats (i.e. actions that can delete necessary conditions), and remove threats byconstraining variable bindings or step orderings. If a threat cannot be removed,the planner backtracks. A planner can reduce such backtracking costs by detectingand handling threats as soon as possible.89



An enabling-condition interaction is a completely di�erent kind of interaction.It occurs when an action that is introduced into a plan to accomplish one goalmakes it easier to achieve another goal. Unlike a deleted-condition interaction, itis, in a way, bene�cial because it is usually desirable to do one action for more thantwo purposes, rather than do actions for each purpose separately. For example,consider a situation where you want to get fruit and stamps and be back at home. 1One plan to accomplish it is to go to a post o�ce, buy stamps, go home, leave fora grocery store, buy fruit and come back (as shown in Plan A of Figure 4.2). Butif you know a grocery store which sells stamps, then you probably would rather goto the store and buy both fruit and stamps there, and then come back as shown inPlan B of Figure 4.2. In other words, Plan A shows a plan where the task of buyingfruit and the task of buying stamps are not interleaved, and Plan B shows a planwhere they are. In this thesis, \tasks X and Y are interleaved" means that theplanner has put orderings between X and Y in order to utilize enabling-conditioninteractions, even if it resulted in a sequential ordering between X and Y (i.e. everyaction for X comes before any action for Y, or vice versa).In their analysis of complexities, Gupta and Nau [19] show that �nding anoptimal solution in Blocks World is NP-hard. Moreover, they show that the NP-hardness is due to enabling-condition interactions, not to deleted-condition inter-actions. This result motivated us to look at enabling-condition interactions inHTN planning more carefully.Figure 4.3 shows two alternative decomposition methods for the Get-Stampstask. Method 1 speci�es buying stamps in a store which sells stamps. One usuallydoes not go to a grocery store solely to buy stamps. Method 1 is applicable only1This example is based on Wilensky [52]. 90



(Get-Stamps)     Method 1

(Buy stamps)

Constraints:
(before (at ?store) n1) &
(initially (sells ?store stamps))

n1:

(Get-Stamps)     Method 2

(Goto postoffice)

Constraints:
(before (~at ?store) n1) &
(between (at postoffice) n1 n2) &
(initially (sells ?store stamps))

n1:
(Buy stamps)
n2:Figure 4.3: Two methods to get stampswhen one is at the store for some other reason and has the condition (at ?store)as a `before' state constraint instead of as a predicate task. Method 2 speci�es aprocedure of buying stamps in a post o�ce when one is not at a store which sellsstamps. Thus, decomposing a Get-Stamps task creates two partial plans; one usingmethod 1 and one using method 2. Suppose the planner explores the one usingmethod 1 in the next step. In order to decide if the method used is applicable, theplanner needs to examine the initial state and actions that come before the (Buy

stamps) task to see that the condition (at ?store) can be satis�ed. However, if thereare non-primitive tasks that could come before the (Buy stamps) task, a plannermay not be able to decide whether the condition can be satis�ed or whether itis unsatis�able at that time. Of course, the planner will eventually work on (i.edecompose) each one of these non-primitive tasks and thus be able to tell if thecondition is satis�able or not. But the cost of backtracking can be high if theplanner �nds the condition unsatis�able (i.e. the method inapplicable) long afterit is inserted into the plan.
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4.3 External ConditionsWe can separate state constraints into three types based on what establishes them.One type of constraint is a constraint on the state conditions that never changethroughout the plan. These constraints can only be established by the initialstate. Conditions of this type are called initial state constraints. An initial stateconstraint can only be established by binding variables in the constraint to matchwhat is true in the initial state. The second type of constraint is a constraint thatcan be established within the subtasks of the decomposition method. The thirdtype of constraint is a constraint that must be established externally, either by theinitial state or a task. We call constraints of this type external conditions.4.3.1 De�nitionAn external condition of a decomposition methodM is a state constraint that hasto be established for the methodM to be applicable to the problem and yet cannotbe established by any task that may result fromM . Thus, the plan must establishthis state constraint by something external to M , such as the initial state or someother task in the plan.De�nition (External condition) LetM =< T; � > be a decomposition method,where T is the set of subtasks created by the method and � is the set of constraintsfor the method. Then a condition c is an external condition of M if:1. c is a state constraint other than an initial state constraint;2. c must be necessarily true to satisfy �; and3. no descendent of any task in T can establish c.In the de�nition, external conditions are constraints that de�nitely have to be92



established by something external to the method. Since what the tasks in T aredecomposed into depends on the context of each problem, there can be a stateconstraint that can be established by a descendent of T in some problems and yetcannot be established by a descendent in other problems. Such a constraint willnot be considered as an external conditions of the method.Notice that an external condition of a method M is not external to the taskM is decomposing; when a non-primitive task has more than one decompositionmethod, each method may have di�erent set of external conditions.As an example, consider the external conditions of each method for the Get-

Stamps tasks shown above. For method 1, there are two conditions. The con-straints, (before (at ?store) n1) and (initially (sells ?store stamps)), are state constraintsthat must be necessarily true to satisfy the constraint formula and cannot be sat-is�ed by a descendent of any task in the method. However (initially (sells ?store

stamps)) is an initial state constraint which is never a�ected by other tasks. So,
(before (at ?store) n1) is the only external condition for method 1. For method2, there are three conditions and all of them must be true to satisfy the con-straint formula. The constraint (before (�at ?store) n1) is an external condition ofthe method as no descendent of any task in the method possibly can establishit. On the other hand, (between (at postoffice) n1 n2) is not an external conditionbecause the task n1:(Goto postoffice) can make the condition (at postoffice) true. (ini-

tially (sells ?store stamps)) is not an external condition since it is an initial stateconstraint.
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4.4 ExCon StrategyWhen a decomposition method is instantiated, the external conditions in the meth-ods become applicability conditions of the plan, i.e. conditions that must be estab-lished for the partial plan to work for the current problem. Since these conditionscannot be established by any task introduced by the method, they must be estab-lished by either another task or the initial state. If there are non-primitive tasksthat can come before the point where the condition must be true, the planner maynot be able to fully establish the applicability condition at the current time. How-ever, postponing the establishment of applicability conditions may lead to hugebacktracking costs when some condition turns out not to be establishable. In or-der to reduce such backtracking costs, the planner needs to work �rst on tasks thatmight e�ect the establishment of the applicability conditions of the partial planit is working on. This section describes the strategy that selects which tasks todecompose next based on the current applicability conditions of the partial plan.4.4.1 IllustrationConsider the situation presented in in Section 2.3 where you have to (1) get stamps,(2) get fruit, and (3) then go home. This goal can be represented as a partial planas shown in Figure 4.4 (a). If a planner chooses to work on the task (Get-Stamps)�rst, decomposing (Get-Stamps) in this partial plan will result in two partial plans,one using Method 1 (as shown in Figure 4.4 (b)) and another using Method 2 (notshown). Now, consider the one using Method 1. Suppose the task (Get-Fruit) canbe decomposed into a sub-plan that includes going to a store which sells stamps,then the condition (at ?store) can be satis�ed at the beginning of the task (Buy

stamps). However, the planner cannot know if such a sub-plan for the task (Get-94
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(Get-stamps) expanded using Method1

(at ?store) : applicability condition(a) A partial plan specifying the goalof getting stamps, fruit and gas andgoing home. (b) A partial plan resulting fromthe (Get-Stamps) task expanded usingmethod 1.Figure 4.4: A sample applicability condition in a partial plan
Fruit) is applicable to the current problem until after it has worked on (i.e. fullydecomposed) the task.The planner has to choose a non-primitive task such as (Get-Fruit) or (Go-Home)in the partial plan to work on next. If sometime later the planner �nds that in thecurrent problem, accomplishing the task (Get-Fruit) does not include an action ofgoing to a store which sells stamps, then the entire search derived from the partialplan fails and the planner has to backtrack. The cost of such backtracking can besigni�cantly high if the planner worked on the task (Go-Home) down to the detailedlevel and then found the failure while working on the task (Get-Fruit).The idea of the ExCon strategy is to work �rst on the tasks which can helpthe planner establish the applicability conditions, thus reducing the cost of back-tracking when the planner �nds conditions that cannot be established.4.4.2 MethodThe ExCon strategy requires the following:95



1. When it loads its knowledge base containing the domain speci�cation, theplanner must precompute external conditions for every decomposition methodin the domain and store the information. The planner only needs to do thisonce for a domain. While the complexity of extracting every external con-dition is probably undecidable, we can extract most external conditions inpolynomial time using a simple algorithm. We describe this algorithm laterwhen describing the implementation of the ExCon strategy.2. The data structure for a partial plan keeps a stack of applicability conditions.Initially, the partial plan has no applicability conditions. During a methodinstantiation, the external conditions of the method are pushed onto the topof this stack. The condition on top is the current priority to the planner.3. When selecting a task to decompose, the priorities are given to (1) taskswhich can possibly establish the current top condition, or (2) tasks whichcan possibly threaten the current top condition, based on the presence of aprimitive establisher.The algorithm for the third step (selecting a task to decompose) is shown inFigure 4.5. For selecting tasks in Steps 1, 4, and 5, the algorithm uses what-ever task-selection strategy the user wishes (FAF is used for this purpose in theexperiments described in this section).In Step 1, if there are no applicability conditions to achieve, then the plannerselects and returns a task. When there are applicability conditions, Step 2 picks upthe one on top of the stack. If the current condition is already established withoutthreats in the partial plan, then Step 3 removes the condition from the stack andgoes back to select something else. Otherwise, Step 4 computes the non-primitive96



Algorithm select-task-ExCon(PartialPlan)1. If the applicability condition stack of PartialPlan is empty, then select atask from PartialPlan and return the result.2. Else, set c to the �rst element of the applicability condition stack inPartial Plan.3. If c is true in PartialPlan, then remove c from the applicability conditionstack and go back to Step1.4. If there is no primitive task that establishes c, then compute possibleestablishers for c. Select a task among them and return the result.5. Else, compute possible threats for c. Select a task among them andreturn the result.6. If there are no possible establishers or possible threats, remove c fromthe applicability condition stack of PartialPlan and go back to Step 1.Figure 4.5: The task selection algorithm for ExCon.
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tasks in the plan that can possibly establish the condition, provided the conditionis not established by any primitive task currently in the plan. If it is establishedby a primitive task, then possible threats are computed and one is selected in Step5. Otherwise, there are only primitive tasks that might a�ect this condition, soStep 6 will remove it from the stack and go back to select another one.Note that since ExCon's task-selection strategy merely speci�es the order inwhich a planner will prefer to expand tasks, it has no e�ect on the planner'scompleteness: a planner that is sound and complete without it will also be soundand complete with it.4.5 ImplementationWe implemented FAF2 and ExCon using the UMCP planning system, a domain-independent HTN planning system [11], and compared their performances. For theexperiments, we ran UMCP version 1.23 on Sun ULTRA workstations using AllegroCommon Lisp 4.3. We incorporated each task selection strategy into UMCP'sdefault commitment strategy, which is described in Section 2.3.3. The domaindescriptions used in the experiments are available athhttp://www.cs.umd.edu/projects/plus/umcp/domains/i.2In the implementation of FAF, the FP heuristic as the tie-breaking rule for FAF. The FPheuristic is describe in Section 5.3Note: The previous experiments on ExCon used UMCP1.0. UMCP1.2 is capable of pruningmore plans than UMCP1.0 by looking at possible e�ects in more detailed level.
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4.5.1 Automatically extracting external conditionsComputing precisely which state constraints are external conditions is not a trivialmatter since it requires the planner to know the exact variable bindings that canoccur during the planning. To see which tasks a�ect which constraints, UMCP1.2uses a possible e�ects table to store information about which non-primitive tasksare capable of causing various kinds of e�ects. Since the exact e�ect of each non-primitive task depends on which decomposition methods are used and how thevariables bound, the table only speci�es which non-primitive task can possiblya�ect each predicate. The table is a table of pairs < p; t > which p is a positiveor negative atom and t is a non-primitive task. An argument of p can be boundto some argument of t only if the e�ects of t on the predicate is limited to it.Otherwise, the arguments will be indicated as \??". For example, if a task (move

?robot ?loc) has a possible e�ects of (at ?robot ??), then the task (move Robot1 RoomA)may cause the e�ect (at Robot1 Hallway), but never cause the e�ect (at Box RoomA).A possible e�ects table is computed by exploring all possible decompositionsof each non-primitive task. A pair < p; t > is in the table if one of the possibledecompositions of the task t contains a primitive task s such that one of s's e�ectsis the literal p.The possible e�ects table can be constructed by a planner by preprocessingthe domain. During the planning, the planner can look in the table to see whichnon-primitive task in the current partial plan can possibly establish or threatencertain constraints in order to prune partial plans that have no way of satisfyingnecessary state constraints.In order to extract the external conditions of each method in the domain, theplanner needs to do the following for any method M = < T; � > in the domain:99



� First, all the non-initial state constraints in � are pushed onto a set C. Ifa constraint is speci�ed in a disjunctive form (i.e. c1 _ c2 _ � � �) in �, it isremoved from C.� Then, for every constraint c in C, do the following:{ Determine at which state s, the condition in c must be satis�ed. Forexample, for the condition (before (at ?store) n1), the constraint (at ?store)must be satis�ed at the beginning of the task n1. Similarly, for theconstraint (between (at postoffice) n1 n2), the condition must be satis�edin the state immediately following the task n1.{ Look for a task ti 2 T where (1) there are no ordering constraints in� that order ti after s, and (2) there is a pair < p; ti > in the possiblee�ects table where the literal p can be uni�ed with the condition in c.{ If such ti cannot be found, c is marked as an external condition to M .This algorithm takes only polynomial time (to the size of the domain). It willnot necessarily extract all external conditions, since the variable bindings are notfully examined. We are currently trying to �nd a better way to extract them.However, in all of our test domains, the above algorithm extracted most of theexternal conditions. Furthermore, as will be shown below, this set is enough tosigni�cantly improve planning behavior.4.5.2 Computing possible establishers and possible threatsAs shown in Figure 4.5, Steps 4 and 5 of ExCon's task-selection compute thepossible establishers and the possible threats of the applicability condition. In ourimplementation, the planner uses the possible e�ects table to compute these. First,100



the planner �nds all non-primitive tasks in the partial plan that are not orderedafter the point where the condition needs to be true. It then looks in the possiblee�ects table to see if any of them can possibly establish or threaten the condition,and returns the result. Although this method returns (as possible establishers orpossible threats) some tasks that can never establish nor threaten the conditions,it �nds every possible establisher and possible threat to the condition.4.5.3 Plan selectionSince Blocks-World has recursive tasks where the search space can be in�nite, ourexperiments used best-�rst search for Block-World problems and depth-�rst searchfor all the other problems.4 For best-�rst search, plan selection is based on thevalue computed by,f(PartialPlan) = (number of non-primitive tasks)+ (number of tasks, both primitive and non-primitive)+ (number of ordering and variable constraints thatare postponed).The plan with the lowest value is selected for next re�nement. This function wascreated based on the heuristic presented by Gerevini and Schubert [18] and seemsto perform well on many problems with in�nite search space.4We used depth-�rst search for �nite search space problems because (1) it is easier to tracethe search and (2) it generally does as well as or better than best-�rst search on our test domains.
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4.6 ExperimentsSince both the FAF and ExCon strategies merely specify the order in which aplanner will prefer to decompose tasks, they have no e�ect on the planner's sound-ness and completeness. However, they do a�ect the planner's e�ciency; and theExCon strategy should outperform the FAF strategy, especially on problems wherethe goal tasks are highly interleaved.We tested ExCon against FAF on three domains. One is an arti�cial domainwhere the amount of interleaving can be controlled to some degree. The seconddomain is UM Translog. We tested the two strategies on various types of one-, two-, and three-package problems. The third domain is Blocks World. We used towerinversion problems with di�erent number of blocks. We measured the number ofpartial plans the planner created before �nding a solution plan.4.6.1 Arti�cial DomainThe test domain contains methods for accomplishing compound tasks called p-task,
q-task, and r-task. As shown in Figure4.6, these methods decompose the compoundtasks into other tasks. Most of the other tasks are primitive tasks, but a few ofthem (p, q, and r) are predicate tasks. Most of the primitive tasks (do-p1, do-p2,
do-q1 do-q2, do-r1and do-r2) have no preconditions and e�ects. Each predicate taskhas two methods that are capable of achieving it: one of the methods shown inFigure 4.6(d){(f), and a Do-Nothing method.The primitive task (del-p ?x ?y) has the e�ects (�p ?y) and (prep p). The task
(set-p ?x) has the e�ects (p ?x) and (�prep p). The predicate task (p W) for somevalue W can be achieved in two ways; by phantomizing it if the literal ( p W) is trueat the beginning of the task (p W); or by doing (del-p W Z) followed by (set-p W) if at102



 (a) a method for (p-task ?x)

n0:
(do-p1)

Constraints:

(between (p ?x) n1 n2)

n1:
(p ?x)

n2:
(do-p2)

(d) a method for (p ?x)

n0:
(del-p ?x ?y)

Constraints:

(before (~p ?x) n0) &
(before (p ?y) n0) &
(between (prep p) n0 n1)

n1:
(set-p ?x)

(b) a method for (q-task ?x)

n0:
(do-q1)

Constraints:

(between (q ?x) n1 n2)

n1:
(q ?x)

n2:
(do-q2)

(c) a method for (r-task ?x)

n0:
(do-r1)

Constraints:

(between (r ?x) n1 n2)

n1:
(r ?x)

n2:
(do-r2)

(e) a method for (q ?x)

n0:
(del-q ?x ?y)

Constraints:

(before (~q ?x) n0) &
(before (q ?y) n0) &
(between (prep q) n0 n1)

n1:
(set-q ?x)

(f) a method for (r ?x)

n0:
(del-r ?x ?y)

Constraints:

(before (~r ?x) n0) &
(before (r  ?y) n0) &
(between (prep r) n0 n1)

n1:
(set-r ?x)

Figure 4.6: The decomposition methods for the test domain. Each non-primitivetask has exactly one method speci�ed. The tasks shown in boldface are primitivetasks. 103



g1: (q-task C2) g2: (r-task C3) g3: (p-task C6)

g4: (p-task C4) g5: (q-task C6) g6: (r-task C4)

(p C6) (q C5) (r C4)
Initial State:

Goal Taks:Figure 4.7: A sample problem with 2 goals, 3 predicates and 50% overlap. Werepresents the initial state which consists of (p C6), (q C5) and (r C4).the beginning of the task (p W) the literal ( p W) is false and the literal ( p Z) is truefor some value Z. The tasks del-q and del-r are de�ned similarly to the task del-p,and the tasks set-q and set-r are de�ned similarly to the task set-p. An initial statefor this domain consists of three ground atoms (p wp), (q wq) and (r wr), where wp,wq and wr are constant values randomly chosen from the set f C1, C2, C3, C4, C5,

C6 g.In this test domain, the amount of interleaving can be altered by varying thearguments of the goal tasks: a problem is highly interleaved if the arguments ofmost p-task goal tasks are the same and it is less interleaved if the arguments ofmost p-task goal tasks are di�erent.We generated test problems as follows. Goals were random sequences of one(p-task only), two (p-task and q-task) or three (p-task, q-task and r-task) di�erent tasksthat needed to be done. How many di�erent tasks were in the goal decided thenumber of predicates in the problems. A problem consisted of two or three goals,with no ordering constraints across them. We randomly assigned arguments tothe tasks based on an \overlap rate" of 10%, 50% or 90%. For example, if theoverlap rate were 100%, all the arguments of the p-task tasks would be identical104



FAF ExCon p FAF ExCon p FAF ExCon p2 goals 1 predicate 2 predicates 3 predicates90% 10.3 10.3 { 22.7 21.5 95.5% 33.3 32.0 >99.9%50% 11.2 11.2 { 24.5 23.7 >99.9% 39.1 34.7 >99.9%10% 11.7 11.7 { 24.8 24.6 92.7% 37.4 36.4 >99.9%3 goals 1 predicate 2 predicates 3 predicates90% 16.3 16.0 99.5% 36.0 35.6 67.1% 63.1 49.6 >99.9%50% 26.3 25.5 98.1% 81.9 48.5 >99.9% 420 78.9 >99.9%10% 32.6 32.7 66.7% 141 66.9 >99.9% 515 91.0 >99.9%Table 4.1: The average numbers of search nodes created over the 100 randomlygenerated problems in the arti�cial test domain. p represents the con�dence levelsof paired t-test.to the p value in the initial state. If the overlap rate were 0%, the arguments for
p-task and the p value in the initial state would all be unique. If the overlap ratewere 30%, there would be 30% probability that the argument of a p-task is usedin another p-task or the atom p in the initial state. We varied the overlap rate tocreate problems with various degrees of interleaving. We also varied the numberof predicates appearing in the problems to change the chances that the plannerwould try to interleave multiple predicate tasks. A sample problem is shown inFigure4.7.We created and tested 100 problems of 1, 2 or 3 predicates used, 10%, 50%or 90% overlap, and 2 or 3 goals, totaling 1800 problems tested. We counted thenumber of partial plans created during planning and computed the average foreach type of problem. The results are shown in Table 4.1.105
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1 2 3Figure 4.8: The relative performances of FAF and ExCon for 3-goal problems. Thex-axis gives the number of predicates in the goals, and the y-axis gives the ratio(#search nodes by FAF)/(#search nodes by ExCon).Figure 4.8 shows graphs of the 3-goal data in Table 1, that show how therelative performance of FAF and ExCon depends on number of predicates in thegoal. Note that as the number of predicates increases, FAF's performance degradesmuch more quickly than ExCon's. This is because FAF creates many more partialplans in order to interleave goal tasks. Since ExCon works on one predicate at atime until it is established or fails, the planner does not have to backtrack overmultiple predicates as it does with FAF.The graphs in Figure 4.9 show how the relative performances of FAF and ExCondepend on the overlap rate. For problems with 1 predicate, the di�erence betweenFAF and ExCon is not large regardless of the overlap rate. For the problems with2 or 3 predicates in the goals, FAF is clearly spending more time backtrackingthan ExCon. At 90% overlap, most attempts to interleave tasks succeed. So theamount of backtracking is minimal. Thus, the performances of the two strategiesare similar. As the overlap rate decreases to 50% and 10%, less and less attemptsto interleave tasks succeed and the planner has to backtrack on many more failures.Since seeing average numbers alone can be misleading in some cases, we did a106
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3-goal, 1 predicate, 10% overlap problems, many problems have goal tasks whichcannot be interleaved at all. Since there is only one type of goal task (p-task), FAFcan easily identify failures to interleave tasks, thus begins backtracking earlier.So the backtracking costs are small for FAF as well for ExCon. Thus, the t-testresults also con�rm that the performance of ExCon is signi�cantly better than theperformance of FAF when the overlap rate is low and when there are more predi-cates in the problems. Therefore, ExCon is shown to perform better than FAF onproblems where the tasks are highly interleaved.4.6.2 UM TranslogUM Translog[3] is a transport logistics domain where the methods of transporta-tion are speci�ed based on the locations, the types of the package, and availabilitiesof the necessary equipments. It is a considerably larger domain than many othertoy domains. It is speci�ed with 17 compound tasks, 42 primitive actions, and 29predicates. We have tested FAF and ExCon on one-, two- and three-package trans-portation problems. For two- and three-package problems, we di�er the possibilityof interleaving between di�erent packages by altering initial locations, destinationsand package types.(a) - The package types are of the same type and have the same initial locationand destination.(b) - The package types are of the same type. The destination of one packageis the same as the initial location of the other package, so that one truckdelivering one package can pick up another package at the place.108



Problem Types FAF ExCon FAF/ExCon pPlans Time Plans Time (Plans)1pack { 76.00 0.31 76.00 0.35 1.00 {2pack(a) same 151.75 1.40 178.20 1.98 0.85 <0.1%2pack(b) same 382.30 4.04 229.65 3.04 1.66 >99.9%2pack(c) same 1163.20 13.48 536.25 10.37 2.17 >99.9%2pack(d) di� 1448.80 16.74 633.40 9.90 2.29 >99.9%3pack(a) same 253.60 7.45 238.15 6.28 1.06 >99.9%3pack(b) same 81140.65 1,961 33639.15 1,075 2.41 >99.9%3pack(c) same 132418.00 3,361 57692.10 1,937 2.30 >99.9%3pack(d) di� 44080.45 991 20733.55 556 2.13 >99.9%Table 4.2: The results for FAF and ExCon on Translog problems. Plans areaverage number of partial plans created. Time is non-garbage collection CPU timein seconds. For multiple package problems, \Types" shows whether the packageshave the same type and so can be carried by the same delivery truck. p representsthe con�dence levels of paired t test.(c) - The package types are of the same type but none of the initial locations orthe destinations are the same.(d) - The packages are of di�erent types and so it requires di�erent types of vehiclesto transport each package.We randomly created 20 problems for each problem type, with various packagetypes (regular, bulky, granular, liquid, or livestock) and locations (among 15 locations).The results are shown in Table 4.2. 109



� For one package problems (1pack), there is almost no interleaving betweenany tasks in the problem, so the performances of FAF and ExCon are simi-lar. For two-package delivery problems and three-package delivery problems,the performances of the two strategies depends on how much tasks can besuccessfully interleaved between two goal tasks.� For the problems where the package are of the same type and have the sameinitial location and destination (2pack(a) and 3pack(a)), the task of movingtrucks to the necessary locations can be completely interleaved between thegoals. So FAF can perform as well as ExCon on these problems. In fact,for 2pack(a), FAF outperforms ExCon on the test problems. This is becausethat the planner instantiates some variables earlier with ExCon, generatingmany search branches which eventually fail while with FAF, the same vari-ables are instantiated later when the variables are more constrained and thusinstantiating them generates less search branches.� For the problems where the package are of the same type but interleavingtasks between goals work only partially or not at all (2pack(b), 2pack(c),3pack(b) and 3pack(c)) ExCon outperformed FAF.� For the problems where the package are of the di�erent types (2pack(d) and3pack(d)), ExCon outperformed FAF.We also performed the same one-tailed paired t-test on the Translog results. Theresults are shown as p in the table. Since the performances of FAF and ExCon arethe same for one-package problems, a t-test cannot be done for this problem type.Except for 2pack(a) where ExCon is outperformed by FAF, the performances ofFAF and ExCon are signi�cantly di�erent at the 99.9% level. Thus, except for one110



Problems FAF ExCon FAF/ExConPlans Time Plans Time (Plans)tower-invert3 45 0.23 52 0.33 0.87tower-invert4 169 2.73 138 2.17 1.22tower-invert5 798 33.15 521 16.65 1.53tower-invert6 4921 438.43 2505 184.90 1.96Table 4.3: The results on the Blocks World problems. Plans are number of partialplans created. Time is non-garbage collection CPU time in seconds.package problems (1pack), the performance of ExCon is signi�cantly better thanthe performance of FAF.4.6.3 Blocks WorldWe also ran FAF and ExCon on tower inversion problems in the Blocks Worlddomain. We used 4 problems (tower invert3, tower invert4, tower invert5 andtower invert6) each with a di�erent number of blocks involved. We hypothesizedthat as the number of blocks increases, ExCon should increasingly outperformFAF because as more blocks are involved, the amount of interleaving increases.The results are shown in Table 4.3. Although FAF outperformed ExCon on towerinvert3, ExCon outperformed FAF on problems with more blocks.As we were testing the strategies, we noticed that the results change if wemodify the order in which the goal tasks are speci�ed in the problem. This isunderstandable for FAF since FAF does not prefer which instance of a task todecompose because every instance has the same number of methods. In such acase, FAF returns the one that happens to be found in the partial plan �rst. For111



Problems FAF ExCon FAF/ExConPlans Time Plans Time (Plans)tower-invert3 44 0.54 32 0.22 1.38tower-invert4 403 14.66 70 1.12 5.75tower-invert5 9992 1,548.40 370 16.61 27.01tower-invert6 > 10,000 { 1465 136.64 {Table 4.4: The results on the same Blocks World problems where the goal tasksare speci�ed in the reversed order. A number in boldface indicates the best result(either in CPU time or number of partial plans created) for the problem.instance, the goals of the tower-invert4 problem used for the above experimentsare ordered as n1:(on B C) n2:(on C D) n3:(on D A). The planner using FAF decomposesthe goal n1:(on B C) �rst and and then later decomposes the goal n2(on C D) beforedecomposing the goal task n3:(on D A).In order to see if the relative performance of FAF and ExCon changes withthe di�erent orderings of the goal tasks, we ran the same test, except that thegoals were speci�ed in reverse order. Table 4.4 lists the results. Interestingly, theperformance of ExCon was even better for this type of goal speci�cation, while itwas far worse for FAF. Notice that the di�erence between the results of ExConshown in Tables 4.3 and 4.4 is relatively small; it is never more than double. Thisis because ExCon chooses tasks based on which task establishes (or threatens) thecurrent applicability condition in the partial plan, and is able to resolve the taskinteractions e�ciently no matter what order the goal tasks happen to be speci�ed.112



4.7 Related Work4.7.1 External conditions in other HTN plannersNonlin [47], O-Plan2 [10] and SIPE-2 [54] use condition typing. In these planners,state constraints are speci�ed with condition types, which not only specify theconditions that must be satis�ed in the plan, but also specify how the conditionscan be used. Using condition typing, the domain writer has more power to controlthe search for a plan. Some types of conditions in these three planners are de�nedsimilarly to the external conditions we use. Since most condition types in Nonlin,O-Plan2, and SIPE-2 are de�ned and used quite alike, we discuss only the conditiontypes in O-Plan2 in this section. For a summary and comparisons of conditiontypes used in Nonlin, O-Plan2 and SIPE-2, see [48].In O-Plan2, there are three types of conditions that may satisfy the de�nitionof external conditions. Unsupervised conditions are conditions that are satis�edby other tasks for other goals. Unlike external conditions, however, unsupervisedconditions may also specify a condition that can be established by a subtask inthe decomposition method. Only use if conditions are conditions that are used to�lter out inapplicable decomposition methods. If the conditions are for non-staticstate conditions (i.e. the conditions that may change as results of other actions),then they are considered external conditions by our de�nition. Only use for queryconditions are to bind variables. Similarly to only use if conditions, some conditionsmay be considered external conditions.Even though these conditions are similar to external conditions, they are usedquite di�erently in these planners, compared with how external conditions are usedin our ExCon strategy. For example, if a condition is speci�ed as a unsupervised113



condition in O-Plan2, the planner assumes that the condition is satis�ed by someother task. Thus, satisfying the condition has a low priority during the planningprocess. On the other hand, satisfying any external condition has a high priorityin the ExCon strategy since the planner cannot make such assumptions.Automatic ExtractionAs opposed to condition types explicitly speci�ed by the domain writer, our imple-mentation of ExCon automatically extracts external condition from the domain.Comparing the two approaches, each one has advantages and disadvantages.The explicit speci�cation of the condition types allows a domain expert morepower to control the search as well as de�ning the application domain. Since adomain expert naturally has the knowledge as to how plans can be constructede�ciently, this approach can make the planning highly e�cient. Also, it is currentlynot possible to extract all the external conditions as mentioned in Section 4.3.1.It is possible that external conditions not extracted may help prune the searchfurthermore. Meanwhile, it is highly possible that some external conditions asde�ned in this paper do not help the pruning.However, modeling and specifying an application domain to work correctly for aplanning system requires a lot of e�ort on the side of a domain expert. Specifyingthe domain so that the planning would be e�cient requires even further e�ortsand deep understanding of how the planning algorithm works. Our method ofpreprocessing the knowledge base to extract interesting conditions makes it easierfor domain experts to maintain the domain.114



4.7.2 High-level e�ectsSome HTN planners use `primary e�ects' of non-primitive tasks (1) to establishconditions of other non-primitive tasks, and (2) to prune partial plans where acondition establishment is threatened by them. Such primary e�ects are also called`high-level e�ects' to distinguish them from the primary e�ects of action-basedoperators used in some literatures. For example, the task (Go ?i ?d) - go from ?ito ?d - may have the high-level e�ect of (at ?d). By using high-level e�ects, anHTN planner can establish many, or most, conditions speci�ed for non-primitivetasks. However, using high-level e�ects has some drawbacks as well as bene�ts. Inthis section, we discuss the use of high-level e�ects in HTN planning and how ourExCon strategy would perform.Soundness and completenessSome HTN planners use high-level e�ects in a way that makes the planning un-sound and/or incomplete.Using high-level e�ects can threaten the soundness of HTN planning if one ofthe following situations occurs:(a) A high-level e�ect e associated with a task te does not appear in some de-compositions of te.(b) A high-level e�ect e associated with a task te is inserted by a task in somedecompositions of te, but removed by another task.(c) A high-level e�ect e associated with a task te is inserted by a descendent ofte but clobbered by an action in the decompositions of other tasks.115



Using high-level e�ects can threaten the completeness of HTN planning if thefollowing situation occurs:(d) If a high-level e�ect e associated with a task te is used to establish a conditionfor another task tc, most planners which use high-level e�ects usually putan ordering from the end of te to the beginning of tc. However, such anordering excludes these plans which have te after the action that gives e inthe decomposition of te but before the last action for te.There are two ways which have been suggested on how to incorporate high-level e�ects into the HTN planning formalism in a way that does not threatenthe properties of the planner such as soundness and completeness. One way is torequire the domain expert to specify the domain such that for each high-level e�ecte associated with a task te, every decomposition of te must contain a subtask withthe e�ect e, which is not clobbered by any other subtask in the same decomposi-tion [55]. A similar approach is used in the DPOCL planner by [57]. Although thisapproach solves situations (a) and (b) above, it does not solve situation (c) nor (d).Another way is to impose constraints on decompositions such that a planner weedsout the sub-plans that do not give the intended e�ects. So situations described by(a) or (b) never occur. In most HTN formalisms that use this approach, conditionestablishments using high-level e�ects are also protected by similar constraints toavoid situation (c). This approach is used in the UMCP formalism [11] and hybridplanning by [24]. In UMCP, high-level e�ects cannot be used to fully establishconditions in order to avoid situations described by (d); only a primitive actioncan establish a condition. 116



The ExCon strategy and high-level e�ectsThe purpose of using high-level e�ects is to allow the planner to construct moreconsistent partial plans at higher levels of abstraction and to reduce the chance ofbacktracking later because of decisions made for these non-primitive partial plans.As described above, the UMCP planner does not use high-level e�ects to fullyestablish conditions, making backtracking cost bigger than in other planners thatuse high-level e�ects to establish conditions. However, the ExCon strategy cancompensate for such ine�ciency by reducing the backtracking cost incurred by notusing high-level e�ects.Furthermore, we believe the ExCon strategy could also improve the e�ciencyof an HTN planner that uses high-level e�ects to establish conditions. Here arethe reasons:� High-level e�ects can specify only certain e�ects of a non-primitive task.Many conditions have to be established by e�ects not speci�ed as high-levele�ects.5 Establishing these conditions may involve interleaving tasks. ExConcan reduce the backtracking costs in such cases.� Using high-level e�ects to establish conditions does not mean every conditioncan be established immediately. The planner still may need to decomposetasks until it �nds a task with a high-level e�ect that can establish thecondition. ExCon can identify which task to decompose in such cases.5Some call them the side e�ects of a task.
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4.8 SummaryAlthough FAF helps the planner reduce the size of the search space, it can be out-performed by a strategy that recognizes the opportunities to prune the search. Formulti-goal problems, a lot of backtracking cost can be incurred by not recognizingthe futility of interleaving tasks in the partial plan early during the planning pro-cess. The ExCon strategy can greatly reduce such backtracking costs by detectingand completing task interleaving as soon as possible. The strategy does this bykeeping track of external conditions.In the empirical studies, ExCon outperformed FAF on complex problems, doingincreasingly well on problems where the task interactions occurred recursively andwhere multiple goals were involved. However, ExCon did not outperform FAF ontwo points:1. ExCon can be outperformed by FAF for reasons not directly related to taskinteractions. For example, on 2pack(a) problems in UM Translog, FAF out-performed ExCon because of a big backtracking cost on a variable instanti-ation. This suggests that we need to investigate a whole re�nement strategyinstead of focusing on task selection decisions.2. Since ExCon is designed to do well on problems where interleaving tasksfails, it does not do as well on problems where such failures do not occur.For example, there is little di�erence between the results of FAF and ExConon 2-goal 1-predicate problems in the arti�cial domain. However, we canimprove ExCon on some of such problems by utilizing ordering constraintsspeci�ed for tasks. This method is described in the next chapter.Since ExCon enables the planner to establish conditions in the plan at less118



detailed levels, it produces some of the same improvements in planning e�ciencythat one might try to get using planning constructs such as high-level e�ects. Inaddition, it has the following advantages:� External conditions do not have to be speci�ed explicitly by the user, butinstead are found automatically by the planning systemwhen it pre-computesits knowledge based. This will make it much easier for users to maintain theknowledge base.� ExCon is a task selection strategy, not a search-space pruning heuristic: itsimply speci�es the order in which a planner will prefer to expand tasks.Thus, it has no e�ect on the planner's soundness and completeness: a plannerthat is sound and complete without it will also be sound and complete withit.
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Chapter 5Left-to-Right MethodThe ExCon strategy presented in the previous chapter reduces the backtrackingcosts that are caused by failing to establish applicability conditions by interleavingtasks. Another way to resolve task interactions e�ciently is to simply plan thetasks in an order similar to the one used when tasks are executed. By doing so,the planner can easily follow the changes the execution of the tasks make in thestate and thus be able to establish many state constraints associated with the tasksthat come later. This chapter presents the Left-to-Right heuristic that selects tasksto decompose in a left (the initial state) to right (the �nal state) manner.5.1 Forward HTN planningSome planning applications use forward HTN planning. For example, Smith, etal. [44] cite two such practical planning application domains, computer bridge andmicrowave module process planning. Although both domains have a lot of stepordering constraints and the planner gets the complete initial state, they have tohandle additional requirements: the bridge program has to deal with imperfectinformation of not knowing what cards each opponent has, and the microwave120



module process program has to interact with external information sources anddo numeric computation. For planning, they use total-order forward HTN plan-ning which is shown to be more suitable than the traditional backward planningapproach. Their reason for doing forward planning is that it can reduce the com-plexity caused by the additional requirements. By doing total-order forward HTNplanning, the planner can explicate the current world state a lot more easily sinceit knows the complete initial state of the world and all the action steps that aregoing to be in the plan up until the state. If either program used a backward-chaining planning approach, any number of actions could be inserted anywhere inthe plan. Thus, it would be extremely di�cult to evaluate or validate a partialplan during the planning process. For these reasons, even for domains that do notrequire numeric computation or do not have to handle imperfect information, itstill may be a good idea to do forward planning.In action-based planning, there are three ways to plan actions: plan forward,plan backward and a combination of both. Constructing plans starting from theinitial state gives the planner the advantage of having more information about theworld state the planner is dealing with and thus makes it easier to solve interactionsbetween actions. Planning backward from the goals has the advantage of produc-ing lower branching factors because there are usually fewer actions applicable tosatisfy a goal than a state. Although both the approaches of forward planning andbi-directional planning have been used successfully by some planners [16, 7], thebackward planning approach has been the most popular. For HTN planning, thebackward planning approach does not have an obvious advantage since the plannerconstructs plans by decomposing tasks into subtasks by applying decompositionmethods. So planning backward will not reduce the branching factors. On the121



other hand, the forward planning approach has an advantage similar to action-based planning. First, like action-based planning, the initial state is a completedescription of the world state. Since only actions can a�ect the world state, insert-ing actions starting from the initial state can provide more state information thatis useful in reasoning about later actions. Furthermore, an HTN domain can con-tain explicit step orderings between subtasks, which make it easier for the plannerto select earlier tasks.5.2 Left-to-Right heuristicIn HTN planning, the Left-to-Right (LtoR) task selection strategy will decomposea non-primitive task only when there are no other non-primitive tasks ordered tocome before it. As a tie-breaking rule to handle the case where more than onenon-primitive task has only primitive tasks ordered before it, we use the FewestPredecessors (FP) heuristic, which selects non-primitive tasks which have the leastnumber of tasks ordered before them. This heuristic has the advantage that itdoes not have to check if the preceding tasks are primitive or not because a non-primitive task A has fewer tasks ordered before it than a non-primitive task B ifA precedes B. So using the FP heuristic automatically implements LtoR and eachcomputation takes polynomial time with respect to the number of tasks in thepartial plan.As mentioned in the previous chapter, one class of problems where ExCon doesnot perform well is the one where the no tasks can be interleaved. The plannercannot interleave non-primitive tasks in a problem if (a) the tasks in the problemsare independent of each other, and/or (b) the tasks in the problem are totallyordered. For the problems of type (a), decisions made for one task do not a�ect122



decisions that must be made for another task. Thus, we conjuncture that the choiceof task selection method will have little e�ect on the planning e�ciency. For theproblems of type (b), LtoR should do well for the reasons stated above. Therefore,if we use LtoR as a tie-breaker in ExCon, the resulting ExCon strategy should dowell both on problems where the tasks can be interleaved and on problems wherethe tasks are totally ordered.While LtoR has an advantage similar to forward planning in action-based plan-ning, the LtoR strategy we present does not necessarily \plan forward" unless thegoal tasks and their subtasks are totally ordered. For example, LtoR may selectto decompose a non-primitive task A before it selects a non-primitive task B, yetthe subtasks of A may be ordered after the subtasks of B as a result of satisfyingsome state constraints. An alternative way is to use the algorithm Nau, et al. [34]suggest, which commits to a certain ordering between non-primitive tasks whendecomposing tasks.5.2.1 ImplementationWe implemented LtoR1 and another version of ExCon with LtoR as a tie-breaker.In order to distinguish between the two versions of ExCon with di�erent tie-breakers, we call them ExCon-FAF and ExCon-LtoR for ExCon with FAF andExCon with LtoR, respectively.1We used FAF as a tie-breaker for LtoR.
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5.3 ExperimentsIn order to see how the task selection methods a�ect the planning e�ciency onproblems with di�erent amounts of ordering constraints and di�erent amounts oftasks that can be interleaved, we ran FAF, LtoR, ExCon-FAF and ExCon-LtoRon a small arti�cial domain and UM Translog. We hypothesize the following:� Similarly to ExCon-FAF and FAF, we hypothesize that the ExCon-LtoRstrategy should outperform the LtoR strategy especially on problems wherethe goal tasks are highly interleaved.� In planning domains in which there are many constraints on the orderingof the subtasks, the LtoR heuristic should be able to outperform the FAFheuristic by expanding the tasks in an order that facilitates the pruningof infeasible plans. Similarly, the ExCon-LtoR strategy should be able tooutperform the ExCon-FAF strategy in such problem domains.5.3.1 Random Travel Planning domainIn our description of the LtoR strategy earlier, we pointed out that the explicitstep orderings given in the task descriptions make it easier for the planner to selectthe tasks in a left-to-right manner. To see how much this can help the performanceof the planner, we created a small domain called Random Travel Planning wherethere is only one level of hierarchy (i.e. no non-primitive task is decomposed intoanother non-primitive task). In this domain, there are three types of goal tasks,
Sightsee, Travel and Eat. Their decomposition methods are shown in Figure 5.1.22The domain is slightly di�erent from the one we used in [49] since the change from UMCP1.0to UMCP1.2 made the problems on Random Travel Planning domain easier to solve for most of124



The task Sightsee is to go sightseeing ourselves (Method 1 in the �gure) or to join atour bus (Method 2), depending on if we are tired or not. Going sightseeing makesus tired. Taking a 
ight, or eating a food makes us recover from tiredness. Inother words, the primitive task (go-sightseeing ?city) has an e�ect (tired ?city) and theprimitive tasks (fly ?city0 ?city1) and (have ?food ?city0) have an e�ect (�tired ?city0).The task (fly ?city0 ?city1) also has e�ects (�in ?city0) and (in ?city1). Other primitivetasks have no e�ects. The task Travel is to move to another city, if it's di�erentfrom the current location. The task Eat is to go to a restaurant for a type of foodwe want and eat there. If the type of food we want is local to the location, suchas Italian food if the current location is Rome, then going to a local restaurantsu�ces (Method 1). If not, we go to a good restaurant if we are not tired (Method2), or we go to a closer restaurant if we are (Method 3). In these methods, every`before' and `between' state constraint is an external condition.A problem in this domain consists of 10 goal tasks, randomly generated. Agoal task is either (Sightsee), (Travel ?city), or (Eat ?food). where ?city is a valuerandomly chosen from fLosAngeles, NewYork, London, Paris, Romeg, and ?food isa value randomly chosen from fAmerican-food, English-food, French-food, Italian-foodg. Since the subtasks in each method are totally ordered, how the problemsare ordered depends on the step orderings between the goal tasks. If the goal tasksare totally ordered, then every partial plan generated from the goal also has thetasks totally ordered. The step orderings between the goal tasks are randomlygenerated based on the parameter !. ! de�nes the maximum number of pairsof goal tasks that can be left unordered. Lower values of ! indicate that thereare more ordering constraints among the goal tasks. The initial state consists ofthe problems. 125



Sightsee() Method 1

n:
(go-sightseeing ?city)

Constraints:
(before (in ?city) n)
&(before (~tired ?city) n)

Sightsee() Method 2

n:
(join-tourbus ?city)

Constraints:
(before (in ?city) n)
&(before (tired ?city) n)

Travel(?city) Method 1

n:
(stay-more ?city1)

Constraints:
(before (in ?city1) n)
&(?city = ?city1)

Travel(?city) Method 2

n1:
(goto-airport ?city0)

Constraints:
(before (in ?city0) n1)&(?city0 = ?city1)&(?city = ?city1)

n2:
(fly  ?city0 ?city1)

n3:
(goto-downtown   ?city1)

Eat(?food) Method 1

n1:
(goto-local-restaurant )

Constraints:
(initially (local-food ?food ?city)
 &(before (in ?city) n1)&(between (in ?city) n1 n2)

n2:
(have ?food ?city)

Eat(?food) Method 2

n1:
(goto-good-restaurant ?food)

Constraints:
(initially (~local-food ?food ?city) &(before (~tired ?city) n1)
 &(before (in ?city) n1)&(between (in ?city) n1 n2)

n2:
(have ?food ?city)

Eat(?food) Method 3

n1:
(goto-closer-restaurant ?food)

Constraints:
(initially (~local-food ?food ?city) &(before (tired ?city) n1)
 &(before (in ?city) n1)&(between (in ?city) n1 n2)

n2:
(have ?food ?city)Figure 5.1: The decomposition methods for the Random Travel Planning domain.The tasks shown in boldface are primitive tasks.126



G4:
(Sightsee) G5:

(Eat Italian-food)

G3:
(Eat American-food)

G1:
(Eat French-food)

G2:
(Travel Rome)

G0:
(Travel London)

G6:
(Travel LosAngeles)

Initial State:
(local-food American-food NewYork) (local-food American-food LosAngeles)
(local-food French-food Paris) (local-food English-food London)
(local-food Italian-food Rome)
(in LosAngels)

Goal tasks:

Figure 5.2: A problem of 7-goals, ! = 10 (the actual number of unordered pairsof task is 9) in the Random Travel Planning domain.the food-city pairs for each city such as (local-food Italian-food Rome) and the currentlocation, i.e. (in ?city), which is randomly assigned. A sample 7-goal problem of! = 10 is shown in Figure 5.2We created 20 10-goal problems each for ! = 5, 10, 15, 20 or 25 and solvedthem using FAF, LtoR, ExCon-FAF and ExCon-LtoR strategies. The results areshown in the Table 5.1 and Figure 5.3. For low ! values, LtoR does better thanFAF because LtoR can use the step orderings to correctly choose the earliest tasks.Many applicability conditions considered by ExCon-LtoR can be easily establishedat the time the conditions are inserted into the plan by using LtoR selection. Also,there are fewer non-primitive tasks that may a�ect the establishment of the currentapplicability condition, so the performance of ExCon-LtoR is similar to that ofLtoR.The performances of FAF and ExCon-FAF are also similar for the low ! valueproblems. Since FAF uses the LtoR heuristic for tie-breaking, FAF picks up the127
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(c) FAF and ExCon-FAF (d) LtoR and ExCon-LtoRFigure 5.3: The results of the Random Travel Planning problems. The x-axisshows the average number of pairs of unordered goal tasks and the y-axis showsthe average number of partial plans created.
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! Actual FAF LtoR ExCon-FAF ExCon-LtoRPlans Time Plans Time Plans Time Plans Time5 2.95 63.55 0.33 36.95 0.16 63.60 0.36 36.90 0.1810 7.35 51.25 0.28 41.00 0.21 50.45 0.30 38.40 0.2015 11.85 58.55 0.34 50.80 0.27 46.90 0.28 41.05 0.2220 15.8 66.65 0.49 131.85 1.23 53.75 0.35 54.15 0.3525 22.2 168.10 2.84 431.55 6.20 62.15 0.45 62.00 0.42Table 5.1: The results of the Random Travel Planning problems. The actualaverage number of unordered pairs is shown next to ! values. Plans is the averagenumber of partial plans created. Time is average non-garbage collection CPU timein seconds.tasks relatively from left-to-right, although it skips Eat in preference to Sightsee or
Travel. So, similarly to ExCon-LtoR, only a few possible non-primitive tasks existthat may a�ect the establishment of the current applicability condition. Since theperformance of the ExCon strategy greatly depends on its tie-breaking strategy forlow ! value problems (i.e. problems where goal tasks are not interleaved much),ExCon-LtoR does better than ExCon-FAF.For the high ! value problems, there are not very many ordering constraintsamong the goal tasks, so there can be many more interactions among goal tasks. Inthese problems, the performance of LtoR is worse than any other strategy becauseLtoR does not have enough step ordering information to correctly work in a left-to-right manner and thus cannot identify constraints that can never be establishedearly. FAF performs better than LtoR, but not as well as ExCon-FAF or ExCon-LtoR. The performances of ExCon-LtoR and ExCon-FAF are similar because for129



! 5 10 15 20 25
ExCon-FAF/ExCon-LtoR 1.72 1.31 1.14 0.99 1.00p 96.3% 81.6% 94.7% 40.4% 51.2%Table 5.2: Comparison of ExCon-FAF and ExCon-LtoR on the Random TravelPlanning problems.problems with highly interleaved goal tasks, ExCon selects tasks and does not haveto use its tie-breaking strategy (i.e. LtoR or FAF).We also performed a one-tailed paired t-test on the Random Travel Planningresults to compare the performance of ExCon-FAF and ExCon-LtoR. Similarlyto the test in the previous chapter, the null hypothesis is H0 : �ExCon�FAF =�ExCon�LtoR and the counter hypothesis is H1 : �ExCon�FAF > �ExCon�LtoR , where�ExCon�FAF and �ExCon�LtoR are the mean numbers of partial plans created byusing ExCon-FAF and ExCon-LtoR, respectively. The resulting p values are shownin Table 5.2.For ! = 5, we can reject the null hypothesis with a con�dence level 96.5%.For ! = 10 and 15, the con�dence level is lower. And for ! � 20, the p-valueshows that neither of the two strategies is signi�cantly doing better than the other.Thus, ExCon-LtoR outperforms ExCon-FAF on problems with many ordering con-straints, while their performances are similar on problems where more tasks canbe interleaved.5.3.2 UM TranslogNext, we looked at the performance of the task selection methods on problems inthe UM Translog domain. For one-package problems in the UM Translog domain,130



Problem LtoR ExCon-FAF ExCon-LtoR E-F/E-L pPlans Time Plans Time Plans Time (Plans)1pack 73.40 0.30 76.00 0.35 73.40 0.37 1.04 >99.9%Table 5.3: The results for LtoR, ExCon-FAF and ExCon-LtoR for one-package UMTranslog problems. Plans is the average number of partial plans created. Time isnon-garbage collection CPU time in seconds. p represents the con�dence levels ofpaired t-test for ExCon-FAF and ExCon-LtoR.almost all the subtasks of a goal task are ordered with each other. Hence, we hy-pothesized LtoR should do well for these problems. For multiple-package problems,there are no ordering constraints. So, LtoR should do worse for these problems.However, ExCon-LtoR should do well for the same reason that ExCon-FAF didwell on these problems. We ran the same UM Translog problems we used in theprevious chapter. For one-package problems, LtoR, ExCon-FAF, and ExCon-LtoRwere tested. For multiple-package problems, only ExCon-FAF and ExCon-LtoRwere tested because LtoR performed far worse than any other strategies.One-package problemsTable 5.3 shows small di�erences between the performances of three strategies onone-package problems in Translog. In terms of the number of partial plans created,LtoR and ExCon-LtoR constantly outperformed ExCon-FAF. However, in termsof CPU time, LtoR performed best although FAF sometimes outperformed it. Thisis probably because FAF needs less computation overhead to compute which taskhas the fewest decomposition methods. On the other hand, the ExCon strategyneeds more overhead to keep track of external conditions and �gure out which taskcan establish which constraint. Thus, even though ExCon-LtoR did well in terms131



of the number of partial plans, it did not do so in terms of CPU time.The table also shows the results of the t-test used to compare the result ofExCon-FAF and ExCon-FAF using the number of partial plans. Since ExCon-LtoR constantly outperformed ExCon-FAF in terms of the number of partial plans,we can say that ExCon-LtoR creates less partial plans than ExCon-FAF with acon�dence level of 99.9%.Multiple-package problemsTable 5.4 shows the results of two- and three-package problems for ExCon-FAFand ExCon-LtoR. We did not show LtoR for these problems because it performedsigni�cantly worse than other strategies. For example, LtoR created 2129.6 partialplans on average for the 2pack(a) problems.The table shows the mixed results: in terms of the number of partial plans,ExCon-FAF outperformed ExCon-LtoR on 4 problem types (2pack(a),(c)-(d) and3pack(a)) and ExCon-LtoR outperformed ExCon-FAF on the remaining 4 prob-lem types (2pack(b), 3pack(b)-(d)). For problems with the same itinerary (i.e.2pack(a) and 3pack(a)), ExCon-LtoR is outperformed by both FAF (shown inTable 4.2) and ExCon-FAF, although ExCon-LtoR outperformed FAF for all theother problem types. Since the planner can successfully interleave goal tasks forthese problems, ExCon does not have the advantage. Thus, the performance ofExCon depends on its tie-breaking strategy. Since there are no ordering constraintsbetween goal tasks in multiple package problems, the LtoR heuristic does not havean advantage. Thus, ExCon-FAF outperforms ExCon-LtoR.For 2pack(b)-(d), the di�erence between the ExCon-LtoR and ExCon-FAFis small, but the t-test shows it is signi�cant. Which strategy is better varies132



Problem Types ExCon-FAF ExCon-LtoR E-F/E-L pPlans Time Plans Time (Plans)2pack(a) same 178.20 1.98 179.90 1.98 0.99 2.5%2pack(b) same 229.65 3.04 227.55 2.82 1.01 99.8%2pack(c) same 536.25 10.37 551.10 10.12 0.97 <0.01%2pack(d) di�erent 633.40 9.90 672.35 10.11 0.99 <0.01%3pack(a) same 238.15 6.28 814.90 26.77 0.29 <0.01%3pack(b) same 33639.15 1,075 18657.70 687 1.80 >99.9%3pack(c) same 57692.10 1,937 33053.50 1,428 1.75 >99.9%3pack(d) di�erent 20733.55 556 13087.75 419 1.58 >99.9%Table 5.4: The results of ExCon-FAF and ExCon-LtoR for multiple-package prob-lems in UM Translog. Plans is the average number of partial plans created. Time isnon-garbage collection CPU time in seconds. \Types" shows whether the packageshave the same type and so can be carried by the same delivery truck. p representsthe con�dence levels of paired t-test.between problem sets. For 3pack(b)-(d), the di�erence is bigger, and ExCon-LtoRoutperformed ExCon-FAF. These results show that the tie-breaking strategy playsa big role in ExCon. Since the tie-breaker determines which task to decompose atthe start of the planning process, it also determines which applicability conditionsExCon will �rst look at. We need to further investigate which tie-breaking strategyshould be used for highly interleaved problems.
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5.4 SummaryThis chapter investigated LtoR, a task selection heuristic that takes advantageof ordering constraints in the domain. If the planner knows the order in whichtasks are later executed, it can plan e�ciently by planning in the same orderbecause it can establish most state constraints associated with tasks immediatelyby examining the changes made in the world state by the tasks that come beforethem. We implemented LtoR, which selects tasks to decompose if there are nonon-primitive tasks ordered before them.We have compared LtoR, FAF, ExCon-FAF and ExCon-LtoR on two test do-mains. The primary results are as follows:� LtoR and ExCon-LtoR perform better than FAF and ExCon-FAF on prob-lems where there are many ordering constraints.� LtoR performs far worse than any other strategies on problems where thereare less ordering constrains.� ExCon-FAF and ExCon-LtoR perform better than FAF and LtoR on prob-lems where there are less ordering constraints and tasks can be interleaved.The above results seem to show that ExCon-LtoR is preferable to ExCon-FAF because it can perform well on problems where there are a lot of orderingconstraints (i.e. LtoR performs well) as well as on problems where many taskscan be interleaved (i.e. ExCon performs well). However, the results also showthat the range of problems that LtoR can perform well on is quite limited. LtoRand ExCon-LtoR performed better than FAF and ExCon-FAF for problems of != 5 and 10 in the Random Travel Planning domain. Still, the t-test applied tothe results of ExCon-FAF and ExCon-LtoR can only reject the null hypothesis at134



a con�dence level of 96.5% for ! = 5, a rather low level. This implies that thedi�erence between ExCon-FAF and ExCon-LtoR even on problems with ! = 5is not that signi�cant. Considering that the actual average ! value is 2.95, thegoal tasks in those problems are almost linearly ordered. Thus, the advantagepresented by using the LtoR heuristic applies only to a small range of problems.Even though, we believe the LtoR heuristic would do well on many real-worldproblems because there are many domains that have only linearly ordered tasks,as Smith, et al. [44] suggest.Although the experiments on LtoR and ExCon-LtoR showed that LtoR per-forms well on problems where tasks are almost linearly ordered, there remainquestions regarding the four strategies tested:� ExCon-FAF and ExCon-LtoR perform better than FAF and LtoR on prob-lems where many tasks can be interleaved. However, the tie-breaking strategyseems to a�ect the performance of ExCon. We need to study further whattie-breaking strategy is best for ExCon for what types of problems.� Both of the results of experiments in the Translog domain and the Ran-dom Travel Planning domain seem to indicate that LtoR does perform wellon problems where subtasks have many ordering constraints between them.However, the savings from using LtoR are not large compared with FAF orExCon-FAF in either of the two domains. This may be due to the fact thatFAF uses the LtoR heuristic to break ties. Further investigation is necessaryto fully evaluate how well LtoR does compared with FAF or ExCon-FAF.
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Chapter 6Conclusion6.1 Research ContributionsThe goal of this dissertation was to analyze re�nement strategies for HTN planningand address issues on the e�ciency of HTN planning. In each analysis, strategieswere evaluated systematically: they were tested both on arti�cial domains as wellas on more realistic domains, and statistical tests were performed on the results.The primary research contributions of this work are summarized below.6.1.1 Problems with Least CommitmentsMost re�nement planning systems use some type of least commitment strategy,which tries to delay commitments to certain elements of a plan in order to avoidmaking premature commitments. Many studies on least commitments show thatthe least commitment strategy is better than other previous strategies. A problemexists, however, in choosing which commitments should be delayed. Since a plan-ner has to commit to something in order to plan, it cannot delay committing toevery element of a plan. Thus, a least commitment strategy may make premature136



decisions by delaying some other decisions.I compared three strategies, RVBS (least commitment to variable instanti-ation), EVIS (least commitment to task instantiation), and DVCS (a dynamicstrategy which chooses between RVBS and EVIS using the FAF heuristic). Theresults were the following:� A least commitment strategy which consistently delays commitments to cer-tain elements of a plan throughout the planning process can make prematurecommitments to other elements of a plan.� The decision of which elements of a plan to delay committing to should bealtered during the planning process, depending on the current partial plan.� The FAF heuristic can be used to make such decisions. In the experimentsof the two least commitment strategies, RVBS and EVIS, and of DVCS, Ihave shown that neither RVBS nor EVIS can perform best in all types ofproblem domains. On the other hand, DVCS performed better than or aswell as RVBS and EVIS in all of our test domains by choosing between thetwo strategies using the FAF heuristic.6.1.2 AND/OR SerializationDuring re�nement search, a re�nement strategy needs to decide which re�nementto do among many re�nements that are applicable to the current search node.This choice process that a re�nement strategy makes can be viewed as the processof serializing an AND/OR graph into an OR-tree. Thus, the performance of are�nement strategy can be evaluated by the size of the serialized tree it makes.While this evaluation ignores the e�ects of pruning that a re�nement strategy can137



make during the search process, it provides a good estimate of the size of searchspace in the worst case.The di�erence between the best possible serialization and worst possible seri-alization can be as big as the factor of 2k where 2k is the height of the AND/ORtree. Also, in this model, the best serialization can be obtained by using the FAFheuristic. In general, the FAF heuristic does not always generate the best serial-ization; in fact, it can generate the worst serialization if given the right AND/ORtree. However, the experiments using randomly generated AND/OR trees showFAF generated the best or near-best serialization in most cases.6.1.3 Task Interactions in HTN PlanningThe various analyses of FAF indicate that it works well on many problems. How-ever, since FAF does not prune the search space, a re�nement strategy that e�ec-tively prunes the search space can outperform FAF.In HTN planning, the planner interleaves non-primitive tasks in order to gen-erate a plan that contains less redundant actions. In order to do so, the plannertypically tries to interleave tasks as much as possible. However, in many cases, theplanner cannot interleave tasks for reasons such as that the task does not producethe necessary e�ect or that some other task interferes with the necessary e�ect.The ExCon strategy tries to detect and deal with task interleaving as early aspossible, in order to prune the search space when it �nds the task interleavingfutile. The empirical results on ExCon and FAF show that ExCon increasinglyoutperformed FAF on problems where the planner fails to interleave tasks.138



6.1.4 Ordering Constraints in HTN ProblemsUnlike action-based planning, the user can provide ordering constraints betweentasks in an HTN planning domain. An HTN planner can prune the search spaceby using such ordering constraints to limit orderings between tasks. The LtoRstrategy expands the tasks in an order similar to the order that the tasks are laterexecuted. If the tasks for the given problem have many ordering constraints, LtoRcan establish most state constraints immediately after they are asserted into theplan.In a comparison of LtoR, FAF, ExCon-FAF (ExCon with FAF as a tie-breaker)and ExCon-LtoR (ExCon with LtoR as a tie-breaker), the results show the follow-ing:� Both LtoR and ExCon-LtoR outperformed FAF and ExCon-FAF on prob-lems where there are ordering constraints between almost all the tasks. How-ever, the range of problems where LtoR can perform well is quite limited.� ExCon-LtoR and ExCon-FAF outperformed FAF and LtoR on problemswhere there are less ordering constraints and tasks can be interleaved.6.2 Future Research DirectionsThe work described in this dissertation suggests several topics for future work:� Improving ExCon The study of the two versions of ExCon (ExCon-FAFand ExCon-LtoR) shows that the tie-breaker can make a big di�erence onthe performance of ExCon. Thus, an extensive study of the tie-breakingstrategy for ExCon is needed to improve ExCon. Also, it is not clear in139



what order external conditions should be looked at in ExCon to improvethe e�ciency. For example, if a decomposition method has more than oneexternal condition, which external condition should be considered �rst byExCon? Currently, external conditions are considered in the order that theplanner extracts them. It is necessary to examine how much the order inwhich external conditions are considered during the planning process a�ectsthe performance.� Combining re�nement heuristics On some problems, ExCon's perfor-mance is worse than FAF. This is due to wrong decisions for variable bind-ings rather than the decision of task selection. However, this suggests ananalysis of the whole re�nement strategy is needed instead of focusing ontask selection as was done for the studies of ExCon and LtoR. In order to doso, combinations of heuristics for the di�erent re�nement planning elements(tasks selection, variable constraints, step orderings) should be evaluated tosee if there are any combined e�ects on the e�ciency of planning.� Choosing an appropriate re�nement strategy for a given problem.One re�nement strategy cannot perform well on every kind of problem. Evenwhen strategy A is shown to do better than strategy B, a minor change toA may make multiple versions of strategy A that may perform di�erentlyon di�erent problems as shown by the study of ExCon-FAF and ExCon-LtoR. Thus, each strategy should be evaluated in such a way that shows theconditions of the planning problems under which each strategy performs well.Using such information, the user or the planner can make decisions to chooseappropriate re�nement strategies based on problem features. This requiresa systematic way to categorize problems based on their characteristics.140
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