
The Incompleteness of Planning with Volatile
External Information

Tsz-Chiu Au and Dana Nau1

Abstract. In many real-world planning environments, some
of the information about the world is both external (the planner
must request it from external information sources) and volatile
(it changes before the planning process completes). In such en-
vironments, a planner faces two challenges: how to generate
plans despite changes in the external information during plan-
ning, and how to guarantee that a plan returned by the plan-
ner will remain valid for some period of time after the plan-
ning ends. Previous works on planning with volatile informa-
tion have addressed the first challenge, but not the second one.

This paper provides a general model for planning with
volatile external information in which the planner offers a guar-
antee of how long the solution will remain valid after it is re-
turned, and an incompleteness theorem showing that there is no
planner that can succeed in solving all solvable planning prob-
lems in which there is volatile external information.

1 INTRODUCTION
In many real-world planning environments, the planner
must request information from external information sources
(databases, CAD systems, web services, and the like), incurring
a lag time for receiving the answers. In practical planning situ-
ations, the planning activity may take more time than is needed
to execute the resulting plan [6, 8, 9]. In such cases, some of
the information on which the plan depends will change while
the planning process is going on. For instance:

• [8] describes a domain-specific system that uses AI plan-
ning to do web service composition. Information from web
services can change before planning finishes, and the system
modifies its plans in response to such changes.

• At our university, the web site for booking concert-hall tick-
ets displays a countdown timer showing how much longer
the system will hold the seats that the user has booked. If the
countdown ever reaches 0 (e.g., if user spends too much time
examining the rest of the concert schedule), the booking will
expire and the user will have to select seats all over again.

• When a traveler tries to construct a travel plan, the informa-
tion about an airline flight may expire while the traveler was
trying to plan some other details of the trip.

In such environments, how to cope with changes of external
information and at the same time generate a plan that can be
executed correctly is a big challenge. Most existing planners
will not do this correctly unless they are modified.

In some cases, the interleaving of planning and execu-
tion [3, 7] is a good strategy to deal with volatile information.

1 University of Maryland, College Park, U.S.A., email:
{chiu,nau}@cs.umd.edu

But if the wrong choice of action can cause a failure that is
irrecoverable (or recoverable only at a large cost), then it is
necessary to reason, while the plan is being generated, about
whether the assumptions that are being used to choose an ac-
tion will still be true when the action is executed.

In [1] we described query management strategies that can
adapt existing planners to deal with volatile external informa-
tion by backtracking the planner to the first point in the plan-
ning process that makes use of outdated information, obtaining
the up-to-date information, and resuming the execution from
that that point. A primary limitation of that work was that it
provided no guarantee of completeness, i.e., no guarantee that
a planner using such a query management strategy could suc-
ceed in every solvable planning environment.

In this paper, we provide an impossibility theorem show-
ing that it is impossible to have a planner that can success-
fully find a valid solution in every solvable environment. This
resembles the famous impossibility theorems in distributed
systems 〈http://www.podc.org/influential/2001.html〉, which
says that some problems in distributed systems are fundamen-
tally unsolvable [2]. Remedying this problem is far from trivial,
because it requires a modification to the fundamental assump-
tions of the distributed system model people have been used.
Many of those solutions are not ideal, but they are needed in
order to able to solve certain problems.

2 INCOMPLETENESS IN VEI-PLANNING
Let L be a planning language such as PDDL [5]. We construct
a new language L̂ that contains all the symbols of L plus some
additional symbols called unknowns as follows: given a set Û of
unknowns, and a set dom(ui) of terms (called the values of ui)
in L for each unknown ui, L̂ is a set of expressions produced by
taking any expression e in L and replacing zero or more terms
in e with corresponding unknowns.

For each unknown u, there is a piecewise-constant function
Vu : R → dom(u), such that u’s value at time t is Vu(t).
To learn about the value of u, a planner Ã must issue queries
to an information source Iu: if Ã sends a query q for an un-
known u to Iu, Iu will return a value v(q) = Vu(t′) for q at
time t′ = treturn(q). If Ã knows nothing about how long v(q)
will remain true, it cannot provide any sort of guarantee about
the correctness of the plan it generates: the information may
change during plan execution, invalidating the plan. Thus, we
assume that Iu’s answer ans(q) will include both v(q) and an
expiration time texpire(q). v(q) is guaranteed to be valid until
texpire(q), after which time it may change (see Fig. 1).

A VEI-problem P̃ (“VEI” stands for “volatile external in-
formation”) is a triple 〈P̂ , T, E〉, where P̂ is a planning prob-
lem written in L̂, T is a non-negative real number called a



PSfrag replacements

Timeline

tissue(q) treturn(q) texpire(q)

lag time tlag(q) valid time tvalid(q)

Figure 1. The lag time and the valid time of a query q. v(q) is
guaranteed valid only between treturn(q) and texpire(q). After

texpire(q), the value may possibly change.

validity guarantee, and E is a (finite or infinite) set of VEI-
environments, each of which is a pair 〈Elag, Eans〉, where Elag :
Û ×R → R and Eans : Û ×R → V̂ ×R are functions giving
the lag time and the answer to a query q for u issued at time t,
respectively. We assume that a planner Ã resides in one of the
VEI-environments in E during its execution, but Ã has no prior
knowledge about which one it is.

A value v of u is confirmed at time t if and only if Ã has
issued a query q for u and has received an answer ans(q) =
(v, texpire(q)) such that treturn(q) ≤ t < texpire(q). v is T -
confirmed at time t if and only if v is confirmed at time t′ for
all t ≤ t′ < t + T . A solution π is T -confirmed at time t if
all the values used by Ã for constructing π are T -confirmed at
time t. A planner Ã succeeds in a VEI-problem 〈P̂ , T, E〉 if and
only if no matter which VEI-environment (among E) Ã resides
in, Ã returns a T -confirmed solution when Ã terminates. A
VEI-problem P̃ is solvable if and only if there exists a planner
that succeeds in P̃ . A planner Ã is complete if and only if Ã
succeeds in all solvable VEI-problems. 2

Theorem 1 states the necessary condition under which there
exists a successful planner for a VEI-problem.

Theorem 1 A VEI-problem 〈P̂ , T, E〉 is solvable only if for
all E = 〈Elag, Eans〉 ∈ E, (1) There exists a solution π
for some instantiation of P̂ with values v1, v2, . . . , vm for
unknowns u1, u2, . . . , um, respectively; and (2) there exist
times t1, t2, . . . , tm such that the length of the time intervalT

1≤j≤m

ˆ
tj + Elag(uj , tj), tj + Elag(uj , tj) + tj

expire

´
≥

T , where where Eans(uj , tj) = (vj , t
j
expire).

For the above condition to be sufficient for solvability, the
planner would need to be able to know instantaneously when-
ever a value expires. But that would require a communica-
tion channel with an infinite band bandwidth and information
sources with infininte amount of computational power—an im-
possible requirement. In practice, there is usually an unavoid-
able delay between two consecutive queries. For example, a
database can only process one query at a time, and there is a de-
lay between the processing of two consecutive queries. There-
fore, it is realistic to make the following assumption:

Assumption 1 (Limited Accessibility) For each query q for
an unknown u issued at time t, there is a period of time after
t such that the planner cannot issue a query for u in the time
period [t, t + t′), where t′ is the length of the period.

Using this assumption, we can find two VEI-environments such
that no planner can succeed in them at the same time.

2 Our definition of completeness is the usual one for search algorithms
[10, p. 71] and planning algorithms [4, p. 544]: an algorithm is com-
plete if it finds a solution whenever a solution exists.

Lemma 1 Under the limited accessibility assumption, there
exist two VEI-problems P̃1 = 〈P̂ , T, {E1}〉 and P̃2 =
〈P̂ , T, {E2}〉 that are solvable, but the combined VEI-problem
〈P̂ , T, {E1, E2}〉 is unsolvable.

This follows that there is no complete planner; otherwise,
this lemma contradicts the fact that if both 〈P̂ , T, {E1}〉 and
〈P̂ , T, {E2}〉 can be solved by the same planner Ã, the com-
bined VEI-problem 〈P̂ , T, {E1, E2}〉 can also be solved by Ã.

Theorem 2 (Incompleteness) Under the limited accessibility
assumption, there is no complete planner.

3 CONCLUSIONS
Our incompleteness theorem shows that even if we restrict our
attention to solvable VEI-environments, there is no planner that
can solve every one of these environments. A consequence of
this is that no planner dominates all other planners in terms of
its coverage, i.e., there is no planner that can solve all of the
environments that are solvable by other planners.

In future, we would like to study how to get around the in-
completeness, so that one can create planners that are complete
if certain restrictions are satisfied. One possible solution is to
provide information about the timings of queries to planners,
so that planners can schedule its queries in advance. Another
solution is to look for randomized query strategies that have a
high probability of success.

ACKNOWLEDGEMENTS
This work was supported in part by ISLE subcontract
0508268818 to DARPA’s Transfer Learning program, UC
Berkeley subcontract SA451832441 to DARPA’s REAL pro-
gram, and NSF grant IIS0412812.

REFERENCES
[1] Tsz-Chiu Au, Dana Nau, and V.S. Subrahmanian, ‘Utilizing

volatile external information during planning’, in ECAI, pp. 647–
651, (2004).

[2] Michael J. Fischer and Nancy A. Lynch, ‘Impossibility of dis-
tributed consensus with one faulty’, JACM, 32(2), 374–382,
(1985).

[3] Michael R. Genesereth and Illah R. Nourbakhsh, ‘Time-saving
tips for problem solving with incomplete information’, in AAAI,
pp. 724–730, (1993).

[4] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: The-
ory and Practice, Morgan Kaufmann, May 2004.

[5] Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott,
Ashwin Ram, Manuela Veloso, Daniel Weld, and David Wilkins,
‘PDDL—the planning domain definition language’, Technical
Report CVC TR-98-003/DCS TR-1165, Yale Center for Com-
putational Vision and Control, (1998).

[6] i2 Technologies. Reducing planning cycle time at
altera corporation. http://www.i2.com/assets/pdf/
96FDF2C7-71C7-43B5-906A01BAE2F0AE76.pdf, 2002.

[7] Craig A. Knoblock, ‘Planning, executing, sensing, and replan-
ning for information gathering’, in IJCAI, (1995).

[8] Ugur Kuter, Evren Sirin, Dana Nau, Bijan Parsia, and James
Hendler, ‘Information gathering during planning for web services
composition’, Journal of Web Semantics, (2005).

[9] W. H. McRaven, Spec Ops : Case Studies in Special Operations
Warfare: Theory and Practice, Presidio Press, 1996.

[10] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern
Approach (Second Edition), Prentice Hall, 2003.


